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ABSTRACT
In order to fully exploit the potential of molecular communication

(MC) for intra-body communication, practically implementable

cellular receivers are an important long-term goal. A variety of

receiver architectures based on chemical reaction networks (CRNs)

and gene-regulatory networks (GRNs) has been introduced in the

literature, because cells use these concepts to perform computations

in nature. However, practical feasibility is still limited by stochastic

fluctuations of chemical reactions and long computation times in

GRNs. Therefore, in this paper, we propose two receiver designs

based on stochastic CRNs, i.e., CRNs that perform computations

by exploiting the intrinsic fluctuations of chemical reactions with

very low molecule counts. The first CRN builds on a recent result

from chemistry that showed how Boltzmann machines (BMs), a

commonly used machine learning model, can be implemented with

CRNs. We show that BMs with optimal parameter values and their

CRN implementations can act as maximum-a-posteriori (MAP) de-

tectors. Furthermore, we show that BMs can be efficiently trained

from simulation data to achieve close-to-MAP performance. While

this approach yields a fixed CRN once deployed, our second ap-

proach based on a manually designed CRN can be trained with pilot

symbols even within the cell and thus adapt to changing channel

conditions. We extend the literature by showing that practical ro-

bust detectors can achieve close-to-MAP performance even without

explicit channel knowledge.

CCS CONCEPTS
• Applied computing → Telecommunications; • Hardware →
Biology-related information processing; • Mathematics of
computing → Probabilistic inference problems.

KEYWORDS
Molecular communication, Boltzmann machine, chemical reaction

network, maximum-a-posteriori detection, machine learning

1 INTRODUCTION
Molecular Communication (MC) is a new paradigm for information

exchange in conditions that are unfavorable for traditional wireless

communication, e.g., at nano-scale or inside the human body. MC

has great potential, for example in the context of the Internet of

Bio-Nano Things which will enable groundbreaking improvements

in healthcare by employing a network of connected nano-sensors

within the body to diagnose and treat diseases [1].

For both theoretical work [2] and experimental testbeds [3] progress

has been made to realize this ambitious vision. A further leap for-

ward could be possible if practical implementations of receivers for

cell-to-cell communication were found.

In contrast to electromagnetic wave-based based mobile communi-

cation, there are no general-purpose processors available to imple-

ment receivers for MC on the scale of individual cells. Yet, in nature,

cells do communicate with each other using signaling molecules.

Often, cells have ligand-binding receptors on the surface and use

chemical reaction networks (CRNs), i.e., networks of interacting

chemical species, to perform computations. For example, bacteria

use CRNs to determine whether to tumble or to move forward in

the context of chemotaxis. Also, receptor states can cause long-

term changes by interacting with the cells’ gene-regulatory net-

works (GRNs), i.e., by influencing which genes are expressed de-

pending on the sensed environmental conditions.

Therefore, it is a natural choice to formulate signal detection prob-

lems in such a way that CRNs and GRNs can be used to perform

the computations required for artificial MC.

In [4, 5, 6], CRNs were designed manually for a given channel to

implement receiver components. However, these approaches ei-

ther do not account for the stochastic fluctuations of CRNs, require

many molecules or are suboptimal compared to a maximum-a-

posteriori (MAP) detector.

The authors of [7] used CRNs to implement feed-forward neural

networks. This idea is especially interesting for MC if analytical

channel models are not available or their parameters are unknown.

However, the resulting CRNs are very complex and the impact of

stochastic fluctuations has not been considered in [7].

The use of GRNs to perform computations in general has been

reviewed in [8] and proposed for receiver design in [9]. While this

approach is especially interesting because it can exploit natural

mechanisms already present in cells and it has been shown that

logical functions can be implemented via GRNs, very long time

scales are needed to perform complex computations. A recent re-

view highlighted that using transcriptional elements is only feasible

for very simple receiver implementations in the near future [10].

Finally, several concepts for implementingmolecular machine learn-

ing based on CRNs, bacterial multi-species communication, and

Calcium signaling were proposed in [11]. Potentially, these ap-

proaches could be also applied for receiver design. However, it is



unclear how complex the resulting architectures would be and how

long the computations would take.

A common issue for all previously mentioned approaches is the

diversity of transmission channels. Each channel involves different

parameters and possibly time-variant parameter values. Yet, most

model-based approaches for receiver design in the literature are

not concerned with estimating correct parameters and adapting

to changing channel conditions. While the existing learning-based

approaches could in principle resolve this issue, it remains unclear

whether their training would be fast enough to adapt to changing

conditions.

