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Abstract—Advancements in deep learning algorithms for medical
imaging, combined with the integration of cyberworlds, have
shown great promise in providing precise diagnostic results.
One area of interest is the application of these advancements
in enhancing personalized treatment of gliomas, a particularly
challenging type of brain tumor, by providing more reliable
information on a clinical biomarker Oxygen 6-methylguanine-
DNA methyltransferas (MGMT). To achieve accurate results, a
MobileNetV2 model was employed, utilizing transfer learning
method and a mechanism spatial attention with correlation was
added to further enhance the model’s performance. The model
was trained using a private dataset of annotated images and
evaluated using cross-validation. Results showed high precision
and recall in predicting MGMT status, indicating its potential to
improve the efficiency of this prediction. The model’s ability to
predict MGMT promoter methylation status can help clinicians
make more informed decisions, which has the potential to
improve personalized treatment planning, ultimately leading to
better patient outcomes.

Index Terms—Medical Imaging, Gliomas, MGMT Promoter
Methylation, Deep Learning, Attention Mechanism.

I. INTRODUCTION

The integration of cyberworlds, along with the advancements
in deep learning algorithms for medical imaging, presents a
transformative opportunity to enhance personalized treatment.
Deep learning algorithms have brought about a significant
transformation in the field of medical imaging by enabling
highly precise and dependable analysis for various medical
tasks [1]–[3]. Cyberworlds, on the other hand, offer virtual
environments where clinicians can interact with digital content
and access reliable information. This integration allows for
more informed decisions in personalized treatment planning,

potentially improving the efficiency of prediction models and
ultimately leading to better patient outcomes. One such task
is classifying molecular biomarkers, which are essential in
predicting the prognosis and treatment response of tumors,
according to the 2021 WHO classification [4]; These molec-
ular biomarkers can provide valuable information on the
biological characteristics of tumors, such as their genetic
makeup, cellular structure, and signaling pathways [5], [6].
Oxygen 6-methylguanine-DNA methyltransferase (MGMT) is
a significant prognostic factor in glioma patients [7], [8],
a particularly challenging type of brain tumor; One of the
major challenges in treating these tumors is that they are
known to grow rapidly and invade surrounding brain tissue,
making them difficult to completely remove through surgery.
Furthermore, the issue of accurately predicting a patient’s
response to chemotherapy and radiation treatments remains
a significant challenge. Clinical biomarker MGMT can assist
with this prediction, and its activity is regulated by a process
called promoter methylation, which can affect the response
to chemotherapy; When the MGMT promoter is methylated,
the expression of the MGMT protein is reduced, which can
increase the sensitivity of gliomas to chemotherapy with
alkylating agents. Conversely, when the MGMT promoter
is unmethylated, the expression of MGMT is higher, which
can reduce the effectiveness of chemotherapy with alkylating
agents. Therefore, determining the MGMT status is crucial
for diagnosing and planning treatment for glioma patients.
MGMT methylation has been consistently associated with
the development of glioblastoma (GBM) and WHO grade
III glioma [8]. Additionally, recent studies have revealed an
association between MGMT methylation and WHO grade II



glioma [7], [9], [10], highlighting its importance across various
glioma grades.
Despite the extensive research on deep learning methods
for cancer diagnosis and treatment [11], predicting MGMT
promoter methylation using these techniques remains a rel-
atively new area of investigation. To advance this field, our
work leverages transfer learning and attention mechanisms to
develop an automated supervised model for predicting MGMT
promoter methylation from histological images of gliomas.
Transfer learning allows us to benefit from pre-trained deep
learning models that have learned rich features from large
datasets, enabling us to effectively extract relevant information
from the histological images. Furthermore, we employ spatial
attention mechanism with correlation to focus the model’s
attention on informative regions within the histological images.
Combining transfer learning and attention mechanism, we
develop a robust and reliable model that contributes to the ad-
vancement of glioma diagnosis and treatment. Utilizing these
techniques in our research facilitates the accurate prediction
of MGMT promoter methylation status, ultimately leading to
improved patient outcomes and enhanced quality of life for
individuals with gliomas.
Our work is structured as follows: (i) Firstly, the current
literature on the use of deep learning algorithms for predicting
MGMT status in gliomas is reviewed. (ii) Secondly, the
histological images are preprocessed to ensure consistency
and optimize the performance of the deep learning model.
This involve a series of steps, including resizing, histogram
equalization, contrast stretching, and CDF mapping, to ensure
that the images are of uniform size and quality, and that the
model is robust to variations in the images. (iii) Thirdly, a
deep learning model is developed using transfer learning and
attention mechanisms, and trained on the dataset. (iv) Finally,
the model’s performance is evaluated using various metrics
and compared with existing methods for predicting MGMT
status.

