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Abstract

To model bio-chemical reaction systems with diffusion one can either use stochas-
tic, microscopic reaction-diffusion master equations or deterministic, macroscopic
reaction-diffusion system. The connection between these two models is not only
theoretically important but also plays an essential role in applications. This paper
considers the macroscopic limits of the chemical reaction-diffusion master equa-
tion for first-order chemical reaction systems in highly heterogeneous environments.
More precisely, the diffusion coefficients as well as the reaction rates are spatially
inhomogeneous and the reaction rates may also be discontinuous. By carefully dis-
cretizing these heterogeneities within a reaction-diffusion master equation model,
we show that in the limit we recover the macroscopic reaction-diffusion system with
inhomogeneous diffusion and reaction rates.
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1 Introduction

Modeling chemical reactions and diffusion have been investigated extensively in the litera-
ture due to the frequent appearance of these processes in nature. There are different levels
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of these models. At the microscopic scale, one can use the stochastic reaction-diffusion
master equations (RDME), while at the macroscopic, the reaction-diffusion systems
(RDS) are more common. The RDME is useful for simulation as well as when molecular
stochasticity due to small quantities is taken into account, while the latter is more con-
venient to investigate qualitative behaviour of the system. The connection between these
models have been investigated since the seventies, with the pioneering works of Kurtz
[Kur70, Kur71] where this issue was studied for the homogeneous (or well-stirred) case,
i.e. only chemical reactions are taken into consideration. In these two works, the Markov
jump process, which describes chemical reactions in the microscopic level, is shown to
converge in probability to the corresponding differential system, which models the same
reactions at the macroscopic level. When a diffusion process is also present, attempts to
connect microscopic RDME and macroscopic RDS have been made in [BVdB80, NP77],
and a first rigorous proof was provided in [AT80]. In [AT80], the authors studied the
reaction and diffusion processes of a single chemical, and proved the convergence in the
sense of probability of the corresponding Markov jump process to the reaction-diffusion
equation. This result was later improved by [Kot86a, Kot86b, Kot88, Blo91, Blo93]
where, among other things, central limit theorems were established for local diffusion,
and recently by [WT22] where the diffusion is assumed to be non-local.

We highlight that most of existing works have dealt with scalar reaction-diffusion equa-
tions. An exception is the recent work [DP22] where the authors showed exponential con-
vergence to equilibrium for systems with with degenerate reaction rataes; i.e. reactions
only occur in a subdomain of positive measure. Our current work extends the literature
by considering general first-order, or unimolecular, reaction systems with high levels of
heterogeneity, for which we show convergence in probability of microscopic RDME to cor-
responding RDS. More precisely, we consider chemical reaction networks with an arbitrary
number of chemicals, the diffusion and reaction coefficients are spatially inhomogeneous,
and in particular, the reaction coefficients can be discontinuous.

Another motivation of this paper stems from applications in molecular communication,
an emerging field spanning telecommunication, bio- and nano-technologies. The core
idea of molecular communication is to send and receive messages using chemical sig-
nals mimicking how cells communicate, which was first proposed in [NSM+05, NEH13].
Understanding dynamics of bio-chemical systems is essential for designing molecular com-
munication schemes. In our recent work [AET20], we proposed a novel detection scheme
called “equilibrium signaling” which is robust to the geometry and heterogeneity of con-
sidered system. In that work, the microscopic RDME was used for computational purpose
while the macroscopic PDE provided quantitative dynamics of the bio-chemical system,
and the connection between these models has been assumed therein. Our current work
provides rigorous convergence from RDME to PDE for general first-order reaction sys-
tems, of which the problem in [AET20] is a special case.

Finally, we remark that the study of RDME for higher order reactions is sparse in the
literature. One particular reason for this is that, in the rescaling limit of RDME the
biomolecular reactions are lost in two or more dimensions, see [Isa09]. Attempts to cir-
cumvent this problem includes the convergent RDME, see [Isa13]. A general approach has
been proposed in [MSW23] where the gradient flow structure of detailed balanced reac-
tion systems has been investigated in a formal setting. Let us also mention related works
considering the limit from system of interacting particles to reaction-diffusion equations
[LLN20] or integral-differential equations [IMS22].
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Our paper is organized as follows: in the next section, in order to clearly present ideas
and methods, we start with a reversible system of two chemicals in heterogeneous medium
in one dimension. For this system, we first consider in Subsection 2.1 its macroscopic
PDE description and basic properties such as global existence, boundedness and large
time behaviour of solutions. The corresponding microscopic RDMS equation is written
down in Subsection 2.2. The main result concerning the limit from RDME to PDE model
is stated in Subsection 2.3 together with its proof. These results are then extended to
general first-order reaction networks in Section 3 in arbitrary dimension.

Notation: In the this paper, we will use the following notation:

• For 1 ≤ p ≤ ∞, Lp(Ω) denotes the usual Lebesgue space with the associated norm

∥u∥Lp(Ω) =

(∫
Ω

|u(x)|pdx
)1/p

if p < ∞,

and
∥u∥L∞(Ω) = ess sup

x∈Ω
|u(x)|, otherwise.

• The Sobolev space H1
0 (Ω) is defined as

H1
0 (Ω) =

{
u ∈ L2(Ω) : ∇u ∈ L2(Ω) and u|∂Ω = 0

}
where the gradient is understood in the distributional sense and the value on the
boundary is understood in the trace sense.

• For a function u : Ω → R, Ω ⊂ Rn, the gradient of is defined by

∇u =

(
∂u

∂x1

, · · · , ∂u

∂xn

)
.

For a vector field F = (F1, . . . , Fn) : Ω → Rn, the divergence of F is defined by

∇ · F =
n∑

i=1

∂Fi

∂xi

.

• Consider the random variable X defined on the measurable space (X ,B) with un-
derlying probability space (ΩX ,F ,P). The probability distribution of X is denoted
by P and the probability of an event {X ∈ B}, B ∈ B is denoted by P(X ∈ B).

