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Abstract

Designing online algorithms with predictions is a recent technique for various practically
relevant online problems (scheduling, caching (paging), clustering, ski rental, etc.). [8] provided
a unified approach through a primal-dual framework for linear covering problems. Their frame-
work extends the online primal-dual method by incorporating predictions, and its performance
goes beyond the worst-case analysis. Following this research line, our paper presents compet-
itive algorithms with predictions for non-linear covering problems, generalizing the previous
technique. We illustrate the applicability of our algorithms through experiments on energy
minimization, congestion management, and submodular minimization problems.

1 Introduction

Online computation (coined by [9]) is a well-established field in theoretical computer science. Online
computational models consider inputs as request sequences, where each request arrives individually
over time. After observing the current request, the problem-solving algorithm must perform an
irrevocable action without additional information about the future. The performance of an online
algorithm is typically measured by the competitive ratio metric, which is the worst ratio between
the objective value obtained by the algorithm and that of the optimal solution. Intuitively, the com-
petitive ratio measures the price of not knowing future requests. Our goal is to design performant
algorithms within this metric.

The traditional worst-case analysis is an indispensable framework in algorithm design and is
central in the development of algorithms. Nevertheless, it can lead practical users to several pit-
falls. Summarizing an algorithm’s performance by a pathological worst-case can overestimate its
performance on average. Many algorithms that perform well in practice admit mediocre theoret-
ical guarantees, while others which are well-established in theory behave poorly, even on simple
instances. Consequently, it is crucial to research theories that can better explain the performance
of algorithms and advise algorithm design choices ([31, 32]).

Much of the research focused on going beyond the worst-case paradigm is motivated by the
spectacular advances of machine learning (ML). Specifically, ML methods can detect patterns
among the arriving input requests and provide valuable insights for the online algorithms regarding
future requests. [25] introduced a general framework to integrate ML predictions into classical
algorithm designs to surpass the worst-case performance limit. Shortly after, [28] followed this
line of research and studied online algorithms with predictions. As a result of these papers, many
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practically relevant online problems were revisited to enhance existing classical algorithms with ML
predictions. For example, scheduling ([24, 27]), caching ([25, 29, 2]), and ski rental ([16, 23]).

Even though predictions provide a glimpse of the future, there is no mathematical guarantee
for their accuracy. Adjusting the algorithm’s trust in the predictions is a significant challenge since
online algorithms must make irrevocable decisions at each time step. Ideally, if the predictions are
accurate, the algorithm should perform well compared to the offline setting. In contrast, if the
predictions are misleading, the algorithm should maintain a competitive solution, similar to the
online setting where no predictive information is available. In other words, online algorithms with
predictions are expected to bring the best of both worlds: mathematical performance guarantees
of classical algorithms and good future prediction capabilities of machine learning methods.

To overcome the issue of unknown prediction accuracy, the authors of the works we cited
previously exploited specific structures within the studied problems. [8] presented a primal-dual
method based technique to unify these different ad-hoc approaches and design online algorithms
with predictions for various online problems. The primal-dual method is an elegant and powerful
algorithm design technique (introduced by [36]), especially for online algorithms (see [11]). The
work of [8] focuses on problems with linear objectives and covering constraints. Until now, it
remained an open question to design online algorithms with predictions for non-linear covering
problems. Non-linear objectives appear naturally in diverse application domains, such as energy
and congestion management. Therefore, answering this open question has high theoretical interest
and vital practical motivations. Our paper presents a framework to create online primal-dual
algorithms with predictions for covering problems with non-linear objectives.

1.1 Model

Building upon the work of [8] (which has several definitions rooted in [25, 23]), our model includes a
prediction oracle P and a parameter η ∈ (0, 1] which characterizes the confidence in the predictions.
Small η values represent low doubt, meaning that the prediction accuracy is high, while large η
values show high doubt, signalling that the predictions should be discarded. Given an online
problem, upon the arrival of the current request, the online algorithm solving the problem must
make an irrevocable decision regarding the request while satisfying the problem’s constraints. In our
setting, the decision-making is influenced by the prediction of the oracle P, the confidence parameter
η, the current solution, and the history of released requests. Intuitively, the oracle’s predictions
provide information about the unknown future. For example, it can predict the optimal machine
for the current task during scheduling. To characterize the performance of an online algorithm with
predictions, we use the notion of consistency and robustness. An algorithm A (for a minimization
problem) is C(η)-consistent and R(η)-robust if for every instance I,

A(I) ≤ min{C(η) · P(I), R(η) · O(I)}

where A(I),P(I),O(I) are respectively the objective values on instance I of algorithm A, the pre-
diction oracle P and the optimal offline solution O. Following the convention, when the prediction
oracle P provides an infeasible solution, P(I) is set to −∞ and +∞ for maximization and mini-
mization problems, respectively. Ideally, when η approaches 0 (high confidence in the prediction),
C(η) should tend to 1. Meanwhile, when η approaches 1 (high doubt in the prediction), R(η)
should tend towards the best competitive ratio in the classic online setting.

Similarly to the work of [8], our algorithm A combines the predictions of oracle P with the
primal-dual method. This method formulates the studied problem as a mathematical program
called the primal and its corresponding dual. Considering an online problem, at the arrival of a
new request, a primal-dual method based online algorithm updates its fractional solutions to both
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the primal and dual programs to maintain feasibility (satisfy the constraints of the mathematical
programs). The competitive ratio of such an algorithm is established by showing that every time
the algorithm updates the primal and dual solutions, the increase of the primal objective value can
be bounded by that of the dual up to some desired factor.

Our presented model contains two components by design. One relates to the prediction oracle,
and the other to the classical primal-dual method. This duality is also present during the perfor-
mance evaluation since our algorithms must achieve both good consistency and robustness. Given
two separate algorithms, where one blindly follows the predictions while the other makes decisions
solely based on the primal-dual method, a natural question is whether a simple linear combination
of the two algorithms performs well. If we target a consistency of at least O(1/(1 − η)), using a
linear combination of the two algorithms, the robustness must be Ω(1/η). However, the ultimate
goal is to achieve robustness in the order of poly(log(1/η)) (exponentially smaller than Ω(1/η))
while maintaining O(1/(1 − η)) consistency. Therefore, a simple linear combination of the two
components is insufficient to reach the desired performance guarantees.

Our paper presents a framework for non-linear online covering problems with an intricate com-
bination of the classic primal-dual method and a prediction oracle. Algorithms created with our
framework construct fractional solutions, which is the primary step in primal-dual method based
algorithms. Even though many real-life problems require integer solutions, online rounding schemes
already exist for most of them. We provide references to such rounding schemes at the analysis of
our studied problems.

1.2 Contribution

Inspired by the approach of [8], our model (detailed previously) combines an oracle’s predictions
with the primal-dual method in a way that the oracle’s predictions influence the updates of the
primal and dual variables. The construction of our algorithm follows the multiplicative weight
update method based on the gradient of the multilinear extension of the problem’s objective function
([34], see section 2 Preliminaries). This technique generalizes the multiplicative weight update
introduced in [10, 3]. Using the local-smoothness notion of the multilinear extension, we can prove
the feasibility of the primal and dual solutions (even when the prediction is infeasible). Afterwards,
the algorithm’s performance is established using the local-smoothness and confidence parameters.

Theorem 1 (Informal definition.) Given a non-linear online covering problem, let F be the multi-
linear extension (see section 2 Preliminaries) of the problem’s objective function. Assuming (λ,µ)-
local-smoothness properties on F , for every confidence parameter η of the prediction oracle, where
η ∈ (0, 1], there exists an O

(
1

1−η

)
-consistent and O

(
λ

1−µ · ln
(
d
η

))
-robust algorithm for the non-

linear online fractional covering problem, where d is the maximum raw sparsity of the problem’s
constraints (maximum number of non-zero coefficients in a constraint).

Figure 1: Robustness-Consistency

Illustration. Since Theroem 1 relies on several param-
eters, it may be challenging to appreciate its importance.
As an example, when the objective function of our prob-
lem is a polynomial of degree k, the competitive ratio of
state-of-the-art online algorithms without predictions is
in O(kklog(d)). Meanwhile, the consistency of our frame-
work is O(1/(1−η)) and the robustness is O(kklog(d/η)).
Figure 1 displays the case when k = 1, d = 5, and the
prediction oracle is perfect (the predictions correspond to
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the ground truth). The competitive ratio of our framework is the shaded area above the consis-
tency and robustness curves. By choosing a small enough η value, it is possible to surpass the
previous worst-case bound of the state-of-the-art algorithm. If the polynomial degree of the objec-
tive function increases, the robustness curve and the state-of-the-art line will decrease drastically
(multiplication with 1/kk). Similarly, if the prediction oracle is imperfect, the consistency line will
tend downwards. However, if the oracle produces a solution at most up to a factor of kk times the
optimal one, it is still possible to surpass previous worst-case guarantees.

1.3 Applications

We show the applicability of our framework through the following problems.

Load Balancing. Load balancing is a classic problem in discrete optimization with wide-ranging
applications (for example, resource management in data centres). This problem revolves around
assigning jobs that arrive online tom available unrelated machines while minimizing their maximum
load. Our framework provides an O( 1

1−η )-consistent and and O
(
(logm) log2 m

η

)
-robust algorithm

with fractional solution to this problem.

Energy Minimization in Scheduling. Reducing carbon emissions is a global effort in which
energy-efficient algorithms play an essential role. For example, [1] and [18] studied energy-efficient
algorithms for scheduling. Contrary to performance-oriented scheduling, our goal is to design an
assignment policy of jobs to m available machines, which can minimize the total energy consump-
tion of the execution. Energy-related objective functions are typically polynomials of degree k > 1.
Using our proposed framework, we can derive an O( 1

1−η )-consistent and O
(
kk logk m

η

)
-robust algo-

rithm with fractional solutions for this energy minimization problem.

Submodular Minimization. Submodular minimization is a widespread subject in optimization
and machine learning ([20, 5, 4, 7]). We present a O( 1

1−η )-consistent and O
( log(d/η)

1−κf

)
-robust algo-

rithm for minimizing a submodular function under covering constraints where κf is the curvature
(defined in Section 3.1.3) of the submodular function.

1.4 Experiments

The experiments focus on a high-impact congestion management problem: network and transporta-
tion routing. The input is a directed graph G(A, V ) and a set of requests R = {(si, ti) : si, ti ∈ V }
that represents demands (connecting si to ti through a path). Each arc (u, v) ∈ A is associated
with a cost function f(u,v) : R+ → R+ that depends on the number of requests using the arc. The
goal is to design a routing that minimizes the total cost while requests arrive online. We enable
predictions by building an oracle using the observed data. The oracle provides traffic forecasts,
vital information to improve the routing. The experiments show that our algorithm outperforms
both the best theoretical algorithm and the prediction in practical settings.

1.5 Related work

The primal-dual method is a powerful tool in online optimization. [10] introduced a primal-dual
framework for linear programs with packing and covering constraints. Their method unifies several
previous potential-function-based analyses and gives a principled approach to the design and anal-
ysis of algorithms for problems with linear relaxations. [3] provided a framework for covering and
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packing problems with convex and concave objectives whose gradients are monotone. Subsequently,
[34] presented algorithms without the convex assumption on the objective function and established
a competitive ratio parameterized by the function’s smoothness properties. This smoothness notion
of [34] has roots in smooth games, which [30] defined in the context of algorithmic game theory.

The domain of algorithms with predictions ([28]) - or learning augmented algorithms - emerged
recently and grown immensely at the intersection of (discrete) algorithm design and machine learn-
ing (ML). Combining ML techniques with traditional algorithm design methods enables online
algorithms to benefit from predictions that can infer future information from patterns in past data.
Online algorithms with predictions can obtain performance guarantees beyond the worst-case anal-
ysis and provide fine-tuned solutions to various problems. In the literature, many significant prob-
lems have new learning-augmented results. For example, scheduling ([24, 27]), caching (paging)
([25, 29, 2]), ski rental ([16, 23]), counting sketches ([19]), and bloom filters ([22, 26]). To design
online algorithms with predictions in a unified way, [8] proposed a primal-dual approach for online
linear problems with covering constraints. Since then, [17] further generalized this method for on-
line semidefinite programming with covering constraints. By combining their ideas and the ones
in [10, 3, 34], we present a primal-dual framework for general problems with non-linear objectives
and covering constraints. Hence, this paper answers an open question in [8].

2 Preliminaries

Multilinear extension. We follow the primal-dual approach of [34] to design competitive al-
gorithms for online fractional non-linear covering problems. This method uses the objective func-
tion’s multilinear extension to characterize how far the objective function is from being linear.
Given a function f : {0, 1}n → R+, its multilinear extension F : [0, 1]n → R+ is defined as
F (x) :=

∑
S

∏
e∈S xe

∏
e/∈S(1 − xe) · f(1S) where 1S is the characteristic vector of S (the eth-

component of 1S equals 1 if e ∈ S and equals 0 otherwise). Alternatively, F (x) = E
[
f(1T )

]
where

T is a random set such that a resource e appears in T independently with probability xe. We
highlight that F (1S) = f(1S) and define the following crucial property.

Definition 1 ([34]) Let E be a set of n resources. A differentiable function F : [0, 1]n → R+ is
(λ, µ)-locally-smooth if for every set S ⊆ E, and for every set of |S| arbitrary vectors xe ∈ [0, 1]n

where e ∈ S, the following inequality holds:∑
e∈S
∇eF (xe) ≤ λF

(
1S
)
+ µF

(
x
)

where x is a vector whose every coordinate xe′ = maxe{xee′} (formally, x :=
∨

e∈S xe); and ∇eF (x)
denotes ∂F (x)/∂xe.

The defined (λ, µ)-smoothness property differs from the standard notion of function smooth-
ness used in convex optimization. Following the definition of [34], the current (λ, µ)-smoothness
property relates to the definition of smooth games in the context of algorithmic game theory ([30]).
Intuitively, given a (λ, µ)-locally-smooth function, the quantity λ

1−µ measures how far the function
is from being linear. If a function is linear, it is (1, 0)-locally smooth.

