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Incompressible limit of porous media equation with chemotaxis and growth

We revisit the problem of proving the incompressible limit for the compressible porous media equation with Newtonian drift and growth. The question is motivated by models of living tissues development including chemotaxis. We extend the problem, already treated by the authors and several other contributions, in using a simplified approach, in treating dimensions two or higher, and in incorporating the pressure driven growth term. We also complete the analysis with stronger L 4 estimates on the pressure gradient. The major difficulty is to prove the strong convergence of the pressure gradient which is obtained here by a new observation on an algebraic relation involving the pressure gradient for weak limits.

Compressible porous media with chemotaxis and growth

. Including chemotaxis, this leads to write the compressible porous media equation combined with the Keller-Segel model

where ρ m (x,t) denotes the cell number density, p m is the pressure which here is taken as an homogeneous law for simplicity (see [START_REF] Degond | Incompressible limit of a continuum model of tissue growth for two cell populations[END_REF][START_REF] Ciarletta | The radial growth phase of malignant melanoma : muti-phase modelling, numerical simulation and linear stability[END_REF] for variants and comments on this issue), G(•) is the growth/death rate of cells. The chemotactic term is based on the Newtonian (attractive) potential

N (x) = -α n 1 |x| n-2 , ∇N (x) = (n -2)α n x |x| n , -∆ N = δ (n ≥ 3), N (x) = α 2 ln(|x|), ∇N (x) = α 2 x |x| 2 , -∆ N = δ (n = 2).
However, the interested reader can check that the drift term can be much more general in the class ∇φ (x) = ∇φ 0 (x) + R n K(x, y)ρ(y)dy, as long as it satisfies at least a control (with compactness), for some 1 ≤ q < ∞,

∇φ L 2 (R n ) ≤ C[1 + ρ L 1 (R n ) + ρ L q (R n ) ], m ≥ q,
see Remark 3. All the equations in the present paper are understood in the weak sense as in [START_REF] He | Incompressible limits of Patlak-Keller-Segel model and its stationary state[END_REF].

We consider the incompressible limit, that is the limit m → ∞. Departing from the following version of Eq. ( 1),

∂ t ρ m -∆ m m + 1 (ρ m ) m+1 m + div[ρ m ∇φ m ] = ρ m G(p m ), (2) 
we may formally pass to the limits ρ ∞ of ρ m , p ∞ of (p m ) m+1 m . We obtain that these limits satisfy the equation

   ∂ t ρ ∞ -∆ p ∞ + div[ρ ∞ ∇φ ∞ ] = ρ ∞ G(p ∞ ), x ∈ R n , t ≥ 0, p ∞ (1 -ρ ∞ ) = 0, ρ ∞ ≤ 1, φ ∞ = N ρ ∞ , (3) 
and we show later that the limiting equation can also be written equivalently

∂ t ρ ∞ -div[ρ ∞ ∇p ∞ ] + div[ρ ∞ ∇φ ∞ ] = ρ ∞ G(p ∞ ). (4) 
One can also establish the so-called complementarity relation, for almost all t > 0

p ∞ ∆ [p ∞ -φ ∞ + G(p ∞ )] = 0, x ∈ R n . (5) 
System (3) with ( 5) is a weak and global form of the geometric Hele-Shaw free boundary problem (see [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF][START_REF] Kim | A density-constrained model for chemotaxis[END_REF]).

As always, the equation for the pressure p m is playing a central role in the analysis; it is written

∂ t p m -|∇p m | 2 + ∇p m .∇φ m = mp m [∆ p m -∆ φ m + G(p m )]. (6) 
The dominant term on the right hand side of this equation explains formally the complementarity relation [START_REF] Collins | Free boundary regularity for tumor growth with nutrients and diffusion[END_REF], the difficulty being to pass to the limit in the quadratic term p m ∆ p m which amounts to prove the strong convergence of ∇p m .

What is new. We complement our previous study [START_REF] He | Incompressible limits of Patlak-Keller-Segel model and its stationary state[END_REF] by taking into account the source term on the right hand side of Eq. ( 1), treating all dimensions n ≥ 2 (rather than n ≥ 3), allowing more general kernels to define φ m and reducing the assumptions on the initial data (in terms of regularity, because we do not use the Aronson-Bénilan estimate here) and removing the compact support assumption.

The purpose of the present paper is also to give a simple proof of the limit m → ∞ in Eq. (1) and recover the limit formulations (3) as well as [START_REF] Collins | Free boundary regularity for tumor growth with nutrients and diffusion[END_REF]. The difficulty is to prove strong convergence of the gradient ∇p m and we show how to use the recent method proposed in [START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF][START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF] and extended in [START_REF] Xu'an Dou | A tumor growth model with autophagy: the reaction-(cross-)diffusion system and its free boundary limit[END_REF][START_REF] David | Phenotypic heterogeneity in a model of tumour growth: existence of solutions and incompressible limit[END_REF]. We base our analysis of the observation in [START_REF] David | Phenotypic heterogeneity in a model of tumour growth: existence of solutions and incompressible limit[END_REF] that compensated compactness arguments permit to identify certain limits. This however is not enough and we develop a new idea, namely that the relation ρ ∞ ∇p ∞ = ∇p ∞ can be proved a priori.