2 The case of two chemicals

2.1 Macroscopic PDE Model

Consider the following reversible reaction of two chemical species S1 and S2

S1

λ2

⇆
λ1

S2 (1)

where λ1 and λ2 are reaction rates. The reactions take place in a bounded vessel Ω ⊂ Rn,
with Lipschitz boundary ∂Ω. In general, the reaction rates λ1 and λ2 are spatially
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inhomogeneous; that is, the reaction rate depends on the spatial position in the medium
with λi : Ω → [0,∞).
Denote by ui(x, t) the concentration of Si at time t > 0 and position x ∈ Ω. The chemicals
species diffuse through the vessel with the diffusive fluxes

Ji(x, t) = Di(x)∇ui(x, t), i = 1, 2. (2)

By applying the law of mass action, with the diffusive flux given in (2), we obtain the
following macroscopic reaction-diffusion system

∂tu1 −∇ · (D1(x)∇u1) = −λ1(x)u1 + λ2(x)u2, x ∈ Ω, t > 0,

∂tu2 −∇ · (D2(x)∇u2) = +λ1(x)u1 − λ2(x)u2, x ∈ Ω, t > 0,

u1(x, t) = u2(x, t) = 0, x ∈ ∂Ω, t > 0,

ui(x, 0) = ui,0(x), x ∈ Ω, i = 1, 2.

(3)

Here, ∇ · F is the divergence of the vector field F .

Lemma 2.1. Assume that Ω ⊂ Rn be a bounded domain with Lipschitz boundary ∂Ω.
Then there exists a constant CP > 0 such that

∥∇u∥2L2(Ω) ≥ CP∥u∥2L2(Ω) for all u ∈ H1
0 (Ω).

Theorem 2.1 (Global bounded weak solution of (3)). Assume the following for each
i ∈ {1, 2}
(D) Di : Ω → R satisfies 0 < D∗ ≤ Di(x) ≤ D∗ < +∞ for a.e. x ∈ Ω, and

(R) λi ∈ L∞
+ (Ω), i.e. λi ∈ L∞(Ω) and λi ≥ 0 a.e. in Ω.

Then, for any non-negative initial data u0 = (ui,0) ∈ L∞
+ (Ω)2, there exists a unique

global non-negative, weak solution to (3) (in the sense of (9)) which satisfies the mass
dissipation ∫

Ω

(u1(t) + u2(t))dx ≤
∫
Ω

(u1,0 + u2,0)dx, ∀t > 0. (4)

Moreover, the solution is bounded uniformly in time, i.e. there is ρ > 0 depending on
initial data, D∗, D

∗, ∥λi∥L∞(Ω) such that

sup
t≥0

(∥u1(t)∥L∞(Ω) + ∥u2(t)∥L∞(Ω)) ≤ ρ. (5)

In addition, if D1, D2 ∈ C1(Ω) ∩ C(Ω), the solution to (3) can be represented by

u(t) = T (t)u0 +

∫ t

0

T (t− s)R(u(s))ds (6)

where

u0 = (u1,0,u2,0), R(u) =

(
−λ1(x)u1 + λ2(x)u2

λ1(x)u1 − λ2(x)u2

)
and the semigroup {T (t) = eL t}t≥0 is generated by the operator

L u =

(
−∇ · (D1(x)u1) 0

0 −∇ · (D2(x)u2)

)
(7)

Furthermore, if λ1(x) = δλ2(x), x ∈ Ω, for some positive constant δ, then the solution to
(3) decays exponentially to zero, i.e. for any p ∈ [2,∞) there are αp, Cp > 0 such that

∥u1(t)∥Lp(Ω) + ∥u2(t)∥Lp(Ω) ≤ Cpe
−αpt, ∀t ≥ 0. (8)
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Proof. A weak solution to (3) on (0, T ), T > 0, is a pair of functions

(u1,u2) ∈ C([0, T ];L2(Ω))2 ∩ L2(0, T ;H1
0 (Ω))

2

with
∂tui ∈ L2(0, T ;H−1(Ω)), i = 1, 2,

with H−1(Ω) being the dual space of H1
0 (Ω), such that for each i ∈ {1, 2}∫ T

0

⟨∂tui, φ⟩H−1(Ω),H1
0 (Ω)dt+

∫ T

0

∫
Ω

Di(x)∇ui∇φdxdt

=

∫ T

0

∫
Ω

(−λiui + λ3−iu3−i)φdxdt

(9)

for all test functions φ ∈ L2(0, T ;H1(Ω)).

It is noted that the sum of the right-hand side of the equations in (3) equals to zero. There-
fore, the global existence and uniform-in-time boundedness of a unique non-negative,
weak solution to (3) follows immediately from [FMTY21, Theorem 1.1].

It remains to show the decay of the solution in case λ1(x) = δλ2(x). Direct computations
give

1

2

d

dt

(
∥u1∥2L2(Ω) + δ∥u2∥2L2(Ω)

)
+

∫
Ω

(
D1|∇u1|2 +D2|∇u2|2

)
dx

= −
∫
Ω

δλ2(x)(u1 − u2)
2dx ≤ 0.

Thanks to the homogeneous Dirichlet boundary conditions and the Poincaré inequality
in Lemma 2.1, it follows that there is β > 0 satisfying

d

dt

(
∥u1∥2L2(Ω) + δ∥u2∥2L2(Ω)

)
+ β

(
∥u1∥2L2(Ω) + δ∥u2∥2L2(Ω)

)
≤ 0,

and consequently

∥u1(t)∥2L2(Ω) + δ∥u2(t)∥2L2(Ω) ≤ e−βt
(
∥u1,0∥2L2(Ω) + ∥u2,0∥2L2(Ω)

)
.

Now for any 2 < p < ∞, we have

∥u1(t)∥pLp(Ω) =

∫
Ω

|u1(t)|pdx ≤ ∥u1(t)∥p−2
L∞(Ω)∥u1(t)∥2L2(Ω) ≤ C0e

−βt

and thus
∥u1(t)∥Lp(Ω) ≤ C

1/p
0 e−(β/p)t ∀t > 0.

The proof for u2 follows the same way.

When the diffusion coefficients D1, D2 are in C1(Ω) ∩C(Ω), it is known, see e.g. [Zhe04]
that the operator L defined in (7) generates an analytic contraction semigroup {T (t) =
eL t}t≥0, using which the solution to (3) can be written as (6). Note that this solution is
also a weak solution and therefore enjoys the uniform-in-time bounds (5) as well as the
exponential decay (8).

