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Abstract. This paper investigates the topology optimization of the rotor of a 3-phase flux-switching machine
with 12 permanent magnets located within the stator. The objective is to find the steel distribution within the
rotor that maximizes the average torque for a given stator, permanent magnets, and electrical currents. The
optimization algorithm relies on a density method based on gradient descent. The adjoint variable method
is used to compute the sensitivities efficiently. Since the rotor topology depends on the current feedings, this
approach is tested on several electrical periods and returns alternative topologies. Then, the method is extended
to the multi-material case and applied to optimize the non-magnet part of the stator. When dealing with
3 phases, the algorithm returns the reference topology as well as a theoretical machine with no return conductor
according to the set current angle. To illustrate the creativity of the method, the optimization is finally
performed with a single-phase and returns a new topology.

Keywords: Density method, Flux switching machine, Multi-material topology optimization, Nonlinear

magnetostatics.

1 Introduction

Topology optimization is a conception tool that makes no
use of geometric parametrization. It was first developed in
mechanical engineering by [1], then introduced in electrical
engineering by [2], and has gained interest from engineers in
the last decade with the development of additive manufac-
turing [3]. Among various techniques, such as the level-set
method [4], or the phase-field approach [5] (see [6] for a
recent overview), density-based approaches [1, 7] are the
most popular. The principle of this technique is explained
hereafter.

The geometry to be optimized is represented by a
so-called density field p, which can be interpreted as pixela-
tion on N, elements once discretized spatially, as shown in
Figure 1. A density value of 0 represents air, and 1 repre-
sents iron in the corresponding mesh. The topology opti-
mization problem then reads as

ﬁnd popt = arg min f(p)

pelo,1)", @)

subject to

where fis the objective function to minimize (such as the
cost, the mass, or in the present case the opposite of the
average torque), and p is the vector of optimization vari-
ables, which contains the density of each mesh element.
To avoid solving a combinatorial problem that may be
intractable, density methods introduce intermediate
materials (also called gray materials) associated with
density values strictly between 0 and 1. Therefore, the
material properties can be continuously interpolated
between the actual candidate materials to use a fast gra-
dient-based optimization algorithm.

Although the presence of gray materials is not critical
during optimization, they should not appear in the final
geometry. Indeed, gray materials do not necessarily have
a proper physical interpretation or may represent, in the
best case, a microstructure that is complex to manufacture
[8]. A common solution for removing gray materials pro-
posed by the literature involves penalizing the material
interpolation, such as the Solid Isotropic Materials with
Penalization (SIMP) scheme [8, 9]. Yet topology optimiza-
tion problems are generally ill-posed, and other numerical
artifacts can occur, such as checkerboards that need
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(a) Original domain (b) Density-based representation

Fig. 1. Principle of density-based representation. a) Original
domain, b) Density-based representation.

regularization (e.g., numerical filtering [10]). Density-based
approaches have been applied to many magnetics problems,
from the simple C-core electromagnets [11, 12| to 3-phase
synchronous reluctant machines with several materials
and physics [13, 14]. However, apart from [15], no such work
has studied unconventional structures such as Flux
Switching Machines (FSM), where the unbiased creativity
of topology optimization may be the most useful.

This article aims to apply a density-based topology
optimization methodology to FSM. First proposed by
[16], this type of machine contains a passive rotor with
the field inductor located in the stator only, making its
cooling easier [17] and suitable for high-speed applications.
Several types of FSM exist in the literature; see [18]. The
chosen test case is a 3-phase Permanent Magnet Flux
Switching (PMFS) machine with 12 permanent magnets
evenly spaced within the stator, adapted from [19] and
shown in Figure 2.

This paper is structured as follows. First, Section 2
recalls the magnetostatics equations. The optimization
algorithm is then detailed in Section 3. Next, two numerical
applications exploring unconventional topologies are
presented and discussed. On the one hand, classical rotor
optimizations are conducted under various electrical fre-
quencies in Section 4. On the other hand, stator optimiza-
tion, which requires a multi-material framework, explores
the topologies obtained with 1 and 3-phase current feeding
in Section 5. In conclusion, Section 6 summarizes the essen-
tial results and draws perspectives on this work.