In this paper, we consider the practical implementation of MAP

detectors for cellular receivers with ligand-binding receptors using

CRNs. While the stochastic fluctuations of molecule counts are

usually considered as noise source in CRNs, our designs exploit

this randomness to perform computations. To emphasize this, we

call the proposed CRNs ”stochastic”.

For the first CRN, we start by approximating the joint distribution

of the transmitted symbol and the receptor states using a Boltz-

mann machine (BM). BMs are commonly used graphical models in

machine learning to approximate arbitrary joint probability distri-

butions of binary random variables (RVs) [12]. Then, we exploit

the methods reported in [13] to represent BMs in stochastic CRNs.

In order to obtain posterior estimates for the transmitted symbol,

i.e., to perform detection, we then condition the BM, or rather its

CRN representation, on the receptor states.

The second CRN proposed in this paper is not derived from BMs,

but is designed directly for our purposes. It has a lower complexity

and can adapt to changing channel conditions over time by learning

efficiently from pilot symbols. We demonstrate the performance of

the proposed approach for a MC channel subject to time-varying

background noise levels.

The remainder of this paper is organized as follows. In Section 2,

we review the fundamentals of BMs, CRNs, and how BMs can be

represented in CRNs. In Section 3, we introduce the considered

system model and the corresponding MAP detector. In Sections 4

and 5, we introduce the proposed receiver designs which are then

evaluated and compared to the optimal MAP detector in Section 6.

Finally, we summarize our main findings and potential future work

in Section 7.

2 BOLTZMANN MACHINES AND CHEMICAL
REACTION NETWORKS

2.1 Boltzmann Machines
In order to approximate a joint distribution of 𝑁 binary RVs with

probability mass function 𝑞Z (z), a BM with at least𝑀 ≥ 𝑁 nodes

is required. 𝑁 of these nodes are each identified with a binary RV

of the original distribution. The additional𝑀 − 𝑁 nodes are ”hid-

den”, i.e., they do not correspond to a specific RV but simply allow

for additional degrees of freedom in the BM in order to achieve a

higher approximation quality. However, as we will show in Section

4, no hidden nodes are required for the eventual task of MAP de-

tection. Therefore, we restrict ourselves to the simpler case of a

BM without hidden nodes, which we call fully visible Boltzmann

machine (FVBM).

A FVBM consists of 𝑁 nodes, each of which corresponds to a

binary RV 𝑍𝑖 , 𝑖 ∈ {1, . . . , 𝑁 }, which we collect in a vector Z =

[𝑍1, . . . , 𝑍𝑁 ]⊺, where [·]⊺ denotes the transpose operator. The

probability mass function of the FVBM nodes is then given by

𝑝Z (z) =
1

Z exp

(
1

2

z⊺Wz + z⊺𝜃
)
. (1)

Here, 𝜃 ∈ R𝑁×1
and W ∈ R𝑁×𝑁

denote respectively the vector of

biases and a symmetric weight matrix with all-zero diagonal, which

captures the correlations between the nodes. Z is a normalization

constant that ensures that 𝑝Z (z) is a probability distribution.

The state of node 𝑖 depends on its associated bias 𝜃𝑖 and the current

state of all other nodes 𝑗 ≠ 𝑖 with non-zero correlations to node 𝑖 ,

captured by weight matrix entries𝑊𝑖, 𝑗 . Formally, the probability

that 𝑍𝑖 = 1 is given by

𝑝𝑍𝑖 |Z−𝑖 (𝑍𝑖 = 1|Z−𝑖 = z−𝑖 ) = 𝜎
©­«𝜃𝑖 +

∑︁
𝑗≠𝑖

𝑊𝑖, 𝑗𝑧 𝑗
ª®¬ , (2)

where Z−𝑖 is the vector of all RVs except the one associated with

node 𝑖 , z−𝑖 contains their observed realization, and 𝜎 (𝑥) = 1

1+𝑒−𝑥 .
Eq. (2) is for example well known from the Gibbs sampling algo-

rithm [12].

When using a BM to approximate 𝑞Z (z),W and 𝜃 can be learned

from the first- and second-order moments E𝑞{z} and E𝑞{zz⊺}, re-
spectively, where E𝑞{·} denotes the expectation operator for a prob-
ability distribution 𝑞Z (z). For an introduction to learning weights

and biases for BMs, we refer to [12].

2.2 Chemical Reaction Networks
As previously mentioned, BMs can be realized as CRNs [13]. For-

mally, a CRN C = (S,R, k) consists of a set of species S, a set of
reactions R defined over S, and a vector of reaction rate constants

k.
A chemical reaction 𝑟 ∈ R converts molecules into other molecules.