Since the system is linear, the global existence is not surprising, and one can get a bound
in L∞(Ω)-norm which might depend on time (typically exponential). The uniform-in-
time bound (5), which is a consequent of the dissipation of mass (4), plays an important
role in defining the stopping process in the sequel (see (21)).
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2.2 Reaction-diffusion master equations

Let Ω = (0, 1), and consider a volume in one dimension, i.e. V = (0, L) for some L > 0.
The case of a cube Ω = (0, 1)n and V = (0, L)n in Rn will be discussed in Section 3 for
general systems. At the microscopic level, the system (1) with diffusion can be modeled
via a continuous-time Markov jump process [AT80, Kot86a]. Let N ∈ N and consider
a uniform partition of V into N cells of equal size w = L/N and define the j-th cell
by (xj−1, xj] = ((j − 1)w, jw], j = 1, . . . , N . It is remarked that this partition is not
a discretization of the domain Ω in the macroscopic model. In fact, later on, it will be
assumed that the volume V , as well as each cell, will ”blow up”, i.e. become unbounded
(see (25)). To account for the boundary conditions detailed in the sequel, the volume
is extended to an interval of length L + 2w consisting of N + 2 cells of length w. The
number of molecules of each species l ∈ {1, 2} in cell j = 0, . . . , N+1 at time t is denoted

by X̃ l
j(t). We assume that the number of molecules for the cells j = 0 and j = N +1 are

always zero, which corresponds to the homogeneous Dirichlet boundary condition in (3).

The total state of the system is denoted by X̃(t), which forms a continuous-time Markov
jump process on N2(N+2).

Suppose that at time t, X̃ l
j(t) = kl

j. Let m = (m1,m2) ∈ N2(N+2) and denote the j-th

unit vector in RN+2 by ej. The transition rates for the process X̃(t) are given by

qk,k+m =

{
λl
jk

l
j, ml = −ej, m3−l = ej, j = 1, . . . , N, l = 1, 2,

λ3−l
j k3−l

j , ml = ej, m3−l = −ej, j = 1, . . . , N, l = 1, 2,
(10)

qk,k+m =


Dl

jN
2kl

j, ml = −ej + ej+1, j = 1, . . . , N, l = 1, 2,

Dl
jN

2kl
j, ml = −ej + ej−1, j = 1, . . . , N, l = 1, 2,

Dl
j+1N

2kl
j+1, ml = ej − ej+1, j = 1, . . . , N − 1, l = 1, 2,

Dl
j−1N

2kl
j−1, ml = ej − ej−1, j = 2, . . . , N, l = 1, 2.

(11)

and qk,k+m = 0 otherwise. Here, Dl
j and λl

j denote the diffusion coefficient and reaction
rate constant in the j-th cell for species l, which are calculated from the functions Dl and
λl via

Dl
j = w−1

∫ xj

xj−1

Dl(x/V )dx, λl
j = w−1

∫ xj

xj−1

λl(x/V )dx. (12)

It is remarked that we only need integrability of Dl and λl for these voxel diffusion and
reaction rates to be meaningful.

The evolution of X̃(t) is described by the reaction-diffusion master equation (RDME); i.e.,
the Kolmogorov forward equation for the Markov jump process described by the transition
rates in (10). Let k0 ∈ N2(N+2), P (k, t) = Pr(X̃(t) = k|X̃(0) = k0), k ∈ N2(N+2) and
elj = e(l−1)N+j ∈ N2(N+2). The RDME is then given by

d

dt
P (k, t) =

2∑
l=1

N∑
j=1

(
qk−elj+elj+1,k

P (k − elj + elj+1)− qk,k−elj+elj+1
P (k, t)

+qk−elj+elj−1,k
P (k − elj + elj−1)− qk,k−elj+elj−1

P (k, t)
)

+
2∑

l=1

N∑
j=1

qk+e3−l
j −elj ,k

P (k + e3−l
j − elj)− qk,k+e3−l

j −elj
P (k, t). (13)
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Recall that, for all t > 0, the boundary layers satisfy X̃ l
j(t) = 0, j = 0, N + 1 to enforce

the zero boundary condition.

We now define the concentration process C(t) via

C l
j(t) =

X̃ l
j(t)

w
, j = 1, . . . , N

C l
j(t) = 0, j = 0, N − 1

(14)

where the last two conditions account for the zero boundary condition. The process C(t)
forms a continuous-time Markov jump process, a property inherited from the process
X̃(t). Observe that

qk,k+m = wf(k/w,m), k ∈ N2(N+1), (15)

where f : R2(N+2)
+ × N2(N+1) → R+ with

f(c,m) =

{
λl
jc

l
j, ml = −ej, m3−l = ej, j = 1, . . . , N, l = 1, 2,

λ3−l
j c3−l

j , ml = ej, m3−l = −ej, j = 1, . . . , N, l = 1, 2,

f(c,m) =


Dl

jN
2clj, ml = −ej + ej+1, j = 1, . . . , N, l = 1, 2,

Dl
jN

2clj, ml = −ej + ej−1, j = 1, . . . , N, l = 1, 2,

Dl
j+1N

2clj+1, ml = ej − ej+1, j = 1, . . . , N, l = 1, 2,

Dl
j−1N

2clj−1, ml = ej − ej−1, j = 1, . . . , N, l = 1, 2.

f(c,m) = 0 otherwise.

(16)

It follows that C(t) is a density dependent continuous Markov process [Kur71] with
waiting time parameter

τ(c) = w
∑

m∈N2(N+2)

f(c,m) (17)

and the jump distribution function given by

σ(c,m/w) =
f(c,m)∑

m∈N2(N+2) f(c,m)
=

wf(c,m)

τ(c)
. (18)

We remark that due to the definition (16), the sum over all m ∈ N2(N+2) in (17) and (18)
are indeed finite sums.

