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Online Primal-Dual Algorithm with Predictions for Non-Linear Covering Problems

Designing online algorithms with predictions is a recent technique for various practically relevant online problems (scheduling, caching (paging), clustering, ski rental, etc.). [8] provided a unified approach through a primal-dual framework for linear covering problems. Their framework extends the online primal-dual method by incorporating predictions, and its performance goes beyond the worst-case analysis. Following this research line, our paper presents competitive algorithms with predictions for non-linear covering problems, generalizing the previous technique. We illustrate the applicability of our algorithms through experiments on energy minimization, congestion management, and submodular minimization problems.

Introduction

Online computation (coined by [START_REF] Borodin | Online computation and competitive analysis[END_REF]) is a well-established field in theoretical computer science. Online computational models consider inputs as request sequences, where each request arrives individually over time. After observing the current request, the problem-solving algorithm must perform an irrevocable action without additional information about the future. The performance of an online algorithm is typically measured by the competitive ratio metric, which is the worst ratio between the objective value obtained by the algorithm and that of the optimal solution. Intuitively, the competitive ratio measures the price of not knowing future requests. Our goal is to design performant algorithms within this metric.

The traditional worst-case analysis is an indispensable framework in algorithm design and is central in the development of algorithms. Nevertheless, it can lead practical users to several pitfalls. Summarizing an algorithm's performance by a pathological worst-case can overestimate its performance on average. Many algorithms that perform well in practice admit mediocre theoretical guarantees, while others which are well-established in theory behave poorly, even on simple instances. Consequently, it is crucial to research theories that can better explain the performance of algorithms and advise algorithm design choices ( [START_REF] Roughgarden | Beyond worst-case analysis[END_REF][START_REF] Roughgarden | Beyond the Worst-Case Analysis of Algorithms[END_REF]).

Much of the research focused on going beyond the worst-case paradigm is motivated by the spectacular advances of machine learning (ML). Specifically, ML methods can detect patterns among the arriving input requests and provide valuable insights for the online algorithms regarding future requests. [START_REF] Lykouris | Competitive caching with machine learned advice[END_REF] introduced a general framework to integrate ML predictions into classical algorithm designs to surpass the worst-case performance limit. Shortly after, [START_REF] Mitzenmacher | Beyond the Worst-Case Analysis of Algorithms, chapter Algorithms with Predictions[END_REF] followed this line of research and studied online algorithms with predictions. As a result of these papers, many practically relevant online problems were revisited to enhance existing classical algorithms with ML predictions. For example, scheduling ( [START_REF] Lattanzi | Online scheduling via learned weights[END_REF][START_REF] Mitzenmacher | Scheduling with predictions and the price of misprediction[END_REF]), caching ([25, 29, 2]), and ski rental ( [START_REF] Gollapudi | Online algorithms for rent-or-buy with expert advice[END_REF][START_REF] Kumar | Improving online algorithms via ml predictions[END_REF]).

Even though predictions provide a glimpse of the future, there is no mathematical guarantee for their accuracy. Adjusting the algorithm's trust in the predictions is a significant challenge since online algorithms must make irrevocable decisions at each time step. Ideally, if the predictions are accurate, the algorithm should perform well compared to the offline setting. In contrast, if the predictions are misleading, the algorithm should maintain a competitive solution, similar to the online setting where no predictive information is available. In other words, online algorithms with predictions are expected to bring the best of both worlds: mathematical performance guarantees of classical algorithms and good future prediction capabilities of machine learning methods.

To overcome the issue of unknown prediction accuracy, the authors of the works we cited previously exploited specific structures within the studied problems. [START_REF] Bamas | The primal-dual method for learning augmented algorithms[END_REF] presented a primal-dual method based technique to unify these different ad-hoc approaches and design online algorithms with predictions for various online problems. The primal-dual method is an elegant and powerful algorithm design technique (introduced by [START_REF] David | The design of approximation algorithms[END_REF]), especially for online algorithms (see [START_REF] Buchbinder | Online primal-dual algorithms for covering and packing[END_REF]). The work of [START_REF] Bamas | The primal-dual method for learning augmented algorithms[END_REF] focuses on problems with linear objectives and covering constraints. Until now, it remained an open question to design online algorithms with predictions for non-linear covering problems. Non-linear objectives appear naturally in diverse application domains, such as energy and congestion management. Therefore, answering this open question has high theoretical interest and vital practical motivations. Our paper presents a framework to create online primal-dual algorithms with predictions for covering problems with non-linear objectives.

Model

Building upon the work of [START_REF] Bamas | The primal-dual method for learning augmented algorithms[END_REF] (which has several definitions rooted in [START_REF] Lykouris | Competitive caching with machine learned advice[END_REF][START_REF] Kumar | Improving online algorithms via ml predictions[END_REF]), our model includes a prediction oracle P and a parameter η ∈ (0, 1] which characterizes the confidence in the predictions. Small η values represent low doubt, meaning that the prediction accuracy is high, while large η values show high doubt, signalling that the predictions should be discarded. Given an online problem, upon the arrival of the current request, the online algorithm solving the problem must make an irrevocable decision regarding the request while satisfying the problem's constraints. In our setting, the decision-making is influenced by the prediction of the oracle P, the confidence parameter η, the current solution, and the history of released requests. Intuitively, the oracle's predictions provide information about the unknown future. For example, it can predict the optimal machine for the current task during scheduling. To characterize the performance of an online algorithm with predictions, we use the notion of consistency and robustness. An algorithm A (for a minimization problem) is C(η)-consistent and R(η)-robust if for every instance I,

A(I) ≤ min{C(η) • P(I), R(η) • O(I)}
where A(I), P(I), O(I) are respectively the objective values on instance I of algorithm A, the prediction oracle P and the optimal offline solution O. Following the convention, when the prediction oracle P provides an infeasible solution, P(I) is set to -∞ and +∞ for maximization and minimization problems, respectively. Ideally, when η approaches 0 (high confidence in the prediction), C(η) should tend to 1. Meanwhile, when η approaches 1 (high doubt in the prediction), R(η) should tend towards the best competitive ratio in the classic online setting.

Similarly to the work of [START_REF] Bamas | The primal-dual method for learning augmented algorithms[END_REF], our algorithm A combines the predictions of oracle P with the primal-dual method. This method formulates the studied problem as a mathematical program called the primal and its corresponding dual. Considering an online problem, at the arrival of a new request, a primal-dual method based online algorithm updates its fractional solutions to both the primal and dual programs to maintain feasibility (satisfy the constraints of the mathematical programs). The competitive ratio of such an algorithm is established by showing that every time the algorithm updates the primal and dual solutions, the increase of the primal objective value can be bounded by that of the dual up to some desired factor.

Our presented model contains two components by design. One relates to the prediction oracle, and the other to the classical primal-dual method. This duality is also present during the performance evaluation since our algorithms must achieve both good consistency and robustness. Given two separate algorithms, where one blindly follows the predictions while the other makes decisions solely based on the primal-dual method, a natural question is whether a simple linear combination of the two algorithms performs well. If we target a consistency of at least O(1/(1 -η)), using a linear combination of the two algorithms, the robustness must be Ω(1/η). However, the ultimate goal is to achieve robustness in the order of poly(log(1/η)) (exponentially smaller than Ω(1/η)) while maintaining O(1/(1 -η)) consistency. Therefore, a simple linear combination of the two components is insufficient to reach the desired performance guarantees.