Let us stress that we prove the strong convergence of ∇p m and not only ∇(p m ) m+1 m as in the previous works using this method.

Related studies. This problem has attracted a lot of attention recently and various methods have been used. The problem of the incompressible limit of the compressible porous media equations with a growth/death term controled by pressure was introduced in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] using strong regularity assumptions and the Aronson-Bénilan estimate. This strategy has been extended succesfully to various situations as a singular pressure law p = ερ 1-ρ in [START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF][START_REF] Degond | Incompressible limit of a continuum model of tissue growth for two cell populations[END_REF], chemotaxis and a given drift [START_REF] David | On the incompressible limit for a tumour growth model incorporating convective effects[END_REF], coupling with an equation for nutrients [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF], cell active motion (including a diffusion) in [START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF],

Another route to study the problem is through viscosity solutions and this was performed in [START_REF] Inwon | Free boundary problems for tumor growth: a viscosity solutions approach[END_REF][START_REF] Kim | Porous medium equation to Hele-Shaw flow with general initial density[END_REF]. The case of an aditional drift term is treated in [START_REF] Kim | Singular limit of the porous medium equation with a drift[END_REF][START_REF] Kim | Porous medium equation with a drift: free boundary regularity[END_REF]. Still another approach is based on the obstacle problem, [START_REF] Guillen | A Hele-Shaw limit without monotonicity[END_REF], a method which has been extended to bi-stable terms on the right hand side in [START_REF] Kim | Incompressible Limit of a Porous Media Equation with Bistable and Monostable Reaction Term[END_REF]. Recently a Lagrangian formulation is given in [START_REF] Jacobs | Lagrangian solutions to the porous media equation and reaction diffusion systems[END_REF].

Because the geometric form of the Hele-Shaw problem uses the set Ω (t) = {ρ ∞ (t, •) = 1}, several authors have studied the question to know, when the initial data is the indicator function of Ω (0), if this property is propagated even if Ω (t) has little regularity. For this question it is convenient to work on time integrated variables, which leads to the obstacle problem, we refer to [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF][START_REF] Craig | Congested aggregation via Newtonian interaction[END_REF][START_REF] Jacobs | Tumor growth with nutrients: regularity and stability[END_REF][START_REF] Kim | A density-constrained model for chemotaxis[END_REF]. The regularity and stability of such patches is studied in [START_REF] Kim | Tumor Growth with Nutrients: Stability of the Tumor Patches[END_REF][START_REF] Collins | Free boundary regularity for tumor growth with nutrients and diffusion[END_REF].

In the conservative case, that is G ≡ 0, the Hele-Shaw problem has been handled under the name of congested flows by [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF][START_REF] Maury | Handling congestion in crowd motion modeling[END_REF][START_REF] Maury | Congestion-driven dendritic growth[END_REF], using a new method based on Wasserstein distance and optimal transport. See also for systems [START_REF] Maury | Congestion-driven dendritic growth[END_REF][START_REF] Laborde | On cross-diffusion systems for two populations subject to a common congestion effect[END_REF]. From this point of view, the pressure p ∞ is interpreted as a Lagrange multiplier associated with the constraint ρ ∞ ≤ 1.The derivation departing from the compressible porous media equation has been achieved in [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF][START_REF] Craig | Congested aggregation via Newtonian interaction[END_REF]. These papers combine the gradient flow approach with methods based on viscosity solutions which also allow to define another notion of solutions.

Eq. ( 1) assumes that cells are pushed passively, when including active movement, one arrives at the equation

∂ t ρ m -µ∆ ρ m -div ρ m [∇p m -∇φ m ] = ρ m G(p m ).
This problem is studied in [START_REF] Perthame | Derivation of a Hele-Shaw type system from a cell model with active motion[END_REF] and in the conservative case [START_REF] Kim | A density-constrained model for chemotaxis[END_REF]. There is still a set Ω (t) where p ∞ > 0, but ρ ∞ is smooth and has a positive tail because the equation is parabolic non-degenerate.

Error estimates for p mp ∞ have also been established in [START_REF] Alexander | Quasi-static evolution and congested crowd transport[END_REF][START_REF] Craig | Congested aggregation via Newtonian interaction[END_REF] for the conservative case with Newtonian potential in Wasserstein distance. With a growth term (and no drift) error estimates in H -1 are proved in [START_REF] David | Convergence rate for the incompressible limit of nonlinear diffusion-advection equations[END_REF].

Related to the limit m → ∞, we also mention that the growth term allows for traveling waves. The existence and Hele-Shaw limit are established in [START_REF] Dalibard | Traveling waves for the porous medium equation in the incompressible limit: asymptotic behavior and nonlinear stability[END_REF], see also the references therein and, for the problem with a necrotic core [START_REF] Xu'an Dou | Tumor growth with a necrotic core as an obstacle problem in pressure[END_REF]. Traveling waves in the case with nutrients are also built analytically in [START_REF] Perthame | Traveling wave solution of the Hele-Shaw model of tumor growth with nutrient[END_REF]. Also Darcy's law for the prorous media can be generalized to other rules as Brinkman's law, see [START_REF] Dębiec | Incompressible limit for a two-species model with coupling through Brinkman's law in any dimension[END_REF][START_REF] David | A degenerate cross-diffusion system as the inviscid limit of a nonlocal tissue growth model[END_REF][START_REF] Kim | Uniform convergence for the incompressible limit of a tumor growth model[END_REF], or as full Navier-Stokes system [START_REF] Vauchelet | Incompressible limit of the Navier-Stokes model with a growth term[END_REF].

Outline of the paper. In the next section, we present the basic estimates necessary to analyze the problem. With these estimates we can establish, in Section 3, several relations between weak limits of ρ m and p m . Those are used in Section 4 to prove that ∇p m converges strongly in L 2 and this establishes the complementarity condition. In Section 5, we complete our analysis with some additional bounds on p m in particular ∇p m ∈ L 4 .

Estimates

We complete system (1) with an initial data ρ 0 m ≥ 0 and set p 0 m = (ρ 0 m ) m . We assume that for some constant K 0 independent of m,

R n ρ 0 m 1 + |x| 2 dx ≤ K 0 , R n p 0 m [1 + (ρ 0 m ) 4 ]dx ≤ K 0 m. (7) 
For the right hand side of Eq. ( 1), we assume there is an 'homeostatic pressure' p H > 0 and a constant G M such that

G ∈ C 2 ([0, ∞); R), G(p) ≤ 0 for p ≥ p H , |G(•)| ≤ G M . (8) 
We recall standard estimates.

Proposition 1 (A priori estimates)

With the assumptions (7), ( 8), the solution of Eq. (1) satisfies the following bounds for constant C(T ) independent of m, and for t ≤ T ,

(i) R n ρ m (t)dx ≤ M(t) := e tG(0) R n ρ 0 m dx, (ii) T 0 R n |∇p m (t)| 2 dxdt ≤ C(T ), R n p m (t)dx ≤ C(T )m, (iii) T 0 R n |∇p m+1 m m | 2 + |∇p m+2 m m | 2 dxdt ≤ C(T ), T 0 R n (ρ m ) m+5 dxdt ≤ C(T ), (iv) R n |x| 2 ρ m (t)dx ≤ C(T ),
As usual, several further conclusions follow from this proposition. For instance, the second estimate in (ii) and interpolation with (i) give for 0

≤ t ≤ T , ρ m (t) L m (R n ) ≤ (C(T )m) 1 m ≤ C(T ), ρ m (t) L q (R n ) ≤ C(T ), 1 ≤ q ≤ m.
Furthermore, the first estimate in (ii), (iii) and the Sobolev inequality also give

   p m + (p m ) m+1 m L 2 (0,T );L 2n n-2 (R n ) ≤ C(T ), n ≥ 3, p m L r (0,T );L q (R n ) ≤ C(T ), m+1 m ≤ q < ∞, 2 r = 1 + m+1 mq , n = 2, (9) 
where, for n = 2, the inequality follows from the Gagliardo-Nirenberg-Sobolev inequality and the third estimate in (ii).

These estimates on ρ m ∈ L ∞ ((0, T ); L 1 ∩ L m R n ) also have consequences on the field φ m when it is given by the Newtonian field. Using the Young inequalities for convolutions, or Sobolev inequalities, we obtain, for 0

≤ t ≤ T , ∇φ m (t) L q (R n ) ≤ C(T ), d d -1 < q ≤ ∞, for m > n. (10) 
Also because

∂ t φ m (t) = - m m + 1 (ρ m ) m+1 m -∆ -1 div[ρ m ∇φ m ] + ∆ -1 ρ m G(p m ),
we conclude bounds as

∂ t φ m (t) is bounded in L 2 (0, T ); L 2n n-2 (R n ) . (11) 
These further estimates are not necessarily sharp but are enough for our purposes in the next sections. Lemma 2 furnishes other estimates by interpolation.

Proof The first bound is immediate by integrating Eq. (1).

For the bound (ii), we compute, for t ≤ T , integrating Eq. ( 6)

d dt R n p m (t)dx + R n (m -1)|∇p m | 2 dx = R n (m -1)∇p m .∇φ m + mp m G(p m ) dx. Because min(p m , p H ) ≤ (p H ) m-1
m ρ m , and integrating by parts the potential term, we find

d dt R n p m (t)dx + R n (m -1)|∇p m | 2 dx ≤ (m -1) R n p m ρ m dx + mp m-1 m H M(T )G M .
This shows the estimates (ii).

The estimate (iii) is just a variant of (ii) obtained multiplying Eq. ( 6) by the power

(ρ m ) 2 = (p m ) 2 m or (ρ m ) 4 = (p m ) 4 m
, and integrating by parts. We find, for instance for the first case

m m + 2 d dt R n p m (t) m+2 m dx + R n (1 + m)(ρ m ) 2 |∇p m | 2 dx = R n m m + 1 m + 2 (ρ m ) m+3 + mp m ρ 2 m G(p m ) dx.
As before, we obtain the inequality

m m + 1 d dt R n p m (t) m+2 m dx+ m 2 1 + m R n |∇(p m ) 1+m m | 2 dx ≤ m m + 1 m + 2 R n (ρ m ) m+3 dx + mp m+1 m H M(T )G M .
Then, we use [START_REF] David | New lipschitz estimates and long-time asymptotic behavior for porous medium and fast diffusion equations[END_REF] The bound on (ρ m ) m+2 is also a conclusion of [START_REF] David | New lipschitz estimates and long-time asymptotic behavior for porous medium and fast diffusion equations[END_REF] with m = m + 2 and k = 0.

For proving (iv), we compute

d dt R n |x| 2 2 ρ m dx ≤ - R n ρ m x.[m(ρ m ) m-1 ∇ρ m -∇φ m ]dx + G(0) R n |x| 2 ρ m dx ≤ nm m + 1 R n (ρ m ) m+1 dx - n -2 2 α n R 2n 1 |x -y| n-2 ρ m (x)ρ m (y)dxdy + G(0) R n |x| 2 ρ m dx.
It remains to use the second bound in (iii) and Proposition 1 is proved.

For this proof, we use the following general result.

Lemma 2 Let ρ ≥ 0 and set M := R n ρ(x)dx < ∞. Assume that for some m > 1, ∇ρ m ∈ L 2 (R n ). Then, for all 0 ≤ k+1 m < 1 R n ρ(x) m+k+1 dx ≤ C( k + 1 m , n, M) + 1 2 R n |∇ρ(x) m | 2 dx. ( 12 
)
The constant C( k+1 m , n, M) blows-up as k+1 m → 1, m → ∞ and is unifornly bounded on each closed subinterval.

The difficulty here is to obtain controls independent of m, which forbids direct use of the Sobolev inequalities on ρ.

Proof For a constant A to be chosen later, we decompose ρ as follows

ρ = min(A 1 m+k , ρ) + ψ(ρ), ψ (ρ) = 0 for ρ < A 1 m+k , 0 ≤ ψ (ρ) ≤ 1.
Then, we use the Gagliardo-Nirenberg-Sobolev inequality for u = ψ(ρ)

m+k+1 2
and the Cauchy-Schwarz inequality. We find distinguishing the subsets where ρ ≤ A

1 m+k or not, R n ρ m+k+1 dx ≤ AM +C(n) R n ψ(ρ) m+k+1 2 dx 4 n+2 R n ∇ψ(ρ) m+k+1 2 2 dx n n+2 ≤ AM +C(n) R n ψ(ρ) m+k+1 dx meas({ρ > A 1 m+k } 2 n+2 R n m + k + 1 2 ψ(ρ) m+k-1 2 ψ (ρ)∇ρ 2 dx n n+2 . Because A 1 m+k meas({ρ > A 1
m+k } ≤ M, the last term can be further controled as

C(n) A -1 m+k M R n ρ m+k+1 dx 2 n+2 R n m + k + 1 2 A -m-k-1 2( m+k) ρ m-1 ∇ρ 2 dx n n+2 ≤ A - 2+n( m-k-1) ( m+k)(n+2) C(n) M R n ρ m+k+1 dx 2 n+2 R n m + k + 1 2 m ∇ρ m 2 dx n n+2
because ψ(ρ) > 0 only when ρ > A 1 m+k . Consequently, choosing A large enough independently of m, we may write.

R n ρ m+k+1 dx ≤ AM + R n ρ m+k+1 dx 2 n+2 1 2 R n ∇ρ m 2 dx n n+2
. This directly gives the estimate [START_REF] David | New lipschitz estimates and long-time asymptotic behavior for porous medium and fast diffusion equations[END_REF].

Remark 3 Another way to perform the estimate (ii) in Propositon 1 is as follows. The control of R n p m dx is changed as

d dt R n p m (t)dx+ R n (m -1)|∇p m | 2 dx ≤ (m -1) R n ∇p m .∇φ m dx + mp m-1 m H M(T )G M ≤ m -1 2 R n [|∇p m | 2 + |∇φ m | 2 ]dx + mp m-1 m H M(T )G M .
Consequently any control of R n |∇φ m | 2 dx by a fixed norm L q of ρ m will allow to close the bound thanks to [START_REF] David | New lipschitz estimates and long-time asymptotic behavior for porous medium and fast diffusion equations[END_REF] for m ≥ q (not optimal in view of ( 9)).

Remark 4 Because we also have

R n (p 0 m ) m+1 2m ≤ K 0 m 1 2
, a similar argument as in the proof of (ii) arrives to the conclusion that we can control lower powers of

p m T 0 R n |∇p m (t) m+1 2m | 2 dxdt ≤ C(T ).
3 Fundamental relations for the weak limits

Departing from the integrability properties in Proposition 1, after extraction, there are weak limits

ρ m ρ ∞ in w -L q ((0, T ) × R n ), 1 ≤ q < ∞, ρ m p m p ∞ in w -L 2 ((0, T ); Ḣ1 (R n ). (13) 
For the second statement, the existence of a weak limit is a consequence of the bound on ρ m p m stated in Proposition 1 (iii). We call it p ∞ because of one of the statements below.

