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Incompressible limit of porous media equation
with chemotaxis and growth

Qingyou He, Hai-Liang Li, and Benoît Perthame

Abstract We revisit the problem of proving the incompressible limit for the com-
pressible porous media equation with Newtonian drift and growth. The question is
motivated by models of living tissues development including chemotaxis. We ex-
tend the problem, already treated by the authors and several other contributions, in
using a simplified approach, in treating dimensions two or higher, and in incorpo-
rating the pressure driven growth term. We also complete the analysis with stronger
L4 estimates on the pressure gradient. The major difficulty is to prove the strong
convergence of the pressure gradient which is obtained here by a new observation
on an algebraic relation involving the pressure gradient for weak limits.

1 Compressible porous media with chemotaxis and growth

Setting the problem. Several recent mechanical approaches propose to describe the
development of living tissues by flows through a porous media formed by the extra-
cellular matrix [3, 44, 18]. Including chemotaxis, this leads to write the compressible
porous media equation combined with the Keller-Segel model{

∂tρm−div
[
ρm[∇pm−∇φm]

]
= ρmG(pm), x ∈ Rn, t ≥ 0,

pm = (ρm)
m, φm = N ?ρm,

(1)
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where ρm(x, t) denotes the cell number density, pm is the pressure which here is
taken as an homogeneous law for simplicity (see [15, 4] for variants and comments
on this issue), G(·) is the growth/death rate of cells. The chemotactic term is based
on the Newtonian (attractive) potential{

N (x) =−αn
1

|x|n−2 , ∇N (x) = (n−2)αn
x
|x|n , −∆N = δ (n≥ 3),

N (x) = α2 ln(|x|), ∇N (x) = α2
x
|x|2 , −∆N = δ (n = 2).

However, the interested reader can check that the drift term can be much more gen-
eral in the class

∇φ(x) = ∇φ0(x)+
∫
Rn

K(x,y)ρ(y)dy,

as long as it satisfies at least a control (with compactness), for some 1≤ q < ∞,

‖∇φ‖L2(Rn) ≤C[1+‖ρ‖L1(Rn)+‖ρ‖Lq(Rn)], m≥ q,

see Remark 3. All the equations in the present paper are understood in the weak
sense as in [20].

We consider the incompressible limit, that is the limit m→ ∞. Departing from
the following version of Eq. (1),

∂tρm−∆
m

m+1
(ρm)

m+1
m +div[ρm∇φm] = ρmG(pm), (2)

we may formally pass to the limits ρ∞ of ρm , p∞ of (pm)
m+1

m . We obtain that these
limits satisfy the equation∂tρ∞−∆ p∞ +div[ρ∞∇φ∞] = ρ∞G(p∞), x ∈ Rn, t ≥ 0,

p∞(1−ρ∞) = 0, ρ∞ ≤ 1, φ∞ = N ?ρ∞,
(3)

and we show later that the limiting equation can also be written equivalently

∂tρ∞−div[ρ∞∇p∞]+div[ρ∞∇φ∞] = ρ∞G(p∞). (4)

One can also establish the so-called complementarity relation, for almost all t > 0

p∞ ∆ [p∞−φ∞ +G(p∞)] = 0, x ∈ Rn. (5)

System (3) with (5) is a weak and global form of the geometric Hele-Shaw free
boundary problem (see [38, 27]).

As always, the equation for the pressure pm is playing a central role in the anal-
ysis; it is written

∂t pm−|∇pm|2 +∇pm.∇φm = mpm[∆ pm−∆φm +G(pm)]. (6)
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The dominant term on the right hand side of this equation explains formally the
complementarity relation (5), the difficulty being to pass to the limit in the quadratic
term pm∆ pm which amounts to prove the strong convergence of ∇pm.

What is new. We complement our previous study [20] by taking into account the
source term on the right hand side of Eq. (1), treating all dimensions n ≥ 2 (rather
than n ≥ 3), allowing more general kernels to define φm and reducing the assump-
tions on the initial data (in terms of regularity, because we do not use the Aronson-
Bénilan estimate here) and removing the compact support assumption.

The purpose of the present paper is also to give a simple proof of the limit m→∞

in Eq. (1) and recover the limit formulations (3) as well as (5). The difficulty is to
prove strong convergence of the gradient ∇pm and we show how to use the recent
method proposed in [43, 34] and extended in [16, 8]. We base our analysis of the
observation in [8] that compensated compactness arguments permit to identify cer-
tain limits. This however is not enough and we develop a new idea, namely that the
relation ρ∞∇p∞ = ∇p∞ can be proved a priori.