Our paper presents a framework for non-linear online covering problems with an intricate combination of the classic primal-dual method and a prediction oracle. Algorithms created with our framework construct fractional solutions, which is the primary step in primal-dual method based algorithms. Even though many real-life problems require integer solutions, online rounding schemes already exist for most of them. We provide references to such rounding schemes at the analysis of our studied problems.

Contribution

Inspired by the approach of [START_REF] Bamas | The primal-dual method for learning augmented algorithms[END_REF], our model (detailed previously) combines an oracle's predictions with the primal-dual method in a way that the oracle's predictions influence the updates of the primal and dual variables. The construction of our algorithm follows the multiplicative weight update method based on the gradient of the multilinear extension of the problem's objective function ( [START_REF] Kim | Online primal-dual algorithms with configuration linear programs[END_REF], see section 2 Preliminaries). This technique generalizes the multiplicative weight update introduced in [START_REF] Buchbinder | The design of competitive online algorithms via a primaldual approach[END_REF][START_REF] Azar | Online algorithms for covering and packing problems with convex objectives[END_REF]. Using the local-smoothness notion of the multilinear extension, we can prove the feasibility of the primal and dual solutions (even when the prediction is infeasible). Afterwards, the algorithm's performance is established using the local-smoothness and confidence parameters. Illustration. Since Theroem 1 relies on several parameters, it may be challenging to appreciate its importance. As an example, when the objective function of our problem is a polynomial of degree k, the competitive ratio of state-of-the-art online algorithms without predictions is in O(k k log(d)). Meanwhile, the consistency of our framework is O(1/(1 -η)) and the robustness is O(k k log(d/η)). Figure 1 displays the case when k = 1, d = 5, and the prediction oracle is perfect (the predictions correspond to the ground truth). The competitive ratio of our framework is the shaded area above the consistency and robustness curves. By choosing a small enough η value, it is possible to surpass the previous worst-case bound of the state-of-the-art algorithm. If the polynomial degree of the objective function increases, the robustness curve and the state-of-the-art line will decrease drastically (multiplication with 1/k k ). Similarly, if the prediction oracle is imperfect, the consistency line will tend downwards. However, if the oracle produces a solution at most up to a factor of k k times the optimal one, it is still possible to surpass previous worst-case guarantees.

Applications

We show the applicability of our framework through the following problems.

Load Balancing. Load balancing is a classic problem in discrete optimization with wide-ranging applications (for example, resource management in data centres). This problem revolves around assigning jobs that arrive online to m available unrelated machines while minimizing their maximum load. Our framework provides an O( 11-η )-consistent and and O (log m) log 2 m η -robust algorithm with fractional solution to this problem.

Energy Minimization in Scheduling. Reducing carbon emissions is a global effort in which energy-efficient algorithms play an essential role. For example, [START_REF] Albers | Energy-efficient algorithms[END_REF] and [START_REF] Gu | Energy efficient task allocation and energy scheduling in green energy powered edge computing[END_REF] studied energy-efficient algorithms for scheduling. Contrary to performance-oriented scheduling, our goal is to design an assignment policy of jobs to m available machines, which can minimize the total energy consumption of the execution. Energy-related objective functions are typically polynomials of degree k > 1.

Using our proposed framework, we can derive an O( 11-η )-consistent and O k k log k m η -robust algorithm with fractional solutions for this energy minimization problem. Submodular Minimization. Submodular minimization is a widespread subject in optimization and machine learning ( [START_REF] Iwata | A combinatorial strongly polynomial algorithm for minimizing submodular functions[END_REF][START_REF] Bach | Learning with submodular functions: A convex optimization perspective[END_REF][START_REF] Bach | Submodular functions: from discrete to continuous domains[END_REF][START_REF] Balkanski | A lower bound for parallel submodular minimization[END_REF]). We present a O( 11-η )-consistent and O log(d/η) 1-κ f -robust algorithm for minimizing a submodular function under covering constraints where κ f is the curvature (defined in Section 3.1.3) of the submodular function.

Experiments

The experiments focus on a high-impact congestion management problem: network and transportation routing. The input is a directed graph G(A, V ) and a set of requests R = {(s i , t i ) : s i , t i ∈ V } that represents demands (connecting s i to t i through a path). Each arc (u, v) ∈ A is associated with a cost function f (u,v) : R + → R + that depends on the number of requests using the arc. The goal is to design a routing that minimizes the total cost while requests arrive online. We enable predictions by building an oracle using the observed data. The oracle provides traffic forecasts, vital information to improve the routing. The experiments show that our algorithm outperforms both the best theoretical algorithm and the prediction in practical settings.

Related work

The primal-dual method is a powerful tool in online optimization. [START_REF] Buchbinder | The design of competitive online algorithms via a primaldual approach[END_REF] introduced a primal-dual framework for linear programs with packing and covering constraints. Their method unifies several previous potential-function-based analyses and gives a principled approach to the design and analysis of algorithms for problems with linear relaxations. [START_REF] Azar | Online algorithms for covering and packing problems with convex objectives[END_REF] provided a framework for covering and packing problems with convex and concave objectives whose gradients are monotone. Subsequently, [START_REF] Kim | Online primal-dual algorithms with configuration linear programs[END_REF] presented algorithms without the convex assumption on the objective function and established a competitive ratio parameterized by the function's smoothness properties. This smoothness notion of [START_REF] Kim | Online primal-dual algorithms with configuration linear programs[END_REF] has roots in smooth games, which [START_REF] Roughgarden | Intrinsic robustness of the price of anarchy[END_REF] defined in the context of algorithmic game theory.

The domain of algorithms with predictions ( [START_REF] Mitzenmacher | Beyond the Worst-Case Analysis of Algorithms, chapter Algorithms with Predictions[END_REF]) -or learning augmented algorithms -emerged recently and grown immensely at the intersection of (discrete) algorithm design and machine learning (ML). Combining ML techniques with traditional algorithm design methods enables online algorithms to benefit from predictions that can infer future information from patterns in past data. Online algorithms with predictions can obtain performance guarantees beyond the worst-case analysis and provide fine-tuned solutions to various problems. In the literature, many significant problems have new learning-augmented results. For example, scheduling ( [START_REF] Lattanzi | Online scheduling via learned weights[END_REF][START_REF] Mitzenmacher | Scheduling with predictions and the price of misprediction[END_REF]), caching (paging) ([25, 29, 2]), ski rental ( [START_REF] Gollapudi | Online algorithms for rent-or-buy with expert advice[END_REF][START_REF] Kumar | Improving online algorithms via ml predictions[END_REF]), counting sketches ( [START_REF] Hsu | Learning-based frequency estimation algorithms[END_REF]), and bloom filters ( [START_REF] Kraska | The case for learned index structures[END_REF][START_REF] Mitzenmacher | A model for learned bloom filters, and optimizing by sandwiching[END_REF]). To design online algorithms with predictions in a unified way, [START_REF] Bamas | The primal-dual method for learning augmented algorithms[END_REF] proposed a primal-dual approach for online linear problems with covering constraints. Since then, [START_REF] Grigorescu | Learning-augmented algorithms for online linear and semidefinite programming[END_REF] further generalized this method for online semidefinite programming with covering constraints. By combining their ideas and the ones in [START_REF] Buchbinder | The design of competitive online algorithms via a primaldual approach[END_REF][START_REF] Azar | Online algorithms for covering and packing problems with convex objectives[END_REF][START_REF] Kim | Online primal-dual algorithms with configuration linear programs[END_REF], we present a primal-dual framework for general problems with non-linear objectives and covering constraints. Hence, this paper answers an open question in [START_REF] Bamas | The primal-dual method for learning augmented algorithms[END_REF].

