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Abstract. Although large radio-telescope arrays allow us to observe
the celestial sphere with an unprecedented level of detail and sensitiv-
ity, additional antennas drastically increases the cost of processing and
storing their data, complicating the design of computing hardware. Our
overall goal is to provide a system, which we term SimSDP, to aid in
their design. It will achieve this by providing resource usage estimations
for some given imaging pipeline and hardware architecture, allowing for
more informed decisions when building the production systems. We lay
the groundworks in this paper by presenting and validating an initial
system that implements three different imaging pipelines. We find that
in most cases, our system is able to accurately estimate the scaling across
both algorithmic parameters as well as parallelization when compared to
measured data, with errors roughly in the 1-5% range, demonstrating its
ability to inform design decisions.

Keywords: Algorithm Design Space Exploration · SKAO · PREESM ·

Radio-Interferometry · Resource Estimation

1 Introduction

Radio-telescopes capture information of our skies within the radio spectrum,
allowing for the study of a host of otherwise invisible natural phenomena, with
some examples including unionized gas clouds, and low-frequency synchotron
radiation. Although many initial radio-telescopes were single-dish instruments,
modern advancements in the field of aperture synthesis allows us to instead use
antenna arrays with radio-interferometry. This is advantageous as it allows for
much larger apertures and higher sensitivities, allowing us to observe smaller
and fainter objects.

The currently under construction Square Kilometer Array (SKA) is an exam-
ple of such a telescope, and on completion, will be the largest antenna array in
the world. An issue with the SKA, as well as other large antenna arrays, is their
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computational cost, as the raw data obtained from the antennas is processed dig-
itally. Thus, the more antennas, the larger the amount of data to be processed,
with estimates for the SKA being around 0.4TB/s, leading to roughly 34.5 PBs
per day. Storing this data for any significant period of time is prohibitively ex-
pensive, leading to strict time restrictions during processing. This, coupled with
the fact that the type of science performed dictates the algorithmic pipeline,
makes hardware and software design particularly challenging.

To aid in the above, a system that provides resource usage estimations for
various radio-interferometric algorithmic pipelines and hardware architectures
is desired. Unfortunately, as far as we are aware, none currently exists. The
closest to this is DALiuGE [1], a graph-based execution framework targeted at
radio-astronomy, and DASK [2], which has been used in radio-interferometry
systems such as RASCIL [3]. However, from our understanding, these are pri-
marily execution frameworks and do not provide easy resource usage estimations,
particularly at scale.

It is our aim to introduce such a system, which will be termed SimSDP as it
is targeted at the design of the SKA supercomputer, the Science Data Proces-
sor (SDP). This system will consist of two main parts. The first is responsible
for both the algorithmic descriptions, as well estimating the performance for
hardware at a local level, and the second aims to generalize the performance
estimations across different hardware architectures.

This paper lays the groundwork for the former, by presenting a generic frame-
work for radio-inteferometric algorithms, and providing three implementations
of imaging pipelines within. We evaluate our framework’s ability to aid in the
design of the SDP by estimating the resource usage of these different pipelines
across a variety of parameters and two levels of parallelization, and compare
these against measured data to see if we can draw similar conclusions.

The main contributions of this paper are:

– A generic framework describing radio-interferometric algorithms, together
with the full data-flow description and implementation of three different
imaging pipelines,

– An evaluation of our framework’s ability to aid in the design of the SDP, by
comparing both estimated resource usages against measured across a variety
of parameters and two parallelization levels,

The remainder of this paper is structured as follows: Section 2 provides a brief
introduction to radio-interferometry as well as the generic pipeline, Section 3
discusses our implementation of this, and provides details on our implemented
algorithms and how we perform our estimations, Section 4 discusses our results,
and Section 5 concludes our work.

2 Radio-Interferometric Imaging

Radio-interferometers measure the sky using antenna arrays. Samples are pro-
duced by pairs of antennas in the array, termed baselines. Each sample, termed a
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visibility, is the instrumental response for some given time duration and electro-
magnetic frequency for a specific baseline. Visibilities can be defined with the
Radio-Interferometric Measurement Equation (RIME) [4]:

V (u, v) = Guv

∫
Duv(l,m) 1√

1−l2−m2
I(l,m)e−2πi(ul+vm+w(

√
1−l2−m2−1))dldm (1)

where G denotes the direction independent effects, such as antenna gain, D
denotes the direction dependent effects, such as Faraday rotation caused by the
Earth’s ionosphere, (u, v) refers to the difference between antenna positions in
the frame of the Earth’s rotation, (l,m) refers to spatial coordinates on the
celestial sphere, and I is the true sky.