2.3 The macroscopic limit

To allow for a comparison between the microscopic and macroscopic models, we interpret
C(t) as a function on [0, 1]. In particular, let

ul(x, t) =
N∑
j=1

C l
j(t)1

{
x ∈

[
(j − 1)w

V
,
jw

V

)}
, l = 1, 2. (19)

7



The function u(t) lies in a subspace XN , which is a subspace of L2[0, 1] × L2[0, 1] with
inner product

⟨u, v⟩ = w

V

2∑
l=1

N∑
j=1

ul

(
jw

V

)
vl

(
jw

V

)
=

2∑
l=1

∫ 1

0

ul(x)vl(x)dx, u, v ∈ XN . (20)

Define τS as the first exit time of u(t) from

Sρ =

{
u ∈ X+

N : sup
0≤x≤1

(u1(x) + u2(x)) ≤ ρ

}
(21)

with arbitrary ρ > ρ, where ρ is the uniform-in-time bound (5) of solutions in Theorem
2.1. The stopped process ũ(t) is then defined as

ũ(·, t) = u(·,min{t, τSρ}). (22)

Let

cl(u) =

(
ul (0) , . . . , ul

(
(N − 1)w

V

))
. (23)

Then, ũ(t) is a jump Markov process with

τ̃(u) = τ(c(u))1 {u ∈ Sρ} and σ̃(u,m/w) =

{
σ(c(u),m/w), u ∈ Sρ

0, u ̸∈ Sρ,
(24)

The main result of the current work is the following theorem.

Theorem 2.2. Assume that diffusion coefficients Di ∈ C1(Ω) ∩ C(Ω), i = 1, 2, reaction
rates λi ∈ L∞(Ω), i = 1, 2, satisfy (D) and (R). Let ũ(t) be as defined in (22) and u(t)
the bounded weak solution to (3) obtained in Theorem 2.1. Suppose that

(H1) ∥ũ(0)− u(0)∥ = 0 in probability; and

(H2) the following limit holds

N2

w
→ 0 as N,w → ∞. (25)

Then for any δ > 0, and any t > 0

P (∥ũ(t)− u(t)∥ ≥ δ) → 0 as N,w → ∞. (26)

Theorem 2.2 generalizes the result of [AT80] to the case of reaction systems with inho-
mogeneous diffusion and reactions.

The rest of this section is devoted to prove Theorem 2.2. We start off with the behaviour
of a martingale related to the space-time Markov jump process ũ. Then discretisation
of the inhomogeneous diffusion and its corresponding semigroup are considered, which in
turn will be used in comparing ũ and u in the last part.
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2.3.1 An accompanying martingale

Consider the operator on XN

F (u) =
∑
m

mf(u,m), (27)

which is viewed as a stochastic approximation of the average infinitesimal rate of change
of u. We now establish some properties of

z̃(t) = ũ(t)− ũ(0)−
∫ t

0

F (ũ(s))ds. (28)

Lemma 2.2. The process (28) is a martingale with respect to Pu (the distribution induced
by an initial value u).

Proof. With τ̃ defined in (24) we observe that

sup
u

τ̃(u) ≤ 2Nwρ
(
∥λ1∥L∞(Ω) + ∥λ2∥L∞(Ω) + 4N2D∗) < ∞ (29)

and

sup τ̃(u)
∑
m

|m|
w

σ̃(u,m/w) = sup
u∈Sρ

∑
m

|m|f(u,m)

≤ 2
√
2Nρ

(
∥λ1∥L∞(Ω) + ∥λ2∥L∞(Ω) + 4N2D∗)

< ∞. (30)

By [Kur71, Proposition 2.1], the process (28) is then a martingale with respect to Pu.

Observe that for an arbitrary initial distribution,

E[z̃(t)] = 0, t ≥ 0. (31)

Proof. Since f is the infinitesimal generator of the process ũ, the result follows by defi-
nition.

Lemma 2.3. Under the assumption (H2), it holds for all δ > 0,

P
(

sup
0≤s≤t

∥z̃(s)∥ > δ

)
→ 0, as N,w → ∞.

Proof. Doob’s Lp-inequality [RY99, Theorem II.1.7] yields

Pu

(
sup
0≤s≤t

∥z̃(s)∥ > δ

)
≤ δ−2Eu[∥z̃(t)∥2]. (32)
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An estimate for Eu[∥z̃(t)∥2] is obtained as follows. From Kurtz [Kur71, Lemma 2.9],

Eu[∥z̃(t)∥2] =
∫ t

0

Eu

[
τ̃(ũ(s))

(∑
m

∥m/w∥2σ̃(ũ(s),m/w)

)
ds

]

=

∫ t

0

Eu

[∑
m

∥m/w∥2wf(ũ(s),m)

]
ds

= (wN)−1

∫ t

0

Eu

[∑
m

|m|2f(ũ(s),m)

]
ds

≤ w−1

∫ t

0

2∑
l=1

Eu

[∫ 1

0

(λ3−lũ(x, s) + λlũ(x, s))dx

]
ds

+ w−1

2∑
l=1

∫ t

0

Eu

[∫ 1

0

4N2D∗ũ(x, s)dx

]
ds

≤ 2tw−1ρ(∥λ1∥L∞(Ω) + ∥λ2∥L∞(Ω) + 4N2D∗) (33)

noting that Eu[∥z̃(t)∥2] = 0, u ̸∈ Sρ. Thanks to the assumption (H2), we have ∥z̃(t)∥ → 0
as w,N → ∞ in mean, and consequently in probability.

2.3.2 Discretization of diffusion and reaction terms

Due to the inhomogeneity of diffusion coefficients and reaction rate constants, we approx-
imate them by the following piecewise constants functions: for l = 1, 2,

D̂l(r) = Dl
j and λ̂l(x) = λl

j, for x ∈ Ij = [xj−1, xj),

where Dl
j and λl

j are defined as in (12). Now to study the corresponding discrete evolution
we define the discrete reactions

Rl
N(u)(x) = −λ̂l(x)ul(x) + λ̂3−l(x)u3−l(x) (34)

and the discrete diffusion operator

L l
N(u)(x) = h−2∂h(D̂

l(x)∂−hu
l(x)) (35)

where the difference quotients are defined as

∂hf(x) = h−1(f(x+ h)− f(x)) and ∂−hf(x) = h−1(f(x)− f(x− h)).