II. LITERATURE REVIEW

The rapid development of artificial intelligence approaches
including machine learning and deep learning has favored
the automatic extraction of important tumor markers, from
medical imaging, for the clinical treatment planning and post-
treatment monitoring for patients with gliomas [12]. Based
on these methods, researchers have shown a keen interest
in predicting the expression of biomarkers, specifically the
methylation of status of the MGMT. In their study [13],
Korfiatis et al. employed a deep convolutional neural network
(DCNN) to predict the methylation status of the MGMT
gene for patients with glioblastoma multiforme (GBM). To
improve the flow of information through the network and
address the issue of vanishing gradients, they used a residual
architecture known as ResNet50. The dataset used in the study
was collected from Mayo Clinic between January 1, 2007,
and December 31, 2015, and included a total of 545 patients.
Out of these patients, only 155 MRI examinations were used
for the analysis, with 66 tumors being methylated and 89

being unmethylated. The ResNet50 model achieved impressive
results, with a test set f1-score of 97%, precision of 97%,
and recall of 97%. However, it is worth noting that a major
limitation of this approach is the significant amount of time
required for training the model, which can range from 3 to 10
hours. This may make it challenging to apply this model as
a transfer learning approach for predicting clinical biomarkers
in other datasets, especially those with limited computational
resources. Therefore, further research is needed to optimize
the training process and reduce the computational burden of
the model to make it more practical for widespread clinical
use. In [14], Han et al. aimed to predict the methylation status
of MGMT in glioblastoma patients by utilizing convolutional
recurrent neural networks (CRNN). Used MRI imaging dataset
were collected from The Cancer Imaging Archive (TCIA)
combined with methylation data from The Cancer Genome
Atlas (TCGA), a total of 159 patients. The CRNN achieved a
modest test set accuracy of 62%, with a precision of 67% and
recall of 67%. Chang et al. conducted a study, as described in
their research paper [15], to classify genetic variations of dif-
fuse gliomas using convolutional neural network (CNN) with
residual connections. The researchers retrospectively obtained
MRI imaging data and molecular information from The Cancer
Imaging Archives for 259 patients diagnosed with either low-
or high-grade gliomas. The CNN was trained independently
to classify isocitrate dehydrogenase 1 (IDH1) mutation status,
short arm of chromosome 1 (1p) and long arm of chromosome
19 (1p/19q) codeletion, and MGMT promotor methylation
status. The results of the study showed that the CNN was
able to accurately classify genetic mutations in gliomas with
a high level of accuracy, achieving 94% for IDH1, 92% for
1p/19q, and 83% for MGMT. In [16], Chen at al. explore
the feasibility of integrating tumor segmentation and MGMT
methylation status prediction of GBM patients into a deep
learning pipeline. They used MRI imaging dataset collected
from TCIA in combination with clinical and molecular data
from TCGA, which included a total of 106 GBM patients. For
tumor segmentation, they adapted one state-of-the-art model
[17] from the BraTS 2018 challenge. Meanwhile, for the
classification of MGMT methylation status, they designed a
4-layer CNN. Furthermore, they cascaded the classification
model with the tumor segmentation model. The experimental
results showed promising performance in accurate glioma
segmentation, achieving a Dice score of 89.7%, as well as
accurate MGMT status prediction, with an accuracy of 82.7%,
recall of 85.2%, precision of 82.1%, and f1-score of 83.6%.
One of the major limitations of this paper is that the model
was exclusively tested on patients diagnosed with GBM. This
lack of diversity in the patient population under evaluation
precludes us from determining the model’s effectiveness in
classifying molecular biomarkers for other grades of glioma.
Therefore, it is essential to conduct further research to evaluate
the model’s performance on a broader range of cancer grades
in order to ascertain its true potential and applicability in
clinical settings. In [18], Yogananda et al. presented a deep
learning network, MGMT-net, for determining the methylation



