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Apprentissage non-supervisé de lois de comportement nonlinéaires avec réseau de neurones thermodynamiquement consistent par minimisation de

Introduction

Depuis quelques années, une tendance visant à représenter des lois de comportements par réseau de neurones émerge. Initialement proposées sans intégrer de physique dans les réseaux [START_REF] Ghaboussi | Neural network material modelling[END_REF], ces approches ce sont petit à petit développées de manière à imposer des contraintes dans l'architecture [START_REF] Amos | Input convex neural networks[END_REF][START_REF] Benady | NN-mCRE : a modified Constitutive Relation Error framework for unsupervised learning of nonlinear state laws with physics-augmented Neural Networks[END_REF], ou à faciliter l'entrainement par l'utilisation de fonction coût ayant un sens physique [START_REF] Raissi | Physics-informed neural networks : A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF]. Plus spécifiquement, de nombreux travaux abordent la question de la représentation de modèles plastiques à l'aide de réseaux neuronaux (voir par exemple [START_REF] Bonatti | On the importance of self-consistency in recurrent neural network models representing elasto-plastic solids[END_REF][START_REF] Gorji | On the potential of recurrent neural networks for modeling path dependent plasticity[END_REF][START_REF] Wu | A recurrent neural networkaccelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths[END_REF]). L'essentiel des méthodes proposant d'entrainer des réseaux de neurones pour représenter des lois de comportement utilise un apprentissage dit supervisé, c'est-à-dire faisant appel à des jeux de données de couples déformation-contrainte. Ces méthodes visent souvent à accélérer la résolution de loi d'évolution, ou sont utilisées comme technique d'homogénéisation.

La méthode proposée ici, est au contraire une méthode dite non-supervisée qui ne fait appel qu'à des informations mesurables et vise à améliorer la modelisation du comportement matériau. Ce comportement est ici représenté par des réseaux de neurones qui garantissent par construction le respect de la thermodynamique, permettant ainsi de corriger le biais de modèle. L'entrainement du réseau consiste en la minimisation de l'erreur en relation de comportement modifiée (mCRE), une fonctionnelle composée d'un terme d'erreur de modèle et d'un terme d'écart aux mesures, largement étudiée dans le cas d'identification de paramètres [START_REF] Ladevèze | Updating of finite element models using vibration tests[END_REF].

Une première partie de ce document vise à définir le cadre thermodynamique utilisé (Section 2). La Section 3 présente le cadre mCRE pour le problème d'apprentissage. Dans la Section 4 les spécifités liées aux réseaux de neurones sont détaillées (garanties thermodynamiques et réglage automatique des hyperparamètres). Enfin, un cas d'application de la méthode est présenté en Section 5.

Cadre thermodynamique

Cette section vise à introduire le cadre thermodynamique utilisé dans cet article. Dans cette formulation, la loi de comportement est formulée en termes d'équation d'état et de loi d'evolution par l'intermédiaire de deux potentiels ψ et φ, comme c'est le cas dans le cadre des matériaux standards généralisés. Cette section formule des contraintes sur les fonctions ψ et φ qui permettent de respecter automatiquement les principes de la thermodynamique. Tout d'abord, le premier principe s'écrit localement :

ρ ė = σ : ε + r -∇ • q (1)
avec e l'énergie interne spécifique, σ le tenseur des contraintes, ε le tenseur des déformations linéarisé, r une source volumique de chaleur et q le flux de chaleur. Le second principe s'écrit quant à lui :

ρ ṡ + ∇ • ( q θ ) - r θ ≥ 0 (2) 
avec s la densité d'entropie spécifique. Après avoir introduit l'énergie libre de Helmholtz ψ = ρ(e-θs), l'inégalité de Clausius-Duhem est obtenue en combinant les équations (1) et (2) :

σ : ε -ψ - q • ∇θ θ ≥ 0 (pour un processus isotherme) (3) 
Pour les problèmes de plasticité, le tenseur de déformation totale est écrit avec la décomposition suivante : ε = ε e + ε p , où ε e est la déformation élastique et ε p la déformation plastique.

Des variables internes X k (k = 1, . . . , K), regroupées dans le vecteur X, sont introduites pour représenter d'autres phénomènes (comme l'écrouissage, par exemple). Les équations d'état sont dérivées de l'énergie libre de Helmholtz utilisée comme potentiel thermodynamique ψ(ε, ε p , X).

Pour une transformation élastique réversible avec une température homogène, on a σ = ∂ψ ∂εe correspondant à la loi de Hooke. Par analogie, les forces thermodynamiques Y k regroupées dans Y sont définies de manière à être associées aux variables internes X avec Y = ∂ψ ∂X . L'utilisation d'une fonction convexe ψ satisfait automatiquement l'inégalité de Clausius-Duhem qui peut être réécrite comme suit :

(σ - ∂ψ ∂ε e ) : εe + σ : εp - K k=1 ∂ψ ∂X k Ẋk - q • ∇θ θ ≥ 0 (4) 
Un potentiel de dissipation convexe, non négatif et nul à l'origine φ(ε p , Ẋ) peut être postulé pour définir des lois d'évolution garantissant la positivité de la dissipation mécanique D = σ : εp -Y : Ẋ. Dans la suite de cet article, les potentiels ψ et φ sont utilisés :

-dans la définition de l'erreur en relation de comportement modifiée (Section 3) ; -pour la formulation de loi de comportement sous la forme de réseau de neurones. Les réseaux de neurones représentant les fonctions ψ et φ sont choisies pour garantir par construction les propriétés énoncées, comme cela sera détaillé dans la Section 4.

3 L'erreur en relation de comportement modifiée comme fonction coût du problème d'apprentissage -Admissibilité cinématique, qui définit l'espace U ad des champs de déplacement satisfaisant les conditions aux limites de Dirichlet :

u |∂Ω 1 = u d (5) 
-Admissibilité statique, qui définit l'espace S ad des champs de contrainte satisfaisant l'équilibre :

Ω σ : ε(v) = Ω f v d • v + ∂Ω 2 f s d • v ∀v ∈ U 0 (6) 
où U 0 est l'espace d'admissibilité cinématique avec des conditions de Dirichlet homogènes.

Le tenseur de déformation est décomposé en les parties élastique ε e et plastique ε p telles que ε = ε e + ε p -Comportement :

-équations d'état :

s = ∂ψ ∂e e (7) 
-lois d'évolution : Les potentiels ψ et φ sont paramétrés avec les paramètres p. Ces paramètres, qui sont traditionnellement des paramètres de modèles pré-établies, sont ici les poids et biais de réseaux de neurones. La minimisation de la mCRE vise à identifier les paramètres p des relations constitutives qui s'ajustent le mieux aux données expérimentales (des observations partielles et bruitées de déformation ε obs ou de déplacement u obs ). Ici, les conditions de Dirichlet et de Neumann sont supposées connues (bien que le cadre s'étende aux conditions limites peu fiables).

s = ∂φ ∂ ėp (8) 

L'erreur en relation de comportement modifiée

Le concept d'erreur en relation de comportement (CRE) a été introduit dans les années 70 dans le contexte de la vérification des modèles éléments finis [START_REF] Ladevèze | Error estimate procedure in the finite element method and applications[END_REF]. L'idée générale de cette mesure d'erreur est de diviser les équations de la Section 3.1 en fonction de la fiabilité de l'information. La relation de comportement est considérée comme l'équation la moins fiable et étant donné un couple admissible (û, σ) ∈ (U ad × S ad ), la CRE est définie comme suit pour les problèmes indépendants du temps :

E 2 CRE (û, σ) = Ω ψ(û) + ψ * (σ) -σ : ε(û) (9) 
La notation ψ * désigne la transformation de Legendre-Fenchel de ψ. Dans le cas où ψ est un potentiel quadratique décrivant la loi de Hooke en élasticité linéaire (ψ(ε) = 1 2 ε :

K : ε et ψ * (σ) = 1 2 σ : K -1 : σ), la relation de comportement est σ = K : ε(u) et la CRE s'écrit E 2 CRE (û, σ) = Ω (σ -Kε(û)) : K -1 : (σ -Kε(û)) = ||σ -Kε(û)|| 2 K -1 (10) 
où ||•|| K -1 est la norme énergétique sur les champs de contrainte. À partir de [START_REF] Ladevèze | Constitutive relation errors for f.e. analysis considering (visco-) plasticity and damage[END_REF], il apparait que la CRE est un indicateur, pour un couple admissible, de la non-satisfaction de la relation de comportement.

Plus tard, toujours dans le contexte de l'estimation de l'erreur a posteriori, le concept de CRE a été adapté aux problèmes non-linéaires dépendants du temps. En présence de problèmes dépendants du temps, la CRE s'écrit pour une solution admissible ŝ = (ε e , ε p , σ, X, Y) comme suit :

E 2 CRE (ŝ) = T 0 Ω η ψ (ε e , σ, X, Y) + T 0 t 0 Ω η φ (ε p , σ, Ẋ, Y) (11) 
avec,

η ψ (ε e , σ, X, Y) = ψ(ε e , X) + ψ * (σ, Y) -σ : ε e -X : Y (12) η φ (ε p , σ, Ẋ, Y) = φ(ε p , -Ẋ) + φ * (σ, Y) -σ : εp + Ẋ : Y (13) 
Le concept CRE a ensuite été adapté dans les années 90 pour aborder les problèmes inverses [START_REF] Maia | Error localization for updating finite element models using frequency-response-functions[END_REF] ; les paramètres de la loi de comportement sont cherchés de manière à minimiser le CRE. Dans la première idée de la méthode, les observations étaient directement incluses dans la définition de l'espace admissible, ce qui conduisait à une faible robustesse au bruit de mesure. Pour améliorer la robustesse au bruit, la procédure modifiée (mCRE) [START_REF] Ladevèze | Application of a posteriori error estimation for structural model updating[END_REF] n'impose pas les observations dans l'espace admissible. Seules les informations fiables sont imposées par construction, tandis que les informations peu fiables sont relâchées. Récemment, le concept mCRE a été étendu au cas des lois d'évolution dans [START_REF] Marchand | Parameter identification and model updating in the context of nonlinear mechanical behaviors using a unified formulation of the modified constitutive relation error concept[END_REF]. Le présent article s'appuie sur le cadre mCRE développé dans [START_REF] Marchand | Parameter identification and model updating in the context of nonlinear mechanical behaviors using a unified formulation of the modified constitutive relation error concept[END_REF] et est adapté au cas où la loi de comportement est décrite par des réseaux de neurones.

Le problème inverse consiste à trouver les paramètres optimaux p opt (impliqués dans les potentiels thermodynamiques) tels que :

p opt = argmin p min ŝ∈A d E 2 mCRE (ŝ ; p) (14) 
avec

E 2 mCRE (ŝ ; p) = E 2 CRE (ŝ) + α 2 T 0 ||Πu -u obs || 2 (15) 
avec A d = (U ad × S ad ) (bien qu'il soit possible de considérer les conditions aux limites comme une information incertaine), α une pondération entre les termes de la fonction coût, et Π un projecteur de u sur les quantités mesurées.

La minimisation de la mCRE est effectuée avec un processus itératif dans lequel, à chaque itération :

-dans une première étape, une solution admissible ŝ est calculée pour les paramètres actuels p (n) de telle sorte que :

ŝ(n) = argmin ŝ∈A d E 2 mCRE (ŝ ; p (n) ) (16) 
Cette étape, la plus coûteuse en terme de temps de calcul, est effectuée selon une stratégie similaire à celle utilisée dans [START_REF] Marchand | Parameter identification and model updating in the context of nonlinear mechanical behaviors using a unified formulation of the modified constitutive relation error concept[END_REF]. Cette stratégie s'inspire de la méthode LATIN [START_REF] Ladevèze | Principles of the Method of Large Time Increments[END_REF], qui est non-incrémentale (c'est-à-dire globale en temps) et convient bien à la structure mathématique de la mCRE. Le choix fait ici est de diviser la mCRE en deux parties positives, E 2 ψ (ε e , σ, X, Y) et E 2 φ (ε p , σ, Ẋ, Y), définies par :

E 2 ψ (ε e , σ, X, Y) = T 0 Ω η ψ (ε e , σ, X, Y) + α 2 T 0 ||Πu -uobs|| 2 (17) E 2 φ (ε p , σ, Ẋ, Y) = T 0 t 0 Ω η φ (ε p , σ, Ẋ, Y) (18) 
Cette séparation en deux parties positives permet de minimiser chaque terme alternativement. L'équation (17) est un compromis entre le résidu des équations d'état et l'écart par rapport aux mesures. Sa minimisation est un problème global en espace et linéaire. La minimisation de (18), réalisée ici avec un schéma d'Euler, est locale en espace et correspond à l'intégration des lois d'évolution. -dans une deuxième étape, les paramètres de la loi de comportement sont mis à jour en suivant une étape de descente de gradient :

p (n+1) = p (n) -l r E 2 mCRE (ŝ (n) ; p (n) ) dp (19) 
Dans cette étape, le gradient est calculé par la méthode de l'état adjoint.

4 Réseaux de neurones thermodynamiquement consistents pour l'apprentissage de loi de comportement

La précédente section a brievement détaillé le principe de l'erreur en relation de comportement modifiée ainsi que sa minimisation pour l'identification de paramètres de lois de comportement. Ce cadre est adapté aussi bien à l'identification de paramètres d'un modèle donné qu'à l'entrainement d'un réseau de neurones (ce qui revient à identifier les poids et le biais). L'utilisation d'un réseau de neurones pour représenter le comportement permet de relacher la forme du modèle (car un réseau de neurones est un approximant universel) et donc le biais de modèle. Néanmoins, le passage de l'identification de paramètres à l'entrainement de réseau de neurones, bien que conceptuellement proche, soulève des questions importantes :

-la question de la cohérence lors de la phase d'inférence par rapport aux exigences physiques telles que la thermodynamique ; -En comparaison avec l'identification de paramètres d'un modèle donné, un réseau de neurones comporte bien plus de paramètres à identifier, ce qui rend la tâche d'optimisation plus difficile, notamment à cause du nombre important d'hyperparamètres à régler tels que le taux d'apprentissage, le nombre d'epochs, la taille de batch, etc. Ces questions sont traitées dans les deux prochaines sous-sections.

Imposer les contraintes thermodynamiques dans l'architecture

Dans la Section 2, un cadre a été défini pour la formulation de lois de comportement compatibles avec la thermodynamique. Les propriétés permettant de satisfaire automatiquement la thermodynamique peuvent s'imposer dans le choix d'architecture du réseau. Ceci permet, contrairement à une stratégie de pénalisation en phase d'entrainement, de garantir le respect de ces propriétés en phase d'inférence. La positivité est imposée grâce à l'utilisation de fonctions d'activation positives. En ce qui concerne la convexité, l'architecture "input convex neural network " (ICNN) proposée dans [START_REF] Amos | Input convex neural networks[END_REF] est utilisée. Cette architecture utilise des fonctions d'activation convexes et non décroissantes, ainsi que des contraintes de positivité sur les poids intermédiaires. Comme la composition d'une fonction convexe et d'une fonction convexe non décroissante est convexe, et que la somme de fonctions convexes est également convexe, cette architecture garantit la convexité. Enfin, pour imposer une valeur nulle à l'origine, pour n'importe quelle fonction g, on définit :

g(x) = g N N (x) -g N N (x = 0) (20)
où g N N (x) est la sortie du réseau de neurones évaluée en x.

Reglage automatique des hyperparamètres

Dans le contexte actuel de jumeau numérique, dans lequel le jumeau hybride interagit avec la structure physique sans intervention humaine, il n'est pas possible d'imaginer une stratégie basée sur le réglage manuel des hyperparamètres. Ainsi, une stratégie de sélection automatique et adaptative des hyperparamètres est proposée.

Initialisation du réseau

Dans le cas de l'apprentissage de lois de comportement et en particulier lorsque les variables internes sont choisies a priori, une connaissance partielle du modèle peut être disponible. Par conséquent, avant de commencer l'entraînement visant à minimiser la mCRE, le réseau est initialisé de manière à représenter cette connaissance partielle. Ceci permet de réduire la sensibilité d'une initialisation aléatoire ainsi que d'initialiser le réseau plus proche de la solution à apprendre.

Réglage de la pondération entre les fonctions coût

La fonctionnelle mCRE offre une interprétation physique intéressante qui peut être utilisée pour régler le paramètre α. L'idée derrière ce réglage est que le modèle doit être mis à jour de manière jusqu'à ce que l'écart entre les prédictions et les observations atteigne le niveau de bruit présent dans les données, conformément au principe de Morozov. Cette hypothèse repose sur la connaissance a priori du niveau de bruit. Le paramètre α est réglé de manière adaptative au cours de l'apprentissage de manière à vérifier ce critère.

Réglage du taux d'apprentissage

Un autre paramètre essentiel dans l'entraînement des réseaux de neurones est la sélection du taux d'apprentissage, noté l r . Une valeur excessivement faible pour l r peut entraîner un processus d'entraînement lent, tandis qu'une valeur trop grande peut introduire de l'instabilité pendant l'entraînement, potentiellement empêchant le réseau d'atteindre la convergence. Le choix du taux d'apprentissage peut être motivé une analyse des progrès réalisés au cours d'une seule étape d'entraînement. Dans ce contexte, un indicateur de la vitesse de mise à jour de l'entraînement peut être obtenu à partir de la procédure de minimisation en deux étapes. Le nombre d'itérations effectuées à l'étape 1 est directement lié à la valeur de la mise à jour effectuée à l'étape 2 de l'epoch précédente. Par conséquent, à partir de la deuxième epoch, l'apprentissage est mis à jour de manière à ce que le nombre d'itérations effectuées soit proche d'un nombre d'itérations cible défini de manière empirique.

Critère d'arrêt de l'entrainement

L'entraînement des réseaux de neurones nécessite l'établissement d'un critère d'arrêt. Le concept de mCRE offre une base physique intéressante qui peut être utilisée pour établir une condition d'arrêt. En effet, le terme de CRE peut-être interprété comme une erreur de modèle, et étant homogène à une énergie il peut donc être comparé à l'énergie dans la structure. Le crière d'arrêt développé consiste à choisir une valeur d'erreur de modèle normalisée cible et d'arrêter l'entrainement quand cette valeur est atteinte.

Résultats

Cette section vise à illustrer la méthode sur un cas test mettant en oeuvre l'apprentissage d'une loi d'écrouissage non linéaire.

Pour simplifier, une partie du modèle est supposée connue, comme indiqué dans le Tableau 1. Il s'agit d'un choix de modélisation en fonction de la fiabilité des connaissances sur le matériau : d'autres stratégies peuvent être envisagées, telles que l'identification de certains paramètres du modèle ou même la représentation de chaque partie du modèle avec des réseaux de neurones. La stratégie mCRE s'adapte facilement à ces cas. Le cas étudié concerne une poutre en 2D soumise à un chargement de traction variable. Les mesures synthétiques proviennent de deux fibres optiques orientées le long des deux axes principaux et positionnées au milieu de la poutre.

La Figure 1 représente l'idée initiale, la vraie solution et le résultat après l'apprentissage. Initialement, une erreur de modèle est présente car la loi d'écrouissage supposée est linéaire alors que la vraie solution a une forme exponentielle. Après l'apprentissage, la forme de modèle est bien apprise. Ceci n'aurait pas été possible si la forme de modèle n'avait pas été relachée comme c'est la cas avec l'utilisation de réseau de neurones.

La Figure 2 présente la convergence des différents termes composant la mCRE. À la fin de l'entraînement, l'écart aux données normalisée est d'environ 1, ce qui signifie que le critère de 

ψ p (ε p ) = Ap + A B (e -Bp -1)
Partie plastique de la loi d'état : représentée par un réseau de neurones initialisé avec

ψ p (ε p ) = 1 2 hp 2
Limite du domaine d'élasticité :

f = σ eq -(R + R 0 )
Limite du domaine d'élasticité :

supposée connue avec les bons paramètres 
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Conclusion

Une méthode a été proposée pour l'apprentissage non-supervisé de lois de comportement décrites par des réseaux de neurones. Cette méthode s'appuie sur l'utilisation de réseaux de neurones qui garantissent par construction le respect de la thermodynamique, grâce à la formulation de lois sous la forme de potentiels convexes. Le cadre de la minimisation de l'erreur en relation de comportement modifiée est particulièrement adapté à la correction de bias de modèle de part la structure de sa fonctionnelle. Par ailleurs, le sens riche sens physique de cette fonctionnelle facilite grandement l'automatisation des réglages des hyperparamètres. La méthode a été illustrée sur le cas test d'apprentissage d'une loi d'écrouissage non-linéaire. 
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  avec les variables e e = [ε e , X], e p = [ε p , -X] et des forces thermodynamiques globales s = [σ, Y].

  Modèle utilisé pour générer les données Modèle à apprendre Partie élastique : ψ e (ε e ) = 1 2 (λ(tr ε e ) 2 + 2µε e : ε e ) Partie élastique : supposée connue avec les bons paramètres Partie plastique de la loi d'état :
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Figure 1 -

 1 Figure 1 -Comportement avant et après l'entrainement

Figure 2 -

 2 Figure2-Évolution de la CRE normalisée au cours de l'entrainement (gauche), évolution de l'écart aux mesures normalisé par le bruit de mesure (milieu), évolution de la mCRE durant l'entrainement (droite).

  Pour définir les notations du problème, considérons un corps dans une configuration initiale Ω ⊂ R d (d = 1, 2, 3) avec une frontière ∂Ω et un environnement isotherme, observé sur une période [0, T ] et soumis à dess petites perturbations. Des conditions aux limites de Dirichlet sont imposées sur ∂Ω 1 ⊂ ∂Ω au moyen d'un champ de déplacement dépendant du temps u d .Des conditions aux limites de Neumann sont prescrites sur ∂Ω 2 ⊂ ∂Ω au moyen d'un champ de forces surfaciques dépendant du temps f d s . Un champ de forces volumiques dépendant du temps f d v peut également être prescrit dans Ω. De plus, des mesures de déformation ε obs (dans le cas d'observations à partir de fibres optiques) ou des mesures de déplacement u obs (dans le cas de la corrélation d'images numériques) sont disponibles.La solution du problème mécanique direct est le couple (u, σ) de champs de déplacement et de contrainte de Cauchy qui satisfont les trois groupes d'équations suivants pour chaque instant t ∈ [0, T ] :

	3.1 Définition du problème d'apprentissage

Table 1 -

 1 Résumé du comportement à apprendre, avec λ = et σ eq la contrainte équivalente de Von Mises.Morozov est satisfait. Pour la CRE normalisée, la valeur est inférieure à la valeur cible définie par l'utilisateur. Comme ces deux critères sont satisfaits l'entraînement s'arrête, conformément à la procédure décrite en Section 4. Après l'epoch 500, la CRE normalisée présente un comportement oscillatoire qui est expliqué par la mise à jour du paramètre α.

	Eν (1+ν)(1-2ν) , µ = E 2(1+ν)
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