Let us stress that we prove the strong convergence of ∇pm and not only ∇(pm)
m+1

m

as in the previous works using this method.

Related studies. This problem has attracted a lot of attention recently and various
methods have been used. The problem of the incompressible limit of the compress-
ible porous media equations with a growth/death term controled by pressure was
introduced in [41] using strong regularity assumptions and the Aronson-Bénilan
estimate. This strategy has been extended succesfully to various situations as a sin-
gular pressure law p = ερ

1−ρ
in [21, 15], chemotaxis and a given drift [13], coupling

with an equation for nutrients [11], cell active motion (including a diffusion) in [40],

Another route to study the problem is through viscosity solutions and this was
performed in [32, 28]. The case of an aditional drift term is treated in [29, 31]. Still
another approach is based on the obstacle problem, [19], a method which has been
extended to bi-stable terms on the right hand side in [26]. Recently a Lagrangian
formulation is given in [23].

Because the geometric form of the Hele-Shaw problem uses the set Ω(t) =
{ρ∞(t, ·) = 1}, several authors have studied the question to know, when the ini-
tial data is the indicator function of Ω(0), if this property is propagated even if Ω(t)
has little regularity. For this question it is convenient to work on time integrated
variables, which leads to the obstacle problem, we refer to [38, 6, 24, 27]. The reg-
ularity and stability of such patches is studied in [25, 5].

In the conservative case, that is G ≡ 0, the Hele-Shaw problem has been han-
dled under the name of congested flows by [35, 37, 36], using a new method based
on Wasserstein distance and optimal transport. See also for systems [36, 33]. From
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this point of view, the pressure p∞ is interpreted as a Lagrange multiplier associated
with the constraint ρ∞ ≤ 1.The derivation departing from the compressible porous
media equation has been achieved in [2, 6]. These papers combine the gradient flow
approach with methods based on viscosity solutions which also allow to define an-
other notion of solutions.

Eq. (1) assumes that cells are pushed passively, when including active movement,
one arrives at the equation

∂tρm−µ∆ρm−div
[
ρm[∇pm−∇φm]

]
= ρmG(pm).

This problem is studied in [40] and in the conservative case [27]. There is still a set
Ω(t) where p∞ > 0, but ρ∞ is smooth and has a positive tail because the equation is
parabolic non-degenerate.

Error estimates for pm− p∞ have also been established in [2, 6] for the conser-
vative case with Newtonian potential in Wasserstein distance. With a growth term
(and no drift) error estimates in H−1 are proved in [10].

Related to the limit m→∞, we also mention that the growth term allows for trav-
eling waves. The existence and Hele-Shaw limit are established in [7], see also the
references therein and, for the problem with a necrotic core [17]. Traveling waves
in the case with nutrients are also built analytically in [42]. Also Darcy’s law for the
prorous media can be generalized to other rules as Brinkman’s law, see [14, 9, 30],
or as full Navier-Stokes system [47].

Outline of the paper. In the next section, we present the basic estimates necessary
to analyze the problem. With these estimates we can establish, in Section 3, several
relations between weak limits of ρm and pm. Those are used in Section 4 to prove
that ∇pm converges strongly in L2 and this establishes the complementarity condi-
tion. In Section 5, we complete our analysis with some additional bounds on pm in
particular ∇pm ∈ L4.

2 Estimates

We complete system (1) with an initial data ρ0
m ≥ 0 and set p0

m = (ρ0
m)

m. We assume
that for some constant K0 independent of m,∫

Rn
ρ

0
m
[
1+ |x|2

]
dx≤ K0,

∫
Rn

p0
m[1+(ρ0

m)
4]dx≤ K0m. (7)

For the right hand side of Eq. (1), we assume there is an ’homeostatic pressure’
pH > 0 and a constant GM such that
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G ∈C2([0,∞);R), G(p)≤ 0 for p≥ pH , |G(·)| ≤ GM. (8)

We recall standard estimates.

Proposition 1 (A priori estimates)
With the assumptions (7), (8), the solution of Eq. (1) satisfies the following

bounds for constant C(T ) independent of m, and for t ≤ T ,

(i)
∫
Rn ρm(t)dx≤M(t) := etG(0) ∫

Rn ρ0
mdx,

(ii)
∫ T

0
∫
Rn |∇pm(t)|2dxdt ≤C(T ),

∫
Rn pm(t)dx≤C(T )m,

(iii)
∫ T

0
∫
Rn
[
|∇p

m+1
m

m |2 + |∇p
m+2

m
m |2

]
dxdt ≤C(T ),

∫ T
0
∫
Rn(ρm)

m+5dxdt ≤C(T ),

(iv)
∫
Rn |x|2ρm(t)dx≤C(T ),

As usual, several further conclusions follow from this proposition. For instance,
the second estimate in (ii) and interpolation with (i) give for 0≤ t ≤ T ,

‖ρm(t)‖Lm(Rn) ≤ (C(T )m)
1
m ≤C(T ), ‖ρm(t)‖Lq(Rn) ≤C(T ), 1≤ q≤ m.