Definition 1 addresses general functions with non-monotone gradients. When ∇eF (x) is non-
decreasing on every coordinate e, we can simplify the definition.
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Definition 2 ([34]) (+ monotone gradient assumption) Let E be a set of n resources. A
differentiable function F : [0, 1]n → R+ with monotone gradient is (λ, µ)-locally-smooth if for every
set S ⊆ E, and for every arbitrary vector x ∈ [0, 1]n, the following inequality holds:∑

e∈S
∇eF (x) ≤ λF

(
1S
)
+ µF

(
x
)

Covering Problem. Let E be a set of n resources and let f : {0, 1}n → R+ be an arbitrary non-
decreasing function defined on the set. Let xe ∈ {0, 1} be a variable indicating whether resource
e is selected. In contrast to packing problems, the set of resources is known in advance, but the
covering constraints (

∑
e a

t
exe ≥ 1) are revealed one-by-one over time. When a constraint arrives,

the oracle gives a prediction (pred(xe) ∈ {0, 1}) for each resource e and our algorithm updates the
solution x = (xe)e∈E by only increasing the xe variables. Online algorithms must make irrevocable
decisions, which means that they cannot decrease the value of the decision variables. The update
must always satisfy every revealed constraint. The objective is to minimize f(x) subject to the
online covering constraints.

3 Primal-Dual Framework for Covering Constraints

Formulation. We formulate the online covering problem that we described in the Preliminaries as
a problem of finding the minimum cost solution among all the possible solutions. This formulation
has an exponential number of variables and constraints; however, it allows us to transform the
non-linear objective function into a linear one, which is crucial for our algorithm and proofs.

Let S ⊆ E be a solution if 1S corresponds to a feasible solution. Let xe be a variable indicating
whether resource e is selected. Let zS be an indicator variable for solution S. If zS = 1, then
every variable xe = 1 if e ∈ S, and xe = 0 if e /∈ S. Otherwise, zS = 0. In other words, zS = 1
if and only if 1S is the selected solution of the online covering problem. At each time step t
during the execution, a new constraint is revealed. For every subset A ⊆ E , we define the value
ct(A) := max{0, 1−

∑
e∈A ate}, to be the amount we need until constraint satisfaction. Given this

value, we normalize the constraint coefficients to be ate(A) := min{ate, ct(A)}. Finally, we define
bte(A) := ate(A) / ct(A) where ct(A) > 0. The values bte(A) correspond to the coefficients in the
knapsack inequality constraints ([13]). The primal and dual programs are:

min
∑
S⊆E

f(1S) zS∑
e/∈A

bte(A) xe ≥ 1 ∀t, ∀A ⊆ E

∑
S:e∈S

zS = xe ∀e∑
S⊆E

zS = 1

xe, zS ∈ {0, 1} ∀e, ∀S ⊆ E

max
∑
t,A

αt
A + γ

∑
t

∑
A:e/∈A

bte(A) αt
A ≤ βe ∀e

γ +
∑
e∈S

βe ≤ f(1S) ∀S ⊆ E

αt
A ≥ 0 ∀t, ∀A ⊆ E
βe ≥ 0 ∀e
γ ≥ 0

In the primal program, the first constraints are knapsack-constraints ([13]) of the given polytope,
and they are equivalent to

∑
e/∈A ate(A) xe ≥ ct(A). It is sufficient to satisfy constraints where
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ct(A) > 0. The second primal constrain ensures that if a resource e is chosen, the selected solution
must contain e. The third constraint guarantees that one solution is selected.

Algorithm. In our proposed algorithm, x ∈ [0, 1]|E| corresponds to the current solution of the
algorithm. During the execution, we rely on the objective function’s multilinear extension F ,
parametrized by λ and µ. We assume, that F (x) is (λ,Cµ)-locally-smooth, where C is a constant
that arises from the algorithm’s analysis (see Lemma 2). Algorithm 1 follows the scheme of [34],
which uses both the primal and dual variables to solve the problem.

We have two notions of time in our algorithm. First, at each discrete time step t, a new primal
constraint arrives. Second, we have a continuous time τ throughout the execution. The solution
of the algorithm increases gradually with time τ . To simplify the notations, when the context only
uses the current time of the execution, x refers to x(τ), the current solution at time τ .

Algorithm 1 Online Algorithm for Non-Linear Covering Problems.
1: Initially, set A∗ ← ∅ (where A∗ is the solution set and ∀e ∈ A∗ : xe = 1)
2: All primal and dual variables are initially set to 0
3: During every step, for each feasible solution S, zS =

∏
e∈S xe

∏
e/∈S(1− xe) is maintained.

4: Let τ be the continuous timer during the execution of the algorithm.
5: for each time t, for the new primal constraint

∑
e a

t
exe ≥ 1 and dual variable αt

A∗ do
6: while

∑
e/∈A∗ bte(A

∗) xe < 1 do # Increase primal, dual variables

7: Increase τ with a rate of 1.
8: Increase αt

A∗ at rate 1 / (λ ln(1 + 2d2/η))
9: for e /∈ A∗ such that bte(A

∗) > 0 do
10: if βe <

1
λ∇eF (x) then βe ← 1

λ∇eF (x)
11: Increase xe at a rate according to the following

∂xe
∂τ
← bte(A

∗) xe
λβe

+
η

λβed
+

(1− η) · 1{pred(xe)=1}

∇eF (x) · |{e′ : pred(xe′) = 1, bte′(A
∗) > 0}|

12: end for
13: if xe = 1 then A∗ ← A∗ ∪ {e}
14: for e : e /∈ A∗ do # Decrease dual variables

15: while
∑t

t′=1

∑
A:e/∈A bt

′
e (A) αt′

A > βe do
16: for (t∗e, A) such that bt

∗
e
e (A) = max{bt′e (A) | ∀A : e /∈ A and ∀t′ ≤ t s.t. αt′

A > 0} do
17: Decrease α

t∗e
A continuously with a rate of bte(A

∗)

b
t∗e
e (A)

· 1
λ·ln(1+2d2/η)

18: end for
19: end while
20: end for
21: end while
22: end for

When a new primal constraint arrives, the current dual variable αt
A∗ increases at a constant rate

(line 8), while the βe variables are updated according to the partial derivative of the mulitlinear
extension (line 10). We note a subtle point here: if βe < 1

λ∇eF (x) then we set βe = 1
λ∇eF (x),

but if βe > 1
λ∇eF (x) then we do not change the value of βe. This update preserves the following

invariants during the execution of the algorithm: βe ≥ 1
λ∇eF (x) and βe is non-decreasing. (Remark:

if ∇eF (x) is monotone on every coordinate e, then it is sufficient to always set βe ← 1
λ∇eF (x).)
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The update on line 11 is inspired by the multiplicative weight update method (where the
increasing rate of xe is inversely proportional to βe) and the updating approach of [8]. Starting
from line 14, the algorithm decreases some of the dual variables using a similar idea as in [3]. This
decrease is necessary to maintain the feasibility of the dual solution.