For mass-action kinetics, the propensity of reaction 𝑟 , i.e., how

likely it occurs per unit time, is proportional to the reaction rate

constant 𝑘𝑟 > 0 and the number of available reactants in the con-

sidered reaction network.

Consider for example the reaction

𝑊 ON + 𝑋ON
𝑘𝑟−−→𝑊 ON + 𝑋OFF . (3)

Here, the propensity of reaction 𝑟 is given by the product of the

reaction rate constant, the number of 𝑊 ON
molecules, and the

number of 𝑋ON
molecules. Thus, if there is no 𝑋ON

or no𝑊 ON

molecule, the reaction cannot happen at all.

In the remainder of this paper, we often write that a molecule can be

in one of two states, namely ON or OFF. This is to represent binary

states, e.g., of a RV, by molecules. Chemically speaking, the ON-

version of a molecule might for example contain a phosphor group

that is not contained in the complementary OFF species. Otherwise,

the molecules are identical. We also say that the ON species is

”active” whereas the OFF species is ”inactive”. For example, reaction

𝑟 in (3) deactivates the 𝑋 molecule, i.e., it converts 𝑋ON
to 𝑋OFF

.

To implement a BM using a CRN, we exploit the fact that a CRN can

be described by a continuous-time Markov Chain (CTMC) [13]. We

assume a CRN with species set {𝑍ON

1
, 𝑍OFF

1
, . . . , 𝑍ON

𝑁
, 𝑍OFF

𝑁
} and

demand that there is exactly either one 𝑍ON

𝑖
or one 𝑍OFF

𝑖
molecule

2



Figure 1: Proposed receiver model. The probabilistic model
can be implemented in silico using a BM (bottom left). Its
in vivo implementation could be a CRN based on the BM
(bottom center) or a directly designed CRN (bottom right).

for ∀𝑖 at any point in time. Then we can say that the molecule 𝑍𝑖
is ON if the 𝑖-th node of the corresponding BM has the value 1

whereas the 𝑍𝑖 molecule is OFF if the node has value 0 at a given

point in time. By defining appropriate reactions that activate or

deactivate molecules, one can ensure that the CTMC describing

the CRN eventually reaches a stationary distribution and that this

stationary distribution is the same as the one of the corresponding

BM. In this case, the CRN is said to implement the BM.

This idea has been introduced and formalised in [13]. In fact, in

[13] three representations of BMs using CRNs are provided. Two

of them are exact but require a number of reactions |R | that scales
exponentially with the number of nodes of the BM, where |S|
denotes the cardinality of a setS. The third one is an approximation

of the BM, which requires much fewer reactions at the cost of a

mismatch between the stationary distributions of the CRN and the

BM.

3 SYSTEM MODEL
As our focus is the detection process, we keep the modulation

scheme and channel model simple. Specifically, we assume the

transmission of a binary source symbol 𝑥 ∈ {0, 1} via binary con-

centration shift keying (BCSK) and the absence of inter-symbol

interference (ISI). The latter holds for sufficiently long symbol inter-

vals or enzymatic ligand degradation [14]. Considering that existing

receiver implementations may require extremely long decoding

times of up to several hours per symbol [9, 10], choosing long inter-

vals to avoid ISI would not be a performance bottleneck compared

to existing approaches.

A cellular receiver, as depicted in Fig. 1, senses its environment

through 𝑁r cell surface receptors. Depending on whether receptor

𝑖 is bound to a ligand, its intra-cellular domain might have different

chemical properties. Thus, we represent receptor 𝑖’s intra-cellular

domain by different chemical species depending on its state, namely

by 𝑌ON

𝑖
if the receptor is bound to a ligand and by 𝑌OFF

𝑖
otherwise.

For our purposes, we assume that the receptor states are sampled

once and then stored in a vector y ∈ {0, 1}𝑁r
where 𝑦𝑖 = 1 if we ob-

serve 𝑌ON

𝑖
and 𝑦𝑖 = 0 for 𝑌OFF

𝑖
. Mathematically, the considered MC

channel is characterized by the joint distribution 𝑞Y,𝑋 (y, 𝑥) where

𝑋 denotes the binary RV corresponding to the transmitted symbol

and Y contains the binary RVs 𝑌𝑖 corresponding to the different

receptors.

A MAP detector for BCSK would simply compute the estimated

symbol 𝑥 as

𝑥MAP =

{
1 , if Pr[𝑋 = 1|Y = y] ≥ 1

2

0 , otherwise

. (4)

In the remainder of this paper, we assume that all receptors have

identical chemical properties, such that Pr[𝑋 = 1|Y = y] depends
only on the number of bound receptors 𝑁

r,b
=

∑𝑁r

𝑖=0
𝑦𝑖 .