Preliminaries

Multilinear extension. We follow the primal-dual approach of [START_REF] Kim | Online primal-dual algorithms with configuration linear programs[END_REF] to design competitive algorithms for online fractional non-linear covering problems. This method uses the objective function's multilinear extension to characterize how far the objective function is from being linear. Given a function f : {0,

1} n → R + , its multilinear extension F : [0, 1] n → R + is defined as F (x) := S e∈S x e e / ∈S (1 -x e ) • f (1 S
) where 1 S is the characteristic vector of S (the e thcomponent of 1 S equals 1 if e ∈ S and equals 0 otherwise). Alternatively, F (x) = E f (1 T ) where T is a random set such that a resource e appears in T independently with probability x e . We highlight that F (1 S ) = f (1 S ) and define the following crucial property.

Definition 1 ([34]

) Let E be a set of n resources. A differentiable function F : [0, 1] n → R + is (λ, µ)-locally-smooth if for every set S ⊆ E, and for every set of |S| arbitrary vectors x e ∈ [0, 1] n where e ∈ S, the following inequality holds: e∈S ∇ e F (x e ) ≤ λF 1 S + µF x where x is a vector whose every coordinate x e ′ = max e {x e e ′ } (formally, x := e∈S x e ); and ∇ e F (x) denotes ∂F (x)/∂x e .

The defined (λ, µ)-smoothness property differs from the standard notion of function smoothness used in convex optimization. Following the definition of [START_REF] Kim | Online primal-dual algorithms with configuration linear programs[END_REF], the current (λ, µ)-smoothness property relates to the definition of smooth games in the context of algorithmic game theory ( [START_REF] Roughgarden | Intrinsic robustness of the price of anarchy[END_REF]). Intuitively, given a (λ, µ)-locally-smooth function, the quantity λ 1-µ measures how far the function is from being linear. If a function is linear, it is (1, 0)-locally smooth.

Definition 1 addresses general functions with non-monotone gradients. When ∇ e F (x) is nondecreasing on every coordinate e, we can simplify the definition. Definition 2 ( [START_REF] Kim | Online primal-dual algorithms with configuration linear programs[END_REF]) (+ monotone gradient assumption) Let E be a set of n resources. A differentiable function F : [0, 1] n → R + with monotone gradient is (λ, µ)-locally-smooth if for every set S ⊆ E, and for every arbitrary vector x ∈ [0, 1] n , the following inequality holds:

e∈S ∇ e F (x) ≤ λF 1 S + µF x
Covering Problem. Let E be a set of n resources and let f : {0, 1} n → R + be an arbitrary nondecreasing function defined on the set. Let x e ∈ {0, 1} be a variable indicating whether resource e is selected. In contrast to packing problems, the set of resources is known in advance, but the covering constraints ( e a t e x e ≥ 1) are revealed one-by-one over time. When a constraint arrives, the oracle gives a prediction (pred(x e ) ∈ {0, 1}) for each resource e and our algorithm updates the solution x = (x e ) e∈E by only increasing the x e variables. Online algorithms must make irrevocable decisions, which means that they cannot decrease the value of the decision variables. The update must always satisfy every revealed constraint. The objective is to minimize f (x) subject to the online covering constraints.

Primal-Dual Framework for Covering Constraints

Formulation. We formulate the online covering problem that we described in the Preliminaries as a problem of finding the minimum cost solution among all the possible solutions. This formulation has an exponential number of variables and constraints; however, it allows us to transform the non-linear objective function into a linear one, which is crucial for our algorithm and proofs.

Let S ⊆ E be a solution if 1 S corresponds to a feasible solution. Let x e be a variable indicating whether resource e is selected. Let z S be an indicator variable for solution S. If z S = 1, then every variable x e = 1 if e ∈ S, and x e = 0 if e / ∈ S. Otherwise, z S = 0. In other words, z S = 1 if and only if 1 S is the selected solution of the online covering problem. At each time step t during the execution, a new constraint is revealed. For every subset A ⊆ E, we define the value c t (A) := max{0, 1 -e∈A a t e }, to be the amount we need until constraint satisfaction. Given this value, we normalize the constraint coefficients to be a t e (A) := min{a t e , c t (A)}. Finally, we define b t e (A) := a t e (A) / c t (A) where c t (A) > 0. The values b t e (A) correspond to the coefficients in the knapsack inequality constraints ( [START_REF] Carr | Strengthening integrality gaps for capacitated network design and covering problems[END_REF]). The primal and dual programs are:

min S⊆E f (1 S ) z S e / ∈A b t e (A) x e ≥ 1 ∀t, ∀A ⊆ E S:e∈S z S = x e ∀e S⊆E z S = 1 x e , z S ∈ {0, 1} ∀e, ∀S ⊆ E max t,A α t A + γ t A:e / ∈A b t e (A) α t A ≤ β e ∀e γ + e∈S β e ≤ f (1 S ) ∀S ⊆ E α t A ≥ 0 ∀t, ∀A ⊆ E β e ≥ 0 ∀e γ ≥ 0
In the primal program, the first constraints are knapsack-constraints ( [START_REF] Carr | Strengthening integrality gaps for capacitated network design and covering problems[END_REF]) of the given polytope, and they are equivalent to e / ∈A a t e (A) x e ≥ c t (A). It is sufficient to satisfy constraints where c t (A) > 0. The second primal constrain ensures that if a resource e is chosen, the selected solution must contain e. The third constraint guarantees that one solution is selected.

Algorithm. In our proposed algorithm, x ∈ [0, 1] |E| corresponds to the current solution of the algorithm. During the execution, we rely on the objective function's multilinear extension F , parametrized by λ and µ. We assume, that F (x) is (λ, Cµ)-locally-smooth, where C is a constant that arises from the algorithm's analysis (see Lemma 2). Algorithm 1 follows the scheme of [START_REF] Kim | Online primal-dual algorithms with configuration linear programs[END_REF], which uses both the primal and dual variables to solve the problem. We have two notions of time in our algorithm. First, at each discrete time step t, a new primal constraint arrives. Second, we have a continuous time τ throughout the execution. The solution of the algorithm increases gradually with time τ . To simplify the notations, when the context only uses the current time of the execution, x refers to x(τ ), the current solution at time τ .

Algorithm 1 Online Algorithm for Non-Linear Covering Problems. Increase τ with a rate of 1.

8:

Increase α t A * at rate 1 / (λ ln(1 + 2d 2 /η)) 9:
for e / ∈ A * such that b t e (A * ) > 0 do 10:

if β e < 1 λ ∇ e F (x) then β e ← 1 λ ∇ e F (x) 11:
Increase x e at a rate according to the following

∂x e ∂τ ← b t e (A * ) x e λβ e + η λβ e d + (1 -η) • 1 {pred(xe)=1} ∇ e F (x) • |{e ′ : pred(x e ′ ) = 1, b t e ′ (A * ) > 0}| 12:
end for 13:

if x e = 1 then A * ← A * ∪ {e} When a new primal constraint arrives, the current dual variable α t A * increases at a constant rate (line 8), while the β e variables are updated according to the partial derivative of the mulitlinear extension (line 10). We note a subtle point here: if β e < 1

λ ∇ e F (x) then we set

β e = 1 λ ∇ e F (x), but if β e > 1
λ ∇ e F (x) then we do not change the value of β e . This update preserves the following invariants during the execution of the algorithm:

β e ≥ 1
λ ∇ e F (x) and β e is non-decreasing. (Remark: if ∇ e F (x) is monotone on every coordinate e, then it is sufficient to always set β e ← 1

λ ∇ e F (x).)

The update on line 11 is inspired by the multiplicative weight update method (where the increasing rate of x e is inversely proportional to β e ) and the updating approach of [START_REF] Bamas | The primal-dual method for learning augmented algorithms[END_REF]. Starting from line 14, the algorithm decreases some of the dual variables using a similar idea as in [START_REF] Azar | Online algorithms for covering and packing problems with convex objectives[END_REF]. This decrease is necessary to maintain the feasibility of the dual solution.

Primal and dual variables. Let x(τ ) be the algorithm's primal solution at time τ . The dual variables α t A and β e are assigned during the execution, but not γ. To make the dual solution feasible, we set γ = -

µ 4λ•ln(1+2d 2 /η) F (x(τ )) (see Lemma 2). Each β e = 1
λ ∇ e F (x(τ ′ )), for some primal solution x(τ ′ ), where τ ′ ≤ τ . Moreover, x(τ ) ≥ τ ′ ≤τ x(τ ′ ) (each coordinate x e (τ ) = max τ ′ ≤τ {x e (τ ′ )}), since the x e -variables are non-decreasing. Consequently, each β e ≥ 1

λ ∇ e F (x(τ )). Using these properties, Lemma 1 gives a lower bound on x(τ ). We highlight that the proof if this lemma does not require the gradient of F to be monotone. (When this assumption is present, the algorithm can simply set β e = 1

λ ∇ e F (x(τ )) at each step τ of the execution.)

Lemma 1 Let e be an arbitrary resource. At any moment τ during the execution of the algorithm, when t constraints have already been released, it always holds that

x e ≥ η b t * e e (A) d   exp ln(1 + 2d 2 /η) β e • A:e / ∈A t ′ ≤t b t ′ e (A) • α t ′ A -1   where b t * e e ( 
A) is defined in the algorithm on line 16.

Proof Let us fix a resource e and prove the lemma by induction. At the beginning of the execution, when no constraint has been released yet, both sides of the lemma are 0. Let us assume that the lemma holds until the release of the t th constraint e a t e x e ≥ 1. Consider a moment τ during the algorithm's execution and let A * be the current set of resources e ′ such that x e ′ = 1. If at time τ , x e = 1 then by the algorithm's design, the set A * has been updated such that e ∈ A * . Consequently, the increasing rates of both sides in the lemma inequality are 0. In the remaining part of the proof, let us assume that x e < 1. We recall that by the algorithm's design, β e ≥ 1

λ ∇ e F (x). We consider two cases β e > 1

λ ∇ e F (x) and β e = 1 λ ∇ e F (x).

Case 1: β e > 1 λ ∇ e F (x). In this case, by the algorithm's design, the value of β e remains unchanged at time τ (line 10) ( ∂βe ∂τ = 0). The lemma's right-hand side's derivative according to τ is ≤ 0 for t ′ < t and ∂βe ∂τ = 0. The equality follows the increasing rate of α t A * . The last inequality is due to the increasing rate of x e . The rate on the left-hand side is always larger than on the right-hand side, so the lemma inequality holds.

t ′ ≤t ∂α t ′ A * ∂τ • b t ′ e (A * ) η b t * e e (A) d • ln(1 + 2d 2 /η) β e • exp ln(1 + 2d 2 /η) β e • A:e / ∈A t ′ ≤t b t ′ e (A) α t ′ A ≤ ∂α t A * ∂τ • b t e (A * ) η b t * e e (A) d • ln(1 + 2d 2 /η) β e • b t * e e (A) d η x e + 1 = 1 λ ln(1 + 2d 2 /η) • b t e (A * ) η b t * e e ( 
Case 2:

β e = 1
λ ∇ e F (x). In this case, by the algorithm's design, 1 λ ∇ e F (x) is locally nondecreasing at τ (since otherwise, by line 10, β e is not maintained to be equal to 1 λ ∇ e F (x)). Therefore, ∂βe ∂τ ≥ 0 and so ∂ 1 βe /∂τ ≤ 0. Hence, the derivative of the right-hand side of the lemma inequality according to τ is upper bounded by

t ′ ≤t ∂α t A * ∂τ • b t ′ e (A * ) η b t * e e (A) d • ln(1 + 2d 2 /η) β e • exp ln(1 + 2d 2 /η) β e • A:e / ∈A t ′ ≤t b t ′ e (A) α t ′ A
which is bounded by ∂xe ∂τ by the same argument as the previous case. The lemma follows. □

Lemma 2

The primal and dual variables are feasible.

Proof

Primal feasibility. While a primal covering constraint is unsatisfied, the x e -variables are increasing. At the end of the first iteration, the first primal covering constraint is satisfied. Afterwards, the new constraints are also satisfied, since the algorithms maintains z S = e∈S x e e / ∈S (1x e ). If we choose an element e with probability x e , then z S is the probability that the set of selected items is S. Therefore, the total probability S z S = 1. By a similar argument, we get the following:

S:e∈S z S = x e S ′ ⊆E\{e} e ′ ∈S ′ x e ′ e ′ / ∈S ′ (1-x e ′ ) = x e since S ′ ⊆E\{e} e ′ ∈S ′ x e ′ e ′ / ∈S ′ (1- x e ′ ) = 1.
Dual feasibility. Let us now prove that the first dual constraint is always satisfied during the execution. The algorithm maintains t ′ ≤t A:e / ∈A b t ′ e (A) α t ′ A ≤ β e . Whenever this inequality is violated, the algorithm decreases (see line 17) some of the α-variables in a way that the increasing rate of t ′ ≤t A:e / ∈A b t ′ e (A) α t ′ A is at most 0. By the β-variables' definition, the first dual constraint holds.

Let us consider the second dual constraint. Let x(τ ) be the final solution of the algorithm. For each fixed resource e, the value β e = 1 λ ∇ e F (x(τ e )) for some previous solution x(τ e ) where τ e ≤ τ and where x e (τ e ) ≤ x e (τ ) for all e. Let y := τ ′ ≤τ x(τ ′ ) ≤ x(τ ), so for each coordinate e of y, we have y e = max τ ′ ≤τ {x e (τ ′ )}. By definition of the dual variables, the second dual constraint (after rearranging the terms) reads

1 λ e∈S ∇ e F (x(τ e )) ≤ F (1 S ) + µ 4λ • ln(1 + 2d 2 /η) F (x(τ )) ∀ S ⊆ E since we set γ = - µ 4λ•ln(1+2d 2 /η) F (x(τ ))
, and x(τ e ) corresponds to the solution during the execution where β e was set to 1 λ ∇ e F (x(τ e )). Since F is monotone, F (x(τ )) ≥ F (y). To prove that the above inequality holds, it is sufficient to show that

1 λ e∈S ∇ e F (x(τ e )) ≤ F (1 S ) + µ 4λ • ln(1 + 2d 2 /η) F (y)
which means that F needs to be λ, µ 4 ln(1+2d 2 /η) -locally-smooth. Our initial assumption was that F is (λ, Cµ)-locally-smooth. By setting C := 1 4 ln(1+2d 2 /η) , the lemma holds. □ Theorem 1 Let F be the multilinear extension of the online non-linear covering problem's objective function f and d be the maximal row sparsity of the constraint matrix (formally d = max t≤T |{a t e : a t e > 0}|). Assuming that F is λ, µ ln(1+2d 2 /η) -locally-smooth for some parameters (λ > 0, µ < 1 and 0 < η ≤ 1), there exists an O 1 1-η -consistent and O λ 1-µ • ln d η -robust algorithm for any η ∈ (0, 1] which produces a fractional solution for the given problem.

Proof

Robustness. By bounding the increases of the primal and dual objective values at any time τ during the execution of Algorithm 1, we can determine the robustness. Upon the release of the t th constraint, let A * be the current solution with the chosen set of resources e such that x e = 1. The derivative of the primal objective function with respect to τ is:

e∈E ∇ e F (x) • ∂x e ∂τ = e : b t e (A * ) > 0 ∇ e F (x) b t e (A * ) x e λ β e + η λ β e d + (1 -η) 1 {pred(xe) = 1} ∇ e F (x) • |{e ′ : pred(x e ′ ) = 1, b t e ′ (A * ) > 0}| ≤ e : b t e (A * ) > 0 b t e (A * ) x e + η d + e : pred(xe) = 1 b t e (A * ) > 0 (1 -η) |{e ′ : pred(x e ′ ) = 1, b t e ′ (A * ) > 0}| ≤ 2 (1) 
The first inequality follows ∇ e F (x) ≤ λ β e . The second inequality is due to the definition of d and the fact that . Following the definition of U (τ ), we can bound the increase of the dual at time τ . The derivative of the dual with respect to t is:

∂D ∂τ = t ′ ≤t A:e / ∈A ∂α t ′ A ∂τ + ∂γ ∂τ = t ′ ≤t c t ′ (A * ) • ∂α t ′ A * ∂τ + ∂γ ∂τ = 1 λ • ln(1 + 2d 2 /η) • 1 - e∈U (τ ) b t e (A * ) b t * e e (A) - µ 4λ • ln(1 + 2d 2 /η) • e ∇ e F (x) ∂x e ∂τ ≥ 1 λ • ln(1 + 2d 2 /η) 1 - e∈U (τ ) 1 2d - µ 2λ • ln(1 + 2d 2 /η) ≥ 1 -µ 2λ • ln(1 + 2d 2 /η) .
The third equality holds since α t A * is increased and other α-variables in U (τ ) are decreased. The first inequality uses the fact that b t e (A * ) b

t * e e (A) ≤ 1 2d and Inequality [START_REF] Albers | Energy-efficient algorithms[END_REF]. The last inequality holds since |U (τ )| ≤ d. Hence, the robustness is at least 4λ 1-µ • ln(1 + 2d 2 /η). Consistency. We establish consistency with a similar argument as [START_REF] Bamas | The primal-dual method for learning augmented algorithms[END_REF]. Considering an arbitrary moment τ during the algorithm's execution, let S 1 = S 1 (τ ) be the set of resources selected by the prediction. Formally, ∀ e ∈ S 1 : pred(x e ) = 1 up to time τ . Let S 2 = S 2 (τ ) contain the remaining resources. The primal objective increase due to S 1 and S 2 :

e∈S 1 ∇ e F (x) ∂x e ∂τ = e∈S 1 ∇ e F (x) b t e (A * ) x e λ β e + η λ β e d + (1 -η) ∇ e F (x) • |{e ′ : pred(x e ′ ) = 1}| ≥ 1 -η e∈S 2 ∇ e F (x) ∂x e ∂τ = e∈S 2 ∇ e F (x) b t e (A * ) x e λ β e + η λ β e d ≤ 1 + η
Therefore, the primal objective increase is at most 1+ 1+η 1-η time the increase restricted to the set S 1 . Moreover, the algorithm's primal objective value restricted to S 1 is smaller than the prediction's, since ∀e ∈ S 1 : x e ≤ 1 = pred(x e ). We can deduce that the algorithm is O 1 1-η -consistent with the prediction. □

Applications

To apply Theorem 1 on specific problems, we need to determine the local-smoothness parameters for the multilinear extension. [START_REF] Kim | Online primal-dual algorithms with configuration linear programs[END_REF] provided these parameters for some broad classes of functions, in particular for polynomials with non-negative coefficients. Let g ℓ : R → R for 1 ≤ ℓ ≤ L be degree-k polynomials with non-negative coefficients and let f : {0, 1} n → R + be the cost function defined as f (1 S ) = ℓ b ℓ g ℓ e∈S a e where a e ≥ 0 for every e and b ℓ ≥ 0 for every 1 ≤ ℓ ≤ L. Then the multilinear extension

F of f is (O(k ln(d/η)) k-1 , k-1
k ln(1+2d 2 /η) )-locally smooth. We will use these parameters to derive the guarantees for the following problems.

Load Balancing

Problem. Load balancing is a classic problem in discrete optimization with wide-ranging applications (for example, resource management in data centres). This problem revolves around assigning jobs that arrive online to m available unrelated machines while minimizing their maximum load. Each arriving job j reveals its machine dependent execution time p ij where i ∈ {1, m} is the machine's index. The load ℓ i of machine i is the total processing time of the jobs assigned to it. This load balancing problem is a well understood standard online problem and it has a tight competitive ratio of Θ(log m) ( [START_REF] Borodin | Online computation and competitive analysis[END_REF][START_REF] Caragiannis | Better bounds for online load balancing on unrelated machines[END_REF]).

In our online setting with predictions, the jobs not only arrive with their machine dependent execution time p ij , but their machine dependent prediction as well. Formally, x ij ∈ {0, 1} indicates whether job j is assigned to machine i, and the oracle provides pred(x ij ) ∈ {0, 1}. We can formulate the online load balancing problem as a non-linear program. The objective is min max m i=1 ℓ i = min max m i=1 j p ij x ij , and the constraint is m i=1 x ij = 1 which guarantees that each job j is assigned to some machine i. Applying our framework for non-linear programs with covering constraints, Proposition 1 follows.

Proposition 1 Algorithm 1 gives a O( 1 1-η )-consistent and O (log m) log 2 m η -robust fractional solution for the load balancing problem.

Energy Minimization in Scheduling

Problem. Reducing carbon emissions is a global effort in which energy-efficient algorithms play an essential role. For example, [START_REF] Albers | Energy-efficient algorithms[END_REF] and [START_REF] Gu | Energy efficient task allocation and energy scheduling in green energy powered edge computing[END_REF] studied energy-efficient algorithms for scheduling.