2 Physical problem

Since density-based topology optimization will be used, we
first set up the interpolations of material properties in
Section 2.1 in the Kennelly convention [20]. These quanti-
ties were then injected in the physical equation of magneto-
statics recalled in Section 2.2, which is further discretized
with the 2D Finite Element Method (FEM).

2.1 Material interpolation

There are at least two material properties of interest when
dealing with a magnetostatics problem: the magnetic
polarization of materials m' and the current density. In

! The magnetic polarization (unit T, vector-valued) is often
denoted as J in the literature. We adopt the notation m to avoid
confusion with the amplitude of the current density.

Phase A+
Phase B+
Phase C+
Phase A-
Phase B-
Phase C-
FeCo
Air

BURCCNNDN

Magnet

Fig. 2. Reference PMSF machine adapted from [19].

the case of soft magnetic material, m is collinear to the flux
density b and 0 when b = 0, so that it can be expressed in
terms of a scalar reluctivity v(b)

h=-1L(b—m(b))
b=0=m=0 = 3vb), h=v(b)b.  (2)

m||b

Two possibilities are generally reported in the literature to
interpolate the magnetic properties when dealing with soft
magnetic materials. One can interpolate either the magnetic
reluctivity v as in [12, 21, 22], or the magnetic permeability
pw=v " asin [2, 23, 24], among many others. However, an
additional magnetic quantity to interpolate (the rema-
nence) should be introduced when dealing with polarized
materials, as in [24, 25]. We choose an alternative, proposed
in [26], which interpolates the magnetic polarization m of a
FeCo alloy (AFK1 from Aperam [27]) directly. The corre-
sponding BH curve is plotted in Figure 3. Its interpolation
reads in the general case of n,, materials

om,

'ﬁ’L(p, b) = Z wa(w’i(p))mi(b)> (3)

where P,, is a penalization function associated with the
magnetic polarization, ®; a shape function defined in
[28] associated with the #vertex of a convex interpolation
domain D, and m,; the magnetic polarization of the
+material. To address the topology optimization of the
stator, the current density should also be interpolated
with a similar scheme:

M

Pi(wi(p))ii (4)

i=1

j:(p) =

where P; is a penalization function associated with the
current density, and j;, is the out-of-plane component of
the current density of the material i. The chosen domain
D as well as the penalization functions are given in
Sections 4 and 5, and an example of interpolation is drawn
in Figure 4. More details on the interpolation scheme and
associated algorithms can be found in [29].



The Author(s): Science and Technology for Energy Transition 78, 41 (2023) 3

10 102 10*  10°
h (A/m) - log

Fig. 3. Anhysteretic BH curve of FeCo in logarithmic scale used
for the computations.

]max

Iron

C+

Fig. 4. Interpolation example of the current density amplitude
between 7 materials. Note that in the real optimization problem
in Section 5, the actual value of the current density at each
electric angle is interpolated instead of its amplitude.

2.2 Physical equations

From the static Maxwell’s equations, one can write the
magnetostatics equation for a 2D problem [26]:

-V (vaz) = :uojz(p) +V. (ﬁly(pa b) - ﬁlz(pa b))a (5)

with m, and m, the z and y components of the interpo-
lated magnetic polarization m, j, the current density,
and a, the z-component of the magnetic vector potential
a, related to the flux density by the formula b =V x a.
To be solved numerically, the strong equation (5) should
be written in a weak form and discretized using, for
instance, the FEM. Then, the physical problem reads as
follows

Ka = s(m(p, a),j(p)), (6)

where K is the finite element matrix, a the vector contain-
ing the discretized degrees of freedom a,, and s right-hand
side related to source terms. Figure 5 draws the mesh
used in this article. Homogeneous Dirichlet boundary
conditions confined the flux inside the machine, and a

- Sliding band
« Dirichlet

Fig. 5. Mesh of the simulation domain containing 30,666 first-
order elements and 16,329 nodes.

locked-step sliding band technique [30] is applied to emu-
late the rotation of the rotor without remeshing.