We further assume that the likelihoods 𝑙𝑥 (𝑛) = Pr[𝑁
r,b

= 𝑛 |𝑋 =

𝑥] have exactly one local maximum 𝑛m,𝑥 and are monotonically

increasing for𝑛 ≤ 𝑛m,𝑥 and monotonically decreasing for𝑛 ≥ 𝑛m,𝑥 .

For these quite general assumptions, the maximum-likelihood (ML)

detector is a simple threshold detector, i.e.,

𝑥ML =

{
1 , if 𝑁

r,b
≥ 𝜈

0 , otherwise

, (5)

for some threshold 𝜈 ∈ N0. Moreover, we assume equiprobable

symbols 𝑥 , such that the ML and the MAP detector coincide.

Now, we observe that it is actually not necessary to know Pr[𝑋 =

𝑥 |Y = y] perfectly to make MAP decisions. Instead, it is sufficient if

we find a function 𝑓1 (𝑁r,b
) ∈ [0, 1] that fulfills 𝑓1 (𝑁r,b

) ≥ 1

2
if and

and only if Pr[𝑋 = 1|𝑁
r,b
] ≥ 1

2
. We say that such a function has the

MAP property. Thus, even if a probabilistic model does not output

the exact values of the posterior distribution, it can still serve as

MAP detector as long as it has the MAP property.

4 BOLTZMANN MACHINE-INSPIRED MAP
DETECTORS

4.1 MAP-Capability of Boltzmann Machines
In order to use a BM for BCSK detection, we set Z = [𝑋 Y]⊺.

Theorem 1. For a known threshold 𝜈 and properly chosen param-
eters, BMs have the MAP property.

Proof. Setting 𝑍𝑖 = 𝑋 , Z−𝑖 = Y in (2) and using equal weights

𝑤x,y for all𝑊𝑖, 𝑗 , 𝑗 ≠ 𝑖 , yields

𝑝𝑋 |Y (𝑋 = 1|Y = y) = 𝜎

(
𝜃𝑖 +

𝑁𝑟∑︁
𝑖=1

𝑤x,y𝑦𝑖

)
(6)

= 𝜎
(
𝜃𝑖 + 𝑁

r,b
𝑤x,y

)
. (7)

By choosing 𝜃𝑖 = −(𝜈− 1

2
)𝑤x,y, we ensure 𝑝𝑋 |Y (𝑋 = 1|Y = y) > 0.5

if 𝑁
r,b

≥ 𝜈 and 𝑝𝑋 |Y (𝑋 = 1|Y = y) < 0.5 if 𝑁
r,b

< 𝜈 and thus can

realize a MAP detector for a known optimal threshold 𝜈 . □

4.2 Representation via Chemical Reaction
Networks

Formally, it would be possible to define a CRN CEM based on the

Edge Species Mapping proposed in [13] that would implement a

trainable BM. However, even for a few dozen receptors, this is not

feasible in practice because (𝑁r + 1) · 2𝑁r+1
reactions, each with up

to 2𝑁r + 1 reactants, would be required [13].

Therefore, we resort to the Taylor Mapping from [13] instead. The

3



resulting CRN CTM approximates a given BM by 2𝑁 2

r
+ 4𝑁r + 2

reactions, each with at most two reactants. However, to perform

inference, only a subset of these reactions is required, namely only

those that activate or deactivate the molecule identified with the

𝑋 -node in the BM.

The resulting CRN CTM,X then requires only the reactions

𝑋OFF
𝑘

GGGGBFGGGG

𝑘 (1 + |𝜃𝑥 | )
𝑋ON

𝑌ON

1
+ 𝑋OFF

𝑘𝑊𝑦
1
,𝑥

−−−−−−→ 𝑌ON

1
+ 𝑋ON

. . .

𝑌ON

𝑁𝑟
+ 𝑋OFF

𝑘𝑊𝑦𝑁𝑟
,𝑥

−−−−−−−→ 𝑌ON

𝑁𝑟
+ 𝑋ON .

(8)

Here, 𝜃𝑥 is the bias associated with the 𝑋 -node,𝑊𝑦𝑖 ,𝑥 is the weight

between the 𝑌𝑖 - and the 𝑋 -node of the BM, and 𝑘 is an arbitrary

scaling factor for the reaction rate constants.𝑋ON
and𝑋OFF

are the

species associated with node 𝑋 . At any point in time, there is either

a single 𝑋ON
molecule or a single 𝑋OFF

molecule. In the absence of

any ligands all 𝑌𝑖 are OFF and 𝑋
ON

switches to 𝑋OFF
more likely

than vice versa due to the bias 𝜃𝑥 . On the other hand, the more

receptors are bound to a ligand, the larger the tendency to switch

from 𝑋OFF
to 𝑋ON

.