Furthermore, the first estimate in (ii), (iii) and the Sobolev inequality also give‖pm +(pm)
m+1

m ‖
L2
(
(0,T );L

2n
n−2 (Rn)

) ≤C(T ), n≥ 3,

‖pm‖Lr
(
(0,T );Lq(Rn)

) ≤C(T ), m+1
m ≤ q < ∞, 2

r = 1+ m+1
mq , n = 2,

(9)

where, for n = 2, the inequality follows from the Gagliardo-Nirenberg-Sobolev in-
equality and the third estimate in (ii).

These estimates on ρm ∈ L∞((0,T );L1∩Lm
(
Rn)
)

also have consequences on the
field φm when it is given by the Newtonian field. Using the Young inequalities for
convolutions, or Sobolev inequalities, we obtain, for 0≤ t ≤ T ,

‖∇φm(t)‖Lq(Rn) ≤C(T ),
d

d−1
< q≤ ∞, for m > n. (10)

Also because

∂tφm(t) =−
m

m+1
(ρm)

m+1
m −∆

−1div[ρm∇φm]+∆
−1

ρmG(pm),

we conclude bounds as

∂tφm(t) is bounded in L2((0,T );L
2n

n−2 (Rn)
)
. (11)

These further estimates are not necessarily sharp but are enough for our purposes in
the next sections. Lemma 2 furnishes other estimates by interpolation.

Proof The first bound is immediate by integrating Eq. (1).
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For the bound (ii), we compute, for t ≤ T , integrating Eq. (6)

d
dt

∫
Rn

pm(t)dx+
∫
Rn
(m−1)|∇pm|2dx =

∫
Rn

[
(m−1)∇pm.∇φm +mpmG(pm)

]
dx.

Because min(pm, pH)≤ (pH)
m−1

m ρm, and integrating by parts the potential term, we
find

d
dt

∫
Rn

pm(t)dx+
∫
Rn
(m−1)|∇pm|2dx≤ (m−1)

∫
Rn

pmρmdx+mp
m−1

m
H M(T )GM.

This shows the estimates (ii).

The estimate (iii) is just a variant of (ii) obtained multiplying Eq. (6) by the power
(ρm)

2 = (pm)
2
m or (ρm)

4 = (pm)
4
m , and integrating by parts. We find, for instance

for the first case

m
m+2

d
dt

∫
Rn

pm(t)
m+2

m dx+
∫
Rn
(1+m)(ρm)

2|∇pm|2dx

=
∫
Rn

[
m

m+1
m+2

(ρm)
m+3 +mpmρ

2
mG(pm)

]
dx.

As before, we obtain the inequality

m
m+1

d
dt

∫
Rn

pm(t)
m+2

m dx+
m2

1+m

∫
Rn
|∇(pm)

1+m
m |2dx

≤ m
m+1
m+2

∫
Rn
(ρm)

m+3dx+mp
m+1

m
H M(T )GM.

Then, we use (12) with m̃ = m+ 1 and k = 1 to control the term (ρm)
m+3 by the

term |∇(pm)
1+m

m |2 and we conclude the first estimate of (iii). The same computation
gives the estimate on |∇(pm)

2+m
m |2 and on (ρm)

m+5.
The bound on (ρm)

m+2 is also a conclusion of (12) with m̃ = m+2 and k = 0.

For proving (iv), we compute

d
dt

∫
Rn

|x|2

2
ρmdx≤−

∫
Rn

ρmx.[m(ρm)
m−1

∇ρm−∇φm]dx+G(0)
∫
Rn
|x|2ρmdx

≤ nm
m+1

∫
Rn
(ρm)

m+1dx− n−2
2

αn

∫
R2n

1
|x− y|n−2 ρm(x)ρm(y)dxdy

+G(0)
∫
Rn
|x|2ρmdx.

It remains to use the second bound in (iii) and Proposition 1 is proved.