The nonlinear FEM system (6) is solved with the
Newton-Raphson scheme:

dr, -
aApt] = —( ) T, + ay, (7)

da

with r, = Ka, — s(p, a,) is the residual of (6) at iteration
n. After convergence, the torque can be computed from
the flux density field within the airgap e by Arkkio’s

method [31]:
L
T(b) = (R —R) //Erbrbg ds, (8)

where b,, by are the cylindrical components of the flux den-
sity, and R, and R, are the stator’s inner radius and the
rotor’s outer radius, respectively. The axial length of the
machine is normalized to L = 1 m.

3 Optimization algorithm

The purpose of the optimization is to solve the problem (1),
i.e. to find an optimal density vector p that minimizes a
given objective function f. In this article, the objective func-
tion is set to the opposite of the average torque (i.e., the
average torque should be maximized), computed with (8)
over 720 angular positions along one mechanical turn:

f=—(T(b)). 9)

As the density vector p contains many components (at least
one per mesh element), the optimization algorithm should
rely on the sensitivity d,f. The optimization flowchart is
given in Figure 6.

The efficient computation of d,f components is non-
trivial since f rarely depends on p explicitly. Actually,
f rather depends on the system’s physical state, such as
the magnetic field b in the present case. The latter depends



4 The Author(s): Science and Technology for Energy Transition 78, 41 (2023)

Initialization ‘

¥

Stop
criterion ?

| FEM(6) |

l a
Sensitivities

computation
(AVM, (11))

| dof
Update
(Figure 7)

Fig. 6. Flowchart of the optimization algorithm.

implicitly on the density vector p through the physical
equation (6), which involves the material interpolations
(3) and (4).

3.1 Sensitivities computation

The Adjoint Variable Method (AVM) is the most efficient
approach to compute first-order derivatives from many
variables. Once the FEM system (6) is solved, the sensitiv-
ities are computed using the adjoint state 4, which is the
solution of the following adjoint system

dr\” 1o of
da - Oa’
then the sensitivities with respect to each design variable
p; can be calculated with

ﬂf ATﬁ
dp, 7 Oda’

(10)

(11)

Note that (10) is linear and should be solved only once
per iteration. Consequently, the average single-thread com-
puting time per optimization iteration of the sensitivities
(41s) is almost negligible compared to the one of the nonlin-
ear FEM (352s). This high computing time is caused by the
high number of nodes and angular positions for the
calculation.

3.2 Update

To accelerate the optimization to the real materials, each
component dr of the descent direction associated with
the mesh element 7 is normalized as follows:
dpr f
dr = — 7 (12)
lIdy /I

with d, f the sensitivity vector of f to the part of the
global density vector associated with the element 7. A
simplified trust-region algorithm [32] adapts the step
size heuristically according to a quality indicator, which

Ap, Af, dpf
v

| Model evaluation ‘

q

l |

q < 0.005 q € [0.005,0.05] @

Pn+1 < Pn Pn+1 <—pn+0lndn pn-{—l(*pn‘i”andn
Ony1 — Qn/2 Qnt1 < Qn ant1 +— 1.2 X an

Pn+1, Onit1

Fig. 7. Flowchart of the update algorithm.

compares the measured variation of the objective function
Af between two consecutive iterations with its variation
predicted by the linearized model. It is defined as

Af

A4 A "

q

where Ap is the variation of the density vector between
two consecutive iterations. If ¢ is too low, the iteration
is rejected, and the step size is reduced. If ¢ is big enough,
the iteration is accepted, and the step size can also be
increased. The flowchart in Figure 7 gives more details
on this algorithm that is applied in the following sections.

