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Codesigned Communication and Data Analytics for
Condition-Based Maintenance in Smart Buildings

Naveed Ahmad, Malcolm Egan, Jean-Marie Gorce, Jilles S. Dibangoye, and Frédéric Le Mouël

Abstract—With the proliferation of cheap sensors and the ubiq-
uity of cloud and edge computing, predictive/condition-based
maintenance is expected to play an important role in smart
homes and buildings. Nevertheless, a key difficulty is ensuring
that sensors provide data of sufficient quality in order to reliably
detect building (e.g., heating system) degradation in systems or
comfort. At the same time, sensor utilization should be limited as
much as possible in order to minimize power consumption and
increase the lifetimes of batteries. A solution to this problem
requires careful codesign of sensor communication and data
analytics. In this paper, we introduce a formulation of this
codesign problem, which is based on an optimization problem to
jointly design how often data is collected and compression levels
in order to balance the quality of fault detection with the quantity
of transmitted data. To solve the optimization problem, we apply
a differentiable search algorithm based on a variant of stochastic
gradient descent for discrete optimization problems. We apply
our codesign framework and solve the resulting optimization
problem using data obtained from a building comfort experiment
known as the Twin House Experiment. We also provide an
extension of our algorithm to a dynamic variant of the codesign
framework, where comfort levels and power consumption penal-
ties are time varying. Numerical results show that our algorithm
rapidly finds an efficient tradeoff between classifier accuracy and
sensor power consumption.

Index Terms—Codesign, Communications, Classification, Predic-
tive Maintenance, Condition-based Maintenacne

I. INTRODUCTION

A key challenge in buildings and homes is identifying de-
graded systems, ranging from heating, ventilation and air
conditioning (HVAC) to water control. Predictive maintenance
or Condition-Based Maintenace (CBM) aims to identify ab-
normal behavior potentially indicating a catastrophic failure
in advance. The performance of condition-based maintenance
depends on available sensors and the quality of the data
analytics platform [1]. In buildings and homes, such failures
can have severe human consequences; for example, a lack of
heating in cold climates, or contamination of drinking water
due to faulty water control.

With the increasing availability of low cost sensors and
edge/cloud computing infrastructure for sophisticated data
analytics, condition-based maintenance systems are becoming
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more widespread and of a larger scale [2]. Moreover, often
the sensors are not vendor specific; that is, the sensors are
not installed directly within a system (e.g., HVAC), but only
observe functionality indirectly through the impact of the
system on physical observables (e.g., temperature or humidity)
within the building.

On the other hand, as condition-based maintenance systems
increase in scale, it is increasingly difficult to ensure that
sensors are operational. Namely, for battery operated sensors
connected wirelessly to the cloud via the Internet of Things
(IoT), ensuring that each sensor has a long lifetime is critical.
As energy consumption of sensors is often dominated by data
collection and wireless transmission to an access point, the
management of the predictive maintenance system must in-
clude strategies to minimize the collection and communication
of sensor data.

A. Related Work

While there is now a vast literature on IoT-based
predictive/condition-based maintenance, a common focus is
on how to process data collected by wireless sensors. For
example, algorithms have been developed for slitting machine
monitoring [3], intelligent manufacturing [4], chiller monitor-
ing [5], air compressors [6], gas turbines [7], renewable energy
systems such as wind and hydro turbines [8] and personal
care goods manufacturing [9]. In other work, communication
aspects have been considered. For example, in [10] a messag-
ing protocol for car maintenance was developed. In [11], an
experimental study of power consumption and latency between
sensors and gateways was carried out.

In the context of predictive maintenance for smart buildings
the focus is on developing frameworks that can analyze or
predict the potential faults in building systems [12]–[16]. A
predictive maintenance framework along with implementation
in buildings via an IoT device was discussed in [14], The work
in [15] discusses the predictive maintenance data framework
and the devices used for implementation of the predictive
maintenance systems. The work in [16] proposed a predictive
maintenance system for buildings that is robust to faulty
sensors. There are two key limitations of the work exemplified
by [3], [5], [9]–[16]. First, the work focuses on the context of
manufacturing, where the resulting data sets are not tailored
to the sensor observations obtained within smart buildings.



Second, either data analytics or communication aspects are
considered, but not both. As such, inefficiencies can be in-
troduced where unnecessary power consumption arises due
to excessive data collection or communication. In order to
address both data analytics and communication for condition-
based maintenance in smart buildings, a codesign approach is
required.