status of the MGMT promoter. The MGMT-net architecture
consists of a 3D-dense-UNet. The algorithm was trained and
tested using MRI imaging data from TCGA and TCIA, a
total of 247 patients diagnosed with either low- or high-grade
gliomas. The MGMT-net achieved an accuracy of 94.73%
with a sensitivity and specificity of 96.31% and 91.66%,
respectively. Despite achieving promising results, the authors
highlight two significant limitations of the approach. Firstly,
the variability in acquisition parameters and imaging vendor
platforms may impede the accuracy of the results. Secondly,
the largest connected component step used to minimize false-
positives in the current classification approach may not be suit-
able for multi-focal tumors. Chen et al. [19] sought to predict
MGMT methylation status using residual network (ResNet18)
and MRI imaging data obtained from the Affiliated Drum
Tower Hospital of Nanjing University Medical School between
2018 and 2020. The study involved a total of 111 patients
diagnosed with low- or high-grade gliomas. To input data into
the model, the authors opted to extract radiomics features from
a selected region of interest (ROI) of MRI images, rather
than using the entire MRI images. This technique has the
benefit of eliminating non-discriminatory features. The model
successfully predicted MGMT promoter methylation status in
patients with diffuse gliomas with a high level of accuracy and
f1-score, achieving a score of 91% and of 90%, respectively.
Although CNNs and their variants have shown success in
the discussed context [13], [15]–[19], they have solely relied
on radiomics. Medical images can be affected by various
factors, such as imaging parameters, patient motion, and image
artifacts, which can limit their reliability [18]. Furthermore,
it has been confirmed in [20], [21] that current deep learning
models are unable to accurately predict MGMT Promoter state
using only patient MRI scans. In light of the restrictions and
constraints present, our research endeavors will be directed
towards exploring the field of pathomics with the objective
of enhancing the accuracy and effectiveness of predicting
genetic mutations in gliomas; Unlike medical images, path-
omics involves analyzing physical tissue samples, which may
offer greater consistency and reproducibility. Therefore, we
aim to explore the potential of pathomics in enhancing the
accuracy and reliability of CNN-based models for medical
image analysis and diagnosis.

III. MATERIALS AND METHODS

A. Dataset and Preprocessing

1) Dataset: The dataset utilized in this study was procured
from the Ohio State Wexner Medical Center 1, encompassing
a total of 1075 biopsy images of brain tumors that varied in
size and magnification levels (40x, 100x) from 107 patients.
The tumors were of two distinct types, namely Astrocytoma
and Oligodendroglioma, with grades ranging from II to III, as
depicted in Table I.

1https://wexnermedical.osu.edu

TABLE I: Number of patients per tumor and grade.

Tumor Grade II Grade III
Astrocytoma 40 12

Oligodendroglioma 32 23

Among the 107 histological images scrutinized, 87 patients
exhibited tumors with methylation, while the remaining 20
patients had tumors without methylation as plotted in Fig. 1.

Fig. 1: Distribution of tumors with and without methylation
in the dataset. 87 patients exhibited tumors with methylation,
while the remaining 20 patients had tumors without methyla-
tion.

To avert overfitting to the majority class, we counterbalanced
the dataset by handpicking 20 patients with tumor methylation
and 20 patients with no tumor methylation for our training,
validation, and testing sets. It is worth noting that the images
of size 100x were considered in this study as they were more
numerous than the 40x images.
2) Training, Validating, and Testing Datasets: To create train-
ing, validating, and testing dataset for this study, the original
images were first divided into multiple patches with a fixed
size of 512x512. This was done to reduce the computational
burden and to ensure that the images could fit into the available
memory. We applied two rules for the border of the images:
if a patch’s size was less than half of 512, we discarded the
image. If a patch’s size was more than half of 512, we enlarged
them by selecting additional neighboring patches to create a
final image size of 512x512 (see Fig. 2).

Fig. 2: Original images were divided into patches of 512x512.
Patches smaller than half the size of 512 were discarded, while
patches larger than half the size were enlarged by incorporating
neighboring patches.

https://wexnermedical.osu.edu


It is important to note that all the resulted patches will have
the same label target as the original image. This resulted in a
total of:

• Training
– Total images: 1757
– Methylated: 898
– Not methylated: 859

• Validation
– Total images: 883
– Methylated: 449
– Not methylated: 434

• Testing
– Total images: 411

3) Images Preprocessing: Images preprocessing and enhance-
ment were performed using OpenCV and NumPy libraries.
The preprocessing step applied to the images involved con-
verting them from the RGB color space to the Lab color space.
This conversion provided multiple benefits. One advantage was
that it separated color information into three distinct channels,
simplifying color-based images analysis. Additionally, the Lab
color space could represent a broader spectrum of colors
than the RGB color space, including highly saturated colors
and colors with extreme brightness or darkness. After the
conversion of the images into the Lab color space, the next
step involved splitting the image into its three channels:
Lightness (L), a (green-red), and b (blue-yellow). Following
this, histogram equalization was applied to the L channel. This
step was important in enhancing the contrast of the image
and improving the overall quality of the image. By applying
histogram equalization, the distribution of pixel values in the L
channel was adjusted to improve the visibility of the image’s
features. After histogram equalization was applied to the L
channel, the three channels were merged back together to
form the equalized Lab image. This image was then converted
back to the RGB color space. To further enhance the image
quality, the intensity values of the image were stretched using
the contrast stretching method. This involved computing the
histograms of the blue, green, and red channels of the image
and calculating the cumulative distribution function (CDF) of
each channel. The code then masked all pixels with a value
of zero in the CDF and scaled the remaining pixel values to
the range of (0, 255). The resulting values were filled with
zero where the mask was applied. The masked and scaled
CDFs were then used to create new blue, green, and red
channels by mapping the pixel values of the original image to
their corresponding CDF values. Finally, these channels were
merged back together to form a new image with improved
contrast and visibility of features. Fig. 3 shows an example
of an image that underwent the preprocessing steps described
above. The image on the left is the original image, while the
image on the right is the processed image.

B. Methods

1) Transfer Learning: The effectiveness of deep learning
models largely depends on the availability of extensive labelled

(a) Example of a patch before
preprocessing.

(b) Example of a patch after
preprocessing.

Fig. 3: Resulted image after the application of the prepro-
cessing phase: the processed image has improved contrast and
better visibility of the features present in the image. This result
demonstrates the effectiveness of the preprocessing steps in
enhancing the quality of the images.

datasets for training. Unfortunately, our dataset fell short in
this regard, posing a significant challenge to our research. To
tackle this issue, we initially resorted to data augmentation
techniques to artificially increase the size of our dataset [22].
However, the sensitive nature of histological images proved
to be a bottleneck, as this approach failed to yield significant
improvements in our results.
In light of this, we decided to pivot to a transfer learning
approach [23]. In transfer learning, a pre-trained model’s
weights and architecture are used as a starting point and are
then fine-tuned on a smaller dataset for a new task. This
approach allows the new model to leverage the pre-existing
knowledge and improve its performance on the new task with
less data and computational resources. Our proposed approach
involves transferring knowledge from the origin domain Ima-
geNet (DO) to our target domain (DT ) of histological images.
Specifically, we aim to train a target classifier hT that can
predict the methylation status of the gene MGMT in two
categories, namely methylated (Class 1) and not methylated
(Class 0), for a given patch image XTi

from the target domain
DT , as shown in Eq. 1:

YTi = ht(XTi) (1)

We employ transfer learning as a feature extractor by freezing
all layers in the base model (section III-B2) except for the last
one. This is achieved by setting the trainable attribute to False
for all layers except the last one. Additionally, we define a
regularizer using L2 regularization with a coefficient of 0.001
to add a penalty term to the loss function, encouraging the
model to learn simpler weight patterns. To further enhance the
model’s performance, we add a new layer on top of the base
model’s output. This layer is a DepthwiseConv2D layer with a
kernel size of (3, 3), strides of (2, 2), padding set to ’same’, and
activation function set to ’relu’. The layer performs depthwise
separable convolution, which helps reduce the number of
parameters and improve computational efficiency. A whole
description of the model is detailed in Fig. 5.



2) MobileNetV2 as Transfer Learning Model: We chose the
MobileNet architecture [24] as our transfer learning model.
MobileNet is an architecture comprised of convolutional layers
with depthwise separable convolutions. Depthwise separable
convolutions involve two separate operations: depthwise con-
volution and pointwise convolution. The depthwise convolu-
tion applies a single filter to each input channel, while the
pointwise convolution combines the output using a 1x1 filter.
This approach reduces parameters and computations while
maintaining accuracy. MobileNet also includes a global aver-
age pooling layer, which reduces feature map dimensions, and
a fully connected layer for classification. These design choices
minimize parameters and computations, making MobileNet
efficient for mobile and embedded devices. Specifically, we
fine-tuned MobileNetv2 on our dataset, which is an improved
version of MobileNet that includes linear bottlenecks, inverted
residuals, and shortcut connections. These additions improve
the accuracy and efficiency of the model (see Fig. 5).
3) Spatial Attention Mechanism with Correlation: Spatial
attention is a highly effective approach in deep learning
models that enhances the representation of crucial spatial
regions in an image. This technique enables the model to
selectively concentrate on specific regions of an image by
assigning greater importance to the features in those areas.
As a result, the model can more accurately capture the most
significant information and make more precise predictions. By
incorporating the correlation mechanism, we can enhance the
effectiveness of the spatial attention technique and improve
the overall efficiency of the model. This approach involves
capturing the relationships between different patch regions by
computing correlation coefficients and using these correlations
to guide the attention mechanism. The correlation coefficients
are calculated between pairs of feature maps, and capture the
degree of similarity between different spatial regions. Let’s
suppose we have two feature maps, X and Y , the correlation
coefficient between X and Y is calculated using Eq. 2:

ρX,Y =
cov(X,Y )

σXσY
(2)

where cov(X,Y ) is the covariance between X and Y , and σX
and σY are the standard deviations of X and Y , respectively.
By computing these correlations, the model can identify which
regions of the patch are most related to each other, and which
regions are most relevant to the task at hand. The attention
mechanism then uses these correlations to weight the feature
maps, giving more weight to regions that are more relevant to
the task using Eq.3.

Ai =

n∑
j=1

αi,jFj (3)

where Ai is the attention map for patch i, Fj is the feature map
for patch j, and αi,j is the attention weight between patches
i and j, computed as:

αi,j =
exp(ρi,j)∑n
k=1 exp(ρi,k)

(4)

where ρX,Y is the correlation coefficient between patches i
and j, and n is the total number of patches.
This allows the model to focus on the most important regions,
while ignoring irrelevant ones. To further enhance the inter-
pretability and performance of our model, we add Gradient-
weighted Class Activation Mapping (Grad-CAM) method [25].
Grad-CAM is a type of class activation mapping that highlights
the regions of an image that the model is focusing on to
make its prediction. It works by computing the gradient of
the output class score with respect to the feature maps of the
last convolutional layer in the model. This gradient is then
used to weight the feature maps, producing a heatmap that
shows the regions of the image that are most important for
the model’s prediction as depicted in Fig. 4.

Fig. 4: By using Grad-CAM, we were able to highlights the
regions of the input image that the model is focusing on to
make its prediction.

By using Grad-CAM to identify the most relevant regions of
the input image and then using spatial attention mechanism to
selectively weight the feature maps based on their importance,
the model can focus more on the important regions of the
image and ignore irrelevant regions. It should be emphasized
that during the training phase, the model may encounter
patches that have been labeled as positive targets but in reality
correspond to negative targets or the opposite. To prevent the
model from learning to predict false positive targets or true
negative targets for these patches, a weight of zero is assigned
to them during training. This effectively ignores these patches
and prevents the model from being biased towards predicting
positive targets or negative targets for them. Additionally, by
using Grad-CAM to produce a heatmap that highlights the
regions of the image that are most important for the model’s
prediction, we can gain insight into how the model is making
its predictions.
4) Classification Block: Several dense layers with dropout
regularization are added before the final output layer. Each
dense layer applies a rectified linear unit (ReLU) activation
function and uses the specified regularizer (L2 regularization
with a coefficient of 0.001) to prevent overfitting. The dropout
layers with a rate of 0.2 are inserted after each dense layer to
randomly set a fraction of input units to 0 at each update
during training, which helps to further reduce overfitting. The
dense layers gradually decrease the number of units from
1024 to 75, capturing increasingly abstract representations of



Fig. 5: Visual depiction of the proposed model. Our proposed
model comprises of three main blocks that work together
to produce the final predicted class probability. Firstly, we
leveraged transfer learning by selecting and implementing the
popular deep learning architecture, MobileNetV2. This block
enabled fast and effective feature extraction from input images.

Fig. 5: Secondly, we added a spatial attention mechanism with
correlation that helped the model to focus on critical regions
of the input images while ignoring irrelevant regions. Finally,
to produce a predicted class probability, we incorporated a
classification block that takes the feature maps generated from
the transfer learning and spatial attention blocks and outputs
the final probability distribution over the classes.

the input features. The ReLU activation function introduces
non-linearity to the model, allowing it to learn complex
patterns and relationships in the data. The regularizer penalizes
the model’s weights, encouraging them to be smaller and
preventing excessive complexity. Finally, the output layer is
added with a single unit and a sigmoid activation function.
This layer produces a single output value that represents the
predicted class probability, ranging from 0 to 1, indicating the
likelihood of belonging to a specific class (see Fig. 5).
5) Model Training and Assessment: To compare the perfor-
mance of our transfer model with spatial attention, we imple-
mented ResNet50 model as alternative approach. ResNet50
is a well-established pre-trained model that has been widely
used for image classification tasks. We trained each model
for 25 epochs using Adam optimizer with a learning rate of
0.0001. Early-Stopping callback is used to monitor validation
loss and terminate training if it does not improve for five
consecutive epochs. To prevent overfitting and ensure a fair
distribution of the training set, k-fold cross-validation with
k=3 was conducted. This approach involved dividing the
dataset into three equal parts, with each part serving as a
validation set while the remaining two parts were used for
training. As a result, each fold generated three different models
for the considered model, allowing us to assess the model’s
performance on different subsets of the data. This method
helped to ensure that the model was not biased towards any
particular subset of the data, resulting in a more accurate and
reliable performance evaluation. The model with the highest
performance metrics is then selected as the final model to be
tested on our test set.

IV. RESULTS

A. Evaluation Metrics

In this work, we employed conventional measures to assess
the effectiveness of our transfer learning approach, including
precision (Eq. 5), recall (Eq. 6, and f1-score (Eq. 7) metrics.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1− score =
2TP

2TP + FP + FN
(7)

where TP are the true positives, FP are false positives, and
FN are false negatives.



B. Experiments and Results

1) Experiments: Two experiments were conducted:
• Experiment n◦1: Comparing MobileNetV2 versus

ResNet50: In this experiment, we want to compare
the performance of two popular convolutional neural
network architectures, MobileNetV2 and ResNet50, on
a common image classification task. Both models were
tested on a separate test dataset of 411 images.

• Experiment n◦2: Adding an Attention Mechanism with
Correlation to MobileNetV2: In our second experiment,
we want to investigate the impact of adding an atten-
tion mechanism with correlation to MobileNetV2. To
add the this mechanism, we modify the MobileNetV2
architecture (see Fig. 5). We then train the modified
model on the same dataset as before, and evaluate its
efficient on the testing set. We compare the results of
the original MobileNetV2 model with and without the
attention mechanism to see if there was a significant
difference in performance.

2) Results:
• Experiment n◦1: Here is the structured presentation of

the results from Experiment n◦1, as shown in Tab. II:

TABLE II: Comparing MobileNetV2 and ResNet50

Recall Precision F1-score Training Time
(Second (s))

MobileNetV2 74.30% 92.78% 82.18% 480s
ResNet50 70.75% 79.85% 74.56% 720s

• Experiment n◦2: Here is the structured presentation of
the results from Experiment n◦2, as shown in Tab. III:

TABLE III: Adding an Attention Mechanism with Correlation
to MobileNetV2

Recall Precision F1-score
MobileNetV2 74.30% 92.78% 82.18%

MobileNetV2 + Spatial at-
tention mechanism with
correlation

87.30% 87.44% 87.08%

V. DISCUSSION

The results of Experiment n◦1 demonstrate that MobileNetV2
is a superior model for image classification tasks compared
to ResNet50. The precision, recall, and f1-score metrics all
showed that MobileNetV2 outperformed ResNet50. Addition-
ally, MobileNetV2’s use of depthwise separable convolutions
allowed it to achieve this high results while using fewer
resources, making it a more efficient and cost-effective option.
In Experiment n◦2 , we find that adding a spatial attention
mechanism with correlation to MobileNetV2 further improved
its performance on image classification tasks. By assigning
different weights to different parts of the image, the attention
mechanism enhances the model’s ability to capture subtle pat-
terns and important details related to MGMT promoter methy-
lation. This attention-based approach improves the accuracy

and specificity of our model, enabling more precise predictions
and a better understanding of the underlying molecular charac-
teristics of gliomas. Additionally, the attention mechanism did
not significantly increase the training time or computational
cost of the model, making it a feasible option for real-world
applications. Overall, these findings demonstrate that adding a
spatial attention mechanism to MobileNetV2 can significantly
enhance its performance on image classification tasks.
Incorporating other types of data, such as par-clinical data or
MRI images, may enhance the accuracy and generalizability
of our model. By considering a wider range of data sources,
our model may be better equipped to capture the complex and
multifaceted nature of gliomas, leading to more precise and
reliable predictions. Therefore, future studies should aim to
incorporate a more diverse range of data sources to improve
the robustness and generalizability of our model. Despite these
limitations, our findings provide valuable insights into the
potential of histological image analysis and attention-based
approaches for molecular biomarkers classification.

VI. CONCLUSION

As technology continues to advance and more data becomes
available, the use of deep learning algorithms in medical imag-
ing is likely to become even more widespread, offering new
hope for those with gliomas and other difficult-to-treat medical
conditions. By leveraging the MobileNetv2 as our transfer
learning model and incorporating attention mechanism, we
were able to overcome the challenge of limited labelled data
and obtain highly satisfactory outcomes while simultaneously
maintaining a compact model size and computational require-
ments. As a future perspective, we aim to incorporate a more
diverse range of data sources to enhance the robustness and
generalizability of our model. Additionally, we aim to explore
the progression of glioma grades from grade II to grade
III and subsequently to grade IV. By studying the evolution
of glioma grades, we can gain insights into the molecular
mechanisms underlying glioma progression and develop more
effective diagnostic and treatment strategies. Additionally, this
can contribute to the development of personalized medicine
approaches tailored to individual patients based on their spe-
cific glioma grade and MGMT promoter methylation status.
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