Then, p, 1 is projected orthogonally to remain within
the bounds of D. The algorithm stops if the step o« becomes
smaller than 5 x 107, or after 100 iterations.

4 Rotor optimization

The presented topology optimization algorithm is first
applied to FSM rotor. The optimization domain is shown
in Figure 8. In order to explore new structures, different
electrical frequencies are injected within the FSM. The opti-
mization setup is presented in Section 4.1, and the results in
Section 4.2.

4.1 Parametrization

There are only two candidate materials to distribute inside
the rotor: soft magnetic steel (FeCo alloy AFKI1 from
Aperam [27]) and air. Therefore, the interpolation domain
D is a 1D line segment that joins both materials and
supports the optimization variables contained in p; air
corresponding to p = 0 and steel to p = 1. The density
interpolates the magnetic polarization linearly:

m:{(D:[O,l])x[RQHRQ 14

pvb '—>P mFeCo(b)7
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Fig. 8. Optimization domain (gray) in case of a rotor
optimization.

10

3 S
h (A/m) x10

P 0 0

Fig. 9. Magnetic behavior used for the computation.

and the resulting BH curves for intermediate materials are
given in Figure 9. Note that the intermediate BH curves are
equivalent to those of a 1D serial assembly of steel and air
along the flux lines, p representing the linear fraction
of steel®. Initially, all densities are set to 0.5.

Because there is no current neither in air nor steel, the
current density inside the rotor j, is set to 0. However,
the current density inside a stator conductor 4, following
the enumeration in Table 1, reads:

j; = Jcos (N97n—ig+lﬁ)7 i€ [0,5], (15)

where J=10 A/ mm? is the current density amplitude, N
is the number of electrical periods during one complete
mechanical rotation, 0,, is the mechanical angle of the ro-
tor, and  the electric angle set to 0° for the rotor opti-
mization. The N values were tested between 1 and 20,
corresponding to different electrical frequencies.

4.2 Results

The final average torques of optimized machines are plotted
in Figure 10. The highest torque is obtained for N = 10,

2 However, the gray materials are assumed to be isotropic,
whereas a serial assembly is not.

Table 1. Materials names and indices.

Name A C- B+ A- C+ FeCo Air
7 0 1 2 3 4 5 6 7

corresponding to the current feeding of the reference
machine shown in Figure 2. Therefore, a very similar rotor
design shown in Figure 11a is obtained and develops about
the same torque ({7T}o) = 2244 Nm/m) as the reference one
({Trer) = 2236 Nm/m) under the same current feeding.

The results indicated in Figure 10 show that N = 4 and
N = 16 can produce a lower torque than the reference but
more significant than the rest of the N values. The associ-
ated designs are drawn in Figures 11c and 1le, and their
convergence curves are compared to the one obtained with
an unsuitable value N = 13 in Figures 12a and 12b.
Although they reach a lower torque than the N = 10 struc-
ture, their topologies fundamentally differ from the refer-
ence rotor and are unusual for a human designer. Indeed,
they contain disconnected parts, illustrating the ability of
topology optimization to find innovative designs.

The algorithm fails to find meaningful structures for the
rest of the N values, which may indicate the impossibility of
designing suitable rotors under these conditions. An exam-
ple of such a “bad” optimized design for N = 13 is drawn in
Figure 13, which leads to the conjecture that there exist
suitable rotors only for N = 4 + 6n, n € N.

5 Stator optimization

Density-based methods can be extended to multi-material
problems, such as optimizing an FSM stator. Following
the results of the previous section, we impose N = 10 with
the reference rotor geometry shown in Figure 2. The
magnets’ positions and orientations are also fixed, given
the optimization zone drawn in Figure 14.

5.1 Three-phase machine

The optimization of a 3-phase stator is first addressed. Since
the permanent magnets are imposed, there are 8 candidate
materials (steel, air, and conductors®) listed in Table 1.
A multi-material interpolation formalism is necessary to
address this problem. To handle this large amount of
materials, the interpolations (3) and (4) are supported by
a multidimensional space D. We chose D as a convex poly-
tope that supports shape functions set {w;};cj0,77 [28], rep-
resented in Figure 15. The diamond-shaped domain allows
the distribution of the conductors onto the same plane with
respect to their electrical phase. The basis function values
are computed with an optimized version of the code given
in [33], available at [34].

The chosen penalization functions P,, and P; are
adapted from [35] and read:

3 The 6 electrical phases (3 positives and 3 negatives) are
considered different materials even if they are all made of copper
because they do not carry the same current density.
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Fig. 10. Average torque of optimized designs depending on N.

3[T]

(e) Final design N = 16

(f) Flux density (N = 16)

Figure 11. Resulting designs and flux maps with the highest
torques for rotor optimization [15].

[0,1] — [0,1]
P, L 1-o (16)
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(a) Torque evolution (b) Step size evolution

Figure 12. Convergence curves during the optimization.
a) Torque evolution, b) Step size evolution.

3[T]

(a) Final design

(b) Flux density

Figure 13. “Bad” structure obtained with N = 13. a) Final
design, b) Flux density.

[0,1] — [0,1]
P;: { o) (17)

®— o
The optimization is then performed for several current
angles ¥ € [0°, 60°]. The resulting designs are given in
Figure 16 with their average torques. The current angle
strongly influences the resulting topologies; when it is
incorrectly set, it may return non-manufacturable designs
with no return conductors.

Intermediate { values promote single conductors in

each slot, as there is a factor - ~ (.87 between the total

current amplitude in sliced conductors and plain conductor
slots, as illustrated in Figure 17.

The structure obtained with {y = 0° is very similar to
the reference shown in Figure 2. However, the conductors
are larger, carrying more current for the same current
density, set to J = 10 A/mm? Consequently, the average
torque of the optimized design is higher. Note that the
order of conductors is inverted within the same slot. As
topology optimization considers only electromagnetism
performance, it places the conductors according to their
electrical phase, resulting in distributed windings. However,
Figure 2 proposes concentrated windings, probably for
manufacturability reasons that are still ongoing research to-
pics in topology optimization.
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2

Figure 14. Design domain (gray) in case of the stator

optimization.

FeCo FeCo 1
! 0.8
0.6

-
B 0.4
0.2
B A
0

(a) Materials placement (b) Values of a shape function

associated with 3

Figure 15. Interpolation domain D that supports a set of shape
functions in the 3-phase stator case. a) Material placement,
b) Values of a shape function associated with B".

5.2 Single-phase machine

To illustrate the creativity of topology optimization, we now
address an academic problem with no reference solution.
More precisely, we want to optimize the stator of a 10/12
machine that has the same 10-tooth rotor and 12-magnet
configuration, using only a single electrical phase, i.e., a
positive and a negative conductor denoted as A+ and A-.
Single-phase FSMs are of interest for domestic and low-cost
applications, and some classic topologies were compared in
[36].

Since there are now only 4 candidate materials, the inter-
polation domain D is a tetrahedron drawn in Figure 18a,
and the basis functions are the barycentric coordinates as
illustrated in Figure 18b. The penalization functions are
the same as in Section 5.1.

A parametric sweep on y was performed. The results
are shown in Figure 19, and the corresponding torques
are plotted in Figure 20. The case of ¥ = 0° [60°] leads to
manufacturable designs that reach 2200 Nm/m with a
mixture of C- and E-core patterns [37, 38].

5.3 Torque comparison

The dependence of the average torque with the current
angle V is given in Figure 20 hereafter.

;o le.

= 2444 Nm/m (b) ¥ = 12°,(T) = 2522 Nm/m
c) ¢ = 24°, (T) = 2747 Nm/m (d) 9 = 36°, (T) = 2798 Nm/m
e) ¢ =48°,(T) = 2693 Nm/m (f) ¢ = 60°, (T) = 2444Nm/m

Figure 16. Designs obtained after stator optimizations.

The rotor is almost insensitive to Y because its
optimized topology compensates for the electric phase shift
by a mechanical rotation. This mechanical rotation is
impossible for the stator optimization since the perma-
nent magnet positions are imposed. For the three-
phase machine, the factor between the maximum and

minimum average torque is 0.86 ~ ‘/73 because of the sliced
conductors, as predicted in Section 5.1. Since there are no

sliced conductors within the stator slots for the single-phase
machine structures, its average torque remains almost
constant.

Even if it was not considered in the optimization, the
max(7T)—min(T)
(T)
when designing an electrical machine, and is given in
Table 2. The corresponding instant torques of manu-
facturable machines (i.e., the structures obtained with

Y = 0°) are plotted in Figure 21.
The single-phase machine produces a pulsating torque
with a high ripple but can still produce a significant average

torque ripple r = is an important criterion
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Figure 17. Fresnel diagram of the current in sliced (black) and
plain conductors (red).

FeCo
(a) Materials placement (b) Values of a shape function

associated with the FeCo steel

Figure 18. Interpolation domain D supports a set of shape
functions in the single-phase stator case. a) Materials place-
ments, b) Values of a shape function associated with the FeCo
steel.

ol

= 2200Nm/m (b) ¢ = 20°, = 2200Nm/m
=40°, = 2187Nm/m(d) ¥ = 60°, = 2198 Nm/m

Figure 19. Examples of single-phase optimized designs.

torque. The two other optimized designs outperform the
reference, and the best performance is obtained by optimiz-
ing the 3-phase stator.

In the end, the best-found topology is similar to the
reference, but our topology optimization approach has
explored other unusual structures.

2900
2800 PR
ek
£ 2700t
z
e 2600 X [T Reference
=3 2500 - —#— Optimized rotor
§ L —— Optimized Stator (3-phase) I
22400 | e Optimized Stator (1-phase) ]
)
Z 300 |
2200 F .
2 1 OO L L L L L
0 10 20 30 40 50 60
(%)

Figure 20. Average torque obtained for each .

Table 2. Torques of the optimized designs (¥ = 0°).

Average torque Ripple
Reference 2236 Nm/m 14.6%
Rotor (Sect. 4) 2244 Nm/m 10.5%
3-phase stator (Sect. 5.1) 2444 Nm/m 6.1%
1-phase stator (Sect. 5.2) 2201 Nm/m 229%

6000 F  |——~ Reference — Optimized Stator (3-phase) | |
— Optimized rotor Optimized Stator (1-phase)
5000 - 1
£ 4000 - E
g
Z
= 3000 F
g‘ N~ A N S —— — N
= A R N A e S R
S 2000 X< - . eSS
1000 1
0L \ \ s \ \ s : 1

0 5 10 15 20 25 30 35
Mechanical angle (°)

Figure 21. Instant torque obtained for the optimized designs
for each .

6 Conclusion

This work presents and details a density-based topology
optimization method applied to the torque maximization
of a permanent magnet flux switching machine. Unconven-
tional problems are addressed, such as the rotor optimiza-
tion for several electrical frequencies and the stator
optimization for different numbers of phases. Unusual
structures were obtained, such as disconnected rotors or
a hybrid single-phase stator made of C- and FE-cores.
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This variety of results from an empty optimization domain
highlights the creativity and unbiasedness of a topology
optimization approach. The best-obtained topology is sim-
ilar to the reference design but with better torque perfor-
mances. In other applications, the optimal topology might
differ from the known references.

In conclusion, topology optimization is a valuable tool
to help design electrical machines that can be improved fur-
ther. Future research will add the permanent magnet to the
set of candidate materials so that the stator can be opti-
mized in its entirety. Such work will be the first step to
the topology optimization of a complete flux switching
machine with both rotor and stator simultaneously. Addi-
tional objective functions can be added to tackle industrial
problems such as ripple and back-electromotive force.
Finally, other physics such as thermics and mechanics
may be considered in order to obtain more ready-to-use
designs.
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