At present, codesign of communication and data analytics
has largely been addressed only in the context of predictive
maintenance for manufacturing equipment. In particular, the
work in [17] considered tradeoffs between energy consumption
and the accuracy of the classifier for faults in a generic
manufacturing context.

On the other hand, existing work in the context of smart
buildings does not address optimization of sampling rates
and compression of sensor data, which are the key sources
of energy consumption in low cost sensors. For example,
in [18] an error correction model and independent principle
component analysis was applied to elevator management. In
[19], feature selection was optimized in order to minimize
building energy consumption in smart homes. In both cases,
sensor power consumption was not considered. In [20], an
autoencoder deep neural network was introduced for the
purpose of classifying anomalies in HVAC installations in
sport facility buildings. In [21], a variational autoencoder
was utilized to detect power faults in electrical appliances
(e.g., dishwashers, washing machines, and dryers) based on
an aggregate power signal at a mains meter. Various other
classification approaches based on simulation and regression
methods have been proposed in [22]–[24].

Outside of the context of predictive maintenance, there has
been extensive work in the building literature on energy mod-
eling [25], [26] and sensor placement [27]–[32]. The literature
on placement of wireless sensors focuses on the position and
number of sensors required for energy modeling of buildings.
Both white box (physical models) and statistical/data based
models are used to optimize the number of sensors inside
a building. The white box models require domain knowl-
edge, high level of expertise and must be adapted for each
building. The data based methods circumvent the complexities
of white box models; however extra care is required when
analyzing/implementing the results. Overall the focus of the
sensors placement work is more on improvement in building
energy modeling and occupant comfort but less on predictive
maintenance in buildings.

B. Contributions

In this paper, we propose a strategy to codesign communi-
cation and data analytics for condition-based maintenance of
smart buildings. In particular, we study the problem of reliably
classifying when any part of a building is at an uncomfortable

temperature based on low cost temperature sensors equipped
with wireless communication capabilities. This contrasts with
existing work in the condition-based maintenance and building
literature, which does not adopt a codesign approach. The main
contributions of this work are summarized as follows:

• We formalize codesign of communication and data ana-
lytics in smart buildings for a network of low cost sensors
that are capable of wirelessly communicating with the
cloud via a single access point. In particular, we introduce
a bi-level optimization problem, where both sensor con-
figurations (sensor sampling rates, data compression, and
sensor activity) and the classifier are optimized. The ob-
jective of the bi-level optimization problem incorporates
a tradeoff between energy consumption and classifier
accuracy via penalty parameters.

• We solve the bi-level optimization problem via a differ-
entiable search procedure based on stochastic gradient
descent, which bears a relation to architecture search
algorithms in deep neural networks [33]. The algorithm is
evaluated on a use case with experimentally obtained tem-
perature measurements from the Twin House Experiment
[34]. Numerical results show rapid convergence within
10 iterations to sensor configurations that yield a high
accuracy and low battery power consumption.

• In real scenarios, the definition of a comfortable tem-
perature may vary over time depending on the individ-
uals present in the building or the outside temperature.
Moreover, as sensors age, energy consumption may be
increasingly important. In this setting, it is necessary to
adapt the sensor configurations (e.g., data compression
and utilized sensors) over time. To address this problem,
we generalize the codesign problem to account for varia-
tions in comfortable temperatures and power consumption
penalties. To solve the resulting optimization problem, we
tune the parameters in the differentiable search algorithm
to adapt to the changes in comfort levels or power
consumption penalties. The algorithm is validated via the
Twin House Experiment dataset [34].

The remainder of the paper is organized as follows: in Sec. II,
we develop a framework to formalize the codesign problem,
incorporating the performance of the classifier as well as
power consumption. In Sec. III we introduce our differentiable
stochastic search algorithm to solve the codesign problem. In
Sec. IV, we evaluate our framework and algorithm on data
obtained from the Twin House Experiment [34]. In Sec. V,
we consider time-varying sensor configurations in response to
changes in comfort levels and power consumption penalties.
In Sec. VI, we conclude.