Given m unrelated machines, we need to assign jobs that arrive online. Each job j has a release date r j , a deadline d j , and a vector of machine dependent processing times p ij . Contrary to performance-oriented scheduling, our goal is to design an assignment policy which can minimize the total energy consumption of the execution. To achieve this, we can adjust the machines' speed s ij (t) during the time interval [t, t + 1) for the execution of job j. Every machine i has a non-decreasing energy power function P i (•). Typically, P i (z) = z k i for some constant k i ≥ 1. The execution's total energy is i t P ( j s ij (t)).

In the classic online setting, this problem is well understood: there exists an O(k k )-competitive algorithm ( [START_REF] Kim | Online primal-dual algorithms with configuration linear programs[END_REF]) where k = max i {k i } and this bound is tight up to a constant factor ( [START_REF] Caragiannis | Better bounds for online load balancing on unrelated machines[END_REF]). In our extended study with predictions we represent this problem with the following non-linear program. The objective is min i t P ( j s ij (t)) and the constraints are:

m i=1 x ij = 1, d j -1 t=r j s ij (t) ≥ p ij x ij , s ij (t) ≥ 0 ∀ i, t
where x ij ∈ {0, 1} indicates whether job j is assigned to machine i and s ij (t) ≥ 0 denotes the speed of machine i executing job j during the time interval [t, t + 1). The first constraint guarantees that job j is assigned to some machine, and the second one ensures that the job j is completed on time (on the machine where the job is assigned). At the arrival of job j, the prediction provides a solution pred(x ij ) and a speed pred(s ij (t)) for r j ≤ t ≤ d j -1. Using our framework, we can deduce the following result.

Proposition 2 Algorithm 1 gives a O( 1 1-η )-consistent and O k k log k m η -robust fractional solution for the energy minimization problem.

Online Submodular Mimimization

Problem. Submodular minimization is a widespread subject in optimization and machine learning ( [START_REF] Iwata | A combinatorial strongly polynomial algorithm for minimizing submodular functions[END_REF][START_REF] Bach | Learning with submodular functions: A convex optimization perspective[END_REF][START_REF] Bach | Submodular functions: from discrete to continuous domains[END_REF][START_REF] Balkanski | A lower bound for parallel submodular minimization[END_REF]). Let us consider the problem of minimizing an online monotone submodular function subject to covering constraints. A set-function

f : 2 E → R+ is submodular if f (S ∪ e) -f (S) ≥ f (T ∪ e) -f (T ) for all S ⊂ T ⊆ E.
Let F be the multilinear extension of a monotone submodular function f . Function F admits two useful properties. First, if f is monotone, then so is F . Second, F is concave in the positive direction, meaning that ∇F (x) ≥ ∇F (y) for all x ≤ y, where x ≤ y is defined as x e ≤ y e ∀e.

To apply Algorithm 1, we need to determine the local-smoothness parameters. An important concept in studying submodular functions is the curvature. Given a submodular function f , the total curvature κ f ([14]) of f is defined as

κ f = 1 -min e f (1 E )-f (1 E\{e} ) f (1 {e} )
. Intuitively, the total curvature measures how far away f is from being modular. This concept of curvature is used to determine both upper and lower bounds on the approximation ratios for many submodular and learning problems (see [START_REF] Conforti | Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the rado-edmonds theorem[END_REF][START_REF] Michel X Goemans | Approximating submodular functions everywhere[END_REF][START_REF] Balcan | Learning submodular functions[END_REF][START_REF] Vondrák | Submodularity and curvature: The optimal algorithm[END_REF][START_REF] Rishabh | Curvature and optimal algorithms for learning and minimizing submodular functions[END_REF][START_REF] Sviridenko | Optimal approximation for submodular and supermodular optimization with bounded curvature[END_REF]).

Proposition 3 Algorithm 1 gives a O( 1 1-η )-consistent and O log(d/η) 1-κ f
-robust fractional solution for the submodular minimization under covering constraints.

Experiments

Setting. To evaluate the empirical performance of our proposed algorithm, we conducted experiments on routing problems that are motivated by congestion management. In this problem we are given a directed graph G(A, V ) and a set of requests R = {(s i , t i ) : s i , t i ∈ V } that represents demands to connect s i to t i . We assume that for each request there exists a directed path between s i to t i . Each arc (u, v) ∈ A is associated with a cost function f (u,v) : R + → R + that depends on the number of requests using the arc. Requests arrive online and the goal is to design a routing that minimizes the total cost. Input. There are three type of inputs in our experiments. The first one includes randomly generated graphs following the Erdős-Rényi model G(n, p), where n is the number of vertices and p is the probability that an arc gets created. The source and target vertices of the requests are also generated uniformly at random. The second category creates a cycle with n vertices and creates an arc between each neighboring vertex in both direction, ensuring that each vertex is connected. Afterwards, we randomly generate edges between non-adjacent vertices, as well as the requests. The third input type collects specific examples designed to trap algorithms which rely on the multiplicative weight update (MWU) method. These instances do not include randomness, they were designed by hand.

Predictions. The predictions come from rounding the optimal offline fractional solution. If a request is served by several paths in the fractional solution, the oracle picks one of the paths uniformly at random using the amounts passing through each of them as weights. Otherwise, the oracle uses the unique best path of the optimal solution. Due to the randomized rounding, on most instances the oracles propose a worse solution than the multiplicative weight update (MWU) solution. To improve the quality of the oracles, we create several unique oracles and then take the ones with the best, the worst and the middle performance during our analysis.

Implementation. The routing problem's covering formulation enumerates all possible cuts in the graph. Upon each arriving request r = (s, t), a new set of constraints are released e∈δ(S) x r e ≥ 1, where δ(S) is the cut on S ⊂ V such that s ∈ S and t / ∈ S. This formulation generates an exponential number of constraints with respect to the size of the graph. However, these constraints can be simplified in the implementation of Algorithm 1, since the algorithm is not constrained by standard linear program solving techniques. Algorithm 1 increases the amount of traffic on each arc following the step described on line 11. The request is satisfied when there exists a path among the arcs in the set A * (arcs with value 1). Therefore, we can replace the constraint satisfaction with a simple path finding in the implementation. If there are several possible paths with the arcs in A * , our algorithm chooses the minimum cost path, so the implementation includes a rounding step, providing an integral solution.

Instances. Randomly generated instances yield similar results. On large instances with many vertices, arcs, and request, the multiplicative weight update (MWU) solution and the oracles are far from the optimal offline fractional solution. However, on small instances, the MWU works well, and it is more likely to obtain good oracles. Instance 1 represents a large randomly generated instance, while Instance 2 a small one. The second category of inputs guarantee that the graph is connected and Instance 3 represents on of these inputs. Finally, we show an example, where the MWU makes really sub-optimal decisions on Instance 4. These instances are complementary and allow us to examine how our algorithm behaves when the oracles' predictions are worse or better than the MWU.

Instance 1 has 20 vertices, 184 arcs, and 20 requests. Each arc has a cost function of the form f (x) = ax b , where 1.0 ≤ a ≤ 10.0 and 1.0 ≤ b ≤ 4.0. We generated 20 oracles from the optimal offline fractional solution and kept 3 of these oracles: the best, the worst and the middle one on the scale of their obtained objective values. The result of this execution is visible on Figure 4.

Instance 2 has 10 vertices, 32 arcs, and 5 requests. Each arc has a cost function of the form f (x) = ax b , where 1.0 ≤ a ≤ 10.0 and 1.0 ≤ b ≤ 4.0. We generated 10 oracles from the optimal offline fractional solution and kept 3 of these oracles: the best, the worst and the middle one on the scale of their obtained objective values. The result of this execution is visible on Figure 5.

Instance 4 has 50 vertices, 120 arcs, and 20 requests. Each arc has a cost function of the form f (x) = ax b , where 1.0 ≤ a ≤ 5.0 and 1.0 ≤ b ≤ 5.0. We generated 20 oracles from the optimal offline fractional solution and kept 3 of these oracles: the best, the worst and the middle one on the scale of their obtained objective values. The result of this execution is visible on Figure 6.

Instance 4 has 8 vertices, 16 arcs, and 7 requests. This instance is specifically designed to trap the MWU. The structure of Instance 4 is visible on Figure 2, along with its MWU and optimal solutions.

Figures. Each of the presented performance analysis figures have eta on the x-axis, which represents the algorithm's trust in the predictions (η = 0 means the highest trust). The y-axis show the competitive ratio, which we have computed as the ratio between the optimal offline fractional solution and the algorithm's solution. The y-axis do not contain the complete range of values from 0 to 1 to make the figures smaller.

Observation. Our algorithm updates the problem's variables following a combination of the multiplicative weight update (MWU) method and the oracle's predictions. When the predictions have an impact on the update of the variables (eta tends towards 0), and the quality of the predictions are good, our algorithm has a better performance.

Based on the experiments that we have conducted, we can remark that even if the oracle's performance are much worse than the MWU's performance, our algorithm's performance degrades gradually (see Figure 5). Additionally, if the oracle tries to give adversarial inputs (for example oracle 3 on Figure 4), the algorithm may ignore the suggestions completely (the increasing rate coming from the oracle does not compensate the increasing rate difference due to the costs of the arcs).

Instance 4 (which serves as a hand-crafted counter-example for the MWU) shows that the MWU method avoids taking a path which cost slightly more than the minimum cost path. As a result, our algorithm can only improve its performance, when its trust is high in the prediction. In this specific example, there is only one possible oracle, since the optimal offline fractional solution is already integral. Therefore, on Figure 3 the columns are identical.

On some examples, both the multiplicative weight update and the oracle performs poorly (third column on Figure 6), but their combination produces a good result. We can also remark that even if the oracle suggests a much better solution than the one the multiplicative weight update can obtain alone, our algorithm does not always follow blindly the oracle (first column of Figure 6). Additionally, due to the way we increase the value of the variables (see line 11 of the algorithm), in the setting of the routing problem, longer paths are penalized, even if they have a smaller cost. These observations suggest that the way we have integrated the predictions with the multiplicative weight update might be too simple to capture the necessary detail for specific problems. However, it provides a general framework with a worst-case guarantee that other people can build upon when they are studying specific problems.
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Conclusion

We presented a primal-dual framework to design algorithms with predictions for non-linear problems with covering constraints. The potential of our approach is visible through the example applications. This paper provides useful ideas to incorporate predictions into algorithms. The framework is of interest for many high impact applications, such as load balancing, energy minimization, submodular minimization and congestion minimization. An interesting research direction is to design algorithms for non-linear packing problems and also to develop competitive algorithms in the setting of multiple predictions. 

A.2 Energy Minimization in Scheduling

Problem. Reducing carbon emissions is a global effort in which energy-efficient algorithms play an essential role. For example, [START_REF] Albers | Energy-efficient algorithms[END_REF] and [START_REF] Gu | Energy efficient task allocation and energy scheduling in green energy powered edge computing[END_REF] studied energy-efficient algorithms for scheduling. Given m unrelated machines, we need to assign jobs that arrive online. Each job j has a release date r j , a deadline d j , and a vector of machine dependent processing times p ij . Contrary to performance-oriented scheduling, our goal is to design an assignment policy which can minimize the total energy consumption of the execution. To achieve this, we can adjust the machines' speed s ij (t) during the time interval [t, t + 1) for the execution of job j. Every machine i has a non-decreasing energy power function P i (•). Typically, P i (z) = z k i for some constant k i ≥ 1. The execution's total energy is i t P ( j s ij (t)).

In the classic online setting, this problem is well understood: there exists an O(k k )-competitive algorithm ( [START_REF] Kim | Online primal-dual algorithms with configuration linear programs[END_REF]) where k = max i {k i } and this bound is tight up to a constant factor ( [START_REF] Caragiannis | Better bounds for online load balancing on unrelated machines[END_REF]). In our extended study with predictions we represent this problem with the following non-linear program. The objective is min i t P ( j s ij (t)) and the constraints are:

m i=1 x ij = 1, d j -1 t=r j s ij (t) ≥ p ij x ij , s ij (t) ≥ 0 ∀ i, t
where x ij ∈ {0, 1} indicates whether job j is assigned to machine i and s ij (t) ≥ 0 denotes the speed of machine i executing job j during the time interval [t, t + 1). The first constraint guarantees that job j is assigned to some machine, and the second one ensures that the job j is completed on time (on the machine where the job is assigned). At the arrival of job j, the prediction provides a solution pred(x ij ) and a speed pred(s ij (t)) for r j ≤ t ≤ d j -1. Using our framework, we can deduce the following result. Proof The objective function i t P ( j s ij (t)) is a polynomial of degree k = max i k i ; so its multilinear extension is (O(k ln(m/η)) k-1 , k-1 k ln(1+2m 2 /η) )-locally smooth (the maximal number of positive coefficients in a constraint d = m). Therefore, applying Theorem 1, Algorithm 1 provides a O( 11-η )-consistent and O k k ln k m η -robust fractional solution. □

A.3 Online Submodular Mimimization

Problem. Submodular minimization is a widespread subject in optimization and machine learning ( [START_REF] Iwata | A combinatorial strongly polynomial algorithm for minimizing submodular functions[END_REF][START_REF] Bach | Learning with submodular functions: A convex optimization perspective[END_REF][START_REF] Bach | Submodular functions: from discrete to continuous domains[END_REF][START_REF] Balkanski | A lower bound for parallel submodular minimization[END_REF]). Let us consider the problem of minimizing an online monotone submodular function subject to covering constraints. A set-function f : 2 E → R+ is submodular if f (S ∪ e) -f (S) ≥ f (T ∪ e) -f (T ) for all S ⊂ T ⊆ E. Let F be the multilinear extension of a monotone submodular function f . Function F admits two useful properties. First, if f is monotone, then so is F . Second, F is concave in the positive direction, meaning that ∇F (x) ≥ ∇F (y) for all x ≤ y, where x ≤ y is defined as x e ≤ y e ∀e.