Passing to the weak limit in the equation under the form (2), we obtain, as in Eq. ( 3), the relation between ρ ∞ and p

∞ ∂ t ρ ∞ -∆ p ∞ + div[ρ ∞ ∇φ ∞ ] = R(t, x) ∈ L ∞ (0, T ); L 1 ∩ L ∞ (R n ) . (14) 
Indeed,

• the drift term ρ m ∇φ m passes to the limit by weak-strong limit since ∇φ m converges strongly to ∇φ ∞ because of ( 10), ( 11) and D 2 φ m ∈ L q by singular integral theory (see also [START_REF] He | Incompressible limits of Patlak-Keller-Segel model and its stationary state[END_REF] for details).

• the right hand side passes to the weak limit because G is bounded and thus ρ m G(p m ) is bounded in the same Lebesgue spaces as ρ m , following the bounds in Proposition 1. In fact, by compensated compactness, [START_REF] Murat | Compacité par compensation[END_REF][START_REF] Tartar | Compensated compactness and applications to partial differential equations[END_REF] and following [START_REF] David | Phenotypic heterogeneity in a model of tumour growth: existence of solutions and incompressible limit[END_REF], and as it is also used to prove (iii) in the proposition below, it follows that

R(t, x) = ρ ∞ G(p ∞ ).
Also, we insist that the weak limits of p m and ρ m p m are the same, as stated in the Proposition 5 (Fundamental relations) With the assumptions of Proposition 1, these limits satisfy

(i) ρ ∞ ≤ 1 for almost all t ∈ (0, T ) and x ∈ R n , (ii) p m p ∞ in w -L p ((0, T ) × R n ), (iii) p ∞ = ρ ∞ p ∞ for almost all t ∈ (0, T ) and x ∈ R n , (iv) ρ ∞ ∇p ∞ = ∇p ∞ ∈ L 2 (0, T ) × R n n , (v) ∂ t ρ ∞ p ∞ = 0, in duality L 2 (0, T ); H -1 (R n ) , L 2 (0, T ); H 1 (R n ) .
The new information that we bring here is the direct proof of the identity in (iv) based on the estimates of Proposition 1 only. It is instrumental to treat the drift term. Also it establishes that both equations ( 3) and ( 4) hold.

Notice also that the product ∂ t ρ ∞ p ∞ is well defined by duality L 2 t (H -1 ), L 2 t (H 1 ). Proof For (i), we recall that the inequality ρ ∞ ≤ 1 is a consequence of the bound in Proposition 1 (ii) since

ρ m (t) L m (R n ) ≤ (C(T )m) 1 m -→ m→∞ 1, 0 ≤ t ≤ T,
which implies that for all 1 ≤ q ≤ m, by interpolation between L 1 and L m ,

ρ m (t) L q (R n ) ≤ M(T ) 1-θ mC(T ) θ m , 1 q = (1 -θ ) + θ m .
In the weak limit we find

ρ ∞ (t) L q (R n ) ≤ M(T ) 1 q → 1 as q → ∞.
Next, we prove (ii), i.e., that the weak limits of p m and ρ m p m are the same. This follows from the two inequalities

p m ≤ (ρ m ) m = 1 m + 1 + m m + 1 (ρ m ) m+1 , (ρ m ) m+1 ≤ m + 1 m (ρ m ) m + m + 1 2m 2 (ρ m ) 2m ,
thanks to the bounds in Proposition 1 and estimate [START_REF] David | A degenerate cross-diffusion system as the inviscid limit of a nonlocal tissue growth model[END_REF]. For (iii), i.e., the identity p ∞ = ρ ∞ p ∞ is a consequence of the above convergence and compensated compactness, following [START_REF] David | Phenotypic heterogeneity in a model of tumour growth: existence of solutions and incompressible limit[END_REF] 

ρ ∞ p ∞ = w -lim ρ m p m ( 15 
)
because ∇p m is bounded in L 2 , see Proposition 1 (ii), and ∂ t ρ m is bounded in L 2 t (H -1 ) thanks to Eq. ( 2) and the bound in Proposition 1 (ii) (see [START_REF] He | Incompressible limits of Patlak-Keller-Segel model and its stationary state[END_REF][START_REF] David | Phenotypic heterogeneity in a model of tumour growth: existence of solutions and incompressible limit[END_REF] for details and other arguments).

For proving (iv), we use Proposition 1 (ii) and that the chain rule holds in W 1,1 loc . For A large, consider a non-decreasing 'truncation' function which satisfies χ A (p) = p for 0 ≤ p ≤ A 2 , χ A (p) = A for p ≥ 2A. We may write

p ∞ = χ A (p ∞ ) + [p ∞ -χ A (p ∞ )].
On the one hand, because χ A (p ∞ ) is bounded, the mapping χ → χ 1+ε is Lipschitz and we may use the chain rule to write

∇χ A (p ∞ ) 1+ε = (1 + ε)χ A (p ∞ ) ε ∇χ A (p ∞ ) = ρ ∞ (1 + ε)χ A (p ∞ ) ε ∇χ A (p ∞ ),
still using (iii) and because when

ρ ∞ = 1, then p ∞ = χ A (p ∞ ) ε = 0. Therefore, we have obtained that ∇χ A (p ∞ ) 1+ε = ρ ∞ ∇χ A (p ∞ ) 1+ε
and as ε → 0 we find ∇χ

A (p ∞ ) = ρ ∞ ∇χ A (p ∞ ).
On the other hand,

∇p ∞ -∇χ A (p ∞ ) → 0 in L 2 (0, T ) × R n as A → ∞.
All together, we have proved (iv).

