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Abstract 

A hybrid reduced model for relativistic electron beam transport based on the 

angular moments of the relativistic kinetic equation with a special closure is 

presented. It takes into account collective effects with the self-generated 

electromagnetic fields as well as collisional effects with the slowing down of the 

relativistic electrons by plasmons, bound and free electrons and their angular 

scattering on both ions and electrons. This model allows for fast computations of 

relativistic electron beam transport while describing their energy distribution 

evolution. Despite the loss of information concerning the angular distribution of 

the electron beam, the model reproduces analytical estimates in the academic 

case of a monodirectional and monoenergetic electron beam propagating 

through a warm and dense plasma and hybrid particle-in-cell simulation results 

in a realistic laser-generated electron beam transport case. 
 

Keywords: Vlasov–Fokker–Planck, relativistic electron beam, hybrid model 

 

1. Introduction 
 
Even if electrons were the first elementary particles discovered in the 19th century thanks to 

cathode rays [1], their relativistic transport through matter is still an intense field of research 
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from the runaway electrons during thunderstorms [2] to the heating by fast electrons in the fast 

ignition approach of inertial confinement fusion [3, 4]. A relativistic electron beam of density nb 

and of current density j
b 
propagating through a plasma of electronic density ne ≫ nb generates 

an electric field which tends to eject the plasma electrons out of the beam volume in order to 

equilibrate the total charge in a timescale of the order of the inverse of the plasma electron-ion 
collision frequency [5]. Over the same timescale, the electric field accelerates a return current 

j
p 

≈ − j
b 

and decelerates the beam electrons in order to cancel the total current density in 

agreement with Lenzʼs law [5]. This return current allows for the propagation of electron 

currents in excess of the Alfven–Lawson limit which defines the maximum relativistic electron 
beam current in vacuum [6]. Due to the imperfect current neutralization, a magnetic field is 

induced that can deflect the beam electrons. The plasma electron temperature-density crossed 

gradients, plasma resistivity gradients and mostly the beam current density curl are the main 

sources of this residual magnetic field. Later, this magnetic field begins to diffuse leading to a 

separation of the beam and the return current [7, 8]. The collisions of the relativistic electrons 

with plasma electrons and ions also contribute to the scattering and the slowing down of the 

beam. 

The equation which takes into account both collisional and collective transport processes is 

the Vlasov–Fokker–Planck (VFP) equation for the beam distribution function f
b 

[9]. This 

equation has been extensively studied for 30 years and several numerical methods have been 
developed [10]. Several families of codes can be identified. The first family consists in solving 
the VFP equation by a particle-in-cell (PIC) method [11]. Historically, this method was used to 
solve physical problems where collisional processes can be neglected. The distribution function 

of all electrons (both plasma and beam electrons) is sampled by macroparticles which 

consequently leads to accurate but time-consuming computations. Moreover, in order to limit 

the non-conservative force associated with the particle-grid mapping which leads to self-heating 

and numerical instabilities, the space resolution has to be comparable to the plasma Debye 

length. This poses a strong constraint in the case of dense and/or cold plasmas. Collisional 

processes are treated by Monte-Carlo methods. The second family of codes employs the same 

method but restricted to the beam electrons introducing a low-energy cut off [16]. The plasma 

electrons are taken into account via hydrodynamic equations of conservation or simplified ones. 

This is the family of hybrid PIC codes. Other codes solve the full VFP equation [12, 13] or use a 

decomposition of the distribution function in the momentum space with their corresponding 

hybrid versions. It has been shown that a spherical harmonic decomposition of the distribution 

function enables modeling of arbitrary local anisotropy for large enough expansion orders [14]. 

Besides their accuracy and the rapid progress in high performance computing ressources, all 

these codes are time consuming because of the Courant–Friedrichs–Lewy condition that 
restricts the time step computation combined with the high resolution needed and the large 

number of the distribution function variables. 

In this context, we have developed a new hybrid model for relativistic electron beam 

transport which allows fast computations. The main idea consists in solving the two first angular 

moments of the VFP equation complemented with a special closure relation based on the 

principle of the Minerbo maximum angular entropy approximation from the radiative transfer 

theory [15]. This allows us to close the set of equations by evaluating the 2nd order angular 

moment of the distribution function needed in the 1st order angular moment equation. Contrary 

to the widely used approximation of the distribution function isotropy with one Legendre 
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polynomial often called P1, our model M1 allows one to describe the distribution function with 

an arbitrary local anisotropy. 

In the second section, the relativistic VFP is introduced and applied to relativistic electron 

beam transport through dense matter; the collective effects as well as the collisional effects and 

the temperature dependence of relativistic electron beam transport are presented, bringing out 

the expressions of the collisional and collective parameters used in the model. In the third 

section, the spherical harmonic and the Cartesian tensor scalar product expansions are 

introduced and the M1 approximation is then presented and discussed. Numerical schemes used 

to solve the model are then briefly presented. In the fourth section, an academic case of 

monoenergetic beam propagation through a dense hydrogen plasma is considered in order to 

demonstrate the major features of the M1 approximation. Analytical expressions are also 

derived to check the simulation results. In the fifth section, a more realistic simulation of a laser- 

generated electron beam transport through a thin aluminum target is presented and compared to 

a simulation made with a hybrid PIC code [16, 17]. 

 
2. Kinetic description of relativistic electron beam transport in plasma 

 
2.1. The relativistic VFP equation for relativistic electron beam transport 

We note f
b (r, p, t) the distribution function of the relativistic electron beam in the laboratory 

frame. It is the solution of the VFP equation 

∂f
b
 

+ 
 ∂  

· 
⎛ p 

f
 

⎞  
+  

 ∂    
· 

⎡
⎢e 

⎛
E +  

   p     
× B

⎞ 
f ⎤⎥  =  ∑C ⎡⎣ f  ⎤⎦  (1) 

 

 
where 

 
 

∂t ∂r 
⎜
⎝ γm 

b ⎟
⎠
 

∂p ⎣   
⎜
⎝ γme c  

⎟
⎠  b ⎦ 

α b 

C  ⎡⎣ f ⎤⎦  =  −   
∂
 · ∫ U 
 

 

· 
⎡
⎢f ∂f

α
 – 

∂f
b 
f
 

 
 

⎤
⎥ d3p  (2) 

α b ∂p  
α ⎢⎣  

b  ∂p ∂p  α ⎥⎦ 
α

 

with Uα  the Beliaev–Budker collision operator [18]. The collision operator Cα 
⎡⎣f

b 
⎤⎦ comes from a 

2nd order expansion of the Bolztmann collision integral under the small angle scattering 

assumption 

Δp = Δp 
p 

+ Δp  
b   

with p ≫ Δp ≫ Δp · 
  

(3) 
∥  p ⊥  b ⊥ ∥ 

b is the impact parameter vector and Δp is the momentum variation of one relativistic beam 

electron with momentum p after colliding with one particle α of momentum p
α 
. α particles can 

be ions, bound electrons, free electrons or screened free electrons of the medium where the 
relativistic electron beam is propagating through. We neglect the binary collisions of the beam 

electrons with themselves. (3) means that each binary collision occurs in the 2D plane (p, p
α ) 

and leads to an exchange of momentum mostly in the perpendicular direction to p. Indeed, even 

if large angle collisions lead to a large change in momentum after each collision, the probability 

that they occur is small compared to the probability of small angle collisions. The Beliaev–
Budker collision tensor reads 

3 

e 
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⊥ e 

e 

α r,α 
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1 
⎧
⎪

   1 ⎡  p p p p 
Uα = Uα,0 

⎨I − ⎢ ⊗ −     α   ⊗   α  

2 ⎪
⎩

 ( γ̃ 2  −  1) ⎣ me c me c mα c mα c 

⎛ + γ̃ α ⎜ p 
⊗  p

α    +    
p

α     ⊗ 
p 

 
 

⎞ ⎤ 
⎪
⎫ 
⎪ 

 (4) 

⎝ me c mα c mα c me c ⎠ ⎦ ⎭ 

It is often expressed with the scattering potential Uα = 4πZ 2 e4 ln Λ v expanded within the 
classical Rutherford cross section (dσα dΩ) [9, 18, 19]. But, in a more general case i.e. 

Ruth 
 

without integrating it within a given cross section, the scattering potential reads 

U = 
1 ∫ Δp2v dσ · (5) 

α,0 
2
 r,α α 

vr,α = c γ̃
α

 is the relative velocity of one particle in the rest frame of the other during 

their collision, γ˜ = γγ γ 2 and γ = 1 (1 − v · vα c2). In addition to the small angle 
α α  * * 

scattering assumption (3), we make the assumption that the target particles α remain non- 

relativistic after each binary collision with the relativistic electrons. That is to say we neglect 

high energy secondary electrons 

p
α   

≪ Δp ≪ mα c· (6) 

Under the assumption (3), the 2D binary collision problem consists in solving six unknowns 

(the momenta and the energies of each particle after the collision) while having seven equations 

(one energy conservation equation, four momenta conservation equations and the two Einstein 

relationships between energies and momenta). Consequently, there is one relation between two 

chosen free parameters which are for example the scattering angle θ and the relative energy loss 

of the relativistic electron w = Δγ (γ − 1) in the laboratory frame. So, one is free to work with 

dσα dw instead of dσα dΩ. Moreover, under the assumption (6), the energy conservation 

equation for one collision, Δγ mα c
2 + Δγm c2 = 0, provides 

Δp2 = − 2mα Δγm c2· (7) 

This naturally leads to a relation between the stopping power of relativistic electrons due to 

binary collisions and the scattering potential Uα,0. Knowing the differential cross section dσα dw, 

one can define the loss of electron kinetic energy ε = (γ − 1) m c2 per unit of path length ds as 

follows 
dε ⎞

⎟
 =  εn  ∫ 

wα,max   

w 
⎛
⎜ 

dσα 
⎞
⎟ dw (8) 

 

⎝ ds ⎠ 
α 

wα,min ⎝ dw ⎠ 

with nα the density of the α particles. The integration limits wα,min and wα,max in (8) depend on the 

nature of collisions. For collisions on free electrons, wfree,max = 1 2 due to the indiscernibility of 

electrons, which means that this is the electron with the higher energy which is considered as 

primary and a cut-off wfree,min = wc is used to distinguish full binary collisions and collisions for 

which collective effects take place. That is to say for collisions on bound and screened free 

electrons. These latter collisions can be understood respectively in terms of energy transfer to 

γ˜ − 1 
2 

α 

,0 eα 

α 
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⎡U 

⎝ d  ⎠s 

λ , (3  4πn )
1  3 

and 

 

the excitation of bound electrons by the beam electron electric field and in terms of energy 

transfer to plasma waves in quanta of ωpe (plasmons) where ωpe = is the Langmuir 

plasma frequency. For collisions on plasma ions, wi,min and wi,max correspond respectively to the 
 

max { Debye i } 
bmin = λde Broglie =  2p*. *means the value of the beam electron momentum in the collision 

center of mass frame. λde Broglie is the de Broglie wavelength of the electron, λDebye is the 

screening Debye length and (3  4πn )
1  3  

is the mean inter ionic distance. More details are given 

in the subsection 2.3. 

Injecting the expression (7) in (5) and noticing that vr,α ∼ v under the assumptions (3) and 

(6), one finds the following relation between the scattering potential Uα,0 and the electron 

stopping power (dε  ds)
α 

⎛ ⎞

 

U = −  
mα v 

⎜

⎝ 
dε 

⎠
⎟   ·

 (9) 
α,0 n ds 

α α 

Secondly, still under the assumptions (3) and (6), one has γ
α  

∼ 1 and γ̃
α  

∼ γ . Consequently, the 

Beliaev–Budker tensor (4) can be simplified into 

α,0 

 
 

p ⊗ p ⎤ 

Uα = 
2   

⎢
⎣

I − 
p2 

⎥
⎦ 

(10) 

and its divergence into 

  ∂   
· U

 = − 
Uα,0   p 

·  

 

(11) 

∂p
α 

α
 mα v p 

Instead of their momentum, it is more convenient to work with the variable kinetic energy of 
the relativistic electrons. The structure of the resulting collision tensor motivates to use 

spherical coordinates (Ω, eθ , eϕ) where Ω = p p. Instead of  f
b
, we make use of the distribution 

function Ψ depending on the kinetic energy ε and the propagation direction solid angle Ω 

Ψ (r, ε, Ω, t) = (p2 v) fb
 (r, p, t)· (12) 

where p2 v comes from the Jacobian of the change of variables from p to (ε, 

S (r, ε, t) =  − ∑ ⎜
⎛ dε 

⎟
⎞

 
α α 

Ω). By defining 

(13) 

the total stopping power and 
ν(r, ε, t) =  − ∑ 

mα v 
⎜
⎛ dε ⎞

⎟ 
 

 

 
 (14) 

α 
p2 ⎝ ds ⎠ 

the total angular isotropization rate, one may integrate the collision integral (2) by parts and 

express the VFP equation in the laboratory frame (1) as 

4 πn e m 2 

e e 

commonly used impact parameters b = max 

α 
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∂Ψ  
+ 

 ∂   
· (vΩ Ψ) +  

 ∂  
⎣⎡v (eE · Ω −  S) Ψ⎤⎦ 

∂t ∂r 

⎧ 
∂ε 
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 ⎞ ⎛ ⎞ ⎤ ⎫ 
+ 

  ∂    
· ⎨ (I −  Ω ⊗ Ω) · ⎢ 

e 
⎜
⎝

E +  
vΩ  

× B⎟
⎠ 

Ψ  −  
  ∂   

⎜

⎝ 
ν 

Ψ⎟

⎠ ⎥ ⎬ =  0 (15) 

∂Ω ⎩ 

where 

⎣ p c ∂Ω 2 ⎦ ⎭ 

  ∂    
· ⎡⎣ (I −  Ω ⊗ Ω) · A =  

   1 ∂ 
(sin θA ) +  

   1 ∂Aφ 

 
and 

∂Ω 

 
  ∂   

· 
⎡ 

sin θ ∂θ 

 
 ∂f  ⎤    1 ∂   

⎜
⎛ 

θ sin θ 

 
∂f 

⎟
⎞ 

∂φ 

 
1 ∂2f 

∂Ω 
⎢⎣ (I −  Ω ⊗ Ω) · 

∂Ω 
⎥⎦  

=
 sin θ ∂θ ⎝

sin θ 
∂θ ⎠ 

+
 

 
 

sin2θ ∂φ2 

is the Laplace–Beltrami operator. 
 

2.2. Collective effects of relativistic electron beam transport in plasma 

We consider that the beam is neutralized in charge. That is to say, ne = Z*ni − nb ≈ 

 
Z*ni 

(nb ≪ ne), and we neglect the displacement current in the Maxwell–Ampere equation 
 ∂   

× B = 4π 
(j

 + j ) (16) 

∂r c e b 

while considering times greater than the plasma collisional relaxation time (see [5]). The plasma 

dynamic is taken into account by the generalized Ohm equation [20] 

E = η j + 
  1 ∂ 

(n T )· 
 

(17) 
e ne e ∂r 

Considering the space scale greater than the plasma skin depth c ωpe, which is typically less 

than a fraction of microns, the electron inertia has been neglected in (17). It has been assumed 

an isotropic resistivity tensor (no magnetization effects) and the ideal gas expression for the 

electron pressure Pe = ne Te. Also, the electron viscosity, the thermal force, the magnetic force 
and the friction force due to collisions with beam electrons have been neglected compared to the 
friction force by colliding with plasma particles. In order to account for the induced electric 

field, one has to add the Maxwell–Faraday equation 
 ∂  

× E = − 1 ∂B 
·
 (18) 

∂r c ∂t 

Thus, the system of equations (16), (17) and (18) provides the self-generated electromagnetic 

field equations 

E = − η j +
 ηc 

 ∂   
× B + 

  1 ∂ 
(n T ) 

 
(19) 

 
and 

b 4π ∂r ne e ∂r 

1 ∂B 
+  

 ∂   
× 

⎛
⎜ 

 ηc 
 ∂   

× B
⎞
⎟   =  η 

 ∂   
× j + 

∂η 
× j 

+ 
  1  ∂ne 

× 
∂Te ·

 
 

 

 (20) 

c ∂t ∂r ⎝ 4π ∂r ⎠ ∂r b ∂r b ne e ∂r ∂r 

e   e 

e   e 
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i 

m c γ 2 

e 

⎝ ⎠ 

eα 

⎝ ⎠ ⎢ ( ) 
1 

⎥
 

) 

w = λ 2 max λ 2 , (3  4πn )
2  3    

. The Mott cross section [24] is used for collisions with 

eα 

 

This last equation describes the self-generated magnetic field diffusion with three different 

source terms depending on the beam current density, the electrical resistivity and the plasma 

temperature-density cross gradients, while the self-generated electric field E can be evaluated 

knowing the self-generated magnetic field B following (19). These self-generated electro- 

magnetic fields play an important role in relativistic electron beam transport. The magnetic field 

due to the curl of the beam current density tends to pinch the relativistic electron beam, the 

magnetic field due to the resistivity gradients tends to move the relativistic electrons from low 

electrical resistivity zones to higher electrical resistivity ones, while the resistive electric field 

slows down the relativistic electrons [21]. The plasma electron temperature-density crossed 

gradients in (20) may modify the beam transport in a time scale of a few picoseconds [22] but in 

shorter time scales, this effect can be neglected compared to the previous ones. 

 
2.3. Collisional effects of relativistic electron beam transport in plasma 

The analysis presented above in section 2.1 shows that the VFP equation (15) usually derived 

for free electrons can be generalized to a more general case by substituting the Coulomb 

scattering potential Uα,0 by the realistic stopping power according to (9). We use the general 

expression for the stopping powers in solids and dense plasmas 

⎛
⎜  

dε ⎞
⎟
 n Z 2 e4 

= − 4π α    α 
ln Λ rel· 

 
(21) 

ds α mα v
2 

 

Zα equals 1 for electrons and equals the nuclear charge Z for ions. The Coulomb logarithm 

ln Λ rel is calculated using the Mø̈ller cross section [23] for collisions with free plasma electrons. 

The cut-off used to distinguish the binary part (collision with plasma free electrons) and the 

collective one (collisions with plasma bound and screened electrons) is evaluated by 

c de Broglie { Debye i } 
ions. An extension of the Bethe formula [25] is used with a mean excitation potential Iex 

provided by [26] to take into account collisions with plasma bound electrons. The Fermi density 

effect correction [27] is taken into account according to the Pines and Bohm cross section [28] 

for collisions with screened free electrons (plasmons). These expressions for stopping powers 

are derived in the first Born approximation for low and intermediate Z plasmas and only for 

electrons with kinetic energies greater than approximatively 10 keV. The expressions for the 
densities n and the Coulomb logarithms ln Λrel of (21) are summarized in table 1 . Even if 

α eα 

bremsstrahlung losses of the relativistic electrons can be neglected in the considered range of 

energies (10 keV — 10 MeV), a radiative stopping power from [29] 
 

⎛
⎜  

dε ⎞
⎟ 

ds 

 

 
 

 
rad 

 
= − 4π 

(Z − Z*) (Z − Z* + 1) n e4 ⎡ ⎤ 

⎣
ln  2γ  −  

3 ⎦
 

is added into S. Due to the very low mass ratio me mi ≪ 1, the contribution of the stopping 

power on ions (dε ds is negligible compared to those on electrons. 
i 

Concerning the angular diffusion of the beam electrons, it is worth noting that the 

isotropization rate 
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eα 

n Z e 

e 

max Debye i 

 

 

 

 

 
 

  
 

Figure 1. Total stopping power S (collisional and bremsstrahlung losses) (a) and 
total isotropization rate (b) of relativistic electrons in solid-density and room 
temperature aluminum (black) and copper (red) and in highly compressed (ρ = 50 

g cm−3) and warm (T = 1 eV) hydrogen (blue) as a function of the incident beam electron 
kinetic energy . 

 
 

Table 1. Expressions for the Coulomb logarithms ln Λrel and the densities n of the 
eα α 

stopping powers (21). Z* is the ionization state and ln Λclas = max {2, ln (b b ) } 

is   the   ‘classical’ Coulomb   logarithm   where   b 

eα 

= max {λ 

max min,α 

, (3 4πn )1 3} is 

the upper impact parameter and b
min,α =  (2me c γ 2 − 1 ) if α = ions 

(b
min,α =  (2me c 

nα 

(γ − 1) 2 ) if α = free electrons) is the lower impact parameter. 

ln Λrel 

Ions ni ln Λclas  − 2γ2 − 1 
 

ei 2γ2 Free e− Z*n 
ln clas 1  2γ − 1  1       γ − 1   

2
 

i Λ
ee – ln 2 + 2 − 

2γ2
 ln 2 + 

16 ( γ  ) i ln ( ) + 
2γ2  − 

 

  

2γ2
 

ln 2 + 
16 ( γ  ) 

 

Bound e− 
Plasmons 

(Z − Z*) n 
Z*n ⎛ 2 1 2γ − 1 ⎞ 

1 γ − 1   
2
 

i 
ln ⎜

 c   γ − 1    γ 
⎟ 

⎝ ωp,e  max {λDebye 

, (3  4πni )1 3}⎠ 
 

 

 

2 4 

ν = ∑4π α    α 
ln Λ rel 

 
(22) 

α 
γ 2m 2 v3 

deduced from (14) and (21) does not depend on the targeted α particle mass. Moreover, for 

intermediate and high Z plasmas, the electron beam scattering on ions is dominant compared to 

their scattering on electrons by a factor Z. For the hydrogen plasmas, the scattering on both 

plasma ions and electrons provides comparable contributions. The resulting collisional terms S 

and ν are plotted in figure 1 for solid-density and room temperature copper, aluminum and for 

highly compressed and warm hydrogen. 

(γ − 1) me c
2 

Iex 

γ + 1 

2 

eα 
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2.4. Temperature dependance of relativistic electron beam transport 

The energy deposition by the electron beam produces a heating and a hydrodynamic motion of 

the plasma. On the picosecond time scale, the dominant effect is the electron heating while the 

ion motion is much less important. So, in our simplified model, the ions are assumed to be 

immobile. Both collisional and collective effects contribute to the plasma heating. The electron 

temperature Te of the plasma is calculated in our model according to the following heat equation 
[20] 

C   
∂Te  

−  
 ∂  ⎛

⎜ 
∂Te 

⎟
⎞ CV  Te −  Ti 

 

V ∂t 
∂r 

· 
⎝

κe 
∂r ⎠ 

= We − 
Z*

 τeq 

(23) 

where the advective term, the hydrodynamic velocity divergence, the electron viscosity effects 
and the thermal force have been neglected. Also, the thermal electron conductivity tensor has 

been assumed to be scalar (no magnetization effects) and it has been noted CV = (3 2) Z*ni the 

heat capacity. 

W = ∫ dε ∫ d2Ω (vSΨ) + η j2
 (24) 

e e 
2 

is the heating source term evaluated by calculating the direct collisional energy loss of the 

relativistic electron beam from (15) added to the Ohmic heating. Here, 

S = Se = (dε ds)free e−   + (dε ds)bound e−   + (dε ds)p  due to the fact that me ≪ mi  which implies 

(dε ds)i ≪ Se. The ion temperature is evaluated from the simple equation 

∂Ti 

∂t 
= 

Te − Ti 

τeq 

(25) 

still because the direct frictional energy losses of the relativistic electrons on ions are negligible 

(mi ≫ me). Also, the thermal ion conductivity is neglected. The part of the energy converted 
into density of electromagnetic power 

 ∂ ⎛ E2 + B2 ⎞ ∂ E × B 
 Wem = 

∂t 
⎜
⎝ 8π 

⎟
⎠  

+  c 
∂r  

· 
4π 

(26) 

is negligible compared to We. The electron-ion equilibration time τeq is taken from [30], allowing 

one to express the thermalization of heated electrons on ions with an arbitrary degree of electron 

degeneracy. Even if the ideal gas expression that has been used for CV = (3 2) Z*ni, that does 

not take into account the electron degeneracy at low temperatures, the results are not too greatly 

affected. While the collisional energy losses and the collisional angular diffusion of relativistic 
electrons weakly (logarithmically) depend on the plasma temperature, the self-generated 

electromagnetic fields are very sensitive to the different temperature regimes. Indeed, the heat 

capacity CV , the transport coefficients η and κe as well as the ionization state Z* depend on the 

temperature. The latter is evaluated using the expression from [26], except for hydrogen 

plasmas for which it predicts too high values for Z* at temperatures below the Fermi 

temperature TF . In this special case, assuming that the temperature Te = Ti = T remains lower 

than TF during and after the heating by the beam, we take CV = (3 2) ni while the electron-ion 

equilibration term vanishes in (23). 
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Figure 2. Electrical resistivity for aluminum (black) and copper (red) as a function of 

the electron temperature plotted in two particular cases: Ti = 300 K (dashed curves) and 
Ti = Te (solid curves) and for hydrogen (ρ = 50 g cm− ) with T = T (solid blue curve). 

3 

 

The electrical resistivity can be written as η = m ν n e2 and the thermal conductivity 

κe = γ
L 
Te  η 

e e e 

where νe is the electron collision frequency and γ
L 
the Lorenz constant. In the 

following, the electrical resistivity η and the thermal conductivity κe for the copper and the 

aluminum are evaluated using the Eidmann–Chimier model [31, 32] which allows one to 
calculate the transport coefficients with different ion and electron temperatures. In this model, 
the collision frequency of the electrons νe is evaluated by taking the average of the 

plasma   electron   collision   frequency   expressions   in   different   temperature   regimes 

ν−2 = (ν + ν )
−2   

+ ν−2 + ν−2 .  In  the  low  temperature  regime,  the  mean  free  path  is 

evaluated by ve  (νe−ph + νe−e ) where νe−ph is the collision rate of conduction plasma electrons on 

phonons, νe−e is the collision rate of conduction plasma electrons on themselves and 

ve = is the electron velocity. In the high temperature regime, the mean free path 

is evaluated by ve νSpitzer where νSpitzer is the Spitzer collision frequency [34]. In the intermediate 

range of temperature, the mean free path is written as v  ν  where ν  = v   (3  4πn )
1  3

. For the 

hydrogen plasmas, as suggested in [33], the transport coefficients are calculated as 

η−2  = η −2 + η −2 and κ 2 = κ 2 + κ 2 where η and κ are the hot temperature 
Hubbard Spitzer e Hubbard Spitzer Spitzer Spitzer 

Spitzer transport coefficient [34] while η
Hubbard 

and κHubbard are the low temperature Hubbard 

transport coefficients [35]. The transport coefficients η used in the model are plotted for 
aluminum, copper and highly compressed hydrogen in figure 2. Concerning the Hubbard 

transport coefficients, a least square fit from the ion-ion coupling parameter Γ table of [35] is 

used to avoid discontinuities. 

(2TF  + Te ) me 
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l=0 

N +1 
S2   ⎣ l=0 4π ℓ! 

ℓ 
⎦ 

∞ 

 

3. M1 model for relativistic electron beam transport 

 
3.1. Introduction-spherical harmonic and Cartesian tensor scalar product expansions 

A standard method of solution of the VFP equation (15) consists in using a spherical harmonic 
decomposition. This takes advantage of the fact that the spherical harmonics constitute a full set 

of orthogonal functions on the unity sphere S2 and are the eigenvectors of the Laplace–Beltrami 
operator [14]. Another approach consists in using a Cartesian tensor scalar product expansion 

Ψ  = 
1 1 

Ψ ⊙ 
Ω(ℓ)   (27) 

∑
4π ℓ!   ℓ ℓ 

where Ψℓ is the ℓth order angular moment of the distribution function Ψ 

Ψℓ (r, ε, t) = 
S2 

ΨΩ(ℓ) d2Ω, (28) 

Ω(ℓ) equals the (ℓ − 1) tensor products of Ω with itself Ω ⊗ ... ⊗ Ω and ⊙ℓ is the ℓ times 

contracted product. It has been shown that the Nth order Lagrange polynomial approximation 

(Cartesian tensor scalar product expansion with ℓmax =  N ) is strictly equivalent to the spherical 

harmonic expansion approximation with ℓmax = N [36]. The lth order angular moment of the 

VFP equation can be obtained by integrating (15) multiplied by Ω(ℓ) over the unity sphere S2. 

The resulting expression involves the (ℓ  + 1)th order angular moment. Consequently, the 

(N + 1)th order angular moment has to be approximated to close the set of equations. This is 

done by imposing the PN closure relation ⎡  N    
 1  1 ⎤ 

Ψ (r, ε, t) = ∫ ΨΩ(N +1) d2Ω ≈  ∫  ⎢∑ Ψ ⊙ℓ Ω(ℓ) ⎥ Ω(N +1) d2Ω· 

 

In practice, the models are often limited to the 1st order approximation (P1) in order to make 

fast computations. In this approach, the first two equations read 
∂Ψ0 +

 ∂ 
· (v Ψ ) +

 ∂ 
 

 

v (eΨ  · E −  SΨ ) ⎤⎦  =  0 (29) 

 
and 

∂t ∂r 
1 ∂ε 1 0 

∂Ψ1   +  
 ∂   

· (v Ψ ) +  
 ∂  ⎡⎣v (eΨ 

 

· E −  SΨ ) ⎤⎦  =  
e 

(Ψ  −  Ψ ) · E +  
   e   

Ψ  × B −  ν Ψ· (30) 
 

∂t ∂r 2 ∂ε 2 1 
p 

0 2 γme c 

The second order angular moment Ψ2 is evaluated by using the P1 approximation 

Ψ ≈ ΨP1 = Ψ0 4π + Ψ1 · Ω 4π of (27) 

Ψ = ∫ ΨΩ ⊗ Ω d2Ω ≈ ∫ Ψ Ω ⊗ Ωd2Ω = 
1 

Ψ I (31) 
2 P1 

3   
0 

which is exactly the second order angular moment of an isotropic angular distribution function. 

Consequently, the P1 approximation (31) is limited to weakly anisotropic distributions and it 

does not allow one to evaluate the anisotropic part of Ψ2. Moreover, ΨP1 may become negative 

[39]. 

1 1 

∫ 

S2 



New J. Phys. 16 (2014) 073014 M Touati et al 

12 

 

 

α1 

α1 

⎞ ⎛ ⎞ 
0 0 

S2 

1 1 
S2 

1 

 

3.2. The M1 closure 

Another approach consists in solving the set of equations (29) and (30) with a closure relation 
1 

⎛ 
Ψ ⊗ Ψ 1 

⎞
 

Ψ ≈  ∫ Ψ Ω ⊗ Ω d2Ω = Ψ I + μΨ ⎜ 1 1   − I⎟ 
 

 

(32) 

2 M1 
S2 3   

0 0 ⎜
⎝ Ψ

 
3  ⎟

⎠
 

where μ = μ (Ψ0, Ψ1) ∈ [0, 1] is a closure parameter depending on the two first angular 

moments in such a way that the closure relation (32) is exact for both totally isotropic angular 

distributions (μ = 0) and totally anisotropic angular distributions (μ = 1). According to the 

method derived by Minerbo [15], Levermore [37] and Dubroca [38, 39], the approximate 

distribution function ΨM1 is found by maximizing the local angular entropy of beam electrons 

with a given kinetic energy under the constraints of the definition of the angular moments Ψ0 

and Ψ1. This local angular entropy per unit energy of the beam is defined by 

Hε [Ψ] = − 
S2 

Ψ (ln Ψ − 1) d2Ω· (33) 

The distribution function maximizing Hε [Ψ] is found by the standard procedure of the Lagrange 

multipliers α0 and α1 constrained by the definitions (28) of Ψ0 and Ψ1. The Lagrangian of this 
maximization problem is 

⎛ 
Lε [Ψ] =  Hε [Ψ] −  α  ⎜

⎝
Ψ  −  ∫  Ψd2Ω

⎠
⎟  −  α  · ⎜

⎝
Ψ  −  ∫  ΨΩd2Ω

⎠
⎟ (34) 

and the maximizing distribution function ΨM1 is then defined by 
dLε (Ψ  =  Ψ ) = 0 (35) 

 

dΨ M1 

where d dΨ is the functional derivative. The solution of (35) is ΨM1 = A exp (α0 + α1 · Ω) 
where the parameter A (which has been introduced for dimensional reasons) and the Lagrange 

multipliers α0 and α1 have to be evaluated in terms of physical quantities by using the 

definitions (28) of the moments Ψ0 and Ψ1. One has 

Ψ = ∫ Ψ d2Ω = A exp (α ) 
 

(36) 

 
and 

0 M1 0 
S2 

 

 

2 

 ⎛ 1 ⎞ α1 

Ψ1 = 
S2 

ΨM1Ω d Ω = A exp (α0 ) ⎜
⎝

coth α1 − 
α   

⎟
⎠ 

· (37) 

From (36) and (37), one deduces an expression for the anisotropy vector 

Ψ1 
⎛ 

 
 

  1 ⎞ α1 

Ωε =  
Ψ   

=  ⎜
⎝ 

coth 
α1 − 

α   
⎟
⎠ 

· 
(38) 

It is defined as the mean propagation direction of the electrons having the energy ε at the 

position r and time t. Due to the triangular inequality applied to (28) with ℓ  = 1, one has 

necessarily 0 ⩽ Ωε ⩽ 1. Although the bijective relation (38) cannot be inverted analytically, 

2 

∫ 

∫ 

0 

1 

1 

4π sinh α1 

 α1  

 

4π sinh α1 

 α1  
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2 

2 

⎜ 

 ∂  ⎡2 

2 

 

one can fit the real values of α1 (Ωε) by 

α1 (Ωε) ≈ 3Ωε 
Ω 2 

  

(39) 

1 −  
      ε      (1 +   Ωε  ) 

Finally, one deduces an explicit expression 
 

ΨM1 = Ψ0 exp (α1 · Ω)· (40) 

 

In the isotropic case where α1 ≪ 1 ( Ωε ≪ 1), the M1 model reduces to the one-polynomial 

approximation P1. But, in the opposite case of a strong anisotropy α1 → ∞ ( Ωε → 1), the 

function ΨM1 → Ψ0 δ [Ω − Ωε] where δ is the Dirac distribution. By substituting (40) in the 

definition (28) of Ψ2, one obtains ⎛ 
coth α      

⎞
 

μ = 1 − 3 ⎜ 
⎝ 

1  − 
1 

α1 α1 

⎟ 
2  ⎟

⎠
 2 (1 + 

Ωε  )· 

(41) 

The closure (32) is also known as the Eddington approximation which has been developed 

previously for photons [40]. According to studies on radiative transfer [15, 37, 38, 41], the 

closure parameter can be written as μ = (3χ − 1) 2 where χ is the Eddington factor. This M1 

closure relation (32) is a linear combination between the local beam-like case where all 

electrons at the position r with the energy ε move in the same direction Ωε and the local 

isotropic case where all electrons at the position r with the energy ε can move in all directions 

with the same probability. It preserves consequently the advantage of the P1 model in fast 

computing while angular distributions are described with a much better precision. The 

dependence of the anisotropy vector Ωε on the closure parameter μ is plotted in figure 3. 

It is not evident that the local angular entropy maximization under the constraints of the 
definition of the angular moments Ψ0 and Ψ1 provides the best possible closure relation. We refer 

here to Minerbo who justified this closure concerning monoenergetic photons by saying: ‘in 
communication theory, it is shown that the information content is the negative of the entropy of 

the distribution. Thus, by using the maximum entropy criterion, one avoids introducing 
information that is not available. This approach is conceptually superior to the use of an ad hoc 

model for the intensity.’ Concerning the relativistic electrons considered here, even if their 
angular scattering tends to isotropize their angular distribution and increase their angular 
entropy, self-generated electromagnetic fields may not follow the same trend. One can deduce 

the local angular entropy dissipation rate (∂Hε   ∂t) starting from the VFP equation (15) and by 

integrating it over the unity sphere in the momentum space S2. By noting ϕ = Ψ ln Ψ − Ψ, the 

equation reads 

∂Hε 
 

 

+ 
 ∂   

· ∫ vΩϕ d Ω + ⎢ ∫ v (eE · Ω −  S) ϕ d2Ω⎥
⎤  

=  ⎜
⎛ ∂Hε 

⎟
⎞
 

 
 

 (42) 

∂t ∂r S2 ∂ε ⎣ S2 ⎦ ⎝ ∂t  
col 

α1 

4π sinh α1 

Ωε 
2 

≈ 

col 

· 

⎠ 
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Figure 3. Closure parameter as a function of the anisotropic parameter Ωε = Ψ1 Ψ0 

(solid blue curve) plotted within the approximation (39). The dots are the exact values 

of μ for some values of Ωε . 

 

with  
⎛ ∂H ⎞ ν  1  

⎡
⎢ ⎛ ∂ϕ ⎞

2
 ⎛ ∂ϕ ⎞

2⎤
⎥

 
 
 v ∂  

ε ⎟
⎠ 

= ∫ ⎜
⎝ 

⎟
⎠   

+  ⎜ ⎟ d2Ω −  Ψ   (p2 S). (43) 

∂t 
col 

2 S2 ϕ ⎢⎣ ∂θ ⎝ ∂φ ⎠  ⎥⎦ 0 p2 ∂ε 
 

The local angular entropy dissipation rate (∂Hε   ∂t) contains two terms. The term depending 

on the isotropization rate ν is positive and consequently increases the angular entropy Hε. But, 

the sign of (∂Hε   ∂t) depending also on the total stopping power S is not defined. It means that 

energy exchange between energy groups of beam electrons does not allow us to consider each 

group as a closed system. Moreover, the third term in the left hand side of (42) shows that the 

self-generated electric field affects the angular entropy time evolution. Nevertheless, our 

experience of using the M1 model confirms that the closure relation (32) allows for a 

sufficiently accurate and fast computation of the VFP equation (15) with an arbitrary degree of 

anisotropy. Moreover, it continuously relates the anisotropic and isotropic regimes while 

satisfying the physical constraints Ψ0 ⩾ 0 and 0 ⩽ Ωε ⩽ 1 thanks to the exponential form (40) 

[42]. The numerical experiments carried out for the comparison of M1 computations with the 

full VFP code [13] have shown good agreements with a much reduced computation time [43]. 

 
3.3. Numerical schemes 

The set of equations (29), (30) and (32) is resolved explicitly using a second order HLL 

Riemann solver [44] (from the name of its founders Harteen, Lax and Van Leer) for the 

advective terms in space and energy. The collisional slowing down term is solved using the first 

order downwind scheme. The electron beam density 
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0 0 0 e 

2σ 2 2 (v σ )
2

 

0 x   t 0 0 

∞ 

nb  = ∫ Ψ0 dε 
 

(44) 
εmin 

and the electron beam current density 
∞ 

b 
= enb vb = e 

εmin 

Ψ1v dε· (45) 

are calculated with the two first angular moments Ψ0 and Ψ1, respectively. The self-generated 

electromagnetic fields (19), (20) are solved explicitly with second order schemes except for the 

magnetic diffusion term, which is solved implicitly with a second order scheme using a 

conjugated gradients algorithm. The plasma heat equations (23), (25) are solved explicitly with 

second order schemes. The energy deposition into the plasma electrons by direct collisional 

heating by the beam electrons We,col and the indirect heating We,res due to the return current are 

taken into account by writing (24) 

We = We,col + We,res 
∞ ⎡ c ∂   ∞ ⎤2 

(46) 

with We,col = ∫
ε 

SvΨ0 dε and We,res = η ⎢⎣ 4π ∂r   
× B − e ∫

ε 
Ψ1v dε⎥⎦  · 

min min 
 

 

4. 2D-3 V academic case 

 
4.1. Introduction 

As a first illustration of the M1 model, we consider the simple case of a quasi-monoenergetic 

and monodirectional anisotropic (Ωε (z = 0) = ez) relativistic electron beam injected at z = 0 in 

a 2D box (100 μm × 100 μm) of a dense hydrogen plasma with a density ρ = 50g cm−3 and an 

initial temperature T = 1 eV. A Gaussian distribution centered at ε = (γ − 1) m c2 = 1 MeV 

with a 50 keV standard deviation is used for the beam energy spectrum. A Gaussian temporal 

shape centered at t0 = 1750 fs with a standard deviation of σt = 500 fs and a Gaussian spatial 

shape with a standard deviation of σx = 10 μm have also been used. The electron beam has a 

total energy of U = 10 J. As already mentioned in section 2.4, we neglect the electron-ion 

energy exchange, we assume Ti = Te = T and CV = (3 2) ni in (23). The spatial resolution has 

been chosen Δx = Δz = 1 μm while the energy resolution has been chosen Δε = 5 keV from 

εmin = 20 keV to 1.2 MeV, so that the computation time needed is about 20 hours on 8 CPU. In 

this academic case, due to the high hydrogen density—which induces a lot of collisions of the 
beam electrons with plasma particles, and a low plasma electrical resistivity because of plasma 
electrons degeneracy—for the value of the initialized beam current density 

⎪⎧ 
x

2 
⎡⎣z −  v  (t −  t  ) ⎤⎦

2 ⎫
⎪ 

j (x, z, t) = j exp 
⎪
⎨  − − 

 

0 0 
⎬
⎪

 
 

(47) 

⎩ x 0   t ⎭ 
 

with   j = U e (2π )
3  2

ε σ 2 σ = − 1.27 1012   A cm−2and v = c (1 − 1 γ 2 )
1  2

,   the   collisional 

effects are predominant compared to the collective ones. 

j ∫ 

b b0 

b0 
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Figure 4. Hydrogen temperature T [eV] at t = 3.5 ps from the simulation (a) and a 

comparison of the temperature T profiles at z = 0.5 μm from the simulation (solid 

black) and the estimate (48) (dashed red) at t = 3.5 ps (b). 

 

4.2. Plasma heating and self-generated electromagnetic fields 

By assuming a Dirac distribution in energy centered at ε0 for Ψ0 and by neglecting the Ohmic 

heating as well as the electron thermal conduction, one can evaluate from the heat equation (23) 

the hydrogen plasma temperature due to the electron beam energy deposition close to z = 0 (to 

ensure the rigid beam approximation): 

 
T (x, z, t) ≈ ⎛ T0 + T1 exp ⎜ − 2 ⎞ x ⎟ F (z, t) 

 
 

 
(48) 

 

 
where 

⎝ 

F (z, t) = 1 − erf ⎣⎡ (t0  + z  v0  − t) 

2σ 2 ⎠ 

σt 2 ⎤⎦, erf is the error function and 

T = S (ε ) U 4π 2C ε σ 2 ≈ 17.6 eV. A comparison of the simulation profile at z = 0.5 μm 

and t = 3.5 ps with the estimate (48) shows a good agreement (see figure 4(b)). That confirms 

that neglecting the temperature diffusion as well as the indirect electron beam energy deposition 

via Ohmic heating We,res is a good approximation. Indeed, the diffusion time of the temperature 
is about C σ 2 κ ≈ 100 − 1000 ns, which is large compared to the few ps time interval 

V    x e 

considered here. Along the z-axis, the temperature rises from z = 0 to z ≈ 30 μm reaching a 

maximum value of T = 21 eV and then it decreases to the initial value T0 due to the beam 

electron energy losses discussed in the next section. 

By neglecting the resistive diffusion of the magnetic field (ηc2 (t − z v 
– 

t ) 2πσ 2 ≪ 1 at 

the considered times of a few ps) and by approximating the temperature dependance of the 
resistivity  in  the  self-generated  magnetic  diffusion  equation  (20)  as  η ≈   η  (T  T )

α   
where 

0 0 

η = 9 × 10−9 Ω m and α = 1 4 in agreement with the Hubbard theory in this regime (see 

figure 2), the estimate (48) of the temperature allows one to evaluate the self-generated 

magnetic field close to z = 0: 
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Figure 5. Magnetic field By [T] at 3.5 ps from the simulation (a) and comparison 

between the magnetic field By = Bj,y + Bη,y profile at z = 0.5 μm and t = 3.5 ps (solid 

black) where By,j is the contribution due to the beam current density gradients (solid red) 

and Bj,η the contribution due to the resistivity gradient (solid blue) from the simulation 

and their respective estimates (49) (dashed black), (50) (dashed red) and (51) (dashed 
blue) (b). 

 

 
 

where 

By  = By,j  + By,η 

 
T  (x  σ ) ⎡⎢ 

⎛ T ⎞α+1 ⎤
⎥ 

 

(49) 

B ≈  B 0 x ⎜ ⎟ − 1 (50) y,j 0 
T α + 1 ⎢ ⎝ T ⎠ ⎥ 

1 ⎣ 0 ⎦ 

is the contribution due to the beam current density and 

 
By,η ≈ 

 
T 0 
T ⎡ 

α (x 
T  

σx ) exp ( − 
x2 

x2 
 

σx 

⎤1−α 

 
F (z, t) 

 
(51) 

0 

⎣1 + 
1 exp 

T0 2σ 2 )⎦ 

is the contribution due to the resitivity gradients. Here, B0 = j
b0 (ηc σx ) σt ≈  − 7.95 T and 

F (z, t) of (48) has been approximated by the Heavyside function H (t − z v0 − t0 ). These 

analytic estimates are plotted and compared with the simulation results in figure 5(b). It 

confirms that the resistivity gradient makes a significant contribution to the self-generated 

magnetic field even for hydrogen temperatures below 20 eV. The temperature-density crossed 

gradients do not contribute to the magnetic field generation due to the fact that the plasma 

electron density is constant. By neglecting the plasma pressure gradients and the self-generated 

magnetic field in (19), one can also evaluate the self-generated electric field 
⎧ 

x2 ⎡⎣z −  v  (t −  t  ) ⎤⎦
2 ⎫

⎪ 

E ≈  − ηj exp ⎨
⎪  

− − 
 

0 0 
⎬
⎪

·
 

 

(52) 

⎩ x 0   t ⎭ 

π 2 

( − 

z b0 
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eα 

c y e 0 e x 

S 4   e e e ln (54) 

 

 

 
 

 
 

Figure 6. Electron beam density n [cm−3] at t = 1750 fs from the simulation. The 

electron trajectory (oscillating red curve) is arbitrary. 

 

The maximum value of the slowing down electric force −eE · Ωε is eηj
b0  

≈ 0.1 keV μm− . It is 
1 

very small compared to S (see figure 1(a)). This confirms again that the resistive heating We,res in 

the heating equation (23) is negligible. According to the estimates (50) and (51), the maximum 

of the beam cyclotron frequency ω = eB γm c is about eB m c ≈ 1 ps−1at x = σ , z = 0 and 

t = 3.5 ps. Consequently, the inequality ωc ≪ ν is verified in this particular case (see 

figure 1(b)). Thus, the effects of the self-generated electromagnetic fields are negligible and the 

evolution of the electron beam is purely collisional. 

 
4.3. Kinetic evolution of the electron beam 

One can evaluate the mean position on the z-axis of a beam electron with an initial energy ε0 
and an initial velocity v0 = v0 ez at z = 0 by 

s ε ⎛
⎜  

dε ⎞
−1

 

z (ε) = 
0 

cos θ (s) ds = 
ε0 

cos θ (ε) ⎝ 
ds ⎠

⎟

 

dε. (53) 

Notations are illustrated in figure 6. cos θ is the mean cosine of the angle between the z-axis 

and the position of the beam electron and s is the path length following the electron trajectory in 

the (r, ) space. In this academic case, the total stopping power can be writen 
dε 

= − =  − π 
n r 2 m c2 

Λ 

ds β 2 e 
where ln Λe is the sum of the Coulomb logarithms ln Λ of the beam electrons scattering on the 

rel 

bound, free and screened plasma electrons (21) (see table 1), re is the classical electron radius 

and the stopping power on plasma ions has been neglected since me mi ≪ 1. For the case of a 
plasma with degenerated electrons (T = 1 − 20 eV ≪TF = 351 eV for ρ = 50 g cm− ), the drag 

3 

number ln Λe can be evaluated in the limit β → 1 as 

∫ 
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ei 

ei 

e e pe 

Ψ 

0 0 

 

m c2 9 ln 2 
ln Λ = ln    e + − + f (γ) 

 
 

 

(55) 

ωpe 16 2 

where f  (γ ) = ln (β   γ − 1 ) − ⎣⎡ (1  8) + ln 2 γ + ⎣⎡ (1  16) + (1  2) ln 2⎤⎦ γ 2 [45, 48]. 

The mean cosine cos θ can be evaluated in the M1 model (29), (30) and (32) by noticing 

that 

finds 

cos θ = Ωε · ez. Then, neglecting the self-generated electromagnetic field E and B, one 

d   
cos θ  = − k cos θ – 

 1 ∂   
· (Π · e ) 

 

 

 
(56) 

ds 1 Ψ0 ∂r ε 
where Π = 1 − μ Ψ I + Ψ μ −  Ω 

 

  

Ψ1 ⊗ Ψ1 and d = 
 

 

1  ⎡⎣ 
 ∂    + vΩ ·   ∂   − Sv  ∂ ⎤⎦. 

ε 3 0 0 ( ε   ) 2 
1 

ds v ∂t ε ∂r ∂ε 

It has also been noted 
ν n r 2 

k = = 4π e e   (ln Λ + ln Λ rel ) (57) 
1 

v γ 2β 4 e ei 

 

the inverse of the beam electrons mean free path where ln Λ rel  = ln [2(3  4πn )1/3/(  /m c)] − 1+ 
ei i e 

ln ( γ 2 − 1 ) + 1 γ 2 is the Coulomb logarithm from the stopping power of the beam electrons 

on ions (21). Assuming that Ωε ≈ 1 which induces Πε ≈ 0, one may neglect the second term 

in the right hand side of (56) and one obtains, in agreement with the multiple scattering theory 

of Lewis [46], that 
⎛ s ⎞ ⎛ ε ⎛ dε ⎞

−1 ⎞ 
cos θ (ε) ≈ exp ⎜⎝  −  ∫ k1 (s) ds⎠

⎟   =  exp ⎜  −  ∫ k1 (ε) ⎝
⎜ ⎟

⎠   
dε⎟· (58) 

0 ⎝ ε0 ds ⎠ 

As was suggested in [45] and [47], the ratio ln Λrel ln Λe can be considered as a constant and 

one obtains 

  (γ −  1) (γ +  1) ⎤⎥ 

 

 

ln Λe +ln Λ rel
 

2 ln Λ 

cos θ ≈  ⎢⎣ (γ – 1) (γ e 

+  1) ⎥⎦ 
·
 

(59) 

0 0 

Following the arguments of [48], we neglect f (γ ) in  (dε  ds)
−1    

of   (53)   compared   to 

ln Λ* = ln (m c2 ω ) + (9 16) − (ln 2 2) ≈ 7.98 for ρ = 50g cm−3. Moreover, by con- 

sidering (ln Λ + ln Λrel ) 2 ln Λ ≈ 1 in cos θ of (53), the mean electron propagation 
e ei e 

distance can be estimated as 

  1 γ  +  1 ⎡
⎢ 

γ 2 −  1 

 
γ 2 − 1 

 
 

⎛ γ ⎞ ⎤
⎥

 

z  ≈ 
2 * ⎢ 

− –  2 ln ⎜
⎝  

0 
⎟ 

⎥
· (60) 

4πne re ln Λe γ
0 

− 1 ⎣ γ
0 

γ γ ⎠ ⎦ 

Then, the penetration depth of the beam electrons with an initial kinetic energy ε0 and an 

initial velocity v0 = v0 ez at z = 0 can be written as 

z 

e 

2 
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∫ 

0 

0 

⎝ 

L 

 

 
where 

Lp = z (ε → 0) = ξR (61) 

0   ⎛ dε ⎞
−1

 1 (ε   m c2)
2

 

R = ⎜ ⎟ 

ε0 ds ⎠ 
dε = 0 e (62) 

is the range of the beam electrons with an initial kinetic energy ε0 and 
⎛ γ + 1 ⎞

2

 1 ⎛ ln γ ⎞ 
ξ = ⎜ 0

 ⎟ ⎜β 2 − 2 0 ⎟ (63) 

⎝ γ0
 – 1 ⎠ β 2 

⎝ 0 γ
0    ⎠ 

is the correction due to their angular scattering. It is equal to 2 3 when γ0 → 1 and it increases to 

1 when γ0 → ∞. These values are in agreement with the approximation of the penetration depth 

(30) in [48], which assumes a factor ξ ≈ 0.8 to recover the Monte-Carlo simulation. For 

ρ = 50g cm−3 and ε = 1 MeV, one finds R ≈  54 μm and ξ ≈  0.7, which corresponds to 

Lp ≈ 38 μm. This is in agreement with our simulation results shown in figure 4(a) and figure 6. 

The estimates (59) and (60) predict the mean position z and the mean diffusion angle 

arccos cos θ of ≈ 10 μm and ≈ 20° respectively for p
z   

me c = 2.5, ≈ 20 μm and ≈ 30° for 

p
z  

me c = 2 and ≈ 30 μm and ≈ 45° for p
z 

me c = 1.7. This is in agreement with the numerical 

results obtained for the electron beam distribution function in the M1 approximation (40) as 

illustrated in figures 7(b), (c) and (d), respectively. Close to z = Lp, the analytic estimates z 

and cos θ differ from the numerical results as shown in figure 8. This is due to the singularity 

at the penetration depth Lp contained in (59) and (60) and to the fact that the last term in the 

right hand side of (56) cannot be neglected anymore when γ → 1. 

