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ABSTRACT
Given an arbitrary group of computers, how to identify abnor-

mal changes in their communication pattern? How to assess if the

absence of some communications is normal or due to a failure?

How to distinguish local from global events when communica-

tion data are extremely sparse and volatile? Existing approaches

for anomaly detection in interaction streams, focusing on edge,

nodes or graphs, lack flexibility to monitor arbitrary communica-

tion topologies. Moreover, they rely on structural features that are

not adapted to highly sparse settings. In this work, we introduce

MAD, a novel Multi-scale Anomaly Detection algorithm that (i)

allows to query for the normality/abnormality state of an arbitrary

group of observed/non-observed communications at a given time;

and (ii) handles the highly sparse and uncertain nature of interaction

data through a scoring method that is based on a novel probabilistic

and multi-scale analysis of sub-graphs. In particular, MAD is (a)

flexible: it can assess if any time-stamped subgraph is anomalous,

making edge, node and graph anomalies particular instances; (b) in-
terpretable: its multi-scale analysis allows to characterize the scope

and nature of the anomalies; (c) efficient: given historical data of

length 𝑁 and 𝑀 observed/non-observed communications to ana-

lyze, MAD produces an anomaly score in O(𝑁𝑀); and (d) effective:
it significantly outperforms state-of-the-art alternatives tailored for

edge, node or graph anomalies.

CCS CONCEPTS
• Information systems→ Data stream mining; Social networks;
Traffic analysis; • Security and privacy→ Intrusion/anomaly
detection and malware mitigation.

KEYWORDS
anomaly detection, temporal networks, model interpretability

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM ’24, March 4–8, 2024, Merida, Mexico
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0371-3/24/03

https://doi.org/10.1145/3616855.3635834

ACM Reference Format:
Esteban Bautista, Laurent Brisson, Cécile Bothorel, and Grégory Smits. 2024.

MAD: Multi-Scale Anomaly Detection in Link Streams. In Proceedings of the
17th ACM International Conference on Web Search and Data Mining (WSDM
’24), March 4–8, 2024, Merida, Mexico. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3616855.3635834

1 INTRODUCTION
A link stream is a set of triplets (𝑡,𝑢, 𝑣) modeling that 𝑢 and 𝑣

interacted at time 𝑡 . Triplets in a link stream may represent that

computer 𝑢 sent a packet to computer 𝑣 at time 𝑡 or that bank

account 𝑢 made a transaction to account 𝑣 at time 𝑡 . Detection

of likely/unlikely interactions that suddenly disappear/appear is

an important step towards identifying various events of crucial

interest, such as financial frauds, network attacks, or infrastruc-

ture failures. For example, consider the case illustrated in Figure 1,

depicting interactions between servers and users requesting their

services. It is rather normal that the servers frequently exchange

traffic between them and also with some regular users. Figure 1

represents such users and servers that frequently interact in blue,

while it represents users that connect less frequently in grey. If at

a given time the communication pattern depicted in the left panel

is observed, the situation can be labeled as normal given that the

observed interactions only concern entities that usually interact

together. Yet, if the observation corresponds to the one depicted in

the right panel, such change in the communication pattern may be

an indication of a failure or an attack. Another example can be a

bank account that suddenly starts to make transactions to several

unexpected accounts. Such behavior may be indicative of a fraud.

To spot the aforementioned events, numerous link stream-based

anomaly detection algorithms have been proposed in recent years.

In a nutshell, such algorithms can be seen as black boxes that receive

two inputs, a query and a context, and answer to the question: how
abnormal is the query given the context? The essential differences

between the existing algorithms are: (i) the types of queries they ac-

cept; (ii) the definition given to the notion of anomaly; and (iii) how

the context is exploited. For example, numerous algorithms accept

time-stamped edges as queries, yet they differ in the criterion used

to label a query as abnormal: some do it when the query implies a

sudden change in edge counts [1], node embeddings [2], or walk

statistics [3], while others do it when the query cannot be well pre-

dicted from the past [4, 5]. Algorithms addressing coarser resolution

https://doi.org/10.1145/3616855.3635834
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Figure 1: Examples of normal and abnormal communica-
tion patterns. A group of servers usually exchange between
them and with some external users. Historical data may sug-
gest that interactions between blue-colored nodes are highly
likely. The sudden halt of likely traffic and the emergence
of unlikely one may be an indication of an attack (hackers
have taken control of the machines) or a failure (engineers
are troubleshooting).

queries, like time-stamped nodes [6, 7] or entire graph snapshots

[8–11], have also been proposed. These algorithms also vary in the

way they define an anomaly and use the context. Namely, nodes

may be deemed abnormal if they suddenly change their centrality

[6] or communication counts [7], while graphs may be considered

abnormal if they have sudden densifications [9], spectrum changes

[10], or community re-configurations [11], to list some examples.

In spite of numerous successes, existing anomaly detection algo-

rithms remain not fully satisfactory. In particular, the fact that they

only accept time-stamped subgraphs of a specific form as queries

(either edges, nodes, or entire graphs) makes them too rigid for

several real-world use cases. In many situations it is desirable to

question an algorithm if an arbitrary communication topology be-

haves abnormally: take for instance the example of Figure 1, where

one wants to track the communications between a specific group

of servers and users; or take the case when transactions between

a specific group of bank accounts suspected to belong to a crimi-

nal organization have to be monitored. To handle these different

cases, an ultimate solution is to dispose of an algorithm capable

to respond to queries consisting of arbitrary time-stamped sub-

graphs. Some algorithms for anomalous subgraph detection have

been proposed [12–14], yet such approaches automatically search

for subgraphs that meet some criteria, like being a dense com-

munity, thus preventing users from querying the algorithms with

arