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ABSTRACT

In predictive maintenance an important problem is to op-
timize the quantity of information to be transmitted at the
control center to guarantee reliable fault detection while lim-
iting sensor power consumption. This problem relies directly
on the sensor configurations (e.g., sampling rate, coding,
quantization) and the fault detection algorithm. To address
this question, we introduce a codesign framework and an
algorithm for joint optimization of the sensor configurations
and the accuracy of the fault detection classifier. In a use case
based on a dataset consisting of multiple sensor measure-
ments and heating power levels known as the Twin House
Experiment, we show that our algorithm can find efficient
tradeoffs between sensor power consumption and classifier
accuracy.

Index Terms— predictive maintenance, fault identifica-
tion, sensor optimization, GEM classifier

1. INTRODUCTION

As increasing numbers of sensors are utilized to monitor
buildings and homes, predictive maintenance is a key strategy
to identify degradation or faults in critical systems [1]; e.g.,
heating, ventilation and air conditioning. In principle, a large
number of sensors can yield data capable of supporting effec-
tive predictive maintenance. However, the utility of sensors
is constrained by their lifetimes and it is often desirable for
battery operated sensors to operate on the order of 10 years.

For battery powered sensors to operate for long periods
of time, it is necessary to ensure that sensor functions (e.g.,
data collection, processing and communication) are limited to
those strictly necessary for effective predictive maintenance.
In general, not all sensors collect and communicate data in
the same fashion to a data analytics system for fault detec-
tion. As a consequence, the data analytics system must adapt,
selecting fault classifiers tailored to the sensor data available
at a given time. The predictive maintenance system therefore
requires codesign of sensor configurations and the classifier
utilized by the data analytics system.

In existing sensor and data analytics systems for predic-
tive maintenance, either data analytics or sensor configura-

tion are typically optimized, but not both. One exception is
the work in [2], which considered tradeoffs between energy
consumption and the accuracy of the classifier in a generic
manufacturing context, however, it does not offer a system-
atic way of reducing the communication load. On the other
hand, in the context of smart buildings, the focus has been on
optimization of the classifier [3, 4, 5, 6] without considering
how sensor configurations should be optimized to guarantee
sufficient lifetimes.

In this paper, we propose a strategy to codesign communi-
cation and data analytics for predictive maintenance of smart
buildings. The main contributions are:

• We formalize communication and data analytics code-
sign in smart buildings for a network of low cost sen-
sors that wirelessly communicate with the cloud via a
single access point. The resulting codesign problem
is a bi-level optimization problem yielding a tradeoff
between classifier accuracy and energy consumption,
where both sensor configurations (which unlike [2] in-
clude sensor sampling rates, data compression, and sen-
sor activity) and the classifier are optimized.

• The algorithm is evaluated on a use case with experi-
mentally obtained temperature measurements from the
Twin House Experiment [7], which may correspond to
“normal” operation, where the heating is functioning,
and “abnormal” operation, where the heating power
source is turned off. Numerical results show rapid
convergence to sensor configurations that yield a high
accuracy and low battery power consumption and the
impact of varying classifier training data.

2. PROBLEM FORMULATION

Consider a building operated by a data service provider and
equipped with N low-cost and battery-operated sensors that
transmit data to an access point via wireless links. The pur-
pose of the sensor network is to identify degradation of the
building. In general, the sensors may be utilized to detect
degradation in a range of systems; e.g., HVAC, lighting or
water. In Sec. 5, we will focus on a heating system use case.



2.1. Sensor Configurations

Each sensor j is capable of collecting and communicating
data every T j

c ∈ Tc seconds, where the data is assumed to
be a scalar quantity and |Tc| < ∞. That is, every T j

c sec-
onds, each sensor can collect a single sample of a physical
observable (e.g., temperature, humidity, light intensity) and
send it to the access point. Sensor j is also capable of adapt-
ing the duration of each data transmission, with transmissions
consisting of nj ∈ N bits with |N | < ∞.

Each bit has a constant and known energy cost of Eb Joules.
The Eb Joules includes energy consumed in every step such
as sensing, processing and transmission. As such, the average
power consumption of sensor j is given by

Pj(n
j , T j

c ) = Eb · nj · T j
c J/s. (1)

We note that a more sophisticated model of power consump-
tion can be utilized with the codesign framework in Sec. 3.

The duration of a transmission, nj , is constrained by the
level of data compression at sensor j. In particular, if the
data packet consists of n information bits, then at most 2n

quantization levels are available. When the data samples lie in
an interval I = [dmin, dmax] of length L = dmax − dmin and
2n quantization levels are available, the quantization levels
are separated by a distance ∆j =

L
2n−1 .

Given a data sample dt,j ∈ I at time t, sensor j trans-
mits the compressed data d̂t,j = k∗∆j + dmin, where k∗ =
argmink=0,1,...,2n−1 |dt,j − dmin + k∆j |.

If all sensors are utilized, then the total transmit power is
given by

∑N
j=1 Pj(n

j , T j
c ). However, over a given time pe-

riod, not all the sensors may provide useful information sug-
gesting that it may be desirable to switch off some of the sen-
sors for a period of time. To this end, each sensor j is assigned
an activity variable xj ∈ {0, 1}, which indicates the sensor is
off when xj = 0. The total power is then defined as

Ptot(x,n,Tc) =

N∑
j=1

xjPj(n
j , T j

c ), (2)

where x = (x1, . . . , xN ), n = (n1, . . . , nN ), and Tc =
(T 1

c , . . . , T
N
c ).

2.2. Fault Identification Problem

Given data available at the access point, the key problem is to
identify whether or not it is anomalous. In particular, suppose
at time t that sensor j transmits compressed data d̂t,j . The
access point is then assumed to have an error-free observation
of d̂t = (d̂t,1, . . . , d̂t,N ), where d̂t,j = 0 if sensor j is not
active (i.e., xj = 0).

Based on d̂t, the access point makes a decision as to
whether or not an anomaly is present. This is achieved via a
classifier Φ : RN → {1, . . . ,M}, d̂t 7→ ℓ̂t. In particular, if
ℓ̂t = Φ(d̂t) ̸= 1, then an anomaly is detected. Often, labeled

data {(dt, ℓt)}, where ℓt is the true label for sample t, is
only available for “normal operation”. Additional unlabeled
data, potentially containing anomalous events, may also be
available. As a consequence, semi-supervised classification
[8] methods are required. The choice of the classifier depends
on the sensor configurations. For example, if the quantity of
sensors used to collect temperature measurements is reduced,
the corresponding classifier in general differs from the case
when all sensors are utilized.

3. CODESIGN BI-LEVEL OPTIMIZATION
PROBLEM

In this section, we introduce a framework for optimizing the
configuration of the sensors and the classifier in order to pro-
vide an efficient tradeoff between performance of the classi-
fier and the power consumption of the sensor configuration.

3.1. Master Classifier

Initially available to the access point is a set of training data
{dt}t∈Dtrain obtained from the full set of sensors at the lowest
compression rate. This data is assumed to be obtained from
“normal” operation. In the context of fault identification, this
is a reasonable assumption as the majority of the time, the
system is functional.

Classification based on the data {dt}t∈Dtrain can be per-
formed via geometric entropy minimization techniques, such
as K-kNN graphs [9], for a fixed false alarm rate α ∈ (0, 1).
To label additional test data Dtest that may contain “abnor-
mal” operation events, we introduce a master classifier based
on the bipartite K-kNNG method in [9]. We denote the la-
beled test data by {d̂t, ℓ̂t}t∈Dtest , where ℓ̂t ∈ {0, 1} with
ℓ̂t = 1 denoting an abnormal operation event. The data la-
beled via the master classifier can then be used to evaluate the
performance of classifiers based on data from a subset of the
sensors, which are called induced classifiers.

3.2. Induced Classifiers

With the initial data {dt}t∈Dtrain
, the classifier can also tune

a set of induced classifiers {Φz} corresponding to different
configurations z = (x,n,Tc) of the sensors. As for the mas-
ter classifier, the induced classifiers are obtained via the K-
kNNG classifier in [9].

The performance of the induced classifiers is computed
using the test data labeled by the master classifier; namely,
{d̂t, ℓ̂t}t∈Dtest

. The accuracy of the induced classifer Φz is
given by

Pacc(x,n,Tc) = β(x,n,Tc), (3)

where β(x,n,Tc) is the proportion of false negatives for the
configuration (x,n,Tc) obtained from the test dataset labeled
by the master classifier.



3.3. Codesign Optimization Problem

We formalize the codesign problem for optimization of the
sensor configurations as

(x∗,T∗
c ,n

∗) = arg max
(x,Tc,n)∈{0,1}N×Tc×N

−λ1Ptot(x,n,Tc)

+ λ2Pacc(x,Tc,n), (4)

where λ1, λ2 > 0 are penalty parameters. Due to the need
to compute an induced classifier for each configuration of the
sensors, the optimization problem in (4) is a bi-level optimiza-
tion problem. Also note that x ∈ {0, 1}N and Tc,n lie in
finite sets leading to a discrete optimization problem. We in-
troduce an efficient heuristic method to optimize the sensor
configuration in the following section.

4. SENSOR CONFIGURATION OPTIMIZATION
ALGORITHM

Suppose that the set of feasible configurations C = {(x,n,Tc)} =
{0, 1}N × T N

c × NN has a cardinality of S. We denote the
i-th element of the set of feasible configurations by c(i).

Although the optimization problem in (4) is discrete, it
can be approximated by a smooth problem as follows. Let
α ∈ RS

+ and consider the optimization problem

α∗ = arg max
α∈RS

+

S∑
i=1

f(i)
αi∑S
j=1 αj

, (5)

where

f(i) = −λ1Ptot(c(i)) + λ2Pacc(c(i)). (6)

Note that in order to compute Pacc(c) it is necessary to train
the corresponding induced classifier described in Sec. 3.2. An
approximate solution to (4) can then be obtained via i∗ =
argmaxi=1,...,S αi.

While the problem in (5) can in principle be solved by
gradient descent, a drawback is that when S is large there are
many terms in the sum. As such, computing each gradient
is computationally expensive. Moreover, the computation of
f(i) requires optimization of the classifier to account for the
data available to the access point under configuration c(i).

This issue can be resolved by noting that

α∗ = arg max
α∈RS

+

1

S

S∑
i=1

f(i)
αi∑S
j=1 αj

, (7)

which can be viewed as a stochastic optimization problem.
A standard method to solve the problem in (7) is projected
stochastic gradient descent. Let H = {α ∈ RN : αi ≥
0, i = 1, 2, . . . , S}. The parameter α is then updated recur-
sively in Line 3 of Algorithm 1, where ΠH{·} denotes the
Euclidean projection onto H.

Algorithm 1 Algorithm for Optimization of Sensor Configu-
rations
Input: α0 ∈ RS

+, t = 0, step-size sequence {ϵt}.
Output: Configuration i∗.

1: while Not Stopped do
2: Sample it+1 uniformly from {1, . . . , S}.
3: Compute αt+1 =

ΠH

{
αt + ϵt+1f(it+1)∇α

αit+1∑S
j=1 αj

∣∣∣∣
α=αt

}
, where

f(i) is defined in (6), computed using the samples in
Dtest based on the induced classifier obtained from
the samples in Dtrain.

4: t → t+ 1.
5: end while
6: return i∗ = argmaxi=1,...,S αt,i.

5. USE CASE: POWER OUTAGE DETECTION IN
THE TWIN HOUSE EXPERIMENT

5.1. Use Case Description

The Twin House Experiment [7] was performed on two stand
alone houses installed with a number of sensors in each room.
Each house consisted of a living room, kitchen, childrens’
room, bedroom, doorway, corridor, wan attic, and basement.
The experiments involved heating the houses at different lev-
els and measuring variables such as the indoor temperature
evolution, the power consumption, humidity, and heat losses
from the walls.

The experiment was conducted for a period of 41 days,
with temperature data recorded every 10 minutes. The cor-
responding data set consists of 5609 samples obtained from
8 sensors. During part of this time period, the heating sys-
tem was switched off. These measurements (from the indoor
sensors) along with the description of the houses are provided
in [10]. The temperature measurements and corresponding
power levels for heating for several of the rooms are illus-
trated in Fig. 1.

5.2. Numerical Results

We utilized Alg. 1 to optimize the sensor configurations in or-
der to solve (4). The sensor configuration space is determined
by which of the 8 sensors are active, the set of compression
levels n = {4, 3, 2, 1}, where the numbers show the number
of digits after the decimal, and the set of sampling periods
Tc = {2947, 2210, 1473, 736}. The master and the induced
classifiers detailed in Sec. 3 utilized the bipartite K-kNNG
method in [9] using k = 6 neighbours and a power weighting
γ = 0.9 (for details of these parameters see [9]). The tem-
perature sensors data with power ON is considered as normal
(training data set) whereas sensors data with power OFF is
considered an anomalous (anomalous) data. The maximum



Fig. 1. The temperature evolution in different rooms of the
Twin House. The data corresponding to T1, T2, T3 are the
temperature data from the living room, kitchen, doorway re-
spectively. The input power is the heating power in the living
room, the sequence of power in other rooms is similar.

Fig. 2. Improvement in accuracy and battery power with the
number of iterations of Alg. 1. The accuracy and battery
curves are obtained by averaging 30 runs of Alg. 1.

battery power consumed with all the set of sensors communi-
cating at full sampling rate and zero compression is approxi-
mately 0.7 µW .

Fig. 2 plots the average accuracy and battery power of the
sensor configurations obtained from 10 runs of Alg. 1. The
algorithm was initialized with α0,j = 0.5, j = 1, . . . , S and
utilized a constant step-size ϵt = 10, t > 0. The accuracy
is determined in terms of the ratio of the number of anoma-
lies detected by the algorithm to the total number of anoma-
lies present. Observe that the algorithm rapidly improves the
average accuracy and battery power, and refines the sensor
configurations as the number of iterations increases.

In case of residential buildings/homes the comfortable
range of temperature changes with the time of day. To
study the impact of quantity of time period from which
the “normal” training data was drawn, we divided the data
into three zones D1, D2 and D3. In particular, D1 corre-

sponds to samples {0, . . . , 1200}, D2 = {1001, . . . , 2500}
and D3 = {1600, . . . , 2900}. Fig. 3 and Fig. 4 plot the av-
erage accuracy and battery power, respectively, of the sensor
configurations obtained from Alg. 1 over 10 runs. Observe
that the accuracy for all data zones is similar. However, there
are significant differences in the battery power levels utilized
with different training data. This is due to a larger number of
active sensors with training data D2.

Fig. 3. Battery Power selected by Alg. 1 averaged over
10 runs. D1, D2 and D3 correspond to different training
datasets.

Fig. 4. Accuracy obtained by running Alg. 1, the accuracy
score averaged over 10 runs. D1, D2 and D3 correspond to
different training datasets.

6. CONCLUSION

We introduced a codesign framework which provides a means
of jointly optimizing the quality of the classifier and sensor
configurations. A numerical study for the Twin House Ex-
periment use case suggests that our method can find efficient
tradeoffs between power consumption of the sensors and the
accuracy of the classifier.
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