II. PROBLEM FORMULATION

Consider a building operated by a data service provider and
equipped with N low-cost and battery-operated sensors that



Fig. 1: Overview of the sensing and communication infrastruc-
ture for condition-based maintenance. Sensors collect data and,
depending their configuration, compress and communicate the
data to an access point. The access point identifies anomalies
via a classifier tailored to the sensor configurations.

transmit data to an access point via wireless links, as illustrated
in Fig. 1. The purpose of the sensor network is to identify
degradation of systems in the building. In general, the sensors
may be utilized to detect degradation in a range of systems;
e.g., HVAC, lighting or water.

A. Sensor Configurations

Each sensor j is capable of collecting and communicating data
every T j

c ∈ Tc seconds, where the data is assumed to be a
scalar quantity and |Tc| < ∞. That is, every T j

c seconds, each
sensor can collect a single sample of a physical observable
(e.g., temperature, humidity, light intensity) and send it to the
access point. Sensor j is also capable of adapting the duration
of each data transmission, with transmissions consisting of
nj ∈ N bits with |N | < ∞.

Each bit has an energy cost of Eb Joules. As such, the average
power consumption of sensor j is given by

Pj(n
j , T j

c ) = Eb · nj · T j
c Joules/sec. (1)

Observe that the power consumption Pj depends on both
the duration of the transmission and how often transmissions
occur. In low power wireless sensors, such as those in LoRa
networks, power consumption arises from a range of func-
tions; e.g., wake-up, data processing, data transmission, and
sleep [35]. To incorporate these aspects, as in [35], we view
Eb as the energy cost per useful bit. Alternatively, a more
complex power consumption model could be utilized, possibly
incorporating multiple hops, as in [36].

The duration of a transmission, nj , is constrained by the level
of data compression at sensor j. In particular, if the data packet
consists of n information bits, then at most 2n quantization
levels are available. For example, if n = 2, and the scalar
data samples lie in the interval [0, 1], then all samples may be
quantized to an element of {0, 1/3, 2/3, 1}.

More generally, if the data samples lie in an interval I =
[dmin, dmax] of length L = dmax − dmin and 2n quantization
levels are available, the quantization levels are separated by a
distance

∆j =
L

2n − 1
. (2)

Given a data sample dt,j ∈ I at time t, sensor j transmits the
compressed data

d̂t,j = min
i=0,1,...,2n−1

|dt,j − dmin + i∆j |. (3)

If all sensors are utilized, then the total transmit power is given
by

∑N
j=1 Pj(n

j , T j
c ). However, over a given time period, not

all the sensors may provide useful information. For example,
when the sensors are observing the temperature of a building,
nearby sensors may provide redundant information to the
access point. In this case, it is desirable for the sensors to
not be active in order to preserve their battery. To each sensor
j, an activity variable xj ∈ {0, 1} is assigned, which indicates
the sensor is off when xj = 0. The total power is then defined
as

Ptot(x,n,Tc) =

N∑
j=1

xjPj(n
j , T j

c ), (4)

where x = (x1, . . . , xN ), n = (n1, . . . , nN ), and Tc =
(T 1

c , . . . , T
N
c ).

B. Access Point Configuration

Given data available at the access point, the key problem is to
identify whether or not it is anomalous. In particular, suppose
at time t that sensor j transmits compressed data d̂t,j . The
access point is then assumed to have an error-free observation
of d̂t = (d̂t,1, . . . , d̂t,N ), where d̂t,j = 0 if sensor j is not
active (i.e., xj = 0).

Based on d̂t, the access point makes a decision as to whether
or not an anomaly is present. This is achieved via a classifier
function Φθ : RN → {1, . . . ,M}, d̂t 7→ ℓt, with parameters
θ ∈ Θ, ℓt corresponding to the classifier label at time t, and
M the number of system states (M = 2 for a single “normal”
state and a single “anomalous” state). In particular, if ℓt =
Φθ(d̂t) ̸= 1, then an anomaly is detected.

In practice, given the functional form of the classifier, the
parameter θ is optimized via a labeled training dataset
{(dt, ℓt)}Ktrain

t=1 consisting of Ktrain samples. The framework
in this paper is applicable to any supervised classification
scheme; e.g., multinomial logistic regression, support vector
machines and neural networks.

In particular, consider the multinomial logistic regression
classifier with parameter θ = (θ1, . . . ,θM ) ∈ RN×M . For



a data sample d̂t, this classifier yields an estimate of the label
ℓ̂t ∈ {1, . . . ,M} given by

ℓ̂t = arg max
m=1,...,M

θm · d̂t. (5)

In order to train Φθ, a training data set {dtrain,i}Ktrain
i=1 is used.