Primal and dual variables. Let x(τ) be the algorithm’s primal solution at time τ . The dual
variables αt

A and βe are assigned during the execution, but not γ. To make the dual solution feasible,
we set γ = − µ

4λ·ln(1+2d2/η)
F (x(τ)) (see Lemma 2). Each βe =

1
λ∇eF (x(τ ′)), for some primal solution

x(τ ′), where τ ′ ≤ τ . Moreover, x(τ) ≥
∨

τ ′≤τ x(τ
′) (each coordinate xe(τ) = maxτ ′≤τ{xe(τ ′)}),

since the xe-variables are non-decreasing. Consequently, each βe ≥ 1
λ∇eF (x(τ)). Using these

properties, Lemma 1 gives a lower bound on x(τ). We highlight that the proof if this lemma does
not require the gradient of F to be monotone. (When this assumption is present, the algorithm
can simply set βe = 1

λ∇eF (x(τ)) at each step τ of the execution.)

Lemma 1 Let e be an arbitrary resource. At any moment τ during the execution of the algorithm,
when t constraints have already been released, it always holds that

xe ≥
η

b
t∗e
e (A) d

exp( ln(1 + 2d2/η)

βe
·
∑

A:e/∈A

∑
t′≤t

bt
′
e (A) · αt′

A

)
− 1


where b

t∗e
e (A) is defined in the algorithm on line 16.

Proof Let us fix a resource e and prove the lemma by induction. At the beginning of the execution,
when no constraint has been released yet, both sides of the lemma are 0. Let us assume that the
lemma holds until the release of the tth constraint

∑
e a

t
exe ≥ 1. Consider a moment τ during the

algorithm’s execution and let A∗ be the current set of resources e′ such that xe′ = 1. If at time τ ,
xe = 1 then by the algorithm’s design, the set A∗ has been updated such that e ∈ A∗. Consequently,
the increasing rates of both sides in the lemma inequality are 0. In the remaining part of the proof,
let us assume that xe < 1. We recall that by the algorithm’s design, βe ≥ 1

λ∇eF (x). We consider
two cases βe > 1

λ∇eF (x) and βe =
1
λ∇eF (x).

Case 1: βe >
1
λ∇eF (x). In this case, by the algorithm’s design, the value of βe remains unchanged

at time τ (line 10) (∂βe

∂τ = 0). The lemma’s right-hand side’s derivative according to τ is

∑
t′≤t

∂αt′
A∗

∂τ
· b

t′
e (A

∗) η

b
t∗e
e (A) d

· ln(1 + 2d2/η)

βe
· exp

(
ln(1 + 2d2/η)

βe
·
∑

A:e/∈A

∑
t′≤t

bt
′
e (A) αt′

A

)

≤
∂αt

A∗

∂τ
· b

t
e(A

∗) η

b
t∗e
e (A) d

· ln(1 + 2d2/η)

βe
·

(
b
t∗e
e (A) d

η
xe + 1

)

=
1

λ ln(1 + 2d2/η)
· b

t
e(A

∗) η

b
t∗e
e (A) d

· ln(1 + 2d2/η)

βe
·

(
b
t∗e
e (A) d

η
xe + 1

)

≤ bte(A
∗) xe

λ βe
+

η

λ βe d

≤ ∂xe
∂τ
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In the first inequality, we use the induction hypothesis and ∂αt
A∗

∂τ > 0 and ∂αt′
A∗

∂τ ≤ 0 for t′ < t

and ∂βe

∂τ = 0. The equality follows the increasing rate of αt
A∗ . The last inequality is due to the

increasing rate of xe. The rate on the left-hand side is always larger than on the right-hand side,
so the lemma inequality holds.

Case 2: βe = 1
λ∇eF (x). In this case, by the algorithm’s design, 1

λ∇eF (x) is locally non-
decreasing at τ (since otherwise, by line 10, βe is not maintained to be equal to 1

λ∇eF (x)).
Therefore, ∂βe

∂τ ≥ 0 and so ∂
(

1
βe

)
/∂τ ≤ 0. Hence, the derivative of the right-hand side of the

lemma inequality according to τ is upper bounded by∑
t′≤t

∂αt
A∗

∂τ
· b

t′
e (A

∗) η

b
t∗e
e (A) d

· ln(1 + 2d2/η)

βe
· exp

(
ln(1 + 2d2/η)

βe
·
∑

A:e/∈A

∑
t′≤t

bt
′
e (A) αt′

A

)
which is bounded by ∂xe

∂τ by the same argument as the previous case. The lemma follows. □

Lemma 2 The primal and dual variables are feasible.

Proof
Primal feasibility. While a primal covering constraint is unsatisfied, the xe-variables are

increasing. At the end of the first iteration, the first primal covering constraint is satisfied. After-
wards, the new constraints are also satisfied, since the algorithms maintains zS =

∏
e∈S xe

∏
e/∈S(1−

xe). If we choose an element e with probability xe, then zS is the probability that the set of selected
items is S. Therefore, the total probability

∑
S zS = 1. By a similar argument, we get the follow-

ing:
∑

S:e∈S zS = xe
∑

S′⊆E\{e}
∏

e′∈S′ xe′
∏

e′ /∈S′(1−xe′) = xe since
∑

S′⊆E\{e}
∏

e′∈S′ xe′
∏

e′ /∈S′(1−
xe′) = 1.

Dual feasibility. Let us now prove that the first dual constraint is always satisfied during
the execution. The algorithm maintains

∑
t′≤t

∑
A:e/∈A bt

′
e (A) αt′

A ≤ βe. Whenever this inequality is
violated, the algorithm decreases (see line 17) some of the α-variables in a way that the increasing
rate of

∑
t′≤t

∑
A:e/∈A bt

′
e (A) α

t′
A is at most 0. By the β-variables’ definition, the first dual constraint

holds.
Let us consider the second dual constraint. Let x(τ) be the final solution of the algorithm. For

each fixed resource e, the value βe = 1
λ∇eF (x(τe)) for some previous solution x(τe) where τe ≤ τ

and where xe(τe) ≤ xe(τ) for all e. Let y :=
∨

τ ′≤τ x(τ
′) ≤ x(τ), so for each coordinate e of y, we

have ye = maxτ ′≤τ{xe(τ ′)}. By definition of the dual variables, the second dual constraint (after
rearranging the terms) reads

1

λ

∑
e∈S
∇eF (x(τe)) ≤ F (1S) +

µ

4λ · ln(1 + 2d2/η)
F (x(τ)) ∀ S ⊆ E

since we set γ = − µ
4λ·ln(1+2d2/η)

F (x(τ)), and x(τe) corresponds to the solution during the execution
where βe was set to 1

λ∇eF (x(τe)). Since F is monotone, F (x(τ)) ≥ F (y). To prove that the above
inequality holds, it is sufficient to show that

1

λ

∑
e∈S
∇eF (x(τe)) ≤ F (1S) +

µ

4λ · ln(1 + 2d2/η)
F (y)

which means that F needs to be
(
λ, µ

4 ln(1+2d2/η)

)
-locally-smooth. Our initial assumption was that

F is (λ,Cµ)-locally-smooth. By setting C := 1
4 ln(1+2d2/η)

, the lemma holds. □
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Theorem 1 Let F be the multilinear extension of the online non-linear covering problem’s objective
function f and d be the maximal row sparsity of the constraint matrix (formally d = maxt≤T |{ate :
ate > 0}|). Assuming that F is

(
λ, µ

ln(1+2d2/η)

)
-locally-smooth for some parameters (λ > 0, µ < 1

and 0 < η ≤ 1), there exists an O
(

1
1−η

)
-consistent and O

(
λ

1−µ · ln
d
η

)
-robust algorithm for any

η ∈ (0, 1] which produces a fractional solution for the given problem.