Using the definition of D̂l, we can rewrite L l
N as

L l
N(u)(x) = h−2

[
Dl

j+1u
l(x+ h)− (Dl

j+1 +Dl
j)u

l(x) +Dl
ju

l(x− h)
]
,

LN = (L l
N)l=1,2

(36)

for x ∈ Ij, 1 ≤ j ≤ N − 1. Note that from the definition of f in (16), F in (27), we have

F (u) = LN(u) +RN(u). (37)

Remark 2.1. The form of L l
N(u)(x) in (35) generalizes the analogous expression for

spatially homogeneous diffusion, as considered in, e.g., [AT80, Kot86a]. It is not the
only potential generalization; however, as we will see, is the correct choice to establish the
desired convergence result.
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Lemma 2.4. The operator L l
N , l = 1, 2, defined in (35) is a self-adjoint operator in

L2(Ω).

Proof. For simplicity, we omit the superscript l in L l
N . We show that∫ 1

0

(LNu)(x)v(x)dx =

∫ 1

0

u(x)(LNv(x))dx. (38)

For u, v ∈ H1
0 (Ω), we have∫ 1

0

∂hu(x)v(x)dx =
N−1∑
j=0

∫ xj+1

xj

h−1(u(x+ h)− u(x))v(x)dx

= h−1

N∑
j=1

∫ xj+1

xj

u(x)v(x− h)dx− h−1

N−1∑
j=0

∫ xj+1

xj

u(x)v(x)dx

= h−1

N−1∑
j=0

∫ xj+1

xj

u(x)(v(x− h)− v(x))dx

+ h−1

∫ xN+1

xN

u(x)v(x− h)dx− h−1

∫ x1

x0

u(x)v(x− h)dx

= −
∫ 1

0

u(x)∂−hv(x)dx

where we used v|[−h,0] = u|[1,1+h] = 0 at the last step. Now we apply this “integration by
parts” to obtain∫ 1

0

(LNu(x))v(x)dx =

∫ 1

0

∂h(D̂(x)∂−hu(x))v(x)dx

= −
∫ 1

0

D̂(x)∂−hu(x)∂−hv(x)dx

=

∫ 1

0

u(x)∂h(D̂(x)∂−hv(x))dx =

∫ 1

0

u(x)LNv(x)dx,

which is the self-adjointness of the operator LN .

Remark 2.2. We note that, unlike the case of spatially homogeneous diffusion coefficients
as considered in [AT80, Kot86a], the operator LN is not self-adjoint under Neumann
boundary conditions (i.e., a reflective boundary).

Lemma 2.5. The semigroup TN(t) defined as

TN(t) := exp(−LN t), t ≥ 0.

is an analytic contraction semigroup in L2(Ω) satisfying

(i) ∥TN(t)∥ ≤ eωt for some ω ≥ 0.

(ii) ∥TN(t)LN∥ ≤ 1

t
, t > 0.

11



Proof. We will apply the Hille-Yosida Theorem. Due to the definition, we haveD(−LN) =
{u ∈ C0(Ω) : u|∂Ω = 0} which is dense in L2(Ω). Let ω > 0. We claim that for each
v ∈ L2(Ω), there exists a unique solution to the equation

ωu− LNu = v. (39)

Indeed, by defining the bilinear form a

a(u, z) = ω⟨u, z⟩+ ⟨−LNu, z⟩

we have

|a(u, z)| ≤ ω∥u∥∥z∥+
∫ 1

0

D(x)|∂−wu(x)||∂−wz(x)|dx

≤ ω∥u∥∥z∥+ w∥D∥L∞(Ω)

∫ 1

0

|u(x+ w)− u(x)||z(x+ w)− z(x)|dx

≤ (ω + 4w∥D∥L∞(Ω))∥u∥∥z∥

and

a(u, u) = ω∥u∥2 + ⟨−LNu, u⟩

= ω∥u∥2 +
∫ 1

0

D(x)|∂−wu(x)|2dx ≥ ω∥u∥2.

Therefore, thanks to Lax-Milgram theorem, (39) has a unique solution u ∈ L2(Ω), which
means that (ωI − LN)

−1 is one-to-one and onto. It remains to show that

∥(ωI − LN)
−1∥ ≤ 1

ω
. (40)

By multiplying (39) by u in L2(Ω) and using ⟨−LNu, u⟩ ≥ 0 we have

ω∥u∥2 = ⟨v, u⟩ ≤ ω

2
∥u∥2 + 1

2ω
∥v∥2

which implies

∥u∥2 ≤ 1

ω2
∥v∥2. (41)

Thus

∥(ωI − LN)
−1∥ = sup

∥v∥=1

∥(ωI − LN)
−1v∥

= sup
∥v∥=1

{∥u∥ : v = (ωI − LN)u}

≤ sup
∥v∥=1

1

ω
∥v∥ ≤ 1

ω
(thanks to (41))

which shows (40). Therefore, we can apply Hille-Yosida theorem to obtain that TN(t) =
exp(−LN t) is an analytic contraction semigroup in L2(Ω). The properties (i) and (ii)
therefore follow immediately from contraction semigroup.

12



2.3.3 Proof of Theorem 2.2

Using (6), (28), and (37), we can split the difference ũ− u as

ũ(t)− u(t) = z̃(t) + ũ(0) +

∫ t

0

F (ũ(s))ds− T (t)u(0)−
∫ t

0

T (t− s)R(u(s))ds

= z̃(t) + ũ(0) +

∫ t

0

LN(ũ(s))ds+

∫ t

0

RN(ũ(s))ds

− T (t)u(0)−
∫ t

0

T (t− s)R(u(s))ds.

(42)

Let y(t) be the solution to

y(t) = ũ(0) +

∫ t

0

LNy(s)ds+

∫ t

0

RN(ũ(s))ds, (43)

which is equivalent to

y(t) = TN(t)ũ(0) +

∫ t

0

TN(t− s)RN(ũ(s))ds.

Therefore, we have∫ t

0

RN(ũ(s))ds = y(t)− ũ(0)−
∫ t

0

LNy(s)ds

= TN(t)ũ(0) +

∫ t

0

TN(t− s)RN(ũ(s))ds− ũ(0)−
∫ t

0

LNy(s)ds.