 
5. Realistic relativistic electron beam transport simulation 

 

The M1 model is also compared to hybrid PIC simulations of a relativistic electron beam 

propagation in a thin solid target, motivated by an experimental campaign [49]. The target is 

composed of three successive layers of 1 μm of aluminum, 3 μm of copper and 1 μm of 

aluminum. A linearly polarized laser pulse with a wavelength λ = 800 nm, a total energy 

EL = 0.7 J and a 26 fs full width half maximum time duration is focused with a peak intensity of 

I = 3 × 1019 W cm−2 at a 45° incident angle. Plasma mirrors have been used during these 

experiments to avoid prepulse/preplasma so that the main electron acceleration mechanism 

during the laser-target interaction is the j × B heating. Thus, the accelerated electrons propagate 

mainly in the laser pulse propagation direction. The beamʼs initial properties are obtained from 

a 2D fully PIC simulation of the laser-plasma interaction using the code CALDER [50–52]. The 
beam transport in the dense part of the target is simulated by the hybrid PIC code PARIS 

[16, 17] and by the M1 code described in the previous sections. A low cut-off energy 

ε ⩾ εmin = 20 keV has been used to distinguish between bulk electrons and beam electrons. The 

energy distribution of the laser-generated electron beam, its angular and spatial distribution and 

the instantaneous conversion efficiency from the laser to the beam have been interpolated and 

adapted to initialize the angular moments Ψ0 and Ψ1 at z = 0. For this transport simulation, the 
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3 −3 
Figure 7. Electron beam distribution function f

b 
[cm− . m c ] from the simulation on 

the z-axis at t = 1750 fs, p
y 

= 0 and at different depths z = 1 μm (a), z = 10 μm (b), 

z = 20 μm (c) and z = 30 μm (d). The dashed red curves represent the analytical 

estimates of arccos cos θ (ε) evaluated at the kinetic energies ε corresponding to 

z (ε) = 10 μm (b), 20 μm (c) and 30 μm (d). 
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Figure 8. Comparison between the simulation results at t = t : arccos (Ωmax) versus z 
 

where Ωmax  = Ω  (x = 0, z, ε , t ) = max {Ω (x = 0, 
0 

z, ε, t ) } 
ε,z 

(black curve), 
ε,z 

arccos (Ωmean) 
ε,z 

versus z where 
m 0 

Ωmean  = Ω 
ε ε,z 

(x = 0,  z, ε, t ) 
0 

over ε – ε < 200 
ε,z ε,z ε,z 0 m 

keV (blue curve) and the analytical estimates arccos cos θ (ε) (from (59)) versus 

z (ε) (from (60)) (red curve). 
 

spatial resolution has been chosen Δx = Δz = 0.25 μm while the energy resolution has been 

chosen Δε = 10 keV, in the range from εmin = 20 keV to 3 MeV. The computation time needed 

is about 20 hours on 8 CPU. Absorbing conditions at the target borders have been used so that 

the refluxing of the beam electrons at both the rear and the irradiated side of the target was 

suppressed. 

Almost all beam electrons reach the rear side of the target after approximately 100 fs (see 

figure 9). The maximum beam density is close to the critical density nb,max   ≈ 1021 cm−3 while 
12 −2 

the maximum value of the beam current density j
b,max 

is above 10 A.cm . Thus, the collective 

effects play an important role in the beam transport [53] (aluminum and copper electrical 

resistivity is much higher than that of hydrogen studied in the previous section; see figure 2). 

The self-generated magnetic field reaches its maximum value of approximatively 200 T in the 

first aluminum layer at the end of the beam propagation and then decreases away down to 100 T 

at 500 fs (see figure 10(c)). Indeed, the main contribution to the magnetic fields is due to the 

curl of the beam current density but the electrical resistivity gradients also play an important 

role: at 27 fs, the plasma electrons have been heated up to the Fermi temperature in the first 

aluminum layer. Consequently, the electrical resistivity in this area goes from the cold solid- 

liquid phase to the hot plasma one and decreases with the temperature. The same scenario 

appears in the copper layer at 40 fs and later in the rear aluminum layer. The consequence is that 

it creates electrical resistivity gradients in the target which tend to hollow the beam (see 

figures 10(a) and (b)), as explained in [54]. 

The time evolution of the energy in the target is plotted in figure 11. The energy is 

conserved within a 0.5 % error in this simulation. The total injected energy at z = 0 is ≈ 50 mJ, 

which represents a conversion efficiency from the laser to the electron beam of ≈ 7%. The 

electromagnetic energy is negligible compared to the beam energy by a factor ≈ 1000. The 
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Figure 9. Electron beam density nb [cm− ] from the M1 simulation at t = 25 fs (a), t = 50 
3 

fs (b), t = 75 fs (c), and t = 100 fs (d). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 10. Plasma electron temperature Te [eV] with a logarithm scale (a), plasma 

electrical resistivity η[Ω m] with a logarithm scale (b), self-generated magnetic field By 

3 −1 

[T] (c) and time integrated density of Kα photons emitted per steradian nKα [cm− sr ] 
(d) from the M1 simulation at t = 500 fs. 

 
heating of the target due to the return current (≈ 10 mJ) exceeds by roughly two times the direct 

collisional heating by the beam electrons. 

In spite of the relative complexity of this laser-generated electron beam transport, the 

results of this M1 simulation are close to those of the hybrid PIC simulation. The same behavior 
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Figure 11. Instantaneous beam energy (solid black), integrated beam energy balanced 
between injected and escaping electrons at z = 0 (solid red), escaped energy at z = 5 μm 

(dashed red), total collisional energy loss (solid magenta), total ‘collective’ (resistive) 
energy loss (solid blue), instantaneous electric energy ×1000 (solid green) and 
instantaneous magnetic energy ×1000 (solid cyan) from the M1 simulation. 

 
 

 

 

 

Figure 12. Comparison at t = 500 fs between the mean electron temperature Te     over 

xmax − x < 5 μm profile obtained with M1 (blue) and that obtained with the hybrid 

PIC code Paris (green). xmax  is defined as the position where Te (xmax , z) is the maximum 

electron temperature at a given depth z (red). 
 

is recovered for the temperature profile of the target as shown in figure 12. One can observe the 

signature of a predominant Ohmic heating in the copper layer (z = 1 → 4 μm) temperature 

profile of the target. Indeed, copper is less resistive than aluminum; if direct collisional losses 

were predominant, due to the fact that copper is denser than aluminum, one would see the 

opposite case with a more important heating in the copper layer. The time integrated density of 

Kα emission of radiations per steradian have been computed within the empirical expression for K-

shell ionization cross section by electron impact [55] and the K-shell fluorescence yield 

probability provided by [56]. It is plotted in figure 10(d) at t = 500 fs. There is an important 
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discrepancy between the simulation result and the experimental data concerning the size of the 

Kα spot size. Indeed, the refluxing of the beam electrons across the target which enhances their 

lateral expansion, and consequently increases the induced Kα emission of radiations spot size, 

is not taken into acount here. 

 
6. Conclusion 

 
The relativistic kinetic equation has been adapted for the description of relativistic electron 

beam transport in solids and dense plasmas by expressing the Beliaev–Budker scattering 
potential with the stopping powers of electrons. The collective effects as well as the collisional 
effects have been highlighted to bring out the key parameters of relativistic electron beam 
transport such as the total stopping power and the isotropization rate of beam electrons, the 

evolution of the electrical resistivity, the thermal conductivity and the electron-ion equilibration 

time of the dense plasma. We presented a reduced model suitable to numerically solve the VFP 

equation with less computation time than existing models. The M1 model consists of 

approaching the solutions of the relativistic VFP equation with its two first angular moments 

and by approximating the second order angular moment of the distribution function using the 

Minerbo maximum entropy closure from the radiative transfer theory. An academic simulation 

of a monoenergetic, monodirectional and anisotropic MeV electron beam propagating through a 

highly compressed and cold hydrogen plasma is presented. In this ideal situation, the collisional 

effects are predominant compared to collective ones. It allows one to check the model by 

deriving analytical expressions for the temperature and the self-generated magnetic-fields 

induced by the beam as well as the mean scattering angle and the penetration depth of beam 

electrons. The comparison between these estimates and the simulation shows good agreement. 

Despite the local angular average performed to each energy group of beam electrons, the model 

also reproduces the results obtained with a hybrid PIC simulation concerning a realistic laser- 

generated electron beam transport. The electron beam is injected in a thin aluminum target with 

an imbedded copper layer which has been used during an experimental campaign conducted on 

the UHI100 laser. The distribution of the beam is deduced from a fully 2D PIC simulation of the 

laser-plasma interaction. The obtained electron beam density and its current density as well as 

the self-generated electromagnetic fields shows the same comportment. The final temperature in 

the target recovers the hybrid PIC results in this transport case where the collective effects are 

predominant compared to collisional ones. Besides, in order to reproduce the experimental data, 

the refluxing of beam electrons at both the irradiated and the rear side of the target have to be 

taken into account. The future development of the M1 model may include a second set of M1 

equations to describe the counter propagating electron beam. 
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