Proof
Robustness. By bounding the increases of the primal and dual objective values at any time τ

during the execution of Algorithm 1, we can determine the robustness. Upon the release of the tth

constraint, let A∗ be the current solution with the chosen set of resources e such that xe = 1.
The derivative of the primal objective function with respect to τ is:∑
e∈E
∇eF (x) · ∂xe

∂τ

=
∑

e : bte(A
∗) > 0

∇eF (x)

(
bte(A

∗) xe
λ βe

+
η

λ βe d
+

(1− η) 1{pred(xe) = 1}

∇eF (x) · |{e′ : pred(xe′) = 1, bte′(A
∗) > 0}|

)

≤
∑

e : bte(A
∗) > 0

(
bte(A

∗) xe +
η

d

)
+

∑
e : pred(xe) = 1

bte(A
∗) > 0

(1− η)

|{e′ : pred(xe′) = 1, bte′(A
∗) > 0}|

≤ 2 (1)

The first inequality follows ∇eF (x) ≤ λ βe. The second inequality is due to the definition of d
and the fact that

∑
e/∈A∗ bte(A

∗) xe ≤ 1 always holds during the algorithm. (The number of bte(A
∗)

values which are strictly greater than 0, is at most d.)
At any time τ , let U(τ) be the set of resources e such that

∑
t′≤t

∑
A:e/∈A bt

′
e (A) αt′

A = βe and
bte(A

∗) > 0. Note that |U(τ)| ≤ d by definition of d. As long as
∑

e/∈A∗ bte(A
∗) xe < 1, using

Lemma 1 we get that for every e ∈ U(τ),

1

bte(A
∗)

> xe ≥
η

b
t∗e
e (A) d

[
exp

(
ln(1 + 2d2/η)

)
− 1

]
=

2d

b
t∗e
e (A)

where bt
∗
e
e (A) is defined in the algorithm on line 16. Therefore, bte(A

∗)

b
t∗e
e (A)

≤ 1
2d . Following the definition

of U(τ), we can bound the increase of the dual at time τ .
The derivative of the dual with respect to t is:

∂D

∂τ
=
∑
t′≤t

∑
A:e/∈A

∂αt′
A

∂τ
+

∂γ

∂τ

=
∑
t′≤t

ct
′
(A∗) ·

∂αt′
A∗

∂τ
+

∂γ

∂τ

=
1

λ · ln(1 + 2d2/η)
·
(
1−

∑
e∈U(τ)

bte(A
∗)

b
t∗e
e (A)

)
− µ

4λ · ln(1 + 2d2/η)
·
∑
e

∇eF (x)
∂xe
∂τ

≥ 1

λ · ln(1 + 2d2/η)

(
1−

∑
e∈U(τ)

1

2d

)
− µ

2λ · ln(1 + 2d2/η)

≥ 1− µ

2λ · ln(1 + 2d2/η)
.
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The third equality holds since αt
A∗ is increased and other α-variables in U(τ) are decreased. The

first inequality uses the fact that bte(A
∗)

b
t∗e
e (A)

≤ 1
2d and Inequality (1). The last inequality holds since

|U(τ)| ≤ d. Hence, the robustness is at least 4λ
1−µ · ln(1 + 2d2/η).

Consistency. We establish consistency with a similar argument as [8]. Considering an arbitrary
moment τ during the algorithm’s execution, let S1 = S1(τ) be the set of resources selected by the
prediction. Formally, ∀ e ∈ S1 : pred(xe) = 1 up to time τ . Let S2 = S2(τ) contain the remaining
resources. The primal objective increase due to S1 and S2:

∑
e∈S1

∇eF (x)
∂xe
∂τ

=
∑
e∈S1

∇eF (x)

(
bte(A

∗) xe
λ βe

+
η

λ βe d
+

(1− η)

∇eF (x) · |{e′ : pred(xe′) = 1}|

)
≥ 1− η

∑
e∈S2

∇eF (x)
∂xe
∂τ

=
∑
e∈S2

∇eF (x)

(
bte(A

∗) xe
λ βe

+
η

λ βe d

)
≤ 1 + η

Therefore, the primal objective increase is at most
(
1+1+η

1−η

)
time the increase restricted to the set S1.

Moreover, the algorithm’s primal objective value restricted to S1 is smaller than the prediction’s,
since ∀e ∈ S1 : xe ≤ 1 = pred(xe). We can deduce that the algorithm is O

(
1

1−η

)
-consistent with

the prediction. □

3.1 Applications

To apply Theorem 1 on specific problems, we need to determine the local-smoothness parameters
for the multilinear extension. [34] provided these parameters for some broad classes of functions, in
particular for polynomials with non-negative coefficients. Let gℓ : R→ R for 1 ≤ ℓ ≤ L be degree-k
polynomials with non-negative coefficients and let f : {0, 1}n → R+ be the cost function defined
as f(1S) =

∑
ℓ bℓgℓ

(∑
e∈S ae

)
where ae ≥ 0 for every e and bℓ ≥ 0 for every 1 ≤ ℓ ≤ L. Then the

multilinear extension F of f is (O(k ln(d/η))k−1, k−1
k ln(1+2d2/η)

)-locally smooth. We will use these
parameters to derive the guarantees for the following problems.

3.1.1 Load Balancing

Problem. Load balancing is a classic problem in discrete optimization with wide-ranging applica-
tions (for example, resource management in data centres). This problem revolves around assigning
jobs that arrive online to m available unrelated machines while minimizing their maximum load.
Each arriving job j reveals its machine dependent execution time pij where i ∈ {1,m} is the ma-
chine’s index. The load ℓi of machine i is the total processing time of the jobs assigned to it. This
load balancing problem is a well understood standard online problem and it has a tight competitive
ratio of Θ(logm) ([9, 12]).

In our online setting with predictions, the jobs not only arrive with their machine depen-
dent execution time pij , but their machine dependent prediction as well. Formally, xij ∈ {0, 1}
indicates whether job j is assigned to machine i, and the oracle provides pred(xij) ∈ {0, 1}.
We can formulate the online load balancing problem as a non-linear program. The objective is
minmaxmi=1 ℓi = minmaxmi=1

(∑
j pijxij

)
, and the constraint is

∑m
i=1 xij = 1 which guarantees that

11



each job j is assigned to some machine i. Applying our framework for non-linear programs with
covering constraints, Proposition 1 follows.

Proposition 1 Algorithm 1 gives a O( 1
1−η )-consistent and O

(
(logm) log2 m

η

)
-robust fractional so-

lution for the load balancing problem.

3.1.2 Energy Minimization in Scheduling

Problem. Reducing carbon emissions is a global effort in which energy-efficient algorithms play
an essential role. For example, [1] and [18] studied energy-efficient algorithms for scheduling.

Given m unrelated machines, we need to assign jobs that arrive online. Each job j has a
release date rj , a deadline dj , and a vector of machine dependent processing times pij . Contrary to
performance-oriented scheduling, our goal is to design an assignment policy which can minimize the
total energy consumption of the execution. To achieve this, we can adjust the machines’ speed sij(t)
during the time interval [t, t+ 1) for the execution of job j. Every machine i has a non-decreasing
energy power function Pi(·). Typically, Pi(z) = zki for some constant ki ≥ 1. The execution’s total
energy is

∑
i

∑
t P (

∑
j sij(t)).

In the classic online setting, this problem is well understood: there exists an O(kk)-competitive
algorithm ([34]) where k = maxi{ki} and this bound is tight up to a constant factor ([12]). In our
extended study with predictions we represent this problem with the following non-linear program.
The objective is min

∑
i

∑
t P (

∑
j sij(t)) and the constraints are:

m∑
i=1

xij = 1,

dj−1∑
t=rj

sij(t) ≥ pijxij , sij(t) ≥ 0 ∀ i, t

where xij ∈ {0, 1} indicates whether job j is assigned to machine i and sij(t) ≥ 0 denotes the speed
of machine i executing job j during the time interval [t, t + 1). The first constraint guarantees
that job j is assigned to some machine, and the second one ensures that the job j is completed on
time (on the machine where the job is assigned). At the arrival of job j, the prediction provides
a solution pred(xij) and a speed pred(sij(t)) for rj ≤ t ≤ dj − 1. Using our framework, we can
deduce the following result.

Proposition 2 Algorithm 1 gives a O( 1
1−η )-consistent and O

(
kk logk m

η

)
-robust fractional solution

for the energy minimization problem.

3.1.3 Online Submodular Mimimization

Problem. Submodular minimization is a widespread subject in optimization and machine learn-
ing ([20, 5, 4, 7]). Let us consider the problem of minimizing an online monotone submodu-
lar function subject to covering constraints. A set-function f : 2E → R+ is submodular if
f(S ∪ e) − f(S) ≥ f(T ∪ e) − f(T ) for all S ⊂ T ⊆ E . Let F be the multilinear extension of
a monotone submodular function f . Function F admits two useful properties. First, if f is mono-
tone, then so is F . Second, F is concave in the positive direction, meaning that ∇F (x) ≥ ∇F (y)
for all x ≤ y, where x ≤ y is defined as xe ≤ ye ∀e.

To apply Algorithm 1, we need to determine the local-smoothness parameters. An important
concept in studying submodular functions is the curvature. Given a submodular function f , the
total curvature κf ([14]) of f is defined as κf = 1 − mine

f(1E)−f(1E\{e})

f(1{e})
. Intuitively, the total

curvature measures how far away f is from being modular. This concept of curvature is used to
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determine both upper and lower bounds on the approximation ratios for many submodular and
learning problems (see [14, 15, 6, 35, 21, 33]).

Proposition 3 Algorithm 1 gives a O( 1
1−η )-consistent and O

( log(d/η)
1−κf

)
-robust fractional solution

for the submodular minimization under covering constraints.

4 Experiments

Setting. To evaluate the empirical performance of our proposed algorithm, we conducted exper-
iments on routing problems that are motivated by congestion management. In this problem we
are given a directed graph G(A, V ) and a set of requests R = {(si, ti) : si, ti ∈ V } that represents
demands to connect si to ti. We assume that for each request there exists a directed path between
si to ti. Each arc (u, v) ∈ A is associated with a cost function f(u,v) : R+ → R+ that depends on
the number of requests using the arc. Requests arrive online and the goal is to design a routing
that minimizes the total cost.

Input. There are three type of inputs in our experiments. The first one includes randomly
generated graphs following the Erdős-Rényi model G(n, p), where n is the number of vertices and
p is the probability that an arc gets created. The source and target vertices of the requests are
also generated uniformly at random. The second category creates a cycle with n vertices and
creates an arc between each neighboring vertex in both direction, ensuring that each vertex is
connected. Afterwards, we randomly generate edges between non-adjacent vertices, as well as the
requests. The third input type collects specific examples designed to trap algorithms which rely
on the multiplicative weight update (MWU) method. These instances do not include randomness,
they were designed by hand.

Predictions. The predictions come from rounding the optimal offline fractional solution. If a
request is served by several paths in the fractional solution, the oracle picks one of the paths
uniformly at random using the amounts passing through each of them as weights. Otherwise, the
oracle uses the unique best path of the optimal solution. Due to the randomized rounding, on
most instances the oracles propose a worse solution than the multiplicative weight update (MWU)
solution. To improve the quality of the oracles, we create several unique oracles and then take the
ones with the best, the worst and the middle performance during our analysis.

Implementation. The routing problem’s covering formulation enumerates all possible cuts in the
graph. Upon each arriving request r = (s, t), a new set of constraints are released

∑
e∈δ(S) x

r
e ≥ 1,

where δ(S) is the cut on S ⊂ V such that s ∈ S and t /∈ S. This formulation generates an
exponential number of constraints with respect to the size of the graph. However, these constraints
can be simplified in the implementation of Algorithm 1, since the algorithm is not constrained by
standard linear program solving techniques. Algorithm 1 increases the amount of traffic on each
arc following the step described on line 11. The request is satisfied when there exists a path among
the arcs in the set A∗ (arcs with value 1). Therefore, we can replace the constraint satisfaction
with a simple path finding in the implementation. If there are several possible paths with the arcs
in A∗, our algorithm chooses the minimum cost path, so the implementation includes a rounding
step, providing an integral solution.
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Instances. Randomly generated instances yield similar results. On large instances with many
vertices, arcs, and request, the multiplicative weight update (MWU) solution and the oracles are
far from the optimal offline fractional solution. However, on small instances, the MWU works well,
and it is more likely to obtain good oracles. Instance 1 represents a large randomly generated
instance, while Instance 2 a small one. The second category of inputs guarantee that the graph is
connected and Instance 3 represents on of these inputs. Finally, we show an example, where the
MWU makes really sub-optimal decisions on Instance 4. These instances are complementary and
allow us to examine how our algorithm behaves when the oracles’ predictions are worse or better
than the MWU.

Instance 1 has 20 vertices, 184 arcs, and 20 requests. Each arc has a cost function of the form
f(x) = axb, where 1.0 ≤ a ≤ 10.0 and 1.0 ≤ b ≤ 4.0. We generated 20 oracles from the optimal
offline fractional solution and kept 3 of these oracles: the best, the worst and the middle one on
the scale of their obtained objective values. The result of this execution is visible on Figure 4.