Inserting this into (42) and taking the norm of both sides give

∥ũ(t)− u(t)∥ ≤ ∥z̃(t)∥+
∥∥∥∥∫ t

0

LN(ũ(s)− y(s))ds

∥∥∥∥︸ ︷︷ ︸
(I)

+ ∥TN(t)ũ(0)− T (t)u(0)∥︸ ︷︷ ︸
(II)

+

∥∥∥∥∫ t

0

[TN(t− s)RN(ũ(s))− T (t− s)R(u(s))] ds

∥∥∥∥︸ ︷︷ ︸
(III)

.

(44)

We estimate the terms (I), (II) and (III) separately.

Estimate of (II).

Lemma 2.6. Let {TN(t)}t≥0 and {T (t)}t≥0 be the semigroups generated by LN and L
respectively. We have

∥TN(t)ũ(0)− T (t)u(0)∥ ≤ ϵ1(t) + ∥ũ(0)− u(0)∥, (45)

where
ϵ1(t) → 0 as N → ∞ (46)

for each t > 0.
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Proof. By triangle inequality, it holds

∥TN(t)ũ(0)− T (t)u(0)∥ ≤ ∥TN(t)ũ(0)− TN(t)u(0)∥+ ∥(TN(t)− T (t))u(0)∥
≤ ∥ũ(0)− u(0)∥+ ∥(TN(t)− T (t))u(0)∥

where we used that {TN(t)}t≥0 is a contraction semigroup at the last step. It remains to
show

ϵ1(t) := ∥(TN(t)− T (t))u(0)∥ → 0

as N → ∞ for each t > 0. This is nothing else but the L2(Ω)-convergence of finite
difference scheme for the diffusion equation ∂tu − L u = 0 where coefficients of L are
smooth, in this case, C1, and therefore the convergence follows from e.g. [Jov89].

Estimate of (I). We show that∫ t

0

LN(ũ(s)− y(s))ds =

∫ t

0

TN(t− s)LN z̃(s)ds (47)

Indeed, we compute using (28) and (43)

w(t) =

∫ t

0

LN(ũ(s)− y(s))ds

=

∫ t

0

(
LN z̃(s) + LN

∫ s

0

LN(ũ(τ)− y(τ))dτ

)
ds

=

∫ t

0

LN z̃(s)ds+

∫ t

0

LNw(s)ds.

It follows that

w(t) = TN(t)w(0) +

∫ t

0

TN(t− s)LN z̃(s)ds

which is (47) due to w(0) = 0. Further calculations lead to∫ t

0

LN(ũ(s)− y(s))ds =

∫ t

0

TN(t− s)LN(z̃(s)− z̃(t))ds+

∫ t

0

TN(t− s)LN z̃(t)ds

=

∫ t

0

TN(t− s)LN(z̃(s)− z̃(t))ds+ (TN(t)− Id)z̃(t).

Therefore

(I) =

∥∥∥∥∫ t

0

LN(ũ(s)− y(s))ds

∥∥∥∥ ≤
∫ t

0

∥TN(t− s)LN(z̃(s)− z̃(t))∥ds+ 2∥z̃(t)∥

≤
∫ t

0

∥z̃(t)− z̃(s)∥
t− s

ds+ 2∥z̃(t)∥
(48)

where we used Lemma 2.5 (ii) at the last estimate.

Estimate of (III). Now consider

(III) =

∥∥∥∥∫ t

0

[TN(t− s)RN(ũ(s))− T (t− s)R(u(s))]ds

∥∥∥∥
≤
∥∥∥∥∫ t

0

TN(t− s)[RN(ũ(s))−RN(u(s)))]ds

∥∥∥∥+ ∥∥∥∥∫ t

0

TN(t− s)[RNu(s)−R(u(s))]ds

∥∥∥∥
+

∥∥∥∥∫ t

0

[TN(t− s)− T (t− s)]R(u(s))ds

∥∥∥∥
=: (III1) + (III2) + (III3).
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Using the contraction property of the semigrioup TN(t) and boundedness of the reaction
rate constants λ1(·) and λ2(·), we have

(III1) ≤ c0

∫ t

0

∥ũ(s)− u(s)∥ds

where the constant c0 depends on ∥λ1∥L∞(Ω) and ∥λ2∥L∞(Ω). For (III2), we use the
contraction of {TN(t)} again to have

(III2) ≤
∫ t

0

∥RN(u(s))−R(u(s))∥ds =: ϵ2(t)

with the property
lim

N→∞
ϵ2(t) = 0 (49)

for each t > 0, thanks to the definition of RN in (34). Finally, by using similar arguments
to the proof of Lemma 2.6, we have

ϵ3(t) := (III3) =

∥∥∥∥∫ t

0

[TN(t− s)− T (t− s)]R(u(s))ds

∥∥∥∥→ 0 as N → ∞, (50)

for each t > 0. These estimates yield

(III) ≤ c0

∫ t

0

∥ũ(s)− u(s)∥ds+ ϵ2(t) + ϵ3(t). (51)

Proof of Theorem 2.2. Combining (44), (45), (48) and (51), we obtain

∥ũ(t)− u(t)∥ ≤ 3∥z̃(t)∥+
∫ t

0

∥z̃(t)− z̃(s)∥
t− s

ds+
3∑

i=1

ϵi(t) + c0

∫ t

0

∥ũ(s)− u(s)∥ds. (52)

We now show that ∫ t

0

∥z̃(t)− z̃(s)∥
t− s

ds → 0 as N → ∞

in probability. Indeed, from the fact that z̃(t) is a martingale, it follows that z̃(t)− z̃(s)
is also a martingale. We therefore can apply estimate (33) to get

E[∥z̃(t)− z̃(s)∥2] ≤ 2(t− s)w−1ρ
(
∥λ1∥L∞(Ω) + ∥λ1∥L∞(Ω) + 4N2

)
=: 2A(w,N)(t− s)

with
lim

w,N→∞
A(w,N) = 0

thanks to (H2). Thus

E
[∫ t

0

∥z̃(t)− z̃(s)∥
t− s

ds

]
=

∫ t

0

E∥z̃(t)− z̃(s)∥
t− s

ds

≤
√

2A(w,N)

∫ t

0

√
t− s

t− s
ds =

√
2tA(w,N).
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Therefore, we have ∫ t

0

∥z̃(t)− z̃(s)∥
t− s

ds → 0 (53)

in mean, and consequently in probability. Combining this with (52), Lemma 2.3, the
convergences (46), (49), and (50), we can apply the Gronwall lemma to finally get

∥ũ(t)− u(t)∥ → 0 in probability,

which finishes the proof of Theorem 2.2.