The identity (v) can be obtained in different ways, see [START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF][START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF][START_REF] Igbida | L 1 -theory for Hele-Shaw flow with linear drift[END_REF]. A simple argument is given in [START_REF] David | Phenotypic heterogeneity in a model of tumour growth: existence of solutions and incompressible limit[END_REF] and uses that ∂ t ρ ∞ ∈ L 2 (0, T ); H -1 (R n ) (see Eq. ( 14)) and

p ∞ ∈ L 2 (0, T ); H 1 (R n ) (see Proposition 1 (ii)). Therefore ∂ t ρ ∞ (t) p ∞ (t) can be approximated successively as ρ ∞ (t + h) -ρ ∞ (t) h p ∞ (t) = ρ ∞ (t + h) -1 h p ∞ (t) ≤ 0, ρ ∞ (t) -ρ ∞ (t -h) h p ∞ (t) = 1 -ρ ∞ (t -h) h p ∞ (t) ≥ 0,
where we have only used again (iii).

Stong convergence of ∇p m and the complementarity condition

A simple procedure to pass to the limit m → ∞ and recover the complementarity relation ( 5) has been elaborated when chemotaxis is ignored. We follow the most advanced form in [START_REF] David | Phenotypic heterogeneity in a model of tumour growth: existence of solutions and incompressible limit[END_REF], based on the ideas in [START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF][START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF][START_REF] Xu'an Dou | A tumor growth model with autophagy: the reaction-(cross-)diffusion system and its free boundary limit[END_REF]. The first step is to pass to the limit in Eq. ( 2) and, as already established in Section 3, we find that

∂ t ρ ∞ -∆ p ∞ + div[ρ ∞ ∇φ ∞ ] = ρ ∞ G(p ∞ ), x ∈ R n , t ≥ 0, p ∞ = ρ ∞ p ∞ , φ ∞ = N ρ ∞ , ρ ∞ ≤ 1. (16) 
Thanks to the relations proved in Propostion 5, one can establish the Theorem 6 (Strong convergence of ∇p m ) With the assumptions of Proposition 1, we have after extraction of a subsequence

∇(p m ) m+1 m → ∇p ∞ in L 2 (0, T ) × R n .
Therefore we have

(p m ) m+1 m → p ∞ in L 2 (0, T ) L 2n n-2 (R n ) , n ≥ 3,
and this holds for n = 2 in interpolated Lebesgue spaces.

Assuming additionally R n (p 0 m )

1 2 ≤ K 0 m, we also have ∇p m → ∇p ∞ in L 2 (0, T ) × R n .
Therefore the complementarity relation (5) holds true.

Proof Strong convergence of ∇(p m ) m+1 m . We substract Eq. ( 16) to Eq. ( 1) and we find

∂ t (ρ m -ρ ∞ ) -∆ ( m m + 1 ρ m+1 m -p ∞ ) + div(ρ m ∇φ m -ρ ∞ ∇φ ∞ ) = ρ m G(p m ) -ρ ∞ G(p ∞ ).
Multiplying by m m+1 ρ m+1 m p ∞ and integrating by parts gives

R n ( m m + 1 ρ m+1 m -p ∞ )∂ t (ρ m -ρ ∞ )]dx + R n |∇( m m + 1 ρ m+1 m -p ∞ )| 2 dx - R n (∇( m m + 1 ρ m+1 m -p ∞ )(ρ m ∇φ m -ρ ∞ ∇φ ∞ )dx = R n [ρ m G(p m ) -ρ ∞ G(p ∞ )]dx.
This serves to show that the term R n |∇( m m+1 ρ m+1 m p ∞ )| 2 dx converges to 0 as m → ∞ because the three other terms do so.

As already mentioned, and following [START_REF] David | Phenotypic heterogeneity in a model of tumour growth: existence of solutions and incompressible limit[END_REF], the last term vanishes as m → ∞ by compensated compactness.

The first term (with ∂ t ) vanishes also as in [START_REF] Price | Global existence theorem for a model governing the motion of two cell populations[END_REF][START_REF] Liu | Existence and incompressible limit of a tissue growth model with autophagy[END_REF][START_REF] David | Phenotypic heterogeneity in a model of tumour growth: existence of solutions and incompressible limit[END_REF]. This is a simple consequence of the identity p ∞ ∂ t ρ ∞ = 0 stated in Propostion 5 (v).