If the D and ew(
√
1−l2−m2−1) terms are ignored, Equation 1 simplifies to

V (u, v) = Guv

∫
I(l,m)e−2πi(ul+vm)dldm (2)

a 2-dimensional Fourier transform, allowing us to retrieve an image of the true
sky through an inverse Fourier transform.

The image produced by the inversion of Equation 2, termed the dirty image,
contains artefacts caused both by the partial sampling of the Fourier domain,
as antenna arrays are inherently sparse, as well as by the omission of the w and
D terms. The former results in a convolution between the Fourier transform
of the sampling pattern, ie. the Point Spread Function (PSF), and the real
sky, while the latter results in non-isoplanatic image-plane distortions. Radio-
interferometric imaging aims primarily to correct these in order to produce an
image use-able for scientific purposes.

The Radio-Inteferometric pipeline [5] employs a nested loop structure (Fig-
ure 1). The outer ie. major loop ∆ calculates the difference δîn between some
estimated sky image în and the measured values v, with î0 typically being a
blank image.

Although there are many possible approaches to ∆, the most common gen-
eral method currently involves transforming în to the same domain as v using a
degridding operator, which typically includes a Fourier transform and an extrap-
olation operator, performing the subtraction to obtain the difference in visibility
space, and then using a gridding operator which includes an inverse Fourier
transform together with an interpolation operator to obtain δîn.

In addition to computing the difference, the major loop is also responsible
for correcting for the w and D terms. This can be achieved either in tandem
with the gridding convolution stage G† [6–8] or through various discretization
methods [9–11]. There has also been work that employs a hybrid of the two
strategies [12, 13].

Finally, the major loop also allows for calibration of the direction independent
effects G, which we don’t show in Figure 1 as it is not the focus of our work.

The inner ie. minor loop Ψ is responsible for removing the convolution arte-
facts caused by the partial sampling of the Fourier domain from δîn, and then
combining this information with în to produce an estimate în+1 for the next ma-
jor cycle iteration. This is achieved by employing a deconvolution algorithm, with
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Fig. 1. The general framework for producing the final sky estimate î is iterative, where
în is updated while taking into account the difference δîn between it and the measure-
ments v. The degridding-gridding step (∆) is responsible for computing this, whereas
the deconvolution step Ψ is responsible for generating the next estimate în+1.

some popular examples being CLEAN [14] and its variants [15–17], and convex
optimization methods that regularize based on entropy [18] or sparsity [19–21].

As the deconvolution methods can be partial or contain errors in their esti-
mation, the new estimate în+1 is passed back to the major loop. This is done
until δîn is predominantly noise.

3 Implementation

We implement the generic structure defined in Figure 1, as well as three different
imaging algorithms using PREESM [22]. We find PREESM to be particularly
well suited to our needs, as algorithms are defined in data-flow diagrams, which
allows for easy definition of additional imaging algorithms. It also allows for
automated parallelism, which we use for our different levels of parallelization.
Finally, PREESM also allows for easy estimation of resource consumption when
provided with the relevant data for each actor.

The generic top-level data-flow diagram provides a common interface for
algorithms defined in ∆ and Ψ ie. degridding-gridding and deconvolution. This
enables us to encompass a large number of different imaging pipelines, as most
work in the domain tend to focus on either.

The rest of this section will look to provide a high-level overview on the
algorithms we implemented for both ∆ and Ψ , as well as how parallelization is
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performed. It also discusses how we perform our resource usage estimations. We
provide our system and data in our on-line repository3.

3.1 Algorithms for ∆ and Ψ

We implement three different degridding-gridding algorithms (∆) in our pipeline.
The first is the Direct Fourier Transform (DFT) degridder, which transforms the
image directly to the visibilities using:

V (u, v) =

L,M∑
l=0,m=0

I(l,m)e−2πi(ul+vm) (3)

As it is unnecessary to perform the equation for areas where I is zero, the
overall complexity for this method is O(nvns), where nv is the total number of
visibilities, and ns is the number of sources.

Following this is the Fast-Fourier Transform (FFT) degridder, which first
performs a Fast Fourier Transform on the image to obtain the gridded visibilities,
which are then subsequently convolved onto the continuous visibility positions.
This algorithm has a complexity of O(n2

g log2 ng + nvndgk), where ng is the
support size of the grid, and ndgk is the support size of the de-gridding kernel.

Both the DFT and FFT degridders also perform a gridding operation after
the subtraction of visibilities, which has a complexity of O(n2

g log2 ng + nvngk)
where ngk is the size of the gridding kernel.

The last implemented degridding-gridding algorithm is the more recent Grid
to Grid (G2G) method by Monnier et al. [23]. This method performs degrid-
ding and gridding in a single step, and performs the subtraction in image space
rather than visibility. The total complexity of this algorithm is O(2n2

g log2 ng +
2nv(ngk + ndgk)), the same as the FFT degridder. However, this algorithm is
more performant, as it employs a visibility simplification stage which diminishes
the size of nv. Furthermore, the subtraction is done in image space, which may
be faster as the number of visibilities often dwarfs the number of pixels in the
image.

We choose to focus on degridding-gridding (∆) algorithms for this work,
thus only implement a single deconvolution algorithm (Ψ), that being Högbom
CLEAN. [14], which we selected for its simplicity. This algorithm iteratively
finds the brightest source in the image, and subtracts the PSF from its position,
terminating after a preset number of minor cycles nm. The complexity of this
algorithm is O(n2

g+nmnp), where np is the support of the PSF. As this algorithm
finds a single point source per iteration, ns = nm, which is pertinent for the DFT
degridder.

3 https://gitlab.com/igorawratu/an-initial-framework-for-prototyping-radio-
inteferometric-imaging-pipelines
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3.2 Parallelization

To parallelize ∆, we design the data-flow diagram to divide the visibilities based
on some specified number of threads, grid or degrid each subset of visibilities in-
dependently, and then merge each thread’s results. This manner of parellelization
is natural for ∆ as it requires looping through the visibilities. We don’t paral-
lelize Ψ as Högbom CLEAN has cross iteration data dependencies, drastically
complicating process.

We create two different levels of parallelization with 1 and 4 cores. We set the
data division parameter in our data-flow diagrams to not divide the visibilities
in the former case, and divide them into 4 disjoint subsets in the latter.

3.3 Estimating Resource Utilization

We perform computation time and memory estimations for our system. For the
former, PREESM requires time information for each actor, either in the form of
an exact value, or some function dependent on the input data. We opt for the
latter as it affords us the ability to predict how the algorithms scale.

We perform benchmarking on optimized versions of the code for each actor,
while varying the number of visibilities, the image size, and the number of minor
cycle iterations. We then fit polynomials of the appropriate degree to these, which
we then transfer to PREESM. We average 30 samples for each benchmark data
point.

We perform the benchmarking for actors that contain simple and near-
optimal implementations directly in PREESM. For more complex actors, such
as the G2G and FFT degridding-gridding algorithms, we profile the code of
Monnier et al. [23].

The dataset used to generate these benchmarks is obtained from the SKAO
simulated database repository. We provide full information on this in Section 4.1.
In order to vary the number of visibilities, we either truncate or duplicate them.
We opt for this over random generation because the antenna layout may have
an effect on the performance of some algorithms, such as G2G.

The machine used to obtain the benchmarks is a Dell Precision 3551, with an
Intel Core i7 10875H 10th generation processor and 64GB of RAM. Re-profiling
and fitting is required for other hardware as our fitted models become invalid.

Unlike the computational time estimations, memory estimations in PREESM
are much less involved, with PREESM simply reporting the maximum allocated
inter-actor memory. It does not estimate intra-actor memory as it does not per-
form any code analysis, and primarily serves as a lower-bound estimation.

4 Results and Discussion

This section provides details on the simulated dataset that we use for our ex-
periments, our framework validation, as well as our resource estimation results.
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4.1 Simulated Database

The simulated dataset used for our validation and experiments is the same as
the one used for our benchmarking, and is the small database from the SKA
simulated dataset repository 4. It is simulated to have a field of view of 1 degree,
with 33 point sources within. The array has a total of 512 antennas, leading to
130816 baselines. The visibilities were sampled from each baseline once every 30
seconds, for a total of 15 minutes, creating 3924480 total visibilities.

This dataset is single polarization single wavelength, which is well suited to
the current limitations of our system, as it is currently unable to handle different
polarizations, extended sources, and multiple frequency channels.

4.2 Pipeline Validation

RASCIL DFT

Fig. 2. Final deconvolved images of RASCIL and our DFT degridder-gridder. We can
see that the sources appear in the same positions with similar energy ratios, showing
that our pipeline functions as intended. Our other images are similar and available on
our repository.

We validate our pipeline by performing a visual inspection of its reconstructed
images to the ones produced from the well known imaging framework RAS-
CIL [3]. Figure 2 shows the images produced both by RASCIL, and our DFT
degridder. The other algorithms produce very similar images, and are available
on our repository.

One can see that the general structure of the produced image is the same,
with the point sources and their energy ratios being similar. The differences
are primarily due to minor algorithmic discrepancies, such as parameters in the
deconvolution algorithm.