Instance 2 has 10 vertices, 32 arcs, and 5 requests. Each arc has a cost function of the form
f(x) = axb, where 1.0 ≤ a ≤ 10.0 and 1.0 ≤ b ≤ 4.0. We generated 10 oracles from the optimal
offline fractional solution and kept 3 of these oracles: the best, the worst and the middle one on
the scale of their obtained objective values. The result of this execution is visible on Figure 5.

Instance 4 has 50 vertices, 120 arcs, and 20 requests. Each arc has a cost function of the form
f(x) = axb, where 1.0 ≤ a ≤ 5.0 and 1.0 ≤ b ≤ 5.0. We generated 20 oracles from the optimal
offline fractional solution and kept 3 of these oracles: the best, the worst and the middle one on
the scale of their obtained objective values. The result of this execution is visible on Figure 6.

Instance 4 has 8 vertices, 16 arcs, and 7 requests. This instance is specifically designed to trap
the MWU. The structure of Instance 4 is visible on Figure 2, along with its MWU and optimal
solutions.

Figures. Each of the presented performance analysis figures have eta on the x-axis, which rep-
resents the algorithm’s trust in the predictions (η = 0 means the highest trust). The y-axis show
the competitive ratio, which we have computed as the ratio between the optimal offline fractional
solution and the algorithm’s solution. The y-axis do not contain the complete range of values from
0 to 1 to make the figures smaller.

Observation. Our algorithm updates the problem’s variables following a combination of the
multiplicative weight update (MWU) method and the oracle’s predictions. When the predictions
have an impact on the update of the variables (eta tends towards 0), and the quality of the
predictions are good, our algorithm has a better performance.

Based on the experiments that we have conducted, we can remark that even if the oracle’s
performance are much worse than the MWU’s performance, our algorithm’s performance degrades
gradually (see Figure 5). Additionally, if the oracle tries to give adversarial inputs (for example
oracle 3 on Figure 4), the algorithm may ignore the suggestions completely (the increasing rate
coming from the oracle does not compensate the increasing rate difference due to the costs of the
arcs).

Instance 4 (which serves as a hand-crafted counter-example for the MWU) shows that the MWU
method avoids taking a path which cost slightly more than the minimum cost path. As a result,
our algorithm can only improve its performance, when its trust is high in the prediction. In this
specific example, there is only one possible oracle, since the optimal offline fractional solution is
already integral. Therefore, on Figure 3 the columns are identical.

On some examples, both the multiplicative weight update and the oracle performs poorly (third
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column on Figure 6), but their combination produces a good result. We can also remark that even
if the oracle suggests a much better solution than the one the multiplicative weight update can
obtain alone, our algorithm does not always follow blindly the oracle (first column of Figure 6).
Additionally, due to the way we increase the value of the variables (see line 11 of the algorithm),
in the setting of the routing problem, longer paths are penalized, even if they have a smaller cost.
These observations suggest that the way we have integrated the predictions with the multiplicative
weight update might be too simple to capture the necessary detail for specific problems. However,
it provides a general framework with a worst-case guarantee that other people can build upon when
they are studying specific problems.
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Figure 2: Instance 4, its MWU solution, and its optimal solution
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Figure 3: Performance analysis of Instance 4

5 Conclusion

We presented a primal-dual framework to design algorithms with predictions for non-linear prob-
lems with covering constraints. The potential of our approach is visible through the example
applications. This paper provides useful ideas to incorporate predictions into algorithms. The
framework is of interest for many high impact applications, such as load balancing, energy mini-
mization, submodular minimization and congestion minimization. An interesting research direction
is to design algorithms for non-linear packing problems and also to develop competitive algorithms
in the setting of multiple predictions.
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Figure 4: Performance analysis of Instance 1
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Figure 5: Performance analysis of Instance 2

0.0 0.2 0.4 0.6 0.8 1.00.2

0.3

0.4

0.5

0.6

0.7

0.8

OP
T(

I)
 / 

AL
GO

(I
)

MWA
oracle 1
algo(oracle 1)

0.0 0.2 0.4 0.6 0.8 1.00.2

0.3

0.4

0.5

0.6

0.7

0.8
MWA
oracle 2
algo(oracle 2)

0.0 0.2 0.4 0.6 0.8 1.00.2

0.3

0.4

0.5

0.6

0.7

0.8
MWA
oracle 3
algo(oracle 3)

Figure 6: Performance analysis of Instance 3
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Appendix

A Applications in Section 3

To apply Theorem 1 on specific problems, we need to determine the local-smoothness parameters
for the multilinear extension. [34] provided these parameters for some broad classes of functions, in
particular for polynomials with non-negative coefficients. Let gℓ : R→ R for 1 ≤ ℓ ≤ L be degree-k
polynomials with non-negative coefficients and let f : {0, 1}n → R+ be the cost function defined
as f(1S) =

∑
ℓ bℓgℓ

(∑
e∈S ae

)
where ae ≥ 0 for every e and bℓ ≥ 0 for every 1 ≤ ℓ ≤ L. Then the

multilinear extension F of f is (O(k ln(d/η))k−1, k−1
k ln(1+2d2/η)

)-locally smooth. We will use these
parameters to derive the guarantees for the following problems.

A.1 Load Balancing

Problem. Load balancing is a classic problem in discrete optimization with wide-ranging applica-
tions (for example, resource management in data centres). This problem revolves around assigning
jobs that arrive online to m available unrelated machines while minimizing their maximum load.
Each arriving job j reveals its machine dependent execution time pij where i ∈ {1,m} is the ma-
chine’s index. The load ℓi of machine i is the total processing time of the jobs assigned to it. This
load balancing problem is a well understood standard online problem and it has a tight competitive
ratio of Θ(logm) ([9, 12]).

In our online setting with predictions, the jobs not only arrive with their machine depen-
dent execution time pij , but their machine dependent prediction as well. Formally, xij ∈ {0, 1}
indicates whether job j is assigned to machine i, and the oracle provides pred(xij) ∈ {0, 1}.
We can formulate the online load balancing problem as a non-linear program. The objective is
minmaxmi=1 ℓi = minmaxmi=1

(∑
j pijxij

)
, and the constraint is

∑m
i=1 xij = 1 which guarantees that

each job j is assigned to some machine i. Applying our framework for non-linear programs with
covering constraints, Proposition 1 follows.

Proposition 4 Algorithm 1 gives a O( 1
1−η )-consistent and O

(
(logm) log2 m

η

)
-robust fractional so-

lution for the load balancing problem.

Proof It is known that ∞-norm of a m-dim vector can be approximated by the (logm)-norm, in
particular for m ≥ 2,

∥(ℓ1, ℓ2, . . . , ℓm)∥∞ ≤ ∥(ℓ1, ℓ2, . . . , ℓm)∥logm ≤ m1/m∥(ℓ1, ℓ2, . . . , ℓm)∥∞ ≤ 2∥(ℓ1, ℓ2, . . . , ℓm)∥∞.