The new difficulty comes from the drift term. We consider successively the four terms of this product and show we can pass to the limit. For the first product, we consider

R n ∇ m m + 1 ρ m+1 m ρ m ∇φ m dx = R n m m + 2 ∇ρ m+2 m ∇φ m dx → R n ∇p ∞ ∇φ ∞ dx,
here is the only place where we use estimate ∇ρ m+2 m in Proposition 1 (iii). The second product we consider is

R n ∇p ∞ ρ m ∇φ m dx → R n ∇p ∞ ρ ∞ ∇φ ∞ dx
where the convergence is obtained by weak-strong limits because ∇φ m converges strongly as used before (or again by compensated compactness).

The third product is

R n ∇ m m + 1 ρ m+1 m ρ ∞ ∇φ ∞ dx → R n ∇p ∞ ρ ∞ ∇φ ∞ dx
as a weak limit tested agianst a given function.

The fourth product does contain terms which pass to the limit and thus, we conclude the limit

R n (∇( m m + 1 ρ m+1 m -p ∞ )(ρ m ∇φ m -ρ ∞ ∇φ ∞ )dx → R n ∇p ∞ (ρ ∞ -1)∇φ ∞ dx = 0
thanks to Proposition 5 (iv). This concludes the strong convergence of ∇(p m ) m+1 m .

Strong convergence of (p m ) m+1 m . This is just a consequence of the Sobolev inequality (we only deal with the dimensions larger than 3)

(p m ) m+1 m -p ∞ L 2 (0,T ) L 2n n-2 (R n ) ≤ ∇(p m ) m+1 m -∇p ∞ L 2 (0,T )×R n .
Strong convergence of ∇p m . We fix a parameter 0 < ε ≤ 1 2 and decompose

∇(p m ) m+1 m - m + 1 m ∇p m = 2 m + 1 m ∇(p m ) 1 2 1 I {ρ m ≤1-ε} [(p m ) 1 2 -(p m ) 1 2 + 1 m ] + ∇(p m ) m+1 m 1 I {ρ m >1-ε} 1 -ρ m ρ m .
From this, we infer

|∇(p m ) m+1 m - m + 1 m ∇p m | ≤4|∇(p m ) 1 2 |(1 -ε) m 2 + |∇(p m ) m+1 m |[2ε + 1 I {ρ m >1+ε} ρ m -1 ρ m ].
As m → ∞, the first term converges to 0 in L 2 thanks to the bounds in Remark 4 and in Proposition 1 (ii), (iii). To treat the last one, we analyze the quantity Q m defined as

Q m := 1 I {ρ m >1+ε} ρ m -1 ρ m , 0 ≤ Q m ≤ 1, Q m ≤ ρ m ∈ L ∞ bounded (0, ∞); L 1 (R n ) .
We also have, since

(p m ) m+1 m is bounded in L 1 (0, T ) × R n , 0 ≤ Q m ≤ (p m ) m+1 m
(1 + ε) m → 0 a.e. as m → ∞.

Therefore Q m → 0 in L 2 (0, T ) × R n .
Consequently, still using Proposition 1 (iii), we have obtained that, for all ε with 0

< ε ≤ 1 2 lim sup m→∞ ∇(p m ) m+1 m - m + 1 m ∇p m L 2 (0,T )×R n ≤ 2εC(T ).
which proves the stong convergence of ∇p m .

Then we can pass to the limit in ( 6) and obtain the complementarity relation.

More regularity

Several further regularity results can easily be obtained in the context of our assumptions.

Maximum principle for p m . We complement the assumptions (8) on G(•) by

∃P M > 0 such that A + G(P M ) ≤ 0 ∀A ∈ [1, P M ]. (17) 
We also assume here that φ m satisfies the bound (obvious for the Newtonian field)

-∆ φ m ≤ ρ m (t) L ∞ (R n ) . (18) 
Lemma 7 We assume (7), ( 8), ( 17), ( 18) and p 0 m ≤ P M , then p m (t) ≤ P M for all t > 0.

Proof Departing from Eq. ( 6), we may write

∂ t p m + ∇p m .[∇φ m -∇p m ] -mp m ∆ p m = mp m [-∆ φ m + G(p m )] ≤ p m p m (t) 1 m L ∞ (R n ) + G(p m ) . Because A := P 1 m M ∈ [1, P M ],
the maximum principle applies and we obtain the conclusion.

The estimate ∇p m ∈ L 4 . We continue with an extension of the L 4 estimate introduced in [START_REF] David | Free boundary limit of a tumor growth model with nutrient[END_REF][START_REF] Alazard | Functional inequalities and strong lyapunov functionals for free surface flows in fluid dynamics[END_REF], see also [START_REF] David | New lipschitz estimates and long-time asymptotic behavior for porous medium and fast diffusion equations[END_REF] for a recent Lipschitz bound. To simplify we only consider the case

-∆ φ m = ρ m .
Theorem 8 (L 4 estimate for ∇p m ) With the assumptions (7), [START_REF] David | Phenotypic heterogeneity in a model of tumour growth: existence of solutions and incompressible limit[END_REF], and |∇p 0 m | is bounded in L 2 (R n ), we have for all T > 0 and some constant C(T ) independent of m