Theorem 2. CTM,X preserves the MAP property of the BM.

Proof. First, we set 𝜃𝑥 = −(𝜈 − 1

2
)𝑤x,y and𝑊𝑦𝑖 ,𝑥 = 𝑤x,y accord-

ing Theorem 1 and assume 𝑁
r,b

to be constant.

Then, we want to compute the steady-state-probability to observe

𝑋ON
at any given point in time. Therefore, we first sum up all the

rate constants for all possible reactions converting 𝑋OFF
to 𝑋ON

in

(8). This yields 𝑘 (1+𝑁
r,b
𝑤x,y). On the other hand,𝑋ON

is converted

to 𝑋OFF
with rate constant 𝑘 (1 + |𝜃𝑥 |).

Now, we can use the detailed balanced approach, i.e., we set

Pr[𝑋ON |𝑁
r,b
] · 𝑘 (1 + |𝜃𝑥 |) = Pr[𝑋OFF |𝑁

r,b
] · 𝑘 (1 + 𝑁r𝑤x,y), (9)

where Pr[𝑋ON |𝑁
r,b
] is the probability to observe 𝑋ON

at any given

point in time if 𝑁
r,b

receptors are bound. Using Pr[𝑋OFF |𝑁
r,b
] =

1 − Pr[𝑋ON |𝑁
r,b
], we find Pr[𝑋ON |𝑁

r,b
] to be

Pr[𝑋ON |𝑁𝑟,𝑏 ] =
1 + 𝑁

r,b
𝑤x,y

2 + 𝑁
r,b
𝑤x,y + |𝜃𝑥 |

. (10)

Solving Pr[𝑋ON |𝑁
r,b
] ≥ 1

2
for 𝑁

r,b
𝑤x,y yields

𝑁
r,b
𝑤x,y ≥ |𝜃𝑥 |. (11)

Since 𝜃𝑥 = −(𝜈 − 1

2
)𝑤x,y, Pr[𝑋ON |𝑁

r,b
] ≥ 0.5 holds if and only if

𝑁
r,b

≥ 𝜈 receptors are bound. □

Finally, it should be noted that Pr[𝑋ON |𝑁
r,b
] can be approxi-

mated by a time-average

Pr[𝑋ON |𝑁
r,b
] ≈ 1

𝑡
obs

∫ 𝑡
obs

0

1𝑡 {𝑋ON}d𝑡, (12)

where 1𝑡 {·} is 1 if𝑋ON
is present at time 𝑡 and 0 otherwise, and 𝑡

obs

is the duration of the observation interval. As 𝑡
obs

increases, the time

average becomes an increasingly exact estimate for Pr[𝑋ON |Y = y].

5 TRAINABLE LOW-COMPLEXITY MAP
DETECTORS

5.1 A MAP-Capable CRN
For the architecture introduced in the previous section, the number

of reactions scales linearly with the number of receptors. This is

due to the fact that the mappings proposed in [13] do not exploit

the fact that some weights are identical. Furthermore, there is no

known way to train the CRNs from Section 4.

Therefore, we propose a low-complexity CRN CLC that embraces

identical receptor weights and can be trained with pilot symbols. As

before, we assume 𝑁r identical receptors that activate the decision

molecule if bound to a ligand. Formally, this is given by

𝑌ON + 𝑋OFF
𝑘on−−−→ 𝑌ON + 𝑋ON

(13)

with reaction rate constant 𝑘on.

However, in contrast to the BM-inspired CRN, we do not define an

explicit reaction to switch from 𝑋ON
to 𝑋OFF

due to a fixed bias

𝜃 . Instead, we assume that there are 𝑁ON

w
active weight molecules

𝑊 ON
present in the receiver cell. These can deactivate 𝑋ON

with

reaction rate constant 𝑘
off
, i.e.,

𝑊 ON + 𝑋ON
𝑘off−−−→𝑊 ON + 𝑋OFF . (14)

Theorem 3. For an appropriate value of 𝑁ON
w , CLC, described by

(13) and (14), has the MAP property.

Proof. We take the same detailed balance-based approach to

compute the steady state probability of observing 𝑋ON
as in the

proof of Theorem 2. However, now the rate with which 𝑋OFF
is

converted to 𝑋ON
is given by 𝑁

r,b
· 𝑘on. 𝑋ON

is converted to 𝑋OFF

with rate 𝑁ON

w
· 𝑘

off
.