4 https://gitlab.com/ska-telescope/sim/sim-datasets



8 S. Wang et al.

4.3 Computing Time Estimations

We evaluate our computation time estimations by comparing them to the mea-
sured times of our pipelines obtained using the GNU time tool. We plot these
against different numbers of grid cells, numbers of visibilities, and the numbers
of minor cycles per major iteration.

Fig. 3. Computational times of both our estimations (dashed lines) and measurements
(solid lines) for our implemented methods across both levels of parallelization.

Figure 3 shows our results, where the dashed line denotes estimated times,
the solid line denotes measured, the lighter colours denote the single core setup,
and the darker denote the quad core.
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We found our estimations to accurately predict the increase in time with in-
creasing algorithm parameters, with most cases having an average error within
the 1-5% range, allowing us to draw similar scaling conclusions to the measured
data. For example, we can see that the DFT algorithm scales much poorer com-
pared to the others with regards to the number of sources in the image, as well
as the number of visibilities.

We also found that our framework allows us to draw valid conclusions with
regards to scaling in terms of parallelization, with it accurately predicting in
most cases the roughly 1.5 − 3× speedup obtained when parallelizing across 4
cores.

Despite the positives, we found various areas in which the accuracy of our
estimations was lacking. This can be seen for the FFT and G2G algorithms when
varying the number of grid cells, and DFT in the cases where the minor cycles
are varied. There are three main reasons for these poor estimates:

– With the exception of the DFT, the code benchmarked was much more
optimized than the code measured;

– Our fitting functions introduce additional error;

– PREESM does not perform static analysis.

Although the former two points can be easily resolved by taking more ac-
curate and a larger number of benchmark samples, the latter is a drawback to
our current framework, which only performs static analysis. This is particularly
evident in the results for G2G, which performs a visibility simplification step to
dynamically reduce the number of visibilities needing to be processed.

4.4 Memory Usage Estimations

We evaluate the memory usage estimations by comparing them against the mea-
sured maximum resident set size obtained by the GNU time tool in verbose mode.
We plot the memory usage against both the number of grid cells and the num-
ber of visibilities for both levels of parallelization. Unlike the computational time
experiments, we do not vary the number of minor cycles as it does not have a
major effect on memory usage.

Figure 4 shows the estimated and measured memory usage in our system.
Much like the computation time estimations, our framework predicts well the
increase when scaling the amount of data, with an error of 1-5% for all test
cases. It also predicts the 1.1− 1.5× increase in memory usage when increasing
parallelization.

These results are not surprising, as PREESM is responsible for allocating the
inter-actor memory. However, it is unexpected that the measured memory usage
is lower than the estimated. As mentioned in Section 3.3, the estimate should
provide a lower-bound, which is in conflict with what we observed. We are still
investigating possible explanations for this discrepancy, and will leave a more
detailed analysis for future work.
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Fig. 4. Memory estimations (dashed lines) and measurements (solid lines) for the var-
ious algorithms implemented in PREESM plotted against both number of visibilities,
and number of grid cells.

5 Conclusions and Future Work

In this paper, we lay the groundworks for SimSDP, a system aimed at aiding in
the design of supercomputers processing data from large radio-telescope arrays
by providing resource usage estimations at various scales and hardware archi-
tectures. We achieve this by performing a study on a preliminary system aimed
at such, which includes three different algorithmic pipelines, and two levels of
parallelization. We found that the estimations obtained from our framework al-
lows us to draw similar scaling conclusions to the measured results. This gives
impetus in continuing the design and implementation of SimSDP.

5.1 Drawbacks

One major drawback of our system is that it currently only performs static
analysis, which may lead to it providing poor estimates in cases where algo-
rithms perform dynamic reductions to the data being processed. Also in line
with this, there are additional accuracy improvements that can be made to our
estimations through more and better benchmarking data. Finally, our system
currently does not handle many types of datasets, as it doesn’t currently sup-
port objects containing extended sources (eg. nebulae), different polarizations,
and multiple wavelengths.



An Initial Framework for Prototyping Radio Imaging Pipelines 11

5.2 Future Work

Much work still needs to be done for the realization of SimSDP. This includes:
extending the current system to support different hardware architectures; imple-
menting more algorithms for ∆ and Ψ , which will allow for our system to support
more types of datasets; introduce dynamic analysis by employing SPIDER [24];
estimating energy consumption; and comparing our system’s estimations to mea-
surements obtained from production systems [3, 11, 25].

Acknowledgements This work was supported by DARK-ERA (ANR-20-CE46-
0001-01)
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