R n |∇p m (T )| 2 dx + m T 0 R n p m ∆ p m + ρ m + G(p m ) 2 dxdt (19) 
+ T 0 R n p m |D 2 p m | 2 dxdt ≤ C(T ).
Additionally, if p m is bounded in L ∞ (see Lemma 7), then for 0 ≤ α < 1,

(1 -α) 2 T 0 R n |∇p m | 4 p α m dxdt ≤ p m 1-α L ∞ ((0,T )×R n ) C(T ). (20) 
Proof of Estimate [START_REF] Guillen | A Hele-Shaw limit without monotonicity[END_REF]. First of all, with

|D 2 p| 2 = n ∑ i, j=1
(D 2 i j p) 2 , we recall the general identity

R n |∇p| 2 ∆ p dx = 2 3 R n p|D 2 p| 2 dx - 2 3 R n p|∆ p| 2 dx. (21) 
To begin, we multiply Eq. ( 6), by -∆ p m + ρ m + G(p m ) and integrate by parts. This gives 1 2

d dt R n |∇p m (t)| 2 dx + m R n p m ∆ p m + ρ m + G(p m ) 2 dx = R n [-|∇p m | 2 + ∇p m .∇φ m ] ∆ p m + ρ m + G(p m ) .
Therefore, using Eq. ( 21), we get 1 2

d dt R n |∇p m (t)| 2 dx + m R n p m ∆ p m + ρ m + G(p m ) 2 dx + 2 3 R n p m |D 2 p m | 2 dx = 2 3 R n p m |∆ p m | 2 dx + Rem(t), (22) 
where

Rem = - R n |∇p m | 2 ρ m + G(p m ) + R n ∇p m .∇φ m ∆ p m + ρ m + G(p m ) .
Our next step is to prove that

T 0 Rem(t)dt ≤ C(T ) + 1 3 T 0 R n p m |D 2 p m | 2 dx. ( 23 
)
That is because, in the definition of Rem, the first integral is bounded thanks to the estimates in Proposition 1. This is also true for the term ∇p m .∇φ m ρ m + G(p m ) .

The only term which requires a treatment is

R n ∇p m .∇φ m ∆ p m dx = - R n ∂ i p m [∂ 2 i j φ m ∂ j p m + ∂ j φ m ∂ 2 i j p m ]dx = - R n ∂ i p m ∂ 2 i j φ m ∂ j p m + 1 2 R n ∆ φ m |∇p m | 2 ]dx.
After integration in time, the second term is bounded again thanks to the estimates in Proposition 1. We arrive at

T 0 R n ∇p m .∇φ m ∆ p m dxdt ≤ C(T ) + T 0 R n p m [∂ 3 ii j φ m ∂ j p m + ∂ 2 i j φ m ∂ 2 i j p m ]dxdt ≤ C(T ) + T 0 R n p m ∂ j ρ m ∂ j p m + 1 3 |D 2 p m | 2 + 2 3 |D 2 φ m | 2 dxdt.
The first term is also m m+1 T 0 R n ∂ j (p m ) m+1 m ∂ j p m dxdt and thus is bounded. The last term is also bounded because |D 2 φ m | 2 has the same regularity in L p , 1 < p < ∞ as ρ m according to singular integral theory [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF]. Therefore we have proved estimate [START_REF] Jacobs | Lagrangian solutions to the porous media equation and reaction diffusion systems[END_REF].

We can now conclude the estimate [START_REF] Guillen | A Hele-Shaw limit without monotonicity[END_REF]. After time integration of Eq. ( 22) and using [START_REF] Jacobs | Lagrangian solutions to the porous media equation and reaction diffusion systems[END_REF], we find Therefore, we also have

(1 -α) R n |∇p m | 4 p α m dx = - R n p m ∆ p m p α m |∇p m | 2 + 2 ∂ 2 i j p m ∂ i p m ∂ j p m p α m dx ≤ 1 -α 4 R n |∇p m | 4 p α m + 4 1 -α p 2-α m |∆ p m | 2 + 1 -α 4 R n |∇p m | 4 p α m + 16 1 -α R n p 2-α m |D 2 p m | 2 dx.
And finally, this is also written

1 -α 2 R n |∇p m | 4 p α m dx ≤ p m 1-α L ∞ (R n ) C 1 -α R n p m |∆ p m | 2 + p m |D 2 p m | dx.
We obtain (20) because of the estimates [START_REF] Guillen | A Hele-Shaw limit without monotonicity[END_REF] which also furnish a uniform bound on

T 0 R n p m |∆ p m | 2 dx.

  with m = m + 1 and k = 1 to control the term (ρ m ) m+3 by the term |∇(p m ) 1+m m | 2 and we conclude the first estimate of (iii). The same computation gives the estimate on |∇(p m ) 2+m m | 2 and on (ρ m ) m+5 .

  p m + ρ m + G(p m ) |D 2 p m | 2 dx ≤ C(T ) + R n |∇p 0 m | 2 dx,and the estimate (19) is proved.Proof of Estimate[START_REF] He | Incompressible limits of Patlak-Keller-Segel model and its stationary state[END_REF]. Integrating by parts, we may write