For these rates, we obtain

Pr[𝑋ON |𝑁
r,b
, 𝑁ON

w
] =

𝑁
r,b

𝑁
r,b

+ 𝑘off
𝑘on

𝑁ON

w

. (15)

Solving Pr[𝑋ON |𝑁
r,b
, 𝑁ON

w
] ≥ 0.5 for 𝑁

r,b
yields 𝑁

r,b
≥ 𝑘off

𝑘on
𝑁ON

w
.

For example, when setting
𝑘off
𝑘on

= 1, MAP performance is achieved

for 𝑁ON

w
= 𝜈 . □

Practically, one can estimate Pr[𝑋ON |𝑁
r,b
, 𝑁ON

w
] using a time-

average like in (12).

5.2 Pilot Symbol-based Learning Rule
In order to learn the optimal value of 𝑁ON

w
online, we use a simple

learning rule based on pilot symbols. For each pilot symbol, the

detector output 𝑥 is compared to the actually transmitted symbol

𝑥
pilot

. If an estimate is wrong, 𝑁ON

w
is slightly adapted such that we

eventually converge to the value of 𝑁ON

w
that would achieve MAP

performance.

Formally, the number of active weight molecules after the 𝑘-th pilot

symbol is given by

𝑁ON

w
[𝑘 + 1] =


𝑁ON

w
[𝑘] , if 𝑥 = 𝑥

pilot

𝑁ON

w
[𝑘] + 1 , if 𝑥 = 1 and 𝑥

pilot
= 0

𝑁ON

w
[𝑘] − 1 , if 𝑥 = 0 and 𝑥

pilot
= 1

. (16)
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To implement this chemically, we introduce a reservoir of 𝑁OFF

w

inactive weight molecules𝑊 OFF
that can be converted into𝑊 ON

molecules. At any point in time, 𝑁ON

w
+𝑁OFF

w
= 𝑁w, where 𝑁w ∈ N

remains constant over time. Clearly, one should choose 𝑁w large

enough such that CLC has the MAP property for all possible values

of 𝜈 . Because 𝜈 ≤ 𝑁r, one could simply choose 𝑁w ≥
⌈
𝑘off
𝑘on

𝑁r

⌉
.

Naively, one could try to implement (16) chemically by the following

reactions

𝑋ON + 𝑋OFF

pilot
+𝑊 OFF

𝑘u,1−−−→ 𝑋ON + 𝑋OFF

pilot
+𝑊 ON,

𝑋OFF + 𝑋ON

pilot
+𝑊 ON

𝑘u,2−−−→ 𝑋OFF + 𝑋ON

pilot
+𝑊 OFF,

(17)

where 𝑘u,1 and 𝑘u,2 are the respective reaction rate constants. We

assume that a 𝑋OFF

pilot
molecule is present in the receiver if a 0 has

been transmitted and a 𝑋ON

pilot
molecule if a 1 has been transmitted.

The estimated symbol 𝑥 is encoded in the presence of 𝑋ON
and

𝑋OFF
for 𝑥 = 1 and 𝑥 = 0, respectively. Thus, if both𝑋OFF

pilot
and𝑋ON

are present, this indicates that 𝑥 = 1 whereas 𝑥
pilot

= 0 and thus

𝑁ON

w
should be increased, i.e. a𝑊 OFF

molecule should be activated.

However, for mass-action kinetics, the propensities, and thus how

often each reaction would occur in a given time frame, actually

depend on the number of𝑊 OFF
and𝑊 ON

molecules. Therefore, (17)

actually does not implement (16) exactly. A more accurate chemical

implementation of (16) is instead given by

𝐻 + 𝑋ON + 𝑋OFF

pilot
+𝑊 OFF

𝑘u,1−−−→ 𝑋ON + 𝑋OFF

pilot
+𝑊 ON,

𝐻 + 𝑋OFF + 𝑋ON

pilot
+𝑊 ON

𝑘u,2−−−→ 𝑋OFF + 𝑋ON

pilot
+𝑊 OFF .

(18)

Here, we introduce an additional 𝐻 molecule that is consumed by

the reaction. If we ensure that only a single 𝐻 molecule is present

at the beginning of each pilot symbol interval, 𝑁ON

w
cannot change

by more than 1. By further specifying that 𝑘u,1 and 𝑘u,2 are chosen

such that both reaction occur with probability close to 1 for all

possible values of 𝑁ON

w
, 𝑁ON

w
changes then exactly by 1. Therefore

the reactions in (18) implement (16).