The parameter θ is obtained by minimizing the regularized
empirical risk, given by

θ = arg min
θ̃∈RN×M

− 1

Ktrain

Ktrain∑
t=1

M∑
m=1

1{ℓt = m}

· log

 exp
(
θ̃m · dtrain,t

)
∑M

k=1 exp
(
θ̃k · dtrain,t

)
+

γ

2
∥θ̃∥2F , (6)

where ∥ · ∥F denotes the Frobenius norm and γ ≥ 0 is the
regularization parameter.

Associated with the classifier Φθ is an accuracy metric,
Pacc(x,n,Tc), which is related to the probability that an
anomaly is detected by the classifier. In practice, the accuracy
is estimated with the aid of a test dataset consisting of Ktest

samples and is given by the F1-score, a number that gives
a balanced accuracy score by taking into account both the
false alarms (false positives) and the anomalies missed (false
negatives). More precisely, the F1 score is defined by

Pacc(x,n,Tc)

=
1− α(x,n,Tc)

1− α(x,n,Tc) +
1
2 (α(x,n,Tc) + β(x,n,Tc)

, (7)

where α(x,n,Tc) and β(x,n,Tc) are the proportion of false
positive and false negatives for the configuration (x,n,Tc),
respectively, obtained from the test dataset.

C. Codesign Optimization Problem

The main focus of this paper is to address a codesign problem
where the tradeoff between the energy consumption of the
sensors and classification error is optimized. In particular, we
formalize the codesign problem as

(x∗,T∗
c ,n

∗) = arg max
(x,Tc,n)∈{0,1}N×Tc×N

−λ1Ptot(x,n,Tc)

+ λ2Pacc(x,Tc,n), (8)

where λ1, λ2 > 0 are penalty parameters. Note that x ∈
{0, 1}N and Tc,n lie in finite sets. As such, the problem
is combinatorial.

We highlight that this problem is a bi-level optimization
problem due to the fact that the computation of Pacc relies on
the evaluation of the classifier on a test dataset. In particular,
the classifier parameter θ must be optimized based on a dataset
consisting of only the data available to the access point, which
is dependent on the sensor selection, the compression level,
and the sampling rate. We also note that the optimization

procedure to obtain θ is dependent on the choice of the
classifier. In the case of the logistic classifier, parameter
optimization involves solving (6).

In operation, the protocol utilized by the data service provider
to optimize the system and classify new observations is sum-
marized in Alg. 1. The remainder of this paper is concerned
with efficient solutions to the problem in (8).

Algorithm 1 Classifier and Sensor Configuration Optimization
and Deployment

1: The data service provider collects Ktrain labeled samples.
2: The data service provider optimizes the sensor configura-

tion and classifier via the codesign problem in (8).
3: Sensors and AP are configured to collect, communicate,

and classify observations. In particular, the AP transmits
the sensor configurations to each sensor via a dedicated
control link.

III. CODESIGN VIA DIFFERENTIABLE STOCHASTIC
SEARCH

In this section, we develop an algorithm to solve the bi-level
optimization problem in (8). To this end, suppose that the set
of feasible configurations C = {(x,n,Tc)} = {0, 1}N×T N

c ×
NN has a cardinality of S. We denote the i-th element of the
set of feasible configurations by c(i).

Although the optimization problem in (8) is discrete, it can be
approximated by a smooth problem as follows. Let α ∈ RS

+

and consider the optimization problem

α∗ = arg max
α∈RS

+

S∑
i=1

f(i)
αi∑S
j=1 αj

, (9)

where

f(i) = −λ1Ptot(c(i)) + λ2Pacc(c(i)). (10)

Note that in order to compute Pacc(c) it is necessary to train
the classifier Φθ. An approximate solution to (8) can then be
obtained via

i∗ = arg max
i=1,...,S

αi. (11)

While the problem in (9) can in principle be solved by
gradient descent, a drawback is that when S is large there
are many terms in the sum. As such, computing each gradient
is computationally expensive. Moreover, the computation of
f(i) requires optimization of the classifier to account for the
data available to the access point under configuration c(i).

This issue can be resolved by noting that

α∗ = arg max
α∈RS

+

1

S

S∑
i=1

f(i)
αi∑S
j=1 αj

, (12)



which can be viewed as a stochastic optimization problem. In
particular,

α∗ = arg max
α∈RS

+

EI

[
f(I)

αI∑S
j=1 αj

]
, (13)

where the random variable I is uniformly distributed on
{1, . . . , S}. We remark that a similar observation is utilized
for other discrete optimization problems in machine learning,
such as deep neural architecture search [33].

A standard method to solve stochastic optimization problems
of the form in (13) is projected stochastic gradient descent.
Let

H = {α ∈ RN : αi ≥ 0, i = 1, 2, . . . , S}. (14)

In particular, as detailed further in Algorithm 2, the parameter
α is updated recursively via

αt+1 = ΠH

{
αt + ϵt+1f(it+1)∇α

αit+1∑S
j=1 αj

∣∣∣∣
α=αt

}
, (15)

where t ≥ 0, α0 is an initialization of the iterates, {it} are in-
dependent random variables with each uniform on {1, . . . , S},
and {ϵt} ⊂ R+ is a positive step-size sequence. The operator
ΠH{·} is a metric projection onto H; i.e., πH{α} outputs the
closest point (with respect to the Euclidean distance) to α in
H.

Algorithm 2 Differentiable Stochastic Search Algorithm

Input: α0 ∈ RS
+, t = 0, step-size sequence {ϵt}.

Output: Configuration i∗.
1: while Not Stopped do
2: Sample it+1 uniformly from {1, . . . ,M}.
3: Compute

αt+1 = ΠH

{
αt + ϵt+1f(it+1)∇α

αit+1∑S
j=1 αj

∣∣∣∣
α=αt

}
,

where f(i) is defined in (10), computed using the Ktrain

training samples.
4: t → t+ 1.
5: end while
6: return i∗ = argmaxi=1,...,S αt,i.

IV. VALIDATION IN THE TWIN HOUSE EXPERIMENT USE
CASE

A key problem in building operation is to maintain thermal
comfort. The conditions for thermal comfort are determined
by variables such as air temperature, humidity, air velocity, and
mean radiant temperature. The indoor air temperature typically
takes precedence over the other parameters and it is generally
accepted that a standard range should be maintained inside the
building.

In particular, the American Society of Refrigeration and Air
Condition (ASHRAE) and International Standards Organiza-
tion (ISO) publish comfort standards that should be maintained
inside buildings [37]. ASHRAE suggests that buildings should
be at 22 ◦C in winters and 24.5 ◦C in summers with an
allowable fluctuation range of [20 − 24] ◦C for winters and
[22 − 26] ◦C for summers. In order to maintain comfort, it
is necessary to detect when the temperature of the building
lies outside the comfortable range; i.e., the operation of the
heating system in the building is faulty.

In this section, we evaluate our codesign methodology and Al-
gorithm 2 based on a dataset from the Twin House Experiment
[34]. In the remainder of this section, we present a description
of this use case and numerical results validating our approach.

A. Use Case Description

The Twin House Experiment [34] was performed on two
stand alone houses installed with a number of sensors in
each room. Each house conwfjfsisted of a living room, a
kitchen, a children’s room, a bedroom, a doorway, a corridor,
an attic, and a basement. The experiments involved heating
the houses at different levels and measuring variables such
as the indoor temperature evolution, the power consumption,
humidity, and heat losses from the walls. A weather station
near the buildings was used to measure covariates including
solar radiation, outdoor temperature, and wind speed.

The experiment was conducted for a period of 41 days,
with data recorded every 10 minutes. The 41 day interval is
subdivided as follows:

Days 1-10: An initialization period of 10 days where
the temperature was kept constant at 30 ◦C;
Days 10-25: A 15 day period with random order loga-
rithmic binary sequence heating input;
Days 25-31: A 7 day period of keeping temperature
constant at 25 ◦C;
Days 31-41: A 10k day period of free floating temper-
ature with no heating input.

These measurements (from the indoor sensors and weather
station) along with the description of the houses are provided
in [38] and are used to train, test and validate building energy
and thermal characterization models [39].

The temperature measurements from several of the rooms are
illustrated in Fig. 2. Observe that for the same house there
are often significant differences in the measurements from
each room. This suggests that certain sensors may be more
important than others in classification tasks.

The observation that some sensors may be more important
concerning the anomaly detection is reinforced in Fig. 3, which



Fig. 2: The temperature evolution in different rooms of the
Twin House. The data corresponding to Lvngrm187, Ktchn,
Drwy, Chldrrm, Bedrm are the temperature data from the liv-
ing room, kitchen, doorway and bedroom temperature sensors,
respectively. Tmean is the average temperature of all rooms.

Fig. 3: Temperature measured in the same room with sen-
sors at different heights in living room of the Twin House.
Lvngrm67, Lvngrm125, Lvngrm187 is the temperature data
from the sensors at the height of 1.25 m, 1.67 m and 1.87 m,
respectively [39]).

shows measurements from three sensors in the living room,
but at different heights. Again, the sensors measurements have
quite different behavior even though they are in the same area.

To validate our codesign framework, it is necessary to label
the data in the Twin House Experiment dataset. To do so, we
define an anomaly when the temperature measurement of any
sensor in the house lies outside a predefined comfort range.
In particular, the house is in “Hot” or “Too Hot” if any of
the sensors record a measurement in these temperature ranges.
For the purposes of the numerical study, the comfort zone i.e.,
“normal”, “hot”, and “too hot” ranges were defined as:

“Normal”: for any T < 26 ◦C,

Fig. 4: Accuracy with increasing number of sensors.

“Hot”: for any 26 ◦C ≤ T ≤ 30 ◦C,
“Too Hot”: for any T > 30 ◦C.

As a consequence, there are M = 3 classifier states. For
the purposes of condition monitoring, we are interested when
the building temperature is abnormal, but not “too hot” as
this is the appropriate time to adapt the heating system. As
a consequence, an anomaly is defined as when the building
temperature is in the “hot range”. As “hot” temperatures arise
rarely compared with the “normal” and “too hot” temperatures,
it also forms a valuable test to ensure that the algorithm can
reliably identify relatively rare anomalies.

In the sequel, we apply Alg. 2 with a constant stepsize (i.e.,
ϵt = ϵ = 10, ∀t) to solve the codesign problem in (8) for the
Twin House Experiment dataset. In the following numerical re-
sults, training samples for the classifier are randomly selected
from the 41 days duration with 5905 data points for each of
the 8 sensors installed in different rooms in the building.

B. Numerical Results

In order to verify that the selection of sensors has a significant
impact on the performance, we first examine how varying the
number of sensors affects the F1-score. An exhaustive search
is used to observe the impact of adding sensors. To train the
classifier and compute the F1-score, the training and test split
are 60% and 40%, respectively. In Fig. 4, the accuracy is
plotted for a varying number of sensors. Observe that when
one or two sensors are utilized there is a significant reduction
in the F1-score compared with when data from all sensors is
collected. These observations provide a strong justification for
applying the codesign algorithm in Alg. 2 to search for high
performance configurations.

To provide a baseline to evaluate Alg. 2, we considered a
scenario consisting of 8 sensors with 4 different sampling rates



Fig. 5: Trade-off between accuracy and battery power con-
sumption with optimized sensor configurations.

Fig. 6: Evolution of the F1 score versus the number of
iterations of the differentiable search algorithm with a constant
step-size of 10. The different curves (colored) show the runs
of the algorithm

.

and 4 data compression schemes, where each active sensor
is provided with the same optimized values of the sampling
rate Tc and duration n. This results in approximately 4080
possible configurations. In this case, it is feasible to perform
an exhaustive search. In particular, Fig. 5 plots the optimal
tradeoff between the F1-score and power consumption. Here,
the different solutions were obtained by varying the penalty
parameters λ1 and λ2 in (8). Observe that to achieve low
power consumption levels, there is a significant reduction in
the achievable F1-score.

The results in Fig. 4 and Fig. 5 are obtained through an exhaus-
tive search of all possible communication strategies from a set
of 4080 possible configurations. We now turn to the selection
of communication strategy via Alg. 2, where the sensor con-
figuration is optimized. In particular, solutions are computed
based on 150 iterations of Alg. 2, which searches through

Fig. 7: Evolution of the battery power consumption with the
number of iterations of the differentiable search algorithm with
a constant step-size of 10. The different curves (colored) show
the runs of the algorithm.

Fig. 8: Evolution of the total cost with the number of iterations
of the differentiable search algorithm with a constant step-size
of 10. The different curves (colored) show the runs of the
algorithm.

a combination of sampling rates [5905,4465,3025,1585], 8
sensors and 3 levels of data compression. As for the results in
Fig. 4 and Fig. 5, the training and test split in the simulations
are 60% and 40%, respectively.