For this proof, we use the following general result.
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Lemma 2 Let ρ ≥ 0 and set M :=
∫
Rn ρ(x)dx < ∞. Assume that for some m̃ > 1,

∇ρ m̃ ∈ L2(Rn). Then, for all 0≤ k+1
m̃ < 1∫

Rn
ρ(x)m̃+k+1dx≤C(

k+1
m̃

,n,M)+
1
2

∫
Rn
|∇ρ(x)m̃|2dx. (12)

The constant C( k+1
m̃ ,n,M) blows-up as k+1

m̃ → 1, m̃→ ∞ and is unifornly bounded
on each closed subinterval.

The difficulty here is to obtain controls independent of m, which forbids direct
use of the Sobolev inequalities on ρ .

Proof For a constant A to be chosen later, we decompose ρ as follows

ρ = min(A
1

m̃+k ,ρ)+ψ(ρ), ψ
′(ρ) = 0 for ρ < A

1
m̃+k , 0≤ ψ

′(ρ)≤ 1.

Then, we use the Gagliardo-Nirenberg-Sobolev inequality for u = ψ(ρ)
m̃+k+1

2 and
the Cauchy-Schwarz inequality. We find distinguishing the subsets where ρ ≤ A

1
m̃+k

or not,

∫
Rn

ρ
m̃+k+1dx≤ AM+C(n)

(∫
Rn

ψ(ρ)
m̃+k+1

2 dx
) 4

n+2
(∫

Rn

∣∣∇ψ(ρ)
m̃+k+1

2
∣∣2dx

) n
n+2

≤ AM+C(n)
(∫

Rn
ψ(ρ)m̃+k+1dx meas({ρ > A

1
m̃+k }

) 2
n+2

(∫
Rn

∣∣ m̃+ k+1
2

ψ(ρ)
m̃+k−1

2 ψ
′(ρ)∇ρ

∣∣2dx
) n

n+2
.

Because A
1

m̃+k meas({ρ > A
1

m̃+k } ≤M, the last term can be further controled as

C(n)
(

A
−1

m̃+k M
∫
Rn

ρ
m̃+k+1dx

) 2
n+2
(∫

Rn

∣∣ m̃+ k+1
2

A−
m̃−k−1
2(m̃+k) ρ

m̃−1
∇ρ
∣∣2dx

) n
n+2

≤ A−
2+n(m̃−k−1)
(m̃+k)(n+2) C(n)

(
M
∫
Rn

ρ
m̃+k+1dx

) 2
n+2
(∫

Rn

∣∣ m̃+ k+1
2m̃

∇ρ
m̃∣∣2dx

) n
n+2

because ψ(ρ) > 0 only when ρ > A
1

m̃+k . Consequently, choosing A large enough
independently of m̃, we may write.

∫
Rn

ρ
m̃+k+1dx≤ AM+

(∫
Rn

ρ
m̃+k+1dx

) 2
n+2
(

1
2

∫
Rn

∣∣∇ρ
m̃∣∣2dx

) n
n+2

.

This directly gives the estimate (12). �

Remark 3 Another way to perform the estimate (ii) in Propositon 1 is as follows.
The control of

∫
Rn pmdx is changed as
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d
dt

∫
Rn

pm(t)dx+
∫
Rn
(m−1)|∇pm|2dx

≤ (m−1)
∫
Rn

∇pm.∇φmdx+mp
m−1

m
H M(T )GM

≤ m−1
2

∫
Rn
[|∇pm|2 + |∇φm|2]dx+mp

m−1
m

H M(T )GM.

Consequently any control of
∫
Rn |∇φm|2dx by a fixed norm Lq of ρm will allow to

close the bound thanks to (12) for m≥ q (not optimal in view of (9)).

Remark 4 Because we also have
∫
Rn(p0

m)
m+1
2m ≤ K0m

1
2 , a similar argument as in the

proof of (ii) arrives to the conclusion that we can control lower powers of pm∫ T

0

∫
Rn
|∇pm(t)

m+1
2m |2dxdt ≤C(T ).

3 Fundamental relations for the weak limits

Departing from the integrability properties in Proposition 1, after extraction, there
are weak limits{

ρm ⇀ ρ∞ in w−Lq((0,T )×Rn), 1≤ q < ∞,

ρm pm ⇀ p∞ in w−L2((0,T ); Ḣ1(Rn).
(13)

For the second statement, the existence of a weak limit is a consequence of the
bound on ρm pm stated in Proposition 1 (iii). We call it p∞ because of one of the
statements below.