6 PERFORMANCE EVALUATION
6.1 Evaluation Setup
We evaluate our proposed detectors using a similar channel model

as in [4]. Namely, the ligand concentration for a transmitted symbol

𝑥 around the receiver is given by

𝑐𝑥 = 𝑐n + Δc · 𝑥, (19)

where 𝑐n and Δc denote the concentration due to the expected

background noise and the concentration increase due to the release

of molecules if 𝑥 = 1 is transmitted, respectively.

The receiver cell uses 𝑁r ∈ {30, 50} independent and identically

distributed (i.i.d.) receptors to estimate the ligand concentration

and thus the transmitted symbol 𝑥 . From [4], we obtain the binding

probability of receptor 𝑖 for 𝑥 as

Pr[𝑌𝑖 = 1|𝑋 = 𝑥] = 𝑐𝑥

𝑐𝑥 + 𝑘−
𝑘+

. (20)

Figure 2: Average bit error rates (BERs) as a function of the
training step for the four considered scenarios (solid curves).
After a fast initial decay, the BERs approach the optimalMAP
performance (dashed curves) slowly.

Here, 𝑘+ and 𝑘− are the binding and unbinding rate constants

between ligand and receptor, respectively.

For equiprobable symbols, the joint distribution 𝑞Z (z) = 𝑞Y,𝑋 (y, 𝑥)
is then given by

𝑞Y,𝑋 (y, 𝑥) = 1

2

𝑁r∏
𝑖=1

Pr[𝑌𝑖 = 𝑦𝑖 |𝑋 = 𝑥] . (21)

We choose 𝑘+ = 2 · 10−19m3
s
−1

and 𝑘− = 20s
−1

as in [4]. We also

consider the system model for diffusive ligand propagation and

instantaneous molecule release from [4], given by

𝑐 (𝜏) = 𝛾

(4𝜋𝐷𝜏)3/2
exp

(
− 𝑑2

4𝐷𝜏

)
. (22)

Here, 𝑑 , 𝐷 , 𝛾 and 𝜏 denote the distance between receiver and trans-

mitter, the diffusion coefficient, the number of released molecules,

and the time since the molecule release, respectively. For 𝛾 = 10
3

released molecules, a diffusion coefficient 𝐷 = 10
−10 m2

s
and a dis-

tance of 0.75µm, 𝑐 (𝑡) has a peak value in the order of 10
20 molecules

m
3

.

Thus, we choose 𝑐1 = 1.5 · 1020 molecules

m
3

. For the noise levels, we

assume two scenarios. The first one with 𝑐n = 2.5 · 1019 molecules

m
3

and the second one with 𝑐n = 1.0 · 1019 molecules

m
3

.

6.2 Training Boltzmann Machines
We train the BMswith estimated expectationsE𝑞Y,𝑋 {z} andE𝑞Y,𝑋 {zz⊺}
based on 10

4
samples from our system model defined by (21).

In each training step, we also need to estimate the first- and second-

order moments of the BM for the current biases and weights. There-

fore, we generate 10
4
Gibbs samples using the Gibbs sampling

algorithm [12]. This algorithm exploits that (2) can be easily evalu-

ated and returns samples distributed according to the Boltzmann

distribution 𝑝𝑋,Y (𝑥, y). From the obtained Gibbs samples, we then

compute the expectations E𝑝𝑋,Y {z} and E𝑝𝑋,Y {zz⊺}.
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Figure 3: Average BERs over time for the four considered
scenarios (solid curves). All systems eventually approach
MAP performance (dashed curves).

Similar to deep learning [15], we use a step-wise reduced learn-

ing rate 𝜂 [𝑘]. In training steps 𝑘 ∈ {0, . . . , 19}, 𝜂 [𝑘] = 1.0, for

𝑘 ∈ {20, . . . , 49} 𝜂 [𝑘] = 0.5 and for 𝑘 ∈ {50, . . . , 99}, we use

𝜂 [𝑘] = 0.1.

Initially, we define the matrix W′ = 1

2
(V + V⊺) ∈ R(𝑁r+1)×(𝑁r+1)

,

where the entries of a random matrix V are i.i.d. normally dis-

tributed with zero mean and variance
1

𝑁r+1 . We then obtain the

initial weight matrixW0 fromW′
by setting the diagonal entries

to zero. To reduce the number of parameters, we also set all entries

that capture only correlations among receptors to zero, as well, and

we also do not update them during training.