Fig. 6, Fig. 7 and Fig. 8 plot the performance of Alg. 2 for
varying numbers of iterations with λ1 = 10 and λ2 = 100.
Observe that most trajectories rapidly converge to solutions
with similar accuracy and batter power levels. Moreover,
the selected configurations achieve a F1-score and power
consumption level consistent with the optimal performance
shown in Fig. 5.



Fig. 9: The sectioning of twin house data in different zones
(dashed vertical lines), each zone has a different cost function
defined by penalties λt,1, λt,2 and different temperature limits
for anomaly detection.

V. TIME-VARYING COMFORT LEVELS AND POWER COSTS

A. Problem Description

In Sec. III and Sec. IV, it was assumed that the classifier and
sensor configurations did not vary over time after the initial
optimization was performed. On the other hand, a comfortable
temperature can vary between day and night or between sea-
sons. As a consequence, the range of temperatures defining the
labels “Normal”, “Hot”, “Too Hot” will also change over time.
Similarly, the importance of power consumption in optimizing
the sensor configurations may also vary; for example, as the
sensor batteries approach the end of their lifetimes, it may be
necessary to sacrifice some quality of the observations for an
extended lifetime.

When label definitions and power costs vary over time, the
classifier parameters and the sensor configurations must also
be re-optimized. Moreover, it is highly desirable for a labeled
data set to become available when this re-optimization is
performed. The effect of time-varying label definition and
power costs is that the objective in (10) now depends on time;
that is,

ft(i) = −λt,1Ptot(c(i)) + λt,2Pt,acc(c(i)), (16)

where the penalties λt,1, λt,2 and the classifier accuracy Pt,acc

are time-dependent. An illustration of how the cost may
change over time is illustrated in Fig. 9.

In particular, as illustrated in Fig. 10, we assume that a
phase of sensor configuration optimization is fixed at Kfixed

samples. Before this window, two sets of labeled samples of
size Ktrain and Ktest, respectively, are provided to the data
service provider. The samples in Ktrain are utilized in order to
optimize the classifier Φθ and the samples in Ktest are used

Fig. 10: The sectioning of twin house data into training and
test data.

to optimize the sensor configuration. The resulting protocol is
summarized in Alg. 3.

Algorithm 3 Time-Varying Classifier and Sensor Configura-
tion Optimization and Deployment

1: The access point collects Ktrain +Ktest labeled samples.
2: The access point optimizes the sensor configuration and

classifier.
3: Sensors and access point are deployed to collect, com-

municate, and classify data for Kfixed samples. For this
period of Kfixed samples, the AP transmits the sensor
configurations to each sensor via a dedicated control link.

4: Repeat from Step 1.

A solution to the time-varying classifier and sensor configura-
tion optimization problem is to apply Alg. 2 with a pre-defined
initialization. For example, the configuration obtained from the
previous window. However, this approach may be sensitive to
the choice of step-size ϵ. Indeed, if the step-size is small, it
will not be possible to quickly identify new solutions that are
far from the previous one. On the other hand, if the step-
size is too large, convergence to a good solution will be less
likely. To address this problem, we performed a numerical
study to investigate how the choice of the step-size impacts
the selection of the sensor configuration. In the next section
first we will show how the cost function changing with time
impacts the performance of the Alg. 3 and how changing the
values of step size changes the solutions.

B. Numerical Results

Anomaly detection with time varying comfort levels and
penalty parameters as discussed in Alg. 3 is implemented by
using data from the Twin House Experiment. In particular,
the data is divided into 5 time zones. The communication
policy is optimized in terms of the number of sensors and data
compression level. Each period has different comfort levels



to classify data as “Normal”, “Hot” and “Too Hot”; i.e. the
comfort levels for anomaly detection change between each
data section, Table I. The cost function defined in (16) is
adapted for each data zone by changing the penalties λt,1

and λt,2; i.e., the penalty for accuracy and battery power
are different across each zone as detailed in Fig. 9 and
Table I. Each zone is subdivided into training and test data
as illustrated in Fig. 10.

Data zone λt,1 λt,2
Anomaly detection temperature

[Co]
zone-1 10 100 31
zone-2 80 20 28
zone-3 60 40 26
zone-4 40 60 27
zone-5 80 20 21

TABLE I: Comfort levels and penalty parameters for each data
zone.

The key question is whether Alg. 3 rapidly identifies a
good configuration in each data zone when the algorithm is
initialized by the final configuration from the previous zone.
To address this question, two scenarios are simulated in which
the differentiable search algorithm is utilized with a step-size
of 10.

In the first scenario the penalty parameters are kept constant
(λ1 = 10 and λ2 = 100) whereas the temperature limits
defining an anomaly are changing during each zone (over 30
iterations of the algorithm) as detailed in Table I. Fig. 11
plots the evolution of the cost over time in the presence of
varying comfort levels and constant penalties. Observe that
cost varies over time, showing that the algorithm is adapting
to the changing cost function. Typically, the cost only varies
immediately after a change in the zone, suggesting that the
algorithm is rapidly converging. The relatively small cost in
the third zone (iterations 60 to 90 in Fig. 11) is due to a low
F1-score due to the small number of anomalies in this zone.

In the second scenario, both the penalty parameters (λ1

and λ2) and the comfort levels defining when an anomaly
occurs vary between data zones. The F1-score, the battery
power consumption and the cost function are plotted in Fig.
12, Fig. 13 and Fig. 14, respectively. As for the scenario
of constant penalty parameters, the algorithm is converging
rapidly within each data zone. Unlike the constant penalty
scenario, the battery power consumption tends to vary less,
suggesting that the same number of sensors are utilized during
all data zones. The effect of varying penalty parameters is also
visible in the F1-score, where sensors are all switched off due
to the high penalty for battery power consumption.

The sensor configuration optimization may be sensitive to the
selection of the step size. To investigate whether the step size
value changes the solutions, simulations were performed at
different values of the step-size ranging from ϵ = 0.01 to

Fig. 11: Evolution of the cost function over time with varying
comfort levels and constant penalties. The different curves
(colored) show the runs of the algorithm

.

Fig. 12: Evolution of the F1-score over time with varying
comfort levels and penalties. The different curves (colored)
show the runs of the algorithm

.

Fig. 13: Evolution of the battery power consumption over time
with varying comfort levels and penalties λ1 and λ2. The
different curves (colored) show the multiple runs/realisations
of the simulation.



Fig. 14: Evolution of the cost function over time with varying
comfort levels and penalties λ1 and λ2. The different curves
(colored) show the runs of the algorithm.

Fig. 15: The F1-score for variable set-point and constant
penalties averaged over 30 simulations for varying step-sizes.

Fig. 16: The battery power for variable comfort levels and
constant penalties averaged over 30 simulations for varying
step-sizes.

Fig. 17: The cost function for variable comfort levels and
constant penalties averaged over 30 simulations for varying
step-sizes.

ϵ = 1000. In Fig. 15 for the F1-score and Fig. 17 for the cost
function averaged over 30 simulations show that the results do
not differ significantly for different step size values. However,
Fig. 16 shows that the step size selection has a significant
impact on the battery power. The effect of battery power is
not visible from the cost function curves in Fig. 17 due to the
small penalty (λ1 = 10) for battery power and large reward
for F1-score (λ2 = 100). This suggests that there is a need
for careful step-size optimization in this regime.

VI. CONCLUSIONS AND FUTURE WORK

A key challenge for smart buildings is to develop sensor
networks that simultaneously provide data of a sufficient
quality to allow for reliable classification of the degradation
of heating system of the building, while also having long
battery lifetimes. In this paper, we have addressed this chal-
lenge by formulating a codesign problem incorporating both
communications and data analytics. Differentiable stochastic
search algorithms were introduced both for static and time-
varying comfort levels and power consumption penalties. The
performance of the algorithms was verified in a use case based
on data from the Twin House Experiment, which revealed
that the algorithms rapidly identify efficient tradeoffs between
classifier accuracy and power consumption. Simulation results
show that the choice of the step-size can have a significant
impact on the performance of the algorithm.

There are a number of avenues of future work. One avenue
is to investigate the impact of different power consumption
models, corresponding to specific low power sensor devices.
Another avenue is to investigate the codesign problem with
other classifiers (e.g., neural networks). While this is not
expected to lead to significant improvements within the Twin
House Experiment dataset, it is likely to be necessary in other
use cases based on other data. A third avenue is to further



optimize the parameter section for the differentiable search
procedure, particularly for time-varying comfort levels and
energy penalties.
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