To apply Algorithm 1, we need to determine the local-smoothness parameters. An important concept in studying submodular functions is the curvature. Given a submodular function f , the total curvature κ f ([14]) of f is defined as

κ f = 1 -min e f (1 E )-f (1 E\{e} ) f (1 {e} )
. Intuitively, the total curvature measures how far away f is from being modular. This concept of curvature is used to determine both upper and lower bounds on the approximation ratios for many submodular and learning problems (see [START_REF] Conforti | Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the rado-edmonds theorem[END_REF][START_REF] Michel X Goemans | Approximating submodular functions everywhere[END_REF][START_REF] Balcan | Learning submodular functions[END_REF][START_REF] Vondrák | Submodularity and curvature: The optimal algorithm[END_REF][START_REF] Rishabh | Curvature and optimal algorithms for learning and minimizing submodular functions[END_REF][START_REF] Sviridenko | Optimal approximation for submodular and supermodular optimization with bounded curvature[END_REF]). The following lemma shows a useful property of the total curvature. Proof Let S = {e 1 , . . . , e m } be an arbitrary subset of E. Let S i = {e 1 , . . . , e i } for 1 ≤ i ≤ m and S 0 = ∅. We have

f (1 S ) ≥ f (1 E ) -f (1 E\S ) = m-1 i=0 f (1 E\S i ) -f (1 E\S i+1 ) ≥ m i=1 f (1 E ) -f (1 E\{e i } ) ≥ (1 -κ f ) m i=1 f (1 e i )
where the first two inequalities are due to the submodularity of f , and the last inequality follows the definition of curvature. □ Proof Let F be the multilinear extension of f . It is sufficient to verify that F is 1 1-κ f , 0 -locally smooth. Recall that, by definition of the multilinear extension, F (x) = E f (1 T ) where T is a random set such that a resource e appears in T with probability x e . Moreover, as F is linear in x e , we have ∇ e F (x) = F (x 1 , . . . , x e-1 , 1, x e+1 , . . . , x n ) -F (x 1 , . . . , x e-1 , 0, x e+1 , . . . , x n )

= E f 1 R∪{e} -f 1 R
where R is a random subset of resources N \ {e} such that e ′ is included with probability x e ′ . Therefore, to prove that F is (λ, µ)-locally-smooth, it is equivalent to show that, for any set S ⊂ E and for any vectors x e ∈ [0, 1] n for e ∈ E,

e∈S E f 1 R e ∪{e} -f 1 R e ≤ λf 1 S + µE f 1 R
where R e is a random subset of resources N \ {e} such that e ′ is included with probability x e e ′ and R is a random subset of resources N \ {e} such that e ′ is included with probability max e∈S x e e ′ . Indeed, the 1 1-κ f , 0 -local smoothness of F holds due to the submodularity and Lemma 3: for any subsets R e , we have

e∈S f 1 R e ∪{e} -f 1 R e ≤ e∈S f 1 {e} ≤ 1 1 -κ f • f (1 S )
Therefore, applying Theorem 1, the proposition follows. □

Theorem 1 (

 1 Informal definition.) Given a non-linear online covering problem, let F be the multilinear extension (see section 2 Preliminaries) of the problem's objective function. Assuming (λ,µ)local-smoothness properties on F , for every confidence parameter η of the prediction oracle, where η ∈ (0, 1], there exists an O 1 1-η -consistent and O λ 1-µ • ln d η -robust algorithm for the nonlinear online fractional covering problem, where d is the maximum raw sparsity of the problem's constraints (maximum number of non-zero coefficients in a constraint).
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  e / ∈A * b t e (A * ) x e ≤ 1 always holds during the algorithm. (The number of b t e (A * ) values which are strictly greater than 0, is at most d.) At any time τ , let U (τ ) be the set of resources e such that t ′ ≤t A:e / ∈A b t ′ e (A) α t ′ A = β e and b t e (A * ) > 0. Note that |U (τ )| ≤ d by definition of d. As long as e / ∈A * b t e (A * ) x e < 1, using Lemma 1 we get that for every e ∈ U (τ ), is defined in the algorithm on line 16. Therefore, b t e (A * ) b
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 23 Figure 2: Instance 4, its MWU solution, and its optimal solution
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 41526 Figure 4: Performance analysis of Instance 1

Proposition 5

 5 Algorithm 1 gives a O( 1 1-η )-consistent and O k k log k m η -robust fractional solution for the energy minimization problem.

Lemma 3

 3 For any set S, it always holds thatf (1 S ) ≥ (1 -κ f ) e∈S f (1 {e} ).

Proposition 6

 6 Algorithm 1 gives a O( 1 1-η )-consistent and O log(d/η) 1-κ f-robust fractional solution for the submodular minimization under covering constraints.

  Let τ be the continuous timer during the execution of the algorithm. 5: for each time t, for the new primal constraint e a t e x e ≥ 1 and dual variable α t A

1: Initially, set A * ← ∅ (where A * is the solution set and ∀e ∈ A * : x e = 1) 2: All primal and dual variables are initially set to 0 3: During every step, for each feasible solution S, z S = e∈S x e e / ∈S (1 -x e ) is maintained. 4: * do 6: while e / ∈A * b t e (A * ) x e < 1 do # Increase primal, dual variables 7:

Appendix A Applications in Section 3

To apply Theorem 1 on specific problems, we need to determine the local-smoothness parameters for the multilinear extension. [START_REF] Kim | Online primal-dual algorithms with configuration linear programs[END_REF] provided these parameters for some broad classes of functions, in particular for polynomials with non-negative coefficients. Let g ℓ : R → R for 1 ≤ ℓ ≤ L be degree-k polynomials with non-negative coefficients and let f : {0, 1} n → R + be the cost function defined as f (1 S ) = ℓ b ℓ g ℓ e∈S a e where a e ≥ 0 for every e and b ℓ ≥ 0 for every 1 ≤ ℓ ≤ L. Then the multilinear extension

k ln(1+2d 2 /η) )-locally smooth. We will use these parameters to derive the guarantees for the following problems.

A.1 Load Balancing

Problem. Load balancing is a classic problem in discrete optimization with wide-ranging applications (for example, resource management in data centres). This problem revolves around assigning jobs that arrive online to m available unrelated machines while minimizing their maximum load. Each arriving job j reveals its machine dependent execution time p ij where i ∈ {1, m} is the machine's index. The load ℓ i of machine i is the total processing time of the jobs assigned to it. This load balancing problem is a well understood standard online problem and it has a tight competitive ratio of Θ(log m) ( [START_REF] Borodin | Online computation and competitive analysis[END_REF][START_REF] Caragiannis | Better bounds for online load balancing on unrelated machines[END_REF]).

In our online setting with predictions, the jobs not only arrive with their machine dependent execution time p ij , but their machine dependent prediction as well. Formally, x ij ∈ {0, 1} indicates whether job j is assigned to machine i, and the oracle provides pred(x ij ) ∈ {0, 1}. We can formulate the online load balancing problem as a non-linear program. The objective is min max m i=1 ℓ i = min max m i=1 j p ij x ij , and the constraint is m i=1 x ij = 1 which guarantees that each job j is assigned to some machine i. Applying our framework for non-linear programs with covering constraints, Proposition 1 follows.

Proposition 4 Algorithm 1 gives a O( 11-η )-consistent and O (log m) log 2 m η -robust fractional solution for the load balancing problem.

Proof It is known that ∞-norm of a m-dim vector can be approximated by the (log m)-norm, in particular for m ≥ 2,

Hence, one can instead consider the objective of minimizing the (log m)-norm of the load vectors while losing a constant factor of 2. More precisely, we consider the (log m)-th power of the (log m)norm as the objective.