Hence, one can instead consider the objective of minimizing the (logm)-norm of the load vectors
while losing a constant factor of 2. More precisely, we consider the (logm)-th power of the (logm)-
norm as the objective.

min

m∑
i=1

(∑
j

pijxij

)logm

s.t.
m∑
i=1

xij = 1 ∀j

The objective function is a polynomial of degree logm. So its multilinear extension is
(O(k ln(d/η))k−1, k−1

k ln(1+2d2/η)
)-locally smooth with k = logm and d = m (the maximal number

of positive coefficients in a constraint). Therefore, applying Theorem 1, the robustness (w.r.t the
objective as the (logm)-th power of the (logm)-norm) is O

(
(logm log m

η )
logm

)
. Getting back to

the (logm)-norm objective by taking the (logm)-root, the robustness is O
(
(logm) log2 m

η

)
. Hence,

Algorithm 1 is O( 1
1−η )-consistent and O

(
(logm) log2 m

η

)
-robust. □

20



A.2 Energy Minimization in Scheduling

Problem. Reducing carbon emissions is a global effort in which energy-efficient algorithms play
an essential role. For example, [1] and [18] studied energy-efficient algorithms for scheduling.

Given m unrelated machines, we need to assign jobs that arrive online. Each job j has a
release date rj , a deadline dj , and a vector of machine dependent processing times pij . Contrary to
performance-oriented scheduling, our goal is to design an assignment policy which can minimize the
total energy consumption of the execution. To achieve this, we can adjust the machines’ speed sij(t)
during the time interval [t, t+ 1) for the execution of job j. Every machine i has a non-decreasing
energy power function Pi(·). Typically, Pi(z) = zki for some constant ki ≥ 1. The execution’s total
energy is

∑
i

∑
t P (

∑
j sij(t)).

In the classic online setting, this problem is well understood: there exists an O(kk)-competitive
algorithm ([34]) where k = maxi{ki} and this bound is tight up to a constant factor ([12]). In our
extended study with predictions we represent this problem with the following non-linear program.
The objective is min

∑
i

∑
t P (

∑
j sij(t)) and the constraints are:

m∑
i=1

xij = 1,

dj−1∑
t=rj

sij(t) ≥ pijxij , sij(t) ≥ 0 ∀ i, t

where xij ∈ {0, 1} indicates whether job j is assigned to machine i and sij(t) ≥ 0 denotes the speed
of machine i executing job j during the time interval [t, t + 1). The first constraint guarantees
that job j is assigned to some machine, and the second one ensures that the job j is completed on
time (on the machine where the job is assigned). At the arrival of job j, the prediction provides
a solution pred(xij) and a speed pred(sij(t)) for rj ≤ t ≤ dj − 1. Using our framework, we can
deduce the following result.

Proposition 5 Algorithm 1 gives a O( 1
1−η )-consistent and O

(
kk logk m

η

)
-robust fractional solution

for the energy minimization problem.

Proof The objective function
∑

i

∑
t P (

∑
j sij(t)) is a polynomial of degree k = maxi ki; so its

multilinear extension is (O(k ln(m/η))k−1, k−1
k ln(1+2m2/η)

)-locally smooth (the maximal number of
positive coefficients in a constraint d = m). Therefore, applying Theorem 1, Algorithm 1 provides
a O( 1

1−η )-consistent and O
(
kk lnk m

η

)
-robust fractional solution. □

A.3 Online Submodular Mimimization

Problem. Submodular minimization is a widespread subject in optimization and machine learn-
ing ([20, 5, 4, 7]). Let us consider the problem of minimizing an online monotone submodu-
lar function subject to covering constraints. A set-function f : 2E → R+ is submodular if
f(S ∪ e) − f(S) ≥ f(T ∪ e) − f(T ) for all S ⊂ T ⊆ E . Let F be the multilinear extension of
a monotone submodular function f . Function F admits two useful properties. First, if f is mono-
tone, then so is F . Second, F is concave in the positive direction, meaning that ∇F (x) ≥ ∇F (y)
for all x ≤ y, where x ≤ y is defined as xe ≤ ye ∀e.

To apply Algorithm 1, we need to determine the local-smoothness parameters. An important
concept in studying submodular functions is the curvature. Given a submodular function f , the
total curvature κf ([14]) of f is defined as κf = 1 − mine

f(1E)−f(1E\{e})

f(1{e})
. Intuitively, the total

curvature measures how far away f is from being modular. This concept of curvature is used to
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determine both upper and lower bounds on the approximation ratios for many submodular and
learning problems (see [14, 15, 6, 35, 21, 33]). The following lemma shows a useful property of the
total curvature.

Lemma 3 For any set S, it always holds that

f(1S) ≥ (1− κf )
∑
e∈S

f(1{e}).

Proof Let S = {e1, . . . , em} be an arbitrary subset of E . Let Si = {e1, . . . , ei} for 1 ≤ i ≤ m and
S0 = ∅. We have

f(1S) ≥ f(1E)− f(1E\S) =

m−1∑
i=0

f(1E\Si
)− f(1E\Si+1

) ≥
m∑
i=1

f(1E)− f(1E\{ei})

≥ (1− κf )

m∑
i=1

f(1ei)

where the first two inequalities are due to the submodularity of f , and the last inequality follows
the definition of curvature. □

Proposition 6 Algorithm 1 gives a O( 1
1−η )-consistent and O

( log(d/η)
1−κf

)
-robust fractional solution

for the submodular minimization under covering constraints.

Proof Let F be the multilinear extension of f . It is sufficient to verify that F is
(

1
1−κf

, 0
)
-locally

smooth. Recall that, by definition of the multilinear extension, F (x) = E
[
f(1T )

]
where T is a

random set such that a resource e appears in T with probability xe. Moreover, as F is linear in xe,
we have

∇eF (x) = F (x1, . . . , xe−1, 1, xe+1, . . . , xn)− F (x1, . . . , xe−1, 0, xe+1, . . . , xn)

= E
[
f
(
1R∪{e}

)
− f

(
1R
)]

where R is a random subset of resources N \ {e} such that e′ is included with probability xe′ .
Therefore, to prove that F is (λ, µ)-locally-smooth, it is equivalent to show that, for any set S ⊂ E
and for any vectors xe ∈ [0, 1]n for e ∈ E ,∑

e∈S
E
[
f
(
1Re∪{e}

)
− f

(
1Re

)]
≤ λf

(
1S
)
+ µE

[
f
(
1R
)]

where Re is a random subset of resources N \ {e} such that e′ is included with probability xee′ and
R is a random subset of resources N \ {e} such that e′ is included with probability maxe∈S xee′ .

Indeed, the
(

1
1−κf

, 0
)
-local smoothness of F holds due to the submodularity and Lemma 3: for

any subsets Re, we have∑
e∈S

[
f
(
1Re∪{e}

)
− f

(
1Re

)]
≤
∑
e∈S

[
f
(
1{e}

)]
≤ 1

1− κf
· f(1S)

Therefore, applying Theorem 1, the proposition follows. □
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