We train 20 BMs for each scenario using this approach. In Fig. 2,

the obtained BERs are shown as a function of the training step. For

each BM, we compute the BER by comparing 𝑥 to 𝑥 until 100 errors

are made. Then, we average the BERs of all BMs. For reference, we

also show the BER obtained from the corresponding MAP detectors

(dashed lines).

Fig. 2 confirms that BMs are indeed able to learn close-to-MAP

performance from training data. If the expectations were estimated

from more samples, the detectors would come even closer to MAP

performance for more training steps.

6.3 Convergence of CRN Online Learning
We investigate the convergence over time for our online learning

system. Therefore, we use (16) as the learning rule with 𝑁ON

w
= 0

as initial value. We compute 𝑥 as

𝑥 =

{
1 , if Pr[𝑋ON |𝑁

r,b
, 𝑁ON

w
] ≥ 1

2

0 , otherwise

(23)

by computing Pr[𝑋ON |𝑁
r,b
, 𝑁ON

w
] analytically using (15) for 𝑘on =

𝑘
off

= 1. This corresponds to 𝑡
obs

→ ∞.

After every pilot symbol, we compute the BER that would be ob-

tained with the current value of 𝑁ON

w
. We repeat this procedure

20 times for each scenario and then average the obtained BERs.

This way, we can observe how many pilot symbols are necessary to

Figure 4: Average number of 𝑁ON
w over time (solid line) and

interval with minimum andmaximum value of 𝑁ON
w (shaded

area) for time-variant background noise levels. For reference,
the optimal values are shown by the dotted black line.

achieve a certain performance. The resulting BERs are shown in Fig.

3. Clearly, all proposed detectors eventually achieve close-to-MAP

performance.

To understand the BER curves better, we first observe that errors

can be due to a mismatch between 𝑁ON

w
and the MAP threshold 𝜈 ,

or due to the intrinsic randomness due to the stochastic binding

process of the receptors. The BER due to the mismatch between

𝑁ON

w
and 𝜈 is lower if the mismatch is lower. Therefore, as 𝑁ON

w

is adapted over time to come closer to the MAP value, the BER

goes down, and consequently the adaption of 𝑁ON

w
slows down.

Once the MAP threshold is reached, there are no mismatch-errors.

However, errors can still be introduced due to the intrinsic channel

randomness. Then, 𝑁ON

w
is updated and a mismatch is introduced

again, that will be corrected once a new mismatch error occurs.

Therefore, only close-to-MAP performance can be expected with

this update rule. For the yellow curve, one can observe a temporary

BER minimum after about 10
3
pilot symbols. At this point, there

are no mismatch errors anymore and randomness-caused errors

have not yet occurred. Thus, the BER is temporarily lower than in

the steady state.

6.4 Time-Variant Background Noise Levels
In real-world applications, channel parametersmight be time-variant,

e.g., background noise levels could depend on the activity of other

users in the channel. To explore the impact of this on the perfor-

mance of our online-learning rule, we consider a receiver with

𝑁r = 30 receptors and assume Δc = (1.5 · 1020 − 1.0 · 1019)molecules

m
3

.

Initially, we set 𝑐n
1
= 1.0 ·1019 molecules

m
3

as noise level, change it after

500 pilot symbols to 𝑐n
2
= 2.5 · 1019 molecules

m
3

and after 500 more

pilot symbols back to the original value.

The resulting average number of active weight molecules is shown

in Fig. 4 over time. The shaded area shows the lowest and highest
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values of 𝑁ON

w
for our 20 model runs. Clearly, 𝑁ON

w
follows the op-

timal values relatively closely over time. Still, the current learning

rule requires a considerable amount of pilot symbols which indi-

cates that the proposed detector is best suited for slowly changing

channels and relatively high BERs.

7 CONCLUSION
In this paper, we introduced two CRNs that can be used to realize

MAP detection for appropriately chosen reaction rate constants and

molecule counts. In contrast to existing approaches, both detectors

exploit the intrinsic fluctuations of chemical reactions.

The first detector exploits that BMs can be represented using CRNs.

It can be trained offline using simulations, for example when no

analytical channel model exists. We showed for a simple system

model that even with relatively few training data close-to-MAP

performance can be achieved.

The second detector is based on a manually designed CRN that can

be trained with pilot symbols even after deployment in a cellular re-

ceiver. Therefore, this detector can adapt to changes in the channel.

We showed that this detector achieves close-to-MAP performance,

too.

The combination of low molecule counts, trainability, and their

embrace of stochastic fluctuations make our low-complexity detec-

tors promising candidates on the way towards practical receiver

implementations for intra-body communication. In future work,

we thus plan to extend them to M-ary transmission schemes and

improve the training process further.
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