Passing to the weak limit in the equation under the form (2), we obtain, as in
Eq. (3), the relation between ρ∞ and p∞

∂tρ∞−∆ p∞ +div[ρ∞∇φ∞] = R(t,x) ∈ L∞
(
(0,T );L1∩L∞(Rn)

)
. (14)

Indeed,
• the drift term ρm∇φm passes to the limit by weak-strong limit since ∇φm converges
strongly to ∇φ∞ because of (10), (11) and D2φm ∈ Lq by singular integral theory (see
also [20] for details).
• the right hand side passes to the weak limit because G is bounded and thus
ρmG(pm) is bounded in the same Lebesgue spaces as ρm, following the bounds
in Proposition 1. In fact, by compensated compactness, [39, 46] and following [8],
and as it is also used to prove (iii) in the proposition below, it follows that

R(t,x) = ρ∞G(p∞).

Also, we insist that the weak limits of pm and ρm pm are the same, as stated in the
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Proposition 5 (Fundamental relations)
With the assumptions of Proposition 1, these limits satisfy

(i) ρ∞ ≤ 1 for almost all t ∈ (0,T ) and x ∈ Rn,

(ii) pm ⇀ p∞ in w−Lp((0,T )×Rn),

(iii) p∞ = ρ∞ p∞ for almost all t ∈ (0,T ) and x ∈ Rn,

(iv) ρ∞∇p∞ = ∇p∞ ∈ L2
(
(0,T )×Rn

)n,

(v) ∂tρ∞ p∞ = 0, in duality L2
(
(0,T );H−1(Rn)

)
, L2
(
(0,T );H1(Rn)

)
.

The new information that we bring here is the direct proof of the identity in (iv)
based on the estimates of Proposition 1 only. It is instrumental to treat the drift term.
Also it establishes that both equations (3) and (4) hold.

Notice also that the product ∂tρ∞ p∞ is well defined by duality L2
t (H

−1), L2
t (H

1).

Proof For (i), we recall that the inequality ρ∞ ≤ 1 is a consequence of the bound in
Proposition 1 (ii) since

‖ρm(t)‖Lm(Rn) ≤ (C(T )m)
1
m −→

m→∞
1, 0≤ t ≤ T,

which implies that for all 1≤ q≤ m, by interpolation between L1 and Lm,

‖ρm(t)‖Lq(Rn) ≤M(T )1−θ
(
mC(T )

) θ
m ,

1
q
= (1−θ)+

θ

m
.

In the weak limit we find

‖ρ∞(t)‖Lq(Rn) ≤M(T )
1
q → 1 as q→ ∞.

Next, we prove (ii), i.e., that the weak limits of pm and ρm pm are the same. This
follows from the two inequalities

pm ≤ (ρm)
m =

1
m+1

+
m

m+1
(ρm)

m+1,

(ρm)
m+1 ≤ m+1

m
(ρm)

m +
m+1
2m2 (ρm)

2m,

thanks to the bounds in Proposition 1 and estimate (9).

For (iii), i.e., the identity p∞ = ρ∞ p∞ is a consequence of the above convergence
and compensated compactness, following [8]

ρ∞ p∞ = w− lim ρm pm (15)

because ∇pm is bounded in L2, see Proposition 1 (ii), and ∂tρm is bounded in
L2

t (H
−1) thanks to Eq. (2) and the bound in Proposition 1 (ii) (see [20, 8] for details

and other arguments).



10 Qingyou He, Hai-Liang Li, and Benoît Perthame

For proving (iv), we use Proposition 1 (ii) and that the chain rule holds in W 1,1
loc .

For A large, consider a non-decreasing ’truncation’ function which satisfies χA(p) =
p for 0≤ p≤ A

2 , χA(p) = A for p≥ 2A. We may write

p∞ = χA(p∞)+ [p∞−χA(p∞)].

On the one hand, because χA(p∞) is bounded, the mapping χ 7→ χ1+ε is Lipschitz
and we may use the chain rule to write

∇χA(p∞)
1+ε = (1+ ε)χA(p∞)

ε
∇χA(p∞) = ρ∞(1+ ε)χA(p∞)

ε
∇χA(p∞),

still using (iii) and because when ρ∞ 6= 1, then p∞ = χA(p∞)
ε = 0. Therefore, we

have obtained that

∇χA(p∞)
1+ε = ρ∞∇χA(p∞)

1+ε

and as ε → 0 we find ∇χA(p∞) = ρ∞∇χA(p∞).

On the other hand, ∇p∞−∇χA(p∞)→ 0 in L2
(
(0,T )×Rn

)
as A→ ∞. All to-

gether, we have proved (iv).

The identity (v) can be obtained in different ways, see [43, 34, 22]. A simple
argument is given in [8] and uses that ∂tρ∞ ∈ L2

(
(0,T );H−1(Rn)

)
(see Eq. (14))

and p∞ ∈ L2
(
(0,T );H1(Rn)

)
(see Proposition 1 (ii)). Therefore ∂tρ∞(t) p∞(t) can

be approximated successively as

ρ∞(t +h)−ρ∞(t)
h

p∞(t) =
ρ∞(t +h)−1

h
p∞(t)≤ 0,

ρ∞(t)−ρ∞(t−h)
h

p∞(t) =
1−ρ∞(t−h)

h
p∞(t)≥ 0,

where we have only used again (iii). �

4 Stong convergence of ∇pm and the complementarity condition

A simple procedure to pass to the limit m→ ∞ and recover the complementarity
relation (5) has been elaborated when chemotaxis is ignored. We follow the most
advanced form in [8], based on the ideas in [43, 34, 16].

The first step is to pass to the limit in Eq. (2) and, as already established in
Section 3, we find that{

∂tρ∞−∆ p∞ +div[ρ∞∇φ∞] = ρ∞G(p∞), x ∈ Rn, t ≥ 0,
p∞ = ρ∞ p∞, φ∞ = N ?ρ∞, ρ∞ ≤ 1.

(16)
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Thanks to the relations proved in Propostion 5, one can establish the

Theorem 6 (Strong convergence of ∇pm)
With the assumptions of Proposition 1, we have after extraction of a subsequence

∇(pm)
m+1

m → ∇p∞ in L2((0,T )×Rn).
Therefore we have

(pm)
m+1

m → p∞ in L2((0,T ) L
2n

n−2 (Rn)
)
, n≥ 3,

and this holds for n = 2 in interpolated Lebesgue spaces.

Assuming additionally
∫
Rn(p0

m)
1
2 ≤ K0m, we also have

∇pm→ ∇p∞ in L2((0,T )×Rn).
Therefore the complementarity relation (5) holds true.

Proof Strong convergence of ∇(pm)
m+1

m . We substract Eq. (16) to Eq. (1) and we
find

∂t(ρm−ρ∞)−∆(
m

m+1
ρ

m+1
m − p∞)+div(ρm∇φm−ρ∞∇φ∞)

= ρmG(pm)−ρ∞G(p∞).

Multiplying by m
m+1 ρm+1

m − p∞ and integrating by parts gives∫
Rn
(

m
m+1

ρ
m+1
m − p∞)∂t(ρm−ρ∞)]dx+

∫
Rn
|∇(

m
m+1

ρ
m+1
m − p∞)|2dx

−
∫
Rn
(∇(

m
m+1

ρ
m+1
m − p∞)(ρm∇φm−ρ∞∇φ∞)dx =

∫
Rn
[ρmG(pm)−ρ∞G(p∞)]dx.

This serves to show that the term
∫
Rn |∇( m

m+1 ρm+1
m − p∞)|2dx converges to 0 as

m→ ∞ because the three other terms do so.
As already mentioned, and following [8], the last term vanishes as m→ ∞ by

compensated compactness.
The first term (with ∂t ) vanishes also as in [43, 34, 8]. This is a simple conse-

quence of the identity p∞ ∂tρ∞ = 0 stated in Propostion 5 (v).
The new difficulty comes from the drift term. We consider successively the four

terms of this product and show we can pass to the limit. For the first product, we
consider∫

Rn
∇

m
m+1

ρ
m+1
m ρm∇φmdx =

∫
Rn

m
m+2

∇ρ
m+2
m ∇φmdx→

∫
Rn

∇p∞∇φ∞dx,

here is the only place where we use estimate ∇ρm+2
m in Proposition 1 (iii).

The second product we consider is
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Rn

∇p∞ρm∇φmdx→
∫
Rn

∇p∞ρ∞∇φ∞dx

where the convergence is obtained by weak-strong limits because ∇φm converges
strongly as used before (or again by compensated compactness).

The third product is∫
Rn

∇
m

m+1
ρ

m+1
m ρ∞∇φ∞dx→

∫
Rn

∇p∞ρ∞∇φ∞dx

as a weak limit tested agianst a given function.
The fourth product does contain terms which pass to the limit and thus, we con-

clude the limit∫
Rn
(∇(

m
m+1

ρ
m+1
m − p∞)(ρm∇φm−ρ∞∇φ∞)dx→

∫
Rn

∇p∞(ρ∞−1)∇φ∞dx = 0

thanks to Proposition 5 (iv).
This concludes the strong convergence of ∇(pm)

m+1
m .

Strong convergence of (pm)
m+1

m . This is just a consequence of the Sobolev inequal-
ity (we only deal with the dimensions larger than 3)

‖(pm)
m+1

m − p∞‖
L2
(
(0,T ) L

2n
n−2 (Rn)

) ≤ ‖∇(pm)
m+1

m −∇p∞‖L2
(
(0,T )×Rn

).
Strong convergence of ∇pm. We fix a parameter 0 < ε ≤ 1

2 and decompose

∇(pm)
m+1

m − m+1
m

∇pm = 2
m+1

m
∇(pm)

1
2 1I{ρm≤1−ε}[(pm)

1
2 − (pm)

1
2+

1
m ]

+∇(pm)
m+1

m 1I{ρm>1−ε}
1−ρm

ρm
.

From this, we infer

|∇(pm)
m+1

m − m+1
m

∇pm| ≤4|∇(pm)
1
2 |(1− ε)

m
2

+ |∇(pm)
m+1

m |[2ε +1I{ρm>1+ε}
ρm−1

ρm
].

As m→∞, the first term converges to 0 in L2 thanks to the bounds in Remark 4 and
in Proposition 1 (ii), (iii). To treat the last one, we analyze the quantity Qm defined
as

Qm := 1I{ρm>1+ε}
ρm−1

ρm
, 0≤ Qm ≤ 1, Qm ≤ ρm ∈ L∞

bounded
(
(0,∞);L1(Rn)

)
.

We also have, since (pm)
m+1

m is bounded in L1
(
(0,T )×Rn

)
,
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0≤ Qm ≤
(pm)

m+1
m

(1+ ε)m → 0 a.e. as m→ ∞.

Therefore Qm→ 0 in L2
(
(0,T )×Rn

)
.

Consequently, still using Proposition 1 (iii), we have obtained that, for all ε with
0 < ε ≤ 1

2

limsup
m→∞

‖∇(pm)
m+1

m − m+1
m

∇pm‖L2
(
(0,T )×Rn

) ≤ 2εC(T ).

which proves the stong convergence of ∇pm.

Then we can pass to the limit in (6) and obtain the complementarity relation. �

5 More regularity

Several further regularity results can easily be obtained in the context of our as-
sumptions.

Maximum principle for pm. We complement the assumptions (8) on G(·) by

∃PM > 0 such that A+G(PM)≤ 0 ∀A ∈ [1,PM]. (17)

We also assume here that φm satisfies the bound (obvious for the Newtonian field)

−∆φm ≤ ‖ρm(t)‖L∞(Rn). (18)

Lemma 7 We assume (7), (8), (17), (18) and p0
m≤PM , then pm(t)≤PM for all t > 0.

Proof Departing from Eq. (6), we may write

∂t pm +∇pm.[∇φm−∇pm]−mpm∆ pm = mpm[−∆φm +G(pm)]

≤ pm
[
‖pm(t)‖

1
m
L∞(Rn)

+G(pm)
]
.

Because A := P
1
m

M ∈ [1,PM], the maximum principle applies and we obtain the con-
clusion. �

The estimate ∇pm ∈ L4. We continue with an extension of the L4 estimate intro-
duced in [11, 1], see also [12] for a recent Lipschitz bound. To simplify we only
consider the case

−∆φm = ρm.
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Theorem 8 (L4 estimate for ∇pm) With the assumptions (7), (8), and |∇p0
m| is

bounded in L2(Rn), we have for all T > 0 and some constant C(T ) independent
of m ∫

Rn
|∇pm(T )|2dx+m

∫ T

0

∫
Rn

pm
(
∆ pm +ρm +G(pm)

)2dxdt (19)

+
∫ T

0

∫
Rn

pm|D2 pm|2dxdt ≤C(T ).

Additionally, if pm is bounded in L∞ (see Lemma 7), then for 0≤ α < 1,

(1−α)2
∫ T

0

∫
Rn

|∇pm|4

pα
m

dxdt ≤ ‖pm‖1−α

L∞((0,T )×Rn)C(T ). (20)

Proof of Estimate (19). First of all, with |D2 p|2 =
n

∑
i, j=1

(D2
i j p)

2, we recall the general

identity ∫
Rn
|∇p|2∆ pdx =

2
3

∫
Rn

p|D2 p|2 dx− 2
3

∫
Rn

p|∆ p|2 dx. (21)

To begin, we multiply Eq. (6), by −
(
∆ pm +ρm +G(pm)

)
and integrate by parts.

This gives

1
2

d
dt

∫
Rn
|∇pm(t)|2dx+m

∫
Rn

pm
(
∆ pm +ρm +G(pm)

)2dx

=
∫
Rn
[−|∇pm|2 +∇pm.∇φm]

(
∆ pm +ρm +G(pm)

)
.

Therefore, using Eq. (21), we get

1
2

d
dt

∫
Rn
|∇pm(t)|2dx+m

∫
Rn

pm
(
∆ pm +ρm +G(pm)

)2dx+
2
3

∫
Rn

pm|D2 pm|2 dx

=
2
3

∫
Rn

pm|∆ pm|2 dx+Rem(t), (22)

where

Rem =−
∫
Rn
|∇pm|2

(
ρm +G(pm)

)
+
∫
Rn

∇pm.∇φm
(
∆ pm +ρm +G(pm)

)
.

Our next step is to prove that∫ T

0
Rem(t)dt ≤C(T )+

1
3

∫ T

0

∫
Rn

pm|D2 pm|2dx. (23)

That is because, in the definition of Rem, the first integral is bounded thanks to the
estimates in Proposition 1. This is also true for the term ∇pm.∇φm

(
ρm +G(pm)

)
.
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The only term which requires a treatment is∫
Rn

∇pm.∇φm∆ pmdx =−
∫
Rn

∂i pm[∂
2
i jφm∂ j pm +∂ jφm∂

2
i j pm]dx

=−
∫
Rn

∂i pm∂
2
i jφm∂ j pm +

1
2

∫
Rn

∆φm|∇pm|2]dx.

After integration in time, the second term is bounded again thanks to the estimates
in Proposition 1. We arrive at∫ T

0

∫
Rn

∇pm.∇φm∆ pmdxdt ≤C(T )+
∫ T

0

∫
Rn

pm[∂
3
ii jφm∂ j pm +∂

2
i jφm∂

2
i j pm]dxdt

≤C(T )+
∫ T

0

∫
Rn

pm
[
∂ jρm∂ j pm +

1
3
|D2 pm|2 +

2
3
|D2

φm|2
]
dxdt.

The first term is also m
m+1

∫ T
0
∫
Rn ∂ j(pm)

m+1
m ∂ j pmdxdt and thus is bounded. The last

term is also bounded because |D2φm|2 has the same regularity in Lp, 1< p<∞ as ρm
according to singular integral theory [45]. Therefore we have proved estimate (23).

We can now conclude the estimate (19). After time integration of Eq. (22) and
using (23), we find∫

Rn
|∇pm(t)|2dx+m

∫ T

0

∫
Rn

pm
(
∆ pm +ρm +G(pm)

)2dxdt

+
1
3

∫ T

0

∫
Rn

pm|D2 pm|2 dx≤C(T )+
∫
Rn
|∇p0

m|2dx,

and the estimate (19) is proved.

Proof of Estimate (20). Integrating by parts, we may write

∫
Rn

|∇pm|4

pα
m

dx =−
∫
Rn

pm
[
−α
|∇pm|4

pα+1
m

+
∆ pm

pα
m
|∇pm|2 +2

∂ 2
i j pm∂i pm∂ j pm

pα
m

]
dx.

Therefore, we also have

(1−α)
∫
Rn

|∇pm|4

pα
m

dx =−
∫
Rn

pm
[∆ pm

pα
m
|∇pm|2 +2

∂ 2
i j pm∂i pm∂ j pm

pα
m

]
dx

≤ 1−α

4

∫
Rn

[ |∇pm|4

pα
m

+
4

1−α
p2−α

m |∆ pm|2

+
1−α

4

∫
Rn

|∇pm|4

pα
m

+
16

1−α

∫
Rn

p2−α
m |D2 pm|2

]
dx.

And finally, this is also written
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1−α

2

∫
Rn

|∇pm|4

pα
m

dx≤ ‖pm‖1−α

L∞(Rn)

C
1−α

∫
Rn

[
pm|∆ pm|2 + pm|D2 pm|

]
dx.

We obtain (20) because of the estimates (19) which also furnish a uniform bound on∫ T
0
∫
Rn pm|∆ pm|2dx.
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10. Noemi David, Tomasz Dębiec, and Benoît Perthame. Convergence rate for the incompressible
limit of nonlinear diffusion–advection equations. Annales de l’Institut Henri Poincaré C,
2022.

11. Noemi David and Benoît Perthame. Free boundary limit of a tumor growth model with nutri-
ent. J. Math. Pures Appl. (9), 155:62–82, 2021.

12. Noemi David and Filippo Santambrogio. New lipschitz estimates and long-time asymptotic
behavior for porous medium and fast diffusion equations, 2023. ArXiv preprint 2308.01041.

13. Noemi David and Markus Schmidtchen. On the incompressible limit for a tumour growth
model incorporating convective effects, 2021. ArXiv preprint 2103.02564.
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