3 General first order chemical reaction networks

In this section, we show that the techniques presented above can be applied to any first
order chemical reaction network with heterogeneities. Let S1, . . . , SK be K ≥ 1 chemicals
which react through the following reactions

Si
λji(x)−−−→ Sj, ∀i ̸= j = 1, . . . , K. (54)

Here λji : Ω → R+ denotes the reaction constant from Si to Sj which depends on the
position x ∈ Ω.

Macroscopic PDE model: Let ui(x, t) be the concentration of the chemical Si at
position x ∈ Ω and time t > 0. Assume moreover that Di(x) is the diffusion coefficient
of Si. The macroscopic reaction-diffusion system reads as

∂tui −∇ · (Di(x)∇ui) =
K∑
j=1

λij(x)uj, x ∈ Ω, t > 0, ∀i = 1, . . . , K, (55)

where

λii(x) = −
K∑

j=1,j ̸=i

λji(x), ∀i = 1, . . . , K, (56)

subject to the homogeneous Dirichlet boundary conditions

ui(x, t) = 0, x ∈ ∂Ω, t > 0, ∀i = 1, . . . , K,

and non-negative initial data

ui(x, 0) = ui,0(x), x ∈ Ω, ∀i = 1, . . . , K.

The diffusion coefficients, which could be possibly discontinuous, are merely assumed to
be bounded from above and below, i.e. there D∗, D

∗ > 0 such that

D∗ ≤ Di(x) ≤ D∗ ∀i = 1, . . . , K, a.e. x ∈ Ω, (57)

and the reaction rate functions are bounded, non-negative, i.e.

λij ∈ L∞(Ω), λij(x) ≥ 0, ∀i ̸= j, a.e. x ∈ Ω. (58)
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Definition 3.1. The first order chemical reaction network (54) is called weakly reversible
if for any two species Si and Sj, i ̸= j, there exist a sequence r1 = i, r2, . . . , rs = j, s ≥ 2,
such that all reactions

Srk

λrk+1rk−−−−→ Srk+1
, k = 1, . . . , s− 1

happen with λrk+1rk > 0.

Remark 3.1.

• If we consider the reaction network (54) as a directed graph where all the species
are nodes and reactions are directed edges, then the weak reversibility in Definition
3.1 is equivalent to the strongly connectedness of the corresponding directed graph.

• The weak reversibility for general chemical reaction networks is in fact more general,
especially for higher order chemical reactions, in which the corresponding directed
graph might have several disjoint strongly connected components. However, since the
network in (54) is of first order, each strongly connected component can be treated
separately, and therefore we adapt the definition in Definition 3.1 for convenience.

Theorem 3.1. Assume (57) and (58). Then, for any non-negative, bounded initial
data u0 ∈ L∞(Ω)K, there exists a unique global weak solution to (55), which is bounded
uniformly in time,

lim sup
t→∞

sup
i=1,...,K

∥ui(t)∥L∞(Ω) ≤ ϱ < +∞ (59)

for some ϱ > 0. Moreover, suppose that the network is weakly reversible, and λij(x) ≡
γijφ(x) ≥ 0 for all i ̸= j, where φ(x) ≥ 0 for all x ∈ Ω, and γij > 0 if aij ̸= 0 and γij = 0
otherwise. Then the solution decays exponentially in time, i.e for any p ∈ [2,∞) there
are Cp, αp > 0 such that

K∑
i=1

∥ui(t)∥Lp(Ω) ≤ Cpe
−αpt for all t > 0.

Proof. Denote by fi(u) the right hand side of (55). Thanks to (56), it follows that

K∑
i=1

fi(u) = 0.

The global existence of bounded solutions and uniform-in-time boundedness then follow
from [FMTY21] immediately. It remains to show the exponential decay in the case of
weakly reversible networks and aij(x) = γijφ(x). We rewrite the equation of ui as

∂tui −∇ · (Di(x)∇ui) = φ(x)
K∑
j=1

γijui.

Due to the weak reversibility of the network, there exists a unique positive state u∞ =
(ui,∞) ∈ (0,∞)K satisfying that

K∑
j=1

γijui,∞ = 0, ∀i = 1, . . . , K,

K∑
i=1

ui,∞ = 1,
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see e.g. [FPT17, Lemma 1.7]. Now we consider the relative energy function

E(u) =
K∑
i=1

∫
Ω

|ui|2

ui,∞
dx.

Thanks to [FPT17, Lemma 2.3], we have

d

dt
E(u) = −

K∑
i=1

∫
Ω

Di(x)|∇ui|2dx−
∑
i<j

∫
Ω

φ(x)(γijuj,∞ + γjiui,∞)

(
ui

ui,∞
− uj

uj,∞

)2

dx

≤ −
K∑
i=1

D∗

∫
Ω

|∇ui|2dx (using (57))

≤ −
K∑
i=1

D∗CP

∫
Ω

|ui|2dx (using Poincaré inequality)

≤ −δE(u)

for some δ > 0, which implies

E(u)(t) ≤ e−δtE(u0) for all t > 0,

and therefore, for all i = 1, . . . , K,

∥ui(t)∥2L2(Ω) ≤ Ce−δt, ∀t > 0.

The convergence in Lp(Ω)-norm follows from (59) and L2(Ω)-convergence

∥ui(t)∥pLp(Ω) ≤ ∥ui(t)∥p−2
L∞(Ω)∥ui(t)∥2L2(Ω),

thus
∥ui(t)∥Lp(Ω) ≤ Ce−(2/p)t, ∀t > 0.

Reaction-diffusion master equation
Let Ω = (0, 1)n and consider the hypercube with edge length L > 0 and volume V = Ln.
Let N ∈ N and consider a uniform partition of V into Nn cells of equal volume w =
Ln/Nn. Define the (j1, . . . , jn) ∈ {1, . . . , N}n cell by (xj1−1, xj1 ] × · · · × (xjn−1, xjn ] =
((j1 − 1)w, j1w]× · · · × ((jn − 1)w, jnw].
On the boundary of V , additional cells are added. Molecules in cells (j1, . . . , ji, 1, ji+1, . . . , jn)
and (j1, . . . , ji, N, ji+1, . . . , jn) may diffuse into these boundary cells in which they are ab-
sorbed. That is, the number of molecules in these cells are always zero. The total number
of cells in the system is then (N + 2)n.
The number of molecules of each species l ∈ {1, . . . , K} in cell j = (j1, . . . , jn) at time
t is denoted by X̃ l

j(t). The number of molecules in cells (j1, . . . , ji, 0, ji+1, . . . , jn) and
(j1, . . . , ji, N + 1, ji+1, . . . , jn) are always zero. The total state of the system is denoted
by X̃(t), which is modeled by a continuous-time Markov jump process on NK(N+2)n .
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Suppose that at time t, X̃ l
j(t) = kl

j. Let m = (m1, . . . ,mK) ∈ NK(N+2)n and denote the

j-th unit vector in R(N+2)n by ej. The transition rates for the process X̃(t) are given by

qk,k+m =



λll′

j k
l
j, m = 1l′

j − 1l
j, j ∈ J , l, l′ = 1, . . . , K

Dl
jN

2kl
j, m = 1l

j+ei
− 1l

j, j ∈ J , l = 1, . . . , K, i = 1, . . . , n

Dl
jN

2kl
j, m = 1l

j−ei
− 1l

j, j ∈ J , l = 1, . . . , K, i = 1, . . . , n

Dl
j+ei

N2kl
j+ei

, m = 1l
j − 1l

j+ei
, j ∈ J , ji + 1 ̸= N + 1, l = 1, . . . , K, i = 1, . . . , n

Dl
j−ei

N2kl
j−ei

, m = 1l
j − 1l

j−ei
, j ∈ J , ji − 1 ̸= 0, l = 1, . . . , K, i = 1, . . . , n

0, otherwise.

Let J = {1, . . . , N}n. In this setting, the RDME is then given by

d

dt
P (k, t) =

K∑
l=1

∑
j∈J

n∑
i=1

(
qk−1l

j+1l
j+ei

,kP (k − 1l
j + 1l

j+ei
, t)− qk,k−1l

j+1l
j+ei

P (k, t)

+ qk−1l
j+1l

j−ei
,kP (k − 1l

j + 1l
j+ei

, t)− qk,k−1l
j+1l

j−ei
P (k, t)

)
+

K∑
l=1

∑
j∈J

qk−1l
j+13−l

j ,kP (k − 1l
j + 13−l

j , t)− qk,k−1l
j+13−l

j
P (k, t). (60)

Here 1l′

j′ ∈ NK(N+2)n , l′ ∈ {1, . . . , K}, j′ ∈ {0, . . . , N + 1}n satisfies

1l
j(j, l) =

{
1, j = j′, l′ = l
0, j ̸= j′ or l′ ̸= l

, j′ ∈ {0, . . . , N + 1}n, l′ ∈ {1, . . . , K}. (61)

Macroscopic limit: Define the concentration process C l
j(t) = X̃ l

j(t)/w
n, and C l

j(t) = 0
if j is the artifical boundary cell. By defining XN = L2[0, 1]

n and

ul(x, t) =
∑
j

C l
j(t)1

{
x ∈

n∏
k=1

[
(jk − 1)w

V
,
jkw

V

)}
, l = 1, . . . , K.

For ϑ > ϱ, with ϱ in Theorem 59, we define τSϑ
as the first exit time of u(t) from

Sϑ =

{
u ∈ X+

N : sup
0≤x≤1

K∑
k=1

uk(x) ≤ ϑ

}
.

Finally, we define the stopped process ũ(t) as

ũ(·, t) = u(·,min{t, τSϑ
}).

By repeating the arguments in Section 2 we obtain the following result.

Theorem 3.2. Assume (57) and (58), and additionally Di ∈ C1(Ω) ∩ C(Ω) for all
i = 1, . . . , K. Further, assume that the following conditions hold:

(H1’) ∥ũ(0)− u(0)∥ = 0 in probability as N,w → ∞;

(H2’) and

N2

wn
→ 0 as N,w → ∞.
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Then, for any δ > 0 and T ∈ (0,∞),

sup
t∈[0,T ]

P(∥ũ(t)− u(t)∥ > δ) → 0 as N,w → ∞.

We remark that the main difference from the case of K = 2 chemical species arises in the
analog of Lemma 2.3. In the case of general K, for the martingale process z̃(t) we have

Eũ[∥z̃(t)∥2] =
∫ t

0

Eũ

[
τ̃(ũ(s))

(∑
m

∥∥∥ m

wn

∥∥∥ σ̃ (ũ(s), m
wn

))]
ds

=

∫ t

0

Eũ

[∑
m

∥∥∥ m

wn

∥∥∥2wnf(ũ(s),m)

]
ds

=
1

wnNn

∫ t

0

Eũ

[∑
m

|m|2f(ũ(s),m)

]
ds

=
1

wnNn

∫ t

0

Eũ

[∑
m

|m|2f(ũ(s),m)

]
ds

=
1

wnNn

∫ t

0

Eũ

[∑
m

|m|2qk,k+m(w
nũ(s))w−n

]
ds

=
1

wnNn
Eũ

[
K∑
l=1

K∑
l′=1

∑
j∈J

λll′

j ũ
l
j(s)

+
K∑
l=1

∑
j∈J

n∑
i=1

2Dl
jN

2ũl
j(s) +Dl

j+ei
N2ũl

j+ei
(s) +Dl

j−ei
N2ũl

j−ei
(s)

]
ds

≤ 1

wnNn

∫ t

0

(
K2Nnλ∗ρ+ 4KnN2+nD∗ρ

)
ds

=
tρ

wn

(
K2λ∗ + 4KnD∗N2

)
(62)

where λ∗ = maxi,j ∥λij∥L∞(Ω). Hence, if we seek E[∥z̃(t)∥2] → 0 as N,w → 0, we require
N2

wn
→ 0, which corresponds to assumption (H1’).
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