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Abstract

In the context of a network of vibrating strings, modelled by inter-
connected linear partial differential equations, we are interested in the
reconstruction of a zeroth order term of each one-dimensional wave equa-
tion involved, using some appropriate external boundary measurements.
More precisely, we are interested in an inverse problem set on a tree
shaped network where each edge behaves according to the wave equa-
tion with potential, external nodes have Dirichlet boundary conditions
and internal nodes follow the Kirchoff law. The main goal is the recon-
struction of the potential everywhere on the network, from the Neumann
boundary measurements at all but one external vertices. Leveraging from
the Lipschitz stability of this inverse problem, we aim at providing an
efficient reconstruction algorithm based on the use of a specific global
Carleman estimate. The proof of the main tool and of the convergence
of the algorithm are provided; along with a detailed description of the
numerical illustrations given at the end of the article.
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1 Introduction and main result

The goal of this article is to present a complete overview of a coefficient re-
covery inverse problem in a network of one-dimensional wave equations (also
called string equations), from the identifiability questions, such as uniqueness
and stability of the solution of the inverse problem, to the identification of
the coefficient (here, a zeroth order term, called potential) by a well suited
reconstruction algorithm. If the well-posedness of such an inverse problem was
already adressed in [6] with a Lispchitz stability result, the actual reconstruc-
tion of the coefficient of the partial differential equations system at stake is still
very challenging and we will provide a global analysis of these two connected
issues.

Taking advantage of the Carleman-based Reconstruction Algorithm pro-
posed in [7] (C-bRec in short) for the reconstruction of the potential in a mul-
tidimensional wave equation set in a bounded domain with Dirichlet boundary
condition and appropriate Neumann boundary measurements, this article aims
at considering the quite challenging case of a tree-shaped network of string
equations. In this kind of planar graph context, the simplicity of string equa-
tion considered on each branch of the network is balanced by the technicality
of the global setting stemming from the interconnection laws that describe the
communication at the nodes of the network.

On the mathematical and engineering points of view, the study of me-
chanical systems coupling flexible, elastic, or vibrating elements as strings or
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beams, are very relevant as well as demanding. Concerning some control the-
ory studies in this framework, one can mention the books [14] and [2] where
these kind of systems, also called multi-link structures, are studied according to
their observation, control and stability for various partial differential equations.

To be more precise, the goal of this article is to provide a detailed study of
the design of an effective and efficient reconstruction algorithm for an unknown
(time independant) coefficient of the string equation involved everywhere on
the tree-shaped network, from measurements only localized at the leaves of the
tree (all but one external node, called the root), as one can picture for instance
with Figure 1. The rough idea is to use the C-bRec method to effectively
solve this inverse problem on a network. But its concrete realisation means
overcoming several difficulties such as having the appropriate global Carleman
estimate over the whole network, that cannot be the one from [6] for numerical
efficiency questions detailed in [7]. Moreover, as one will understand below,
this article will not be only the tailoring of the C-bRec approach to network’s
specificities, but rather a complete analysis of a difficult reconstruction goal,
from abstract tools and results of identifiability, to acute algorithmic and nu-
merical issues related to identification.

Figure 1: An 8 branches tree-shaped network R, with an unobserved root node
and 5 observed leaf nodes •.

Before detailing in the rest of this introduction the statement of the prob-
lem, some elements of context, and the founding idea of the proposed recon-
struction method, one should know that Section 2 will be devoted to the Carle-
man estimate, Section 3 to the description of the recontruction algorithm and
its proof of convergence and Section 4 to the numerical setting and simulations.
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1.1 Problem statement

Tree-shaped networks are planar connected graphs that do not contain even
a single cycle. They represent a hierarchical structure and despite their sim-
plicity, they allow to model a lot of specific contexts and have a rich structure
to exploit. The edges of such a network are known as branches connected by
nodes, also called vertices. Except for the root, any node has a mother branch
and the nodes without child branches are called leaf nodes.

Let us thus consider a finite tree-shaped network R (see e.g. Figure 1). We
define the name of the tree’s branches by recurrence, with nested subscripts,
the finite set J being the set of names of all branches of the network. To the
root branch, named 1, we associate its N1 children branches denoted by 1i ∈ N
for i = 1..N1.

Then by recurrence, from a branch named j ∈ J we define the names of
its Nj children branches by ji for i = 1..Nj . This definition only holds locally
in the network, as we will not need more until the end of the article, for the
numerical simulation’s section. Besides, we denote by ℓj the length of the
branch j and we identify the branch j with the segment (0, ℓj).

We denote by Jext = {j ∈ J , Nj = 0} the set of the branches having a
final leaf node and Jint = {j ∈ J , Nj > 0} the other branches. We define a
function f on the network R through its restriction fj to each of the branches
j ∈ J and we introduce the following notations:∫

R
f(x)dx :=

∑
j∈J

∫ ℓj

0
fj(x)dx, (1.1)

[f ]j := fj(ℓj)−
Nj∑
i=1

fji(0), ∀j ∈ Jint. (1.2)

Let T > 0. On each branch j ∈ J of the network, we consider the one-
dimensional wave equation system{
∂ttuj(t, x)− ∂xxuj(t, x) + pj(x)uj(t, x) = gj(t, x), ∀(t, x) ∈ (0, T )× (0, ℓj),

uj(0, x) = u0j (x), ∂tuj(0, x) = u1j (x), ∀x ∈ (0, ℓj),

(1.3)
where the time-independant potential pj is an unknown coefficient.
In order to complete system (1.3) by enough boundary conditions, we then
equip each branch j ∈ J with boundary conditions: Dirichlet boundary condi-
tions at external nodes (root and leaves), and continuity condition and Kirch-
hoff law at any internal node. So that for all t ∈ (0, T ):

for j = 1, u1(t, 0) = h1(t),

if j ∈ Jext, uj(t, ℓj) = hj(t),

if j ∈ Jint, uj(t, ℓj) = uji(t, 0), ∀i ∈ J1, NjK,
[∂xu]j(t) = 0,

(1.4)
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assuming additionally some compatibility conditions between Dirichlet bound-
ary and initial data: u01(0) = h1(0) and u0j (ℓj) = hj(0) for all j ∈ Jext.

Let us now make clear the ‘not so classical’ functional spaces we are working
in. We define:

L∞(R) = {f : R → R, fj ∈ L∞(0, ℓj) ∀j ∈ J } ;
L2(R) =

{
f : R → R, fj ∈ L2(0, ℓj) ∀j ∈ J

}
;

H1(R) =
{
f : R → R, fj ∈ H1(0, ℓj) ∀j ∈ J ,

fj(ℓj) = fji(0) ∀i ∈ J1, NjK ∀j ∈ Jint
}
;

H1
0 (R) =

{
f ∈ H1(R), f1(0) = 0, fj(ℓj) = 0 ∀j ∈ Jext

}
;

C2((0, T )×R) =
{
η : (0, T )×R → R, ηj ∈ C2((0, T )× (0, ℓj)) ∀j ∈ J ,

ηj(t, ℓj) = ηji(t, 0) ∀i ∈ J1, NjK, [∂xη]j(t) = 0 ∀j ∈ Jint
}
.

We assume basically that the potential p belongs to L∞(R), the source
data g belongs to L1(0, T ;L2(R)), the initial conditions satisfy u0 ∈ H1(R)
and u1 ∈ L2(R) and are compatible (as already mentioned) with the external
boundary data h1, hj to H1(0, T ). Then, based for instance on [22, Chapter 3],
the Cauchy problem (1.3)-(1.4) is well posed and has a unique solution

u ∈ C([0, T ];H1(R)) ∩ C1([0, T ];L2(R)).

Details can be found also in [6, Lemma 3.2] in particular for the homogeneous
boundary data case.

We are studying the following inverse problem:

Knowing, for each branch j ∈ J , the source term gj and the initial
data (u0j , u

1
j ), for the root and for each leaf j ∈ {1} ∪ Jext the

boundary source term hj , is it possible to identify the unknown
potentials p∗j (x) for any x ∈ (0, ℓj), from the only extra knowledge
of the flux of the solutions through the leaf nodes of the network,
meaning:

d∗i (t) = ∂xu
∗
i (t, ℓi), for i ∈ Jext and t ∈ (0, T ), (1.5)

where u∗i is the solution of (1.3)-(1.4) associated to potential p∗i ?

Before getting any further, let us underline that we are interested here in
the case of a unique measurement (during a time T ) associated to the given
data set (gj , u

0
j , u

1
j ) for any j ∈ J and hj for j ∈ {1} ∪ Jext. Several usual

answers are expected regarding the inverse problem at stake: uniqueness and
stability of the solution of inverse problem will answer to the Hadamard well-
posedness notion, and pave the way for the reconstruction of the unknown
coefficient that is our specific final goal.
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The following Lipschitz stability result will answer both the first two ques-
tions (of uniqueness and stability of the inverse problem). It also has the in-
terest of detailing the assumptions under wich we can hope for reconstruction
as well.

Theorem 1. There exist a time T0 > 0 and a scalar α0 > 0 such that if we
assume the following

(Ha) Time condition: T > T0,

(Hb) Regularity condition: u ∈ H1(0, T ;L∞(R)),

(Hc) Sign condition: |u0| ⩾ α0 > 0 on the whole network R,

then for a fixed m > 0, there exists a positive constant C = C(R, T,m) such
that, if p and p∗ belong to L∞

m (R) = {p ∈ L∞(R), ∥p∥L∞(R) ⩽ m}, we have

∥p− p∗∥2L2(R) ⩽ C
∑

i∈Jext

∥∂xui(·, ℓi)− ∂xu
∗
i (·, ℓi)∥2H1(0,T ).

This Lipschitz stability result can be read in [6] and is proved using an
ad-hoc two-parameters Carleman estimate as in [4] for the corresponding ba-
sic multidimensional setting. The approach we used was first sketched by
Bukgheim and Klibanov in [13] for uniqueness purposes, pursued in [27] for the
stability of an inverse problem in the wave equation similar to ours, and popu-
larized by Imanuvilov and Yamamoto [15, 16] and a large literature afterward
for various modifications in the setting. We can refer also to Klibanov’s survey
article [19] in this area, concerning uniqueness, stability, and reconstruction of
coefficient inverse problems for evolution partial differential equations.

In this specific result, the minimal time T0 can be evaluated from [6, Lemma
2.1], or in our forthcomming Lemma 2, and is necessarily more restrictive than
the optimal observability time for the corresponding controlability problem, for
consistency reasons (the same Carleman estimate can bring an observability
inequality).

The stability result of Theorem 1 is at the root of the reconstruction proce-
dure we are going to present. However, we will need to build another Carleman
estimate than the one used to prove it in [6], mainly for numerical efficiency
purposes. It will be a one-parameter Carleman estimate (see e.g. [16, 7]) and
this will be detailed later in Section 2.

1.2 Globally converging reconstruction methods

Given the stability result of Theorem 1, an intuitive method to compute p∗

would consist in minimizing the cost functional:

J(p) =
1

2

∑
i∈Jext

∥∂xui(·, ℓi)− d∗i ∥2H1(0,T ). (1.6)
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The problem is that the functional J is in general not convex. The presence
of local minima implies that traditional minimization algorithms generally do
not converge to the global minimum of J , unless they can be initialized in a
neighborhood of this minimum.

A method is said to be globally convergent if its convergence towards the
solution can be guaranteed from any initial data. Globally convergent methods
of reconstruction remain rare, even if decisive works in this direction have been
done since the 1990s, in particular the ones of Klibanov and his co-authors,
based on Carleman inequalities. The original idea of introducing Carleman
weights in the cost function to make the problem convex goes back to [18].
For a state of the art on these questions, we refer to the book by Beilina and
Klibanov [10].

Since then, many other works have been proposed on different models,
among which we can cite in particular Beilina-Klibanov [11] for the recovery of
a density in a wave equation, Klibanov-Li-Zhang [21] and Smirnov-Klibanov-
Nguyen [23] in the more delicate case where the initial datum is a Dirac mass,
Kamburg-Klibanov [20] for inverse problems for parabolic equations, Thanh-
Beilina-Klibanov-Fiddy [25] on real data, Bakushinskii-Klibanov-Koshev [3] to
solve Cauchy problems for general PDEs.

The C-bRec method belongs to these globally convergent reconstruction
methods, sometimes called convexification methods. The main novelty of our
approach is that it consists in minimizing a sequence of quadratic functionals,
for which a wide range of efficient minimization algorithms exist, while the
works cited above consider a single functional which is strictly convex but
which is not quadratic and is therefore only suitable for classical gradient
descent strategies.

1.3 Founding idea of the C-bRec method

Let us here give a more precise idea of the design of the Carleman-based Re-
construction method in order to explain basically how it works.

The C-bRec algorithm is considering the unknown potential p∗ to be recov-
ered as the fix point of a contracting application. Indeed, an iterative process
constructs a sequence (pk)k∈N converging towards p∗. At step k, the idea is to
linearize the inverse problem, considering the system satisfied by

vk = ηφ∂t

(
uk − u∗

)
in (0, T )×R,

where uk is the solution of (1.3)-(1.4) associated with potential pk, u∗ corre-
sponding to p∗, and ηφ ∈ C2((0, T ) × R) is a smooth cut-off function. Ac-
tually ηφ, who depends on a Carleman weight φ designed later in Lemma 2,
is constructed to vanish on a given subdomain of (0, T ) × R where unknown
information may lie (namely, later, the subdomains O and OTj of Theorem 3
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and Figure 2). Therefore, we have,{
∂ttv

k(t, x)− ∂xxv
k(t, x) + pk(x)vk(t, x) = fk(t, x), in (0, T )×R,

vk(0, x) = 0, ∂tv
k(0, x) = ηφ(0, x)(p∗(x)− pk(x))u0(x), in R,

(1.7)

where fk := ηφ(p∗−pk)∂tu
∗− [ηφ, ∂tt−∂xx]∂t

(
uk − u∗

)
, using the Lie bracket

notation ([A,B])(z) = A(Bz) − B(Az). Beware that the cut-off function ηφ

will be designed to be differentiable everywhere on the network R in order
to be able to ensure continuity and Kirchhoff law (1.4) for vk at the internal
nodes.

This construction is also called the Bukhgeim-Klibanov method, that goes
back to [13], and is the approach developed in the proof of the Lispchitz sta-
bility result [6] recalled in Theorem 1.

One should then notice that for all k ∈ N and all s ∈ R, vk was built to be
the unique minimizer of the functional

Fs[p
k, fk, µk](z) =

1

2

∫ T

0

∫
R
e2sφ|∂ttz − ∂xxz + pkz − fk|2 dxdt

+
s

2

∑
i∈Jext

∫ T

0
e2sφi(t,ℓi)|∂xzi(t, ℓi)− µk

i (t)|2dt+
s3

2
I(z, z), (1.8)

where we set, for all i ∈ Jext, µk
i (t) = ηφi (t, ℓi)∂t

(
∂xu

k
i (t, ℓi)− d∗i (t)

)
on (0, T )

and where I(z, z) is a residual quadratic term to be defined later that has the
specificity to be erased by the cut-off ηφ. Recall also that d∗i (t) = ∂xu

∗
i (t, ℓi),

for i ∈ Jext and t ∈ (0, T ) is the measured extra information we have to recover
p∗. The specific shape of φ insures good properties to the functional Fs, in
particular its strict convexity stated in Lemma 4 and proved thanks to the
Carleman estimate (3) of Theorem 3. Fs thus has a unique minimizer.

The value of the initial speed in (1.7) allows to recover p∗ from vk, as soon
as the cut-off ηφ is constructed so that ηφj (0, x) = 1, by the formula

p∗ = pk +
∂tv

k(0)

u0
, on R, (1.9)

where we assumed that u0 satisfies (Hc).

Of course, one should argue that vk is unknown since the source term fk

of the equation depends on the unknown p∗. The idea is actually to minimize
another functional Fs[p

k, 0, µk] associated to fk = 0. In this case the unique
minimizer is another function we denote wk. And the error made by replacing
vk by wk can be estimated with respect to fk. If we apply the initial speed
formula corresponding to (1.9) to wk, of course we do not obtain p∗ anymore
but another potential we denote

pk+1 := pk +
∂tw

k(0)

u0
, on R. (1.10)
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And the key point of this design is that we are able to show that the potential
pk+1 constructed that way is closer to p∗ than pk was, thus leading to construct
a convergent sequence of potentials.

We are going to explain this construction scheme in a completely rigorous
way later below, and for that we first need to state and prove the appropriate
Carleman inequality.

2 One parameter Carleman Estimate

We will prove here a global Carleman estimate with one parameter s and a
weight function φ, that can be compared to the previous result presented in
[6] where the Carleman estimate was built with two parameters s and λ and
the weight function eλφ. Indeed, the convergence of the C-bRec algorithm is
stemming from the use of this Carleman weight φ through the terms e2sφ in
the cost functional (1.8), and numerical efficiency, however, will benefit a lot
that the term is not like ese

λφ .
As already mentioned, this new Carleman estimate is a mandatory step

towards an efficient C-bRec algorithm, and as one can read below, even if
some structural similarities with the previous article can be pointed at, the
challenges and solutions brought here highlight the need of this new technical
result.

Lemma 2. Let us define the Carleman weight function φ on each edge of the
network R as follows:

∀j ∈ J , φj(t, x) = (x− xj)
2 − βt2 +Mj , (t, x) ∈ R× (0, ℓj). (2.1)

There exist (xj)j∈J ∈ R−, (Mj)j∈J ∈ R+, β ∈ (0, 1) and T > 0 satisfying

βT > sup
j∈J

(ℓj − xj) (2.2)

such that it holds
(i) The continuity at each internal node is satisfied:

∀j ∈ Jint, φji(t, 0) = φj(t, ℓj), ∀i ∈ J1, NjK. (2.3)

(ii) The following matrices Aφ
j (t) satisfy some estimates for any j ∈ Jint:

∃α0
j > 0, βj > 0 such that, for all ξ = (ξ1, . . . , ξNj+1) ∈ RNj+1,

(Aφ
j (t)ξ, ξ) ⩾ α0

j ∥ξ∥
2 , ∀t, |t| ⩽ Tj :=

ℓj−xj

β ;

(Aφ
j (t)ξ, ξ) ⩾ α0

j ∥ξ∥
2 − βj |ξNj+1|2, ∀t, Tj ⩽ |t| ⩽ T ;

(2.4)
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where Aφ
j (t) are (Nj + 1)× (Nj + 1) symmetric matrices defined by

Aφ
j (t) :=



ϕj1(0)− ϕj(ℓj) −ϕj(ℓj) · · · −ϕj(ℓj) −ϕj(ℓj)[ϕ]j
. . . . . .

...
...

. . . −ϕj(ℓj)
...

ϕjNj
(0)− ϕj(ℓj) −ϕj(ℓj)[ϕ]j

aj(t)

 (2.5)

with ϕ(x) := ∂xφ(t, x) and aj(t) = −ϕj(ℓj)[ϕ]
2
j +

[
(|∂tφ(t)|2 − |ϕ|2)ϕ

]
j
.

Proof. We prove this Lemma by induction on j ∈ J . Let us fix β ∈ (0, 1). We
decompose Mj = Cj +M where M will be determined at the end of the proof
in order to be sure that Mj ⩾ 0. First let us choose x1 < 0 and C1 = 0.

The iteration goes as follows: let j ∈ Jint and suppose that xj < 0 and
Cj ∈ R are given, thus Tj = (ℓj − xj)/β is fixed. Then we choose to take the
same value for all xji := −cj for i ∈ J1, NjK. The problem is now to find cj > 0
such that the matrix Aφ

j (t) satisfies (2.4). We can rewrite it as follows

Aφ
j (t) = 2


cj − (ℓj − xj) −(ℓj − xj) · · · −(ℓj − xj) 2(ℓj − xj)(Njcj − ℓj + xj)

. . .
. . .

...
...

. . . −(ℓj − xj)
...

cj − (ℓj − xj) 2(ℓj − xj)(Njcj − ℓj + xj)
aj(t)/2


with

aj(t)/2 = −4(ℓj − xj)(ℓj − xj −Njcj)
2

+ 4(β2t2 − (ℓj − xj)
2)(ℓj − xj)− 4Nj(β

2t2 − c2j )cj .

The first Nj leading principal minors of the matrix Aφ
j (t) can be computed

easily and do not depend on the time variable. Indeed, for k ∈ J1, NjK we
obtain 2kck−1

j (cj − k(ℓj − xj)). Thus by taking

cj > Nj(ℓj − xj), (2.6)

we get the positivity of the first Nj leading principal minors.
Besides, det(Aφ

j (Tj)) = P (cj , (ℓj − xj), Tj) is a polynomial in cj of degree
Nj + 3 and its leading order term is Nj(2cj)

Nj+3. Moreover aj(t) − aj(Tj) =
4β2(t2 − T 2

j )(ℓj − xj − cjNj) ⩾ 0 for cj sufficiently large and |t| ⩽ Tj .
On the one hand, using Laplace expansion, by choosing cj sufficiently large,

we can get for all |t| ⩽ Tj , det(A
φ
j (t)) ⩾ det(Aφ

j (Tj)) > 0. Then, as soon as
|t| ⩽ Tj , since all its leading principal minors are positive, Aφ

j (t) is a definite
positive matrix, namely we get the first estimate of (2.4):

(Aφ
j (t)ξ, ξ) ⩾ α0

j ∥ξ∥
2 , for all t such that |t| ⩽ Tj .
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On the other hand, for Tj ⩽ |t| ⩽ T , it is easy to calculate that we get the
second estimate of (2.4):

(Aφ
j (t)ξ, ξ) = (Aφ

j (Tj)ξ, ξ) + (aj(t)− aj(Tj))|ξNj+1|2 ⩾ α0
j ∥ξ∥

2 − βj |ξNj+1|2,

with βj = 8β2(Njcj − (lj − xj))(T
2 − T 2

j ) > 0, stemming from (2.6) and the
fact that Nj ⩾ 2 bring indeed

Njcj > N2
j (ℓj − xj) > (ℓj − xj). (2.7)

Furthermore, for each i ∈ J1, NjK, after choosing the cj = −xji , we take
Cji := (lj − xj)

2 + Cj − (cj)
2, in order to have the continuity of the weight

functional at the internal nodes (2.3). The last step is to choose M > 0 large
enough such that all the Mj are non-negative, which is possible as the tree R
has a finite number of edges.

Thanks to this construction of weight functions, we are now in position to
prove the following global Carleman estimate on the whole network R.

Theorem 3. Let φ be a weight function defined as in Lemma 2, with appro-
priate (xj ,Mj)j∈J , β ∈ (0, 1) and T satisfying assumption (2.2). Then there
exist C > 0, s0 > 0 such that for all s ⩾ s0 , for all p ∈ L∞

m (R), we have the
following Carleman estimate

s1/2
∫
R
e2sφ(0,x)|∂tz(0, x)|2dx+ s

∫ T

−T

∫
R
e2sφ

(
|∂tz|2 + |∂xz|2 + s2|z|2

)
dxdt

⩽ C

∫ T

−T

∫
R
e2sφ|∂ttz − ∂xxz + pz|2dxdt (2.8)

+Cs
∑

i∈Jext

∫ T

−T
e2sφi(t,ℓi)|∂xzi(t, ℓi)|2dt+ Cs3I(z, z),

satisfied by all z ∈ H1((−T, T );H1
0 (R)) such that ∂ttz−∂xxz ∈ L2((0, T )×R),

under internal continuity from the definition of H1
0 (R) and Kirchhoff node

condition in (1.4), and the additional null initial condition z(0, ·) = 0 in R,
and where

I(z, z) =
∫∫

(|t|,x)∈O
e2sφ|z|2dxdt+

∑
j∈Jint

∫
|t|∈OTj

e2sφj(t,ℓj)|zj(t, ℓj)|2dt (2.9)

with

O = ∪j∈JOj where Oj = {(t, x) ∈ (0, T )× (0, ℓj), |x− xj | − β|t| < 0} (2.10)

and

OTj = {t ∈ (0, T ), |ℓj − xj | − β|t| < 0},
defined only for x = ℓj and any j ∈ Jint. (2.11)
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Figure 2: Illustration of domains Oj and OTj for the branch (0, ℓj), denoting
Tj = |lj − xj |/β.

There is a huge literature on proof of Carleman estimates for a lot of dif-
ferent partial differential equations. Let us only suggest here the books [17]
(for the proof and the use of Carleman estimates for uniqueness and stability
of inverse problems) and [26] (for Carleman estimates of elliptic and heat op-
erators, for observability or unique continuation purposes) where one can find
some landmarks, or the seminal and technical work [24] among many other
articles.

Proof. Even if the structure of the proof is rather classical, one will need to
pay a specific attention here to the networked setting we are facing, bearing in
mind that a global Carleman estimate has to be constructed. A great part of
the work was done with the design of the Carleman weight φ in Lemma 2. The
goal here will be mainly to deal with the internal node terms and to explain
how the domains O, OTj end up to be part of the extra right hand side term
I(z, z) in (3).

- Step 1. Let us first work on a generic edge of length ℓ omitting as often as
possible the index j. We set y = zesφ on (−T, T ) × (0, ℓ) and the conjugate
operator

Ls(y) = esφ(∂tt − ∂xx)(e
−sφy). (2.12)

Easy calculations bring

Ls(y) = (∂tty − ∂xxy + s2(|∂tφ|2 − |∂xφ|2)y)︸ ︷︷ ︸
P1y

+ 2s∂xφ∂xy − 2s∂tφ∂ty︸ ︷︷ ︸
P2y

− s(∂ttφ− ∂xxφ)y︸ ︷︷ ︸
Ry

. (2.13)
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Thanks to our choice of weight φ according to (2.1), we have ∂xtφ = 0, ∂xxφ =
2 and ∂ttφ = −2β. The main work of the proof consists in the computation
and bound from below of the cross-term

I =

∫ T

−T

∫ ℓ

0
P1y P2ydxdt. (2.14)

Tedious, yet rather classical computations and integrations by parts (e.g. [7],
[6]) yield

I = 2(1− β)s

∫ T

−T

∫ ℓ

0

(
|∂ty|2 + |∂xy|2

)
dxdt

+ s3
∫ T

−T

∫ ℓ

0

[
∂t

(
(|∂tφ|2 − |∂xφ|2)∂tφ

)
− ∂x

(
(|∂tφ|2 − |∂xφ|2)∂xφ

)]
|y|2dxdt

+ s

[∫ ℓ

0

(
2∂ty∂xφ∂xy − (|∂ty|2 + |∂xy|2)∂tφ− s2(|∂tφ|2 − |∂xφ|2)∂tφ|y|2

)
dx

]T

−T

+ s

[∫ T

−T

(
2∂xy∂tφ∂ty − (|∂ty|2 + |∂xy|2)∂xφ+ s2(|∂tφ|2 − |∂xφ|2)∂xφ|y|2

)
dt

]ℓ

0

.

(2.15)
Let us explain briefly how to estimate each term of (2.15).

• The terms in s|∂ty|2+ s|∂xy|2 are strictly positive thanks to the assump-
tion β ∈ (0, 1).

• The terms in s3|y|2 can be rewritten as follows, after calculations using
the definition (2.1) of φ:

∂t
(
(|∂tφ|2 − |∂xφ|2)∂tφ

)
− ∂x

(
(|∂tφ|2 − |∂xφ|2)∂xφ

)
= −24β3t2 + 8β|x− xj |2 − 8β2t2 + 24|x− xj |2

= 8(3β + 1)(|x− xj |2 − β2t2) + 16|x− xj |2(1− β).

This term can be bounded by below by a strictly positive constant only
where |x− xj | − β|t| ⩾ 0, which is the case in the complementary of the
set O defined by (2.10). The remaining term will appear as a part of
I(z, z) in the right hand side of (3).

• Terms at t = T and t = −T . Let us only explain what to do at time
t = T , since the case t = −T can be handled similarly.

– The term in s3|y(T )|2 is positive if and only if

−(|∂tφ(T, x)|2−|∂xφ(T, x)|2)∂tφ(T, x) = 8βT (β2T 2−|x−xj |2) ⩾ 0,

which is obviously true from the assumption (2.2) on T in Lemma 2.

13



– We also get the positiveness of the other terms

2∂ty(T, x)∂xφ(T, x)∂xy(T, x)

− (|∂ty(T, x)|2 + |∂xy(T, x)|2)∂tφ(T, x)
= 4(x− xj)∂ty(T, x)∂xy(T, x) + 2βT (|∂ty(T, x)|2 + |∂xy(T, x)|2)
⩾ 2βT (|∂ty(T, x)| − |∂xy(T, x)|)2 ⩾ 0,

because x− xj ⩾ −|x− xj | ⩾ −βT from (2.2) again.

Summarizing, none of these terms should appear in the final below esti-
mates as they are all positive.

• Terms at x = 0 and x = ℓ. Here, we need to reintroduce the subscript j
to explain the calculations with respect to the concerned branches. This
leads us to the next step of the proof.

- Step 2. Let us work on the sum of the boundary terms at x ∈ {0, ℓj} over
the whole network R.
We first recall (2.3) that says the weight function φ is continuous at each
internal node, so that we have the following boundary conditions for y = zesφ,
for any t ∈ (−T, T ):

if j = 1, y1(t, 0) = 0,

if j ∈ Jext, yj(t, ℓj) = 0,

if j ∈ Jint, yj(t, ℓj) = yji(t, 0), ∀i ∈ J1, NjK.
(2.16)

We sum the last term of (2.15) on all edges j ∈ J of the network to get

s
∑
j∈J

[ ∫ T

−T

(
2∂xyj∂tφj∂tyj − (|∂tyj |2 + |∂xyj |2)∂xφj

+s2(|∂tφj |2 − |∂xφj |2)∂xφj |yj |2
)
dt

]ℓj
0

.

We decompose this sum on J into three different sums depending on the
position of the node in the network.

• At the root node (x = 0 on the edge j = 1), since y1(t, 0) = 0, ∀t ∈
(−T, T ):

s

∫ T

−T
−
(
2∂xy1∂tφ1∂ty1 − (|∂ty1|2 + |∂xy1|2)∂xφ1

+ s2(|∂tφ1|2 − |∂xφ1|2)∂xφ1|y1|2
)
(t, 0)dt

= s

∫ T

−T
|∂xy1(t, 0)|2∂xφ1(t, 0)dt,
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and since ∂xφ1(t, 0) = −2x1 and x1 < 0, this term is positive, thus, can
be omitted.

• At the leaf nodes (x = ℓj on the edges j ∈ Jext), since yj(t, ℓj) = 0, ∀t ∈
(−T, T ):

∑
j∈Jext

s

∫ T

−T

(
2∂xyj∂tφj∂tyj − (|∂tyj |2 + |∂xyj |2)∂xφj

+ s2(|∂tφj |2 − |∂xφj |2)∂xφj |yj |2
)
(t, ℓj)dt

= −
∑

j∈Jext

s

∫ T

−T
|∂xyj(t, ℓj)|2∂xφj(t, ℓj)dt.

This term is strictly negative since ∂xφj(t, ℓj) = 2(ℓj − xj) > 0, so that
it will appear in the end at the right hand side of (3).

• At the internal nodes (x = ℓj on the edge j ∈ Jint and x = 0 on the
daughter edges ji for 1 ⩽ i ⩽ Nj), recalling yj(t, ℓj) = yji(t, 0) and the
definition (1.2) of [ · ]j :∑

j∈Jint

s

(∫ T

−T

(
2∂xyj∂tφj∂tyj − (|∂tyj |2 + |∂xyj |2)∂xφj

+ s2(|∂tφj |2 − |∂xφj |2)∂xφj |yj |2
)
(t, ℓj)dt

−
Nj∑
i=1

∫ T

−T

(
2∂xyji∂tφji∂tyji − (|∂tyji |2 + |∂xyji |2)∂xφji

+ s2(|∂tφji |2 − |∂xφji |2)∂xφji |yji |2
)
(t, 0)dt

)
=

∑
j∈Jint

s

∫ T

−T

(
2[∂xy]j(t)∂tφj(t, ℓj)∂tyj(t, ℓj)− |∂tyj(t, ℓj)|2[∂xφ]j(t)

− [|∂xy|2∂xφ]j(t) + s2
[
(|∂tφ|2 − |∂xφ|2)∂xφ

]
j
(t)|yj(t, ℓj)|2

)
dt

= B1 +B2 +B3 +B4.
(2.17)

We are going to study the sign of each of the four terms in (2.17), keeping
in mind that the positive ones can be omitted and the negative ones are meant
to be moved to the right hand side of the final estimate. In order to lighten the
writing we adopt the notations given in Lemma 2, namely ϕj(x) = ∂xφj(t, x)
for x ∈ (0, ℓj) and xji = −cj for all i ∈ J1, NjK.

⋆ We first calculate, using y = zesφ, (2.3) and the assumption [∂xz]j = 0:

[∂xy]j(t) = [(∂xz + szϕ)esφ]j(t) = syj(t, ℓj)[ϕ]j . (2.18)
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Thus the first term of (2.17) after integration by parts in time is

B1 =
∑

j∈Jint

s

∫ T

−T
2[∂xy]j(t)∂tφj(t, ℓj)∂tyj(t, ℓj)dt

= −4βs2
∑

j∈Jint

∫ T

−T
t[ϕ]jyj(t, ℓj)∂tyj(t, ℓj)dt

= −2βs2T
∑

j∈Jint

[ϕ]j(|yj(T, ℓj)|2 + |yj(−T, ℓj)|2)

+ 2βs2
∑

j∈Jint

∫ T

−T
[ϕ]j |yj(t, ℓj)|2dt

Since cj obeys (2.6) one gets (2.7) so that [ϕ]j = 2(ℓj − xj)− 2Njcj ⩽ 0.
Thus, using a generic positive constant C that may change from line to
line in what follows, we get

B1 ⩾ −4βs2
∑

j∈Jint

(Njcj − (ℓj − xj))

∫ T

−T
|yj(t, ℓj)|2dt

⩾ −Cs2
∑

j∈Jint

∫ T

−T
|yj(t, ℓj)|2dt,

⋆ The second term in (2.17) is positive thanks to [ϕ]j ⩽ 0: B2 ⩾ 0.

⋆ From (2.18) and the definition (1.2), we get

∂xyj(t, ℓj) = syj(t, ℓj)[ϕ]j +

Nj∑
i=1

∂xyji(t, 0).

Thus for all j ∈ Jint, the integrand of the third term in (2.17) is

−[|∂xy|2∂xφ]j(t)

= −|∂xyj(t, ℓj)|2ϕj(ℓj) +

Nj∑
i=1

|∂xyji(t, 0)|2ϕji(0)

= −

∣∣∣∣∣∣syj(t, ℓj)[ϕ]j +
Nj∑
i=1

∂xyji(t, 0)

∣∣∣∣∣∣
2

ϕj(ℓj) +

Nj∑
i=1

|∂xyji(t, 0)|2ϕji(0)

= −s2|yj(t, ℓj)|2[ϕ]2jϕj(ℓj)− 2syj(t, ℓj)[ϕ]j

 Nj∑
i=1

∂xyji(t, 0)

ϕj(ℓj)

+

Nj∑
i=1

|∂xyji(t, 0)|2 (ϕji(0)− ϕj(ℓj))− 2ϕj(ℓj)

Nj∑
i,k=1,i ̸=k

∂xyji(t, 0)∂xyjk(t, 0).
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Therefore we can rewrite the third and forth term in (2.17) as:

B3 +B4 =
∑

j∈Jint

s

∫ T

−T

(
− [|∂xy|2∂xφ]j(t)

+ s2
[
(|∂tφ|2 − |∂xφ|2)∂xφ

]
j
(t)|yj(t, ℓj)|2

)
dt

=
∑

j∈Jint

s

∫ T

−T
⟨Aφ

j (t)Wj(t),Wj(t)⟩ dt,

where Wj(t) ∈ RNj+1 is defined by

Wj(t) =
(
∂xyj1(t, 0) . . . ∂xyjNj

(t, 0) syj(t, ℓj)
)⊤

,

and Aj
φ is the matrix given in (2.5).

Now, gathering the previous estimates, one can write

B1 +B2 +B3 +B4

⩾
∑

j∈Jint

s

∫ T

−T
⟨Aφ

j (t)Wj(t),Wj(t)⟩ dt− Cs2
∑

j∈Jint

∫ T

−T
|yj(t, ℓj)|2dt.

(2.19)

- Step 3. From the results of the two previous steps to build an estimation
by below of (2.14), by summation of all the branches’ integrals, we get, for s
chosen again large enough:∫ T

−T

∫
R
P1yP2y dxdt ⩾ Cs

∫ T

−T

∫
R

(
|∂ty|2 + |∂xy|2 + s2|y|2

)
dxdt

− Cs
∑

j∈Jext

∫ T

−T
|∂xyj(t, ℓj)|2dt− Cs3

∫∫
O
|y|2dxdt

+ C
∑

j∈Jint

s

∫ T

−T
⟨Aφ

j (t)Wj(t),Wj(t)⟩ dt− Cs2
∑

j∈Jint

∫ T

−T
|yj(t, ℓj)|2dt.

Thus, since one easily computes

2|Ls(y)|2+2|Ry|2 ⩾ |Ls(y)−Ry|2 = |P1y+P2y|2 = |P1y|2+ |P2y|2+2P1yP2y,

and using that ∫ T

−T

∫
R
|Ry|2dxdt ⩽ Cs2

∫ T

−T

∫
R
|y|2dxdt,
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we obtain, for s large enough, the preliminary estimate

s

∫ T

−T

∫
R

(
|∂ty|2 + |∂xy|2 + s2|y|2

)
dxdt+

∫ T

−T

∫
R

(
|P1y|2 + |P2y|2

)
dxdt

+ C
∑

j∈Jint

s

∫ T

−T
⟨Aφ

j (t)Wj(t),Wj(t)⟩ dt

⩽ C

∫ T

−T

∫
R
|Ls(y)|2dxdt+ Cs

∑
j∈Jext

∫ T

−T
|∂xyj(t, ℓj)|2dt

+ Cs3
∫∫

O
|y|2dxdt+ Cs2

∑
j∈Jint

∫ T

−T
|yj(t, ℓj)|2dt. (2.20)

- Step 4. Let us take one step further to explain how a term s1/2
∫
R |∂ty(0, ·)|

2 dx
is obtained in the left hand side of the final estimate. Indeed, if we suppose
z(0, ·) = 0 in R, we get y(0, ·) = 0 in R. Choosing an increasing smooth
function ρ : t 7→ ρ(t) such that ρ(0) = 1 and ρ vanishes close to t = −T , we
multiply P1y by ρ∂ty and integrate over (−T, 0)×R, to get (from integrations
by parts),∫ 0

−T

∫
R
P1y ρ∂ty dxdt =

∫ 0

−T

∫
R

(
∂tty − ∂xxy + s2(|∂tφ|2 − |∂xφ|2)y

)
ρ∂ty dxdt

=
1

2

∫ 0

−T

∫
R
ρ∂t

(
|∂ty|2 + |∂xy|2

)
dxdt

+
s2

2

∫ 0

−T

∫
R
ρ(|∂tφ|2 − |∂xφ|2)∂t(y2) dxdt−

∑
j∈J

∫ 0

−T
ρ [∂tyj∂xyj ]

ℓj
0 dt.

We focus on the last term. Thanks to the branches boundary conditions (2.16),
the equation (2.18), the properties of ρ and the fact that yj(0, ℓj) = 0, we can
calculate, using an integration by parts, that

−
∑
j∈J

∫ 0

−T
ρ [∂tyj∂xyj ]

ℓj
0 dt

= −
∫ 0

−T
ρ

∑
j∈Jint

∂tyj(t, ℓj)∂xyj(t, ℓj)−
Nj∑
i=1

∂tyji(t, 0)∂xyji(t, 0)

 dt

= −
∫ 0

−T
ρ

∑
j∈Jint

[∂xyj ]j ∂tyj(t, ℓj)dt = −
1

2

∫ 0

−T
sρ

∑
j∈Jint

[ϕ]j ∂t|yj(t, ℓj)|
2dt

= −1

2

∑
j∈Jint

[
sρ [ϕ]j |yj(t, ℓj)|

2
]0
−T

+
1

2

∫ 0

−T
s∂tρ

∑
j∈Jint

[ϕ]j |yj(t, ℓj)|
2dt

=
s

2

∫ 0

−T
∂tρ

∑
j∈Jint

[ϕ]j |yj(t, ℓj)|
2dt.
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Thus we have, from ρ(0) = 1, ρ(−T ) = 0, [ϕ]j ⩽ 0, and an other integration
by parts:∫ 0

−T

∫
R
P1y ρ∂ty dxdt =

1

2

∫
R
|∂ty(0, ·)|2 dx+

s

2

∑
j∈Jint

∫ 0

−T
∂tρ[ϕ]j |yj(t, ℓj)|2dt

− 1

2

∫ 0

−T

∫
R

(
∂tρ

(
|∂ty|2 + |∂xy|2

)
+ s2∂t

(
ρ(|∂tφ|2 − |∂xφ|2)

)
y2
)
dxdt

⩾
1

2

∫
R
|∂ty(0, ·)|2 dx− C

∫ 0

−T

∫
R

(
|∂ty|2 + |∂xy|2 + s2|y|2

)
dxdt

− Cs
∑

j∈Jint

∫ 0

−T
|yj(t, ℓj)|2dt.

By Cauchy-Schwarz inequality, this implies

s1/2
∫
R
|∂ty(0, ·)|2 dx ⩽

∫ T

−T

∫
R
|P1y|2 dxdt

+Cs

∫ T

−T

∫
R

(
|∂ty|2 + |∂xy|2 + s2|y|2

)
dxdt+Cs3/2

∑
j∈Jint

∫ 0

−T
|yj(t, ℓj)|2dt.

Therefore, this estimate and (2.20) lead to

s1/2
∫
R
|∂ty(0, ·)|2 dx+ s

∫ T

−T

∫
R

(
|∂ty|2 + |∂xy|2 + s2|y|2

)
dxdt

+

∫ T

−T

∫
R

(
|P1y|2 + |P2y|2

)
dxdt+ C

∑
j∈Jint

s

∫ T

−T
⟨Aφ

j (t)Wj(t),Wj(t)⟩ dt

⩽ C

∫ T

−T

∫
R
|Ls(y)|2dxdt+ Cs

∑
j∈Jext

∫ T

−T
|∂xyj(t, ℓj)|2dt

+ Cs3
∫∫

O
|y|2dxdt+ Cs2

∑
j∈Jint

∫ T

−T
|yj(t, ℓj)|2dt. (2.21)

- Step 5. Thanks to the properties (2.4) of Lemma 2 concerning Aφ
j (t) and

Wj(t), for |t| ⩽ Tj , one has

⟨Aφ
j (t)Wj(t),Wj(t)⟩ ⩾ α0

j ∥Wj(t)∥2 ,

and for |t| ⩾ Tj , there exist α0
j > 0 and βj > 0 such that

⟨Aφ
j (t)Wj(t),Wj(t)⟩ ⩾ α0

j ∥Wj(t)∥2 − βjs
2|yj(t, ℓj)|2.
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This writes finally

∑
j∈Jint

s

∫ T

−T
⟨Aφ

j (t)Wj(t),Wj(t)⟩ dt

⩾ Cs3
∑

j∈Jint

∫
|t|<Tj

|yj(t, ℓj)|2dt− Cs3
∑

j∈Jint

∫
|t|>Tj

|yj(t, ℓj)|2dt

and this last boundary term remains in the right hand side of (2.21) for s large
enough.
- Step 6. Going back to z = ye−sφ, one can check that

e2sφ|∂tz|2 ⩽ 2|∂ty|2 + 2s2|∂tφ|2|y|2, in (−T, T )×R,
e2sφ|∂xz|2 ⩽ 2|∂xy|2 + 2s2|∂xφ|2|y|2, in (−T, T )×R,

e2sφ(0,·)|∂tz(0, ·)|2 = |∂ty(0, ·)|2, in R,
e2sφ(·,ℓj)|∂xzj(·, ℓj)|2 = |∂xyj(·, ℓj)|2, in (−T, T ),∀j ∈ Jext

using z(t = 0, ·) = 0 and z(·, lj) = 0, ∀j ∈ Jext, and

|∂ttz − ∂xxz|2 ⩽ 2|∂ttz − ∂xxz + pz|2 + 2∥p∥2L∞(R×(−T,T ))|z|
2

⩽ 2|∂ttz − ∂xxz + pz|2 + 2m2|z|2.

Recalling that Ls(y) = esφ(∂tt − ∂xx)z, (2.21) becomes

s1/2
∫
R
e2sφ(0,·)|∂tz(0, ·)|2 dx+ s

∫ T

−T

∫
R
e2sφ

(
|∂tz|2 + |∂xz|2 + s2|z|2

)
dxdt

⩽ C

∫ T

−T

∫
R
e2sφ|∂ttz−∂xxz+pz|2dxdt+Cs

∑
j∈Jext

∫ T

−T
e2sφ(t,ℓj)|∂xzj(t, ℓj)|2dt

+ Cs3
∫∫

O
e2sφ|z|2dxdt+ Cs3

∑
j∈Jint

∫
Tj<|t|<T

e2sφ(t,ℓj)|zj(t, ℓj)|2dt

+ 2Cm2

∫ T

−T

∫
R
e2sφ|z|2dxdt.

By taking s sufficiently large, we can absorb the last term

2Cm2

∫ T

−T

∫
R
e2sφ|z|2 dxdt

by the left hand side of the inequality, which ends the proof of the Carleman
inequality (3).
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3 Carleman based Reconstruction algorithm

This section is devoted to the rigorous presentation of the C-bRec algorithm,
as well as its convergence proof.

3.1 Cut-off and cost functional properties

Let us begin by giving some details about two tools of the iterative process
briefly presented in section 1.3, namely the cut-off function ηφ ∈ C2((0, T )×R)
and the cost functional Fs given in (1.8).

Properties of the cut-off function ηφ.

This cut-off function ηφ will be used in the algorithm to truncate appropriately
the difference between the state at current step and the measured objective,
in order to get something denoted by vk = ηφ∂t

(
uk − u∗

)
on (0, T ) × R in

section 1.3. Their construction is a challenge when working on a network. A
natural way to construct ηφ could be to define each component ηφj of ηφ over
the branches (0, ℓj) of R by ηφj = ηj ◦ φj , where each ηj ∈ C2(R; [0, 1]) is
a smooth cut-off function that has to be defined such that vk satisfies some
mandatory properties. It turns out that it is necessary to design it differently,
precisely in order to ensure the Kirchhoff law for vk at the internal nodes. Let
us begin by recalling the properties expected from vk:

• Encoding (pk− p∗), which is the information we seek, through the initial
speed data ∂tv

k(0, ·) = ηφ(0, ·)(p∗ − pk)u0. It means for instance that
ηφj (0, ·) = 1 would be convenient.

• Vanishing in the domains O and OTj so that I(vk, vk) = 0 (with I
appearing in Fs (1.8) and defined by (2.9)). Thus one needs ηφj = 0 on
some domain greater than O ∪

(
∪j∈JintOTj × {ℓj}

)
.

• Allowing the source term fk of equation (1.7) solved by vk to be man-
ageable. Since one has a Lie bracket term in

fk = ηφ(p∗ − pk)∂tu
∗ − [ηφ, ∂tt − ∂xx]∂t

(
uk − u∗

)
,

we will ask for ηφ to vary (between 0 and 1) only in a small region
of (0, T ) × R. Actually, on each (0, T ) × (0, ℓj), it will be specifically
possible (meaning manageable) where Mj < φj < x2j +Mj . But it also
has to be done properly across each internal node to ensure continuity
and Kirchhoff law for vk at those nodes.

Thus, the cut-off function ηφ ∈ C2((0, T )×R) is designed as follows:

0 ⩽ ηφ(t, x) ⩽ 1, ∀(t, x) ∈ (0, T )×R, and

ηφj (t, x) =

{
0, if φj(t, x) < Mj ,

1, if φj(t, x) ⩾ x2j +Mj > 0,
∀j ∈ J , (3.1)
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where Mj and xj are defined in Lemma 2 and are used in the construction of
φj(t, x) = (x − xj)

2 − βt2 +Mj . The situation for two connected branches j
and ji is described in Figure 3 and allows to see that the variation of ηφ from
0 to 1 has to be done between an upper straight line and a lower curved line
(blue or red) on each branch, paying attention to the need of a perpendicular
variation at the junction of the branches.

The goal of this last recommendation is to have specifically, for any j ∈
Jint and t > 0, both vkj (t, ℓj) = vkji(t, 0), ∀i ∈ J1, NjK, and [∂xv

k]j(t) = 0.
On the one hand, since vk = ηφ∂t

(
uk − u∗

)
, we need ηφj (t, lj) = ηφji(t, 0) for

continuity. On the other hand, one observes that ∂xv
k = ∂xη

φ∂t
(
uk − u∗

)
+

ηφ∂xt
(
uk − u∗

)
indicating from the boundary assumptions (1.4) on uk and u∗,

that ∂xη
φ
j (t, ℓj) = ∂xη

φ
ji
(t, 0) = 0 would be sufficient for Kirchhoff condition.

Hence the need of a ‘perpendicular variation’ at the internal nodes junctions
mentioned above.

0 ℓj 0 ℓji

φj
=

Mj

φj
=

x
2
j
+

Mj

φji
=
Mji

φji
=
x
2
ji
+
MjiOj

Oji

ηφ = 1

ηφ = 0

xjxji

x

Tj

Tji

OTj

OTji

T
t

Figure 3: Context of application of the cut-off functions ηφ over two consecutive
branches j and ji.
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Properties of the cost functional Fs.

Let us now give some insight about the chosen cost functional Fs presented in
(1.8) and used in the algorithm.

Lemma 4. Let us assume that the hypotheses of Theorem 1 are satisfied. Let
φ be a weight function defined as in Lemma 2. Then for all s > 0 large enough,
p ∈ L∞(R), f ∈ L2(0, T ;L2(R)) and µ ∈ L2(0, T ), the functional Fs[p, f, µ]
recalled here

Fs[p, f, µ](z) =
1

2

∫ T

0

∫
R
e2sφ|∂ttz − ∂xxz + pz − f |2 dxdt

+
s

2

∑
i∈Jext

∫ T

0
e2sφi(t,ℓi)|∂xzi(t, ℓi)− µi(t)|2dt+

s3

2
I(z, z),

(where I(z, z) is given in (2.9)) is continuous, strictly convex and coercive on
T defined by

T =
{
z ∈ C0([0, T ];H1

0 (R))∩C1([0, T ];L2(R)), ∂ttz−∂xxz ∈ L2((0, T )×R),

z(0, ·) = 0 in R, and [∂xz]j(t) = 0, ∀j ∈ Jint, t ∈ (0, T )
}

(3.2)

and equipped with an appropriate weighed norm.
Thenceforth, the functional Fs[p, f, µ] admits a unique minimizer on the set T .

Proof. Let us begin by defining the following weighed seminorm for any z ∈ T :

∥z∥2obs,s = 2Fs[p, 0, 0](z). (3.3)

This is actually a well defined norm thanks to the Carleman estimate (3)
applied to the extension of z ∈ T to negative times as an odd function. Indeed,
since φ is a bounded function over the bounded domain (0, T )×R, as soon as
s is large enough, one has

s3∥z∥2L2(−T,T ;L2(R)) ⩽ CFs[p, 0, 0](z)

bringing z = 0 if Fs[p, 0, 0](z) = 0.
Moreover, the closed set T is convex thanks to the linearity of the properties

defining it. On the other hand, the functional Fs[p, f, µ] is continuous and
differentiable on T since one can calculate its gradient as follows, for any
z, Z ∈ T :

⟨∇Fs[p, f, µ](z), Z⟩T

=

∫ T

0

∫
R
e2sφ(∂ttz − ∂xxz + pz − f)(∂ttZ − ∂xxZ + pZ) dxdt

+ s
∑

i∈Jext

∫ T

0
e2sφi(t,ℓi)(∂xzi(t, ℓi)− µi(t))∂xZi(t, ℓi)dt+ s3I(z, Z).

(3.4)
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Now taking y, z ∈ T and Z = y − z one obtains

⟨∇Fs[p, f, µ](y)−∇Fs[p, f, µ](z), y − z⟩T = 2Fs[p, 0, 0](y − z).

Therefore, it shows the coercivity condition

⟨∇Fs[p, f, µ](y)−∇Fs[p, f, µ](z), y − z⟩T ⩾ ∥y − z∥2obs,s

yielding the strong convexity of Fs[p, f, µ] from basic properties of differentiable
convex functions (see the book [1] for instance if needed). As a consequence,
the functional Fs[p, f, µ] admits a unique minimizer on the set T and allows
to define the upcoming C-bRec algorithm.

3.2 The C-bRec algorithm

Let us now state the steps of the algorithm for the reconstruction of the po-
tential p∗ over the network R in a wave equation described by (1.3)-(1.4) and
of solution u∗.

Algorithm
Besides knowing, for each branch j ∈ J , the source term gj, the boundary
term hj and the initial data (u0j , u

1
j ) of (1.3)-(1.4), we have the extra measured

information at the leaves of the network R:

d∗i (t) = ∂xu
∗
i (t, ℓi), for i ∈ Jext and t ∈ (0, T ).

Initialisation: Choose any initial guess p0 ∈ L∞
m (R).

Iteration: Knowing pk ∈ L∞
m (R),

1. Calculate the solution uk of (1.3)-(1.4) associated to the potential pk, and
for all i ∈ Jext and t ∈ (0, T ), set

µk
i (t) = ηφi (t, ℓi)∂t

(
∂xu

k
i (t, ℓi)− d∗i (t)

)
. (3.5)

2. Minimize the functional Fs[p
k, 0, µk] defined by

Fs[p
k, 0, µk](z) =

1

2

∫ T

0

∫
R
e2sφ|∂ttz − ∂xxz + pkz|2 dxdt

+
s

2

∑
i∈Jext

∫ T

0
e2sφi(t,ℓi)|∂xzi(t, ℓi)− µk

i (t)|2dt+
s3

2
I(z, z), (3.6)

on the space T and denote wk its unique minimizer.

3. Then set

p̃k+1 = pk +
∂tw

k(0, ·)
u0

, on R. (3.7)
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4. Finally, construct

pk+1 = Tm(p̃k+1) :=

{
p̃k+1, if |p̃k+1| ⩽ m,
sign(p̃k+1)m, if |p̃k+1| > m.

Stopping criterion: Choose some tolerance levels ε1 and ε2 and some maximum
number of iterations K and stop the iterative loop as soon as one of the three
following criteria is satisfied:

sup
j∈Jext

∥∥∥∂xuki (t, ℓi)− d∗j

∥∥∥
2

∥d∗j∥2
⩽ ε1, or sup

j∈J

∥pk+1
j − pkj ∥∞

m
⩽ ε2, (3.8)

or when the maximal number of iterations K is reached.

The final step of the iterative process is a projection to guarantee that the
coefficient pk+1 remains appropriately bounded in the space L∞

m (R) so that
one can apply again, in the next iteration, the Carleman estimate (3).

This algorithm has the advantage to be convergent for any initial guess
p0 ∈ L∞

m (R) without a priori knowledge on p∗ except its bound m. It is
therefore a globally convergent algorithm, as stated in the following result.

3.3 Convergence Result

Theorem 5. Assume the same hypothesis as in Theorem 1. Let φ be a weight
function defined as in Lemma 2. Assume also that p∗ ∈ L∞

m (R). Then there
exists a constant C > 0 such that for all s large enough and for all k ∈ N, it
holds ∫

R
e2sφ(0)|pk − p∗|2 dx ⩽

(
C

s1/2

)k ∫
R
e2sφ(0)|p0 − p∗|2 dx. (3.9)

In particular, if s is large enough, the sequence (pk)k∈N given by the algorithm
converges towards p∗ when k tends to infinity.

Proof. Let us introduce uk and u∗ the solutions of (1.3)-(1.4) with potential
pk, respectively p∗. Then if we set zk = ∂t

(
uk − u∗

)
in (0, T )×R, it satisfies{

∂ttz
k
j − ∂xxz

k
j + pkj z

k
j = (p∗j − pkj )∂tu

∗
j , in (0, T )× (0, ℓj),

zkj (0, ·) = 0, ∂tz
k
j (0, ·) = (p∗j − pkj )u

0
j , in (0, ℓj),

(3.10)

along with the internal transmission conditions and external boundary condi-
tions for all t ∈ (0, T ):

for j = 1, z1(t, 0) = 0,

if j ∈ Jext, zj(t, ℓj) = 0,

if j ∈ Jint, zj(t, ℓj) = zji(t, 0), ∀i ∈ J1, NjK, and [∂xz]j(t) = 0.

(3.11)
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Usual a priori energy estimates, as one can read in [6, Lemma 3.2] or in a
more general framework in [22], for zk solution of equation (3.10)-(3.11) yield

∥zk∥L∞(0,T ;H1
0 (R)) + ∥∂tzk∥L∞(0,T ;L2(R))

⩽ C∥pk − p∗∥L2(R)

(
∥u0∥L∞(R) + ∥∂tu∗∥L1(0,T ;L∞(R))

)
. (3.12)

Let us now define the integral

I = s1/2
∫
R
e2sφ(0,x)|pk+1(x)− p∗(x)|2dx (3.13)

that we will estimate succesively using the informations of the algorithm and
the Carleman estimate.

One can first notice that Tm, the projection operator of Step 4 of the
algorithm, is lipschitzian, and is also such that pk+1 = Tm(p̃k+1) and p∗ =
Tm(p∗), since we assumed that p∗ ∈ L∞

m (R), allowing therefore to write

I = s1/2
∫
R
e2sφ(0)|Tm(p̃k+1)− Tm(p∗)|2dx ⩽ s1/2

∫
R
e2sφ(0)|p̃k+1 − p∗|2dx.

Moreover, the initial data u0 satisfies the positivity assumption (Hc), so that

I ⩽ s1/2
∫
R
e2sφ(0)|p̃k+1 − p∗|2 |u

0|2

(α0)2
dx =

s1/2

(α0)2

∫
R
e2sφ(0)|(p̃k+1 − p∗)u0|2dx.

Let us now split the gap between p̃k+1 and p∗ using the previous value pk,
and use the optimization information of Step 2 and 3.

On the one hand, recall that wk is the minimizer of Fs[p
k, 0, µk] on T and

is used to calculate (p̃k+1 − pk)u0 = ∂tw
k(0) from (3.7).

On the other hand, one can verify that vk = ηφ∂t
(
uk − u∗

)
is the unique

minimizer of Fs[p
k, fk, µk], since I(vk, vk) = 0 thanks to the choice of ηφ (see

(3.1) and around), and since it is indeed the solution of{
∂ttv

k
j − ∂xxv

k
j + pkj v

k
j = fk

j , in (0, T )× (0, ℓj),

vkj (0, ·) = 0, ∂tv
k
j (0, ·) = (p∗j − pkj )u

0
j , in (0, ℓj),

(3.14)

with fk
j := ηj(φj)(p

∗
j − pkj )∂tu

∗
j − [ηj(φj), ∂tt − ∂xx]∂t(u

k
j − u∗j ), using the Lie

bracket notation [·, ·]. Besides, from our design of ηφ, one has the boundary
conditions (3.11) satisfied by vk, so that we can ensure that vk belongs to T .

Summing up, we get

I ⩽
s1/2

(α0)2

∫
R
e2sφ(0)|(p̃k+1 − pk)u0 + (pk − p∗)u0|2dx

⩽
s1/2

(α0)2

∫
R
e2sφ(0)|∂twk(0)− ∂tv

k(0)|2dx.
(3.15)
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One can now apply the Carleman estimate (3) to z = wk−vk after extend-
ing it to negative times as well, as an odd function that satisfies the required
assumptions and in particular the fact that z(0, x) = 0 on the whole networkR.
Therefore, there exists a positive constant C (generic, as it may change from
line to line) depending on α0 such that

I ⩽ C

∫ T

−T

∫
R
e2sφ|∂tt(wk − vk)− ∂xx(w

k − vk) + pk(wk − vk)|2dxdt

+ Cs
∑

i∈Jext

∫ T

−T
e2sφi(t,ℓi)|∂x(wk

i − vki )(t, ℓi)|2dt

+ Cs3I(wk − vk, wk − vk)

⩽ C

∫ T

0

∫
R
e2sφ|∂ttwk − ∂xxw

k + pkwk|2dxdt + Cs3I(wk, wk)

+ Cs
∑

i∈Jext

∫ T

0
e2sφi(t,ℓi)|∂xwk

i (t, ℓi)− µk
i |2dt

+ C

∫ T

0

∫
R
e2sφ|∂ttvk − ∂xxv

k + pkvk|2dxdt

+ Cs
∑

i∈Jext

∫ T

0
e2sφi(t,ℓi)|∂xvki (t, ℓi)− µk

i |2dt.

Indeed, we use here that I(wk − vk, wk − vk) = I(wk, wk) since vk vanish on
O ∪

(
∪j∈JintOTj×{ℓj}

)
. This splitting, using also the measurement µk, allows

to identify the functional Fs[p
k, 0, µk] defined in (3.6) that reaches its minimum

at wk:

I ⩽ C
(
Fs[p

k, 0, µk](wk) + Fs[p
k, 0, µk](vk)

)
⩽ 2C Fs[p

k, 0, µk](vk) = C

∫ T

0

∫
R
e2sφ|fk|2dxdt, (3.16)

where fk = ηφ(p∗ − pk)∂tu
∗ − [ηφ, ∂tt − ∂xx]z

k is the source term of equation
(3.14) satisfied by vk that we can now estimate. Using therefore

[ηφ, ∂tt − ∂xx]z = − ((∂ttη
φ − ∂xxη

φ)z + 2∂tη
φ∂tz − 2∂xη

φ∂xz) ,

and the properties of φ and ηφ, it brings easily, from

I ⩽ C

∫ T

0

∫
R
e2sφ|ηφ(p∗ − pk)∂tu

∗|2 dxdt

+ C
∑
j∈J

∫ T

0

∫ ℓj

0
e2sφj |

[
ηφj , ∂tt − ∂xx

]
zkj |2 dxdt,
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that

I ⩽ C ∥u∗∥2H1(0,T ;L∞(R))

∫
R
e2sφ(0)|pk − p∗|2 dx

+ C
∑
j∈J

e2s(Mj+x2
j )
∫ T

0

∫ ℓj

0

(
|∂xzkj |2 + |∂tzkj |2 + |zkj |2

)
dxdt.

Indeed, in the last estimate, we used both the fact that φ(t, ·) ⩽ φ(0, ·) on R
and that the support of the term

[
ηφj , ∂tt − ∂xx

]
lies where ηφj varies, meaning

where one has Mj < φj < Mj + x2j , insuring that e2sφj ⩽ e2s(Mj+x2
j ).

Together with the a priori estimate (3.12) on zk that also writes

∥zk∥L∞(0,T ;H1
0 (R)) + ∥∂tzk∥L∞(0,T ;L2(R)) ⩽ C∥u∗∥H1(0,T ;L∞(R))∥pk − p∗∥L2(R),

one gets

I ⩽ C∥u∗∥H1(0,T ;L∞(R))

(∫
R
e2sφ(0)|pk − p∗|2 dx

+
∑
j∈J

e2s(Mj+x2
j )∥pk − p∗∥L2(0,ℓj)

)
.

Combining this estimate with the definition (3.13) of I and using that
φ(0, ·) ⩾ Mj + x2j on R, we finally obtain

s1/2
∫
R
e2sφ(0)|pk+1 − p∗|2dx ⩽ C

∫
R
e2sφ(0)|pk − p∗|2 dx (3.17)

where C > 0 depends on ∥u∗∥H1(0,T ;L∞(R)), α0 and T .
By simple iteration on k, we conclude to the desired estimate (3.9) and the

convergence result when k tends to infinity as soon as s is large enough to have
Cs−1/2 < 1.

4 Numerics

Now, we present the discretization schemes and the technical solutions we have
developed to implement numerically the C-bRec algorithm on a network.

4.1 Topology of the network

The only data concerning the network that the algorithm needs as input is
the list of names (alpha-numeric character strings) of the branches, possibly
in disorder, and their respective sizes.
For example, for the network shown in Figure 10, we can give the list

{ac2, ab, ab4, a, ab1, aa, ac, ac5, ab3}.
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The only rule to respect is that all the children of the same branch bear the
name of their mother to which a character has been added. Accordingly, for the
network shown in Figure 10, the children of branch aa are for example branches
aa1, aa3 and aa4. Thus, we can easily find the mother of a given branch by
removing the last character in its name. Then the algorithm automatically
takes care of:

- sort the branch’s names alphabetically to build J , so that the instance
{ac2, ab, ab4, a, ab1, aa, ac, ac5, ab3} becomes

J = {a, aa, ab, ab1, ab3, ab4, ac, ac2, ac5};

- construct the sets Jint and Jext, bringing here Jint = {a, ab, ac} and
Jext = {aa, ab1, ab3, ab4, ac2, ac5}. One may notice that in practice, we
only need the position in J of the elements of Jint and Jext, so that we
only build the positions table Jint = {0, 2, 6} and Jext = {1, 3, 4, 5, 7, 8}.

- create the tables that give, for a given branch j ∈ J , the number Nj of
its children, its possible position in Jint, and the position in Jint of its
mother branch.

Afterwards, following the proof of Lemma 2, we build the xj , Mj and Tj

by induction on j ∈ J . We make sure that cj is large enough to guarantee
that the determinant of the matrix Aφ

j (Tj) given in (2.5), that we calculate
numerically, is indeed strictly positive.

In order to be consistent below with the explanations already given in the
theoretical part, we will assume that the first branch bears the name 1.

4.2 Generation of the data and noise

We work here with synthetic data. To discretize equation (1.3)-(1.4) in (0, T )×
R, we use finite differences (explicit centered scheme) in space and time. We
introduce integers Nt and Nxj and fix the time step ∆t and the space step
∆xj in the branch j ∈ J such that ℓj = (Nxj + 1)∆xj and T = (Nt + 1)∆t.
Then, we define, for 0 ⩽ i ⩽ Nxj + 1 and 0 ⩽ n ⩽ Nt + 1, (u∗j )

n
i a numerical

approximation of the solution (u∗j )(t
n, xi) with tn = n∆t and xi = i∆xj . It

satisfies the following system for j ∈ J , 1 ⩽ i ⩽ Nxj and 1 ⩽ n ⩽ Nt:
(u∗j )

n+1
i − 2(u∗j )

n
i + (u∗j )

n−1
i

∆t2
−

(u∗j )
n
i+1 − 2(u∗j )

n
i + (u∗j )

n
i−1

∆x2j
+ p∗j (xi)(u

∗
j )

n
i = gj(t

n, xi),

(u∗j )
0
i = u0j (xi), and (u∗j )

1
i = u0j (xi) + ∆tu1j (xi),

(4.1)
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with the boundary conditions for 0 ⩽ n ⩽ Nt + 1:

for j = 1, (u∗1)
n
0 = h1(t

n),

if j ∈ Jext, (u∗j )
n
Nxj+1 = hj(t

n),

if j ∈ Jint, (u∗j )
n
Nxj+1 = (u∗ji)

n
0 , ∀i ∈ J1, NjK,

(u∗j )
n
Nxj+1 − (u∗j )

n
Nxj

∆xj
=

Nj∑
i=1

(u∗ji)
n
1 − (u∗ji)

n
0

∆xji
.

(4.2)

Then, we compute the discrete counterpart of the continuous measurement d∗

given in (1.5) as follows:

(d∗j )
n =

(u∗j )
n
Nxj+1 − (u∗j )

n
Nxj

∆xj
, j ∈ Jext, 0 ⩽ n ⩽ Nt + 1.

On the measured data, we add a Gaussian noise:

(d∗j )
n ←− (d∗j )

n + θ(max
m

(d∗j )
m)N (0, 1), j ∈ Jext, 0 ⩽ n ⩽ Nt + 1 (4.3)

where N (0, 1) satisfies a centered normal law with deviation 1 and θ is the
level of noise.

Note that the chosen model of noise is additive. In the presence of noise, the
first step of the inverse problem is to regularize the data in a way that depends
on the nature of the noise and the physical phenomena. In this article, we use
the Butterworth lowpass filter.

4.3 Discretization of the algorithm

Initialization process.

For each branch j ∈ J , we choose a first guess function p0j (x) satisfying

∥p0j (x)∥L∞(0,ℓj) ⩽ m

and set (p0j )i = (p0j )(xi) for all 1 ⩽ i ⩽ Nxj .

Iterative steps.

Discretization of Step 1. It first consists in computing the solution uk of
system (4.1)-(4.2) associated to potential pk.

Then, for j ∈ Jext and 1 ⩽ n ⩽ Nt, we compute a discrete approximation
of µk

j (t
n) defined in (3.5) as:

(µk
j )

n = ηφj (t
n, ℓj)

(
(dkj )

n+1 − (d∗j )
n+1

)
−
(
(dkj )

n−1 − (d∗j )
n−1

)
2∆t

,

where (dkj )
n =

(ukj )
n
Nxj+1 − (ukj )

n
Nxj

∆xj
and ηφj is given by (3.1).
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Discretization of Step 2. The minimization process for Fs[p
k, 0, µk] is

equivalent to the resolution of the following variational formulation: Find
wk ∈ T such that for all z ∈ T ,∫ T

0

∫
R
e2sφ(∂ttw

k − ∂xxw
k + pkwk)(∂ttz − ∂xxz + pkz) dxdt

+ s
∑

i∈Jext

∫ T

0
e2sφi(t,ℓi)∂xw

k
i (t, ℓi)∂xzi(t, ℓi)dt+ s3I(wk, z)

= s
∑

i∈Jext

∫ T

0
e2sφi(t,ℓi)µk

i (t)∂xzi(t, ℓi)dt. (4.4)

To discretize (4.4), we approximate the integrals using rectangle quadrature
rules and we use standard centered finite differences for the various integrands.
We do not detail here these classical developments.
Special attention must be paid to the discretization process of the minimization
space T defined by (3.2) in Lemma 4. We get some additional constraints on
wk, i.e. for 0 ⩽ n ⩽ Nt + 1

for j = 1, (wk
1)

n
0 = 0,

if j ∈ Jext, (wk
j )

n
Nxj+1 = 0,

if j ∈ Jint, (wk
j )

n
Nxj+1 = (wk

ji)
n
0 , ∀i ∈ J1, NjK,

(wk
j )

n
Nxj+1 − (wk

j )
n
Nxj

∆xj
=

Nj∑
i=1

(wk
ji
)n1 − (wk

ji
)n0

∆xji
.

(4.5)

Those constraints are expressed in the form of additional equations to (4.4).
But we must not forget that it also has an impact on the discretized basis of T .

Finally the minimizer wk is obtained as the unique solution of a linear
system associated with a sparse matrix of size

(∑
j∈J (Nxj + 2)

)
(Nt+2) cor-

responding to the discretization of the variational problem (4.4)-(4.5).

As far as the discrete setting is concerned, we have to add new terms to
the variational formulation (4.4) to guarantee its coercivity property uniformly
with respect to the discretization parameters ∆t and ∆xj . These additional
terms (sometimes called viscosity terms) that help handling high frequency
spurious waves generated by the numerical scheme take the form

∑
j∈J

s∆xj∆t

Nt∑
n=0

Nxj∑
i=0

e2sφj(t
n,xi)

(
(wk

j )
n+1
i+1 − (wk

j )
n+1
i − (wk

j )
n
i+1 + (wk

j )
n
i

)
× (zn+1

i+1 − zn+1
i − zni+1 + zni ). (4.6)
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For explanations and proofs, we refer to the work [9] on discrete Carleman es-
timates for the wave operator, and see also [7] for other informations regarding
this numerical issue.

Discretization of Step 3 and Step 4. We discretize equation (3.7) as:

(p̃k+1
j )i = (pkj )i +

(wk
j )

1
i

u0∆t
, j ∈ J , 1 ⩽ i ⩽ Nxj (4.7)

and the discretization of Step 4 is straightforward.

Stopping criterion.

According to (3.8) and the data noise taken into account, the iterative loop is
stopped when one of the following criteria is satisfied:

sup
j∈Jext

∥∥∥dkj − d∗j

∥∥∥
2

∥d∗j∥2
⩽ max(ε1, θ), (4.8)

or

sup
j∈J

∥pk+1
j − pkj ∥∞

m
⩽ ε2, (4.9)

where (ε1, ε2) is a fixed tolerance and θ is the level of noise (recall (4.3)), or
when the maximal number K of iterations is reached.
If the exact solution p∗ is known (which is the case in a synthetic data setting
as ours), we can compute for each j ∈ J the final error

errj =
∥p∞j − p∗j∥2
∥p∗j∥2

, (4.10)

with p∞j the converged numerical solution of the sequence (pkj )k∈N. This error
ratio is reported in Table 2.

4.4 Numerical challenges

The main drawback of the approach is related to the presence of large ex-
ponential factors in the functional Fs[p

k, 0, µk] that leads to severe numerical
difficulties when performing the minimization for s large. This difficulty is
solved thanks to the three following ideas:

• As already mentionned, we proved and used Carleman estimates with a
single weight of the form e2sφ instead of the most frequently used double
weight e2se

λφ for λ > 0 large enough;
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• At the discrete level, as in [7], we work on the conjugate variable

(ykj )
n
i = (wk

j )
n
i e

sφj(t
n,xi),

for j ∈ J , 0 ⩽ n ⩽ Nt + 1 and 0 ⩽ i ⩽ Nxj + 1. This change of
unknown acts as a preconditioner of the linear system coming from (4.4)
and decreases its condition number. Indeed, it allows to remove the
exponential terms appearing in the matrix of the system.

• Unfortunately, there are still exponential factors in the right hand side
vector. The idea to tackle those is to develop a progressive process to
compute the solution as the aggregation of several problems localized in
subdomains in which the exponential factors are all of the same order.
See [7] for more details.

4.5 Numerical results

This subsection is devoted to the presentation of some numerical examples to
illustrate the properties of the C-bRec algorithm constructed for the network
of strings and its efficiency. All simulations are executed with Python and the
source codes are available on request. Table 1 gather the numerical values used
for all the following examples, unless specified otherwise where appropriate. In
all the figures showing reconstruction results, the exact coefficient that we want
to recover is plotted by a red line, whereas the numerical coefficient recovered
by the algorithm is represented by a dotted black line. The information about
the convergence (number of iterations, running time, convergence error) is
reported in Table 2.

u0 u1 g h m

(2,2,2) (0,0,0) (0,0,0) (2,2,2) 2
ℓj β s in Theorem 3 ε1 in (4.8) ε2 in (4.9)

(0.5,1,0.75) 0.99 1 10−3 10−3

xj in Lemma 2 Mj T given by (2.2) Nxj Nt

(-0.3,-2.89,-2.89) (7.71,0,0) 3.9 100 ∗ ℓj 110 ∗ T

Table 1: Numerical values of the variables used for all the numerical examples
over the network of Figure 4.

Simulations from data without noise

A first result of reconstruction obtained in the absence of noise is given for
the network plotted in Figure 4. Figure 5 shows the evolution of the recovered
coefficient pk at each iteration k of the convergence process and below the final
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Example # of iterations Running time in sec err in (4.10)
Figure 5 4 226 (0.083,0.001,0.001)
Figure 6 4 167 (0.028, 0.057, 0.001)

4 158 (0.095, 0.008, 0.007)
Figure 8 3 200 (0.25,0.05,0.09)

3 190 (0.26,0.06,0.10)
3 150 (0.27,0.11,0.15)

Figure 11 10 8261 (0.080,0.014,0.043,...
...,0.068,0.009,0.09...
...,0.032,0.020,0.004)

Table 2: Convergence results of the test cases. One can observe that in all
cases of Figure 4 the convergence criteria (4.8) is met in less than 5 iterations.
The algorithm is running on a personal laptop in a few minutes. The final
error defined in (4.10) shows the effectiveness of the reconstruction. Figure 11
gives the convergence results for a more complex network given in 10.

0 ℓ1 = 0.5

ℓ11 = 1

ℓ12 = 0.75

Figure 4: First setting - a 3 branches network, with observations at •.

result p∞ together with the exact solution p∗. In all the examples of Figure 5,
the convergence is reached in less than 5 iterations and the solution after one
iteration is almost the final one.

First line of Figure 6 represents the results for the same potential than in
the previous case Figure 5 but on other branches. We show in particular that
regular potential are well reconstructed regardless of their place in the network
whereas rectangular pulse are less well reconstructed.

Second line of Figure 6 gives the results for potential without continuity at
internal node.

Simulations with several levels of noise

In Figure 7, we plot an example of observations measured at the point x = ℓ11
during the time interval T corresponding to p∗1(x) = −1[0.3,0.8](x/ℓ1), p∗11(x) =
sin(2πx/ℓ11) and p∗12(x) = sin(5πx/ℓ12).
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(a) p∗1(x) = −1[0.3,0.8](x/ℓ1) (b) p∗11(x) = sin(2πx/ℓ11) (c) p∗12(x) = sin(5πx/ℓ12)

Figure 5: Top line: Convergence history of the reconstruction process. Bottom
line: final reconstruction result (dotted black line) and exact coefficient (red
line) for the three branches.

(a) p∗1(x) = sin(2πx/ℓ1) (b) p∗11(x) =
−1[0.3,0.8](x/ℓ11)

(c) p∗12(x) = sin(5πx/ℓ12)

(d) p∗1(x) = −1[0.3,0.8](x/ℓ1) (e) p∗11(x) = 1 + sin(2πx/ℓ11) (f) p∗12(x) = sin(5πx/ℓ12)

Figure 6: Final reconstruction result (dotted black line) and exact coefficient
(red line) with other potentials.

Figures 8 show the results with different levels of noise in the measurements
(θ = 1%, θ = 2% and 5% in (4.3)).
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(a) without noise (b) with θ = 10% noise (c) after regularization

Figure 7: Examples of observations d∗(t) at x = ℓ11. We show the impact of
adding noise following (4.3) and the result obtained after applying the low-pass
filter.

(a) p∗1(x) = −1[0.3,0.8](x/ℓ1) (b) p∗11(x) = sin(2πx/ℓ11) (c) p∗12(x) = sin(5πx/ℓ12)

Figure 8: Recovery of the coefficient in presence of θ = 1% (first line), θ = 2%
(second line) and θ = 5% (third line) noise in the data. The final error on the
coefficients is reported in Table 2.

Wrong choices of the parameters

The first two lines of Figure 9 present the reconstruction result when the as-
sumption on the minimal observation time T given in (2.2) is not satisfied.
On the first line, the observation time is taken equal to the intuitive physical
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time ℓ1 + ℓ11 = 1.5, corresponding to the time needed for the wave travelling
at speed 1 to reach one of the observation nodes even if it starts from the root
node of the network. In that case, the reconstruction is as accurate as the
one obtained with the much larger time satisfying (2.2). Then, on the second
line, we try the same reconstructions but with a shorter time T = 1.25. In
that case, the result begins to deteriorate near the root node. This illustrates
the fact that the minimal time to get the convergence of the algorithm is very
likely the larger path in the network from the root node to a leaf, instead of
the more restrictive time condition (2.2) (that is probably only technical).

(a) p∗1(x) = −1[0.3,0.8](x/ℓ1) (b) p∗11(x) = sin(2πx/ℓ11) (c) p∗12(x) = sin(5πx/ℓ12)

Figure 9: Some examples of reconstructions using the C-bRec algorithm when
one assumption of the convergence Theorem 5 is not satisfied. Top line: The
observation time T=1.5 is smaller than the minimal time given in (2.2). Middle
line: The observation time T=1.25 is smaller than the minimal time given in
(2.2). Bottom line: The result when the projection step 4 of the algorithm is
discard.

In the last line of Figure 9, we also plot the results given by the algorithm
when the projection Step 4 of the algorithm is disregarded. The numerical
experiments seem to indicate good convergence of the algorithm in this case,
although it is used in a setting in which we do not know how to provide a
proof of convergence. This means that the knowledge of m such that the exact
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0 ℓa = 0.2

ℓaa = 0.6

ℓab = 0.3

ℓac = 0.6

ℓab1 = 0.2

ℓab3 = 0.4

ℓab4 = 0.3

ℓac2 = 0.1

ℓac5 = 0.5
Figure 10: Second setting - a 9 branches network, with observation at •.

coefficient to be recovered belongs to L∞
m (R) is not mandatory.

A more complex network

Finally, we give some simulations in the case of a nine-branches network as
the one sketched in Figure 10. One should mention that here, the complexity
of the network brings the specific numerical difficulty that the |xj | are getting
very large, following the assumptions of Lemma 2 and bringing large weights
in the Carleman-based cost functional. The values used for the examples are
reported in Table 3. The result is presented in Figure 11.

u0 u1 m

(2,2,2,2,2,2,2,2,2) (0,0,0,0,0,0,0,0,0) 2
g ℓj β

(0,0,0,0,0,0,0,0,0) (0.2,0.6,0.3,0.2,0.4,0.3,0.6,0.1,0.5) 0.99
h xj in Lemma 2 ε1 in (4.8)

(2,2,2,2,2,2,2,2,2) -(0.01,1.2,1.2,8.7,8.7,8.7,1.2,6.5,6.5) 10−3

s in Theorem 3 Mj ε2 in (4.9)
1 (74.1,72.6,72.6,0,0,0,72.6,33.4,33.4) 10−2

T given by (2.2) Nxj Nt

9.15 100 ∗ ℓj 110 ∗ T

Table 3: Numerical values of the variables used for the numerical examples
over the network of Figure 10.

Conclusion

As concluding remarks, one can underline that this work has the ambition
to be a technically sound and complete first step for testing on application
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(a) p∗a(x) = sin(2πx/ℓa) (b) p∗aa(x) = 3x − 6(x −
0.5ℓaa)1{x>0.5ℓaa}

(c) p∗ab(x) = 2 cos(πx)

(d) p∗ab1(x) =
1[0.7,0.9](x/ℓab1)

(e) p∗ab3(x) =
− sin(3πx/ℓab3)− 1

(f) p∗ab4(x) = x/ℓab4

(g) p∗ac(x) = sin(4πx/ℓac) (h) p∗ac2(x) = cos(πx/ℓac2) (i) p∗ac5(x) = 0.5

Figure 11: Final reconstruction results (black crosses) and exact coefficient
(red line) for the nine branches of the network plotted in Figure 10.

data related to networks of string equations. We proposed here a competitive
approach for the identification/recovery of coefficients in partial differential
equations that takes it roots in the preliminary work [5] that also inspired
results for source term identification in reaction-diffusion equations [12] and
even for main coefficient in multi-dimensional wave equation [8]. Our C-bRec
approach proves to be quite adaptable, even if it is to the price of appropriate
one-parameter Carleman estimates. One can see challenging questions to ex-
plore concerning more applicative settings or various other partial differential
equations, such as, for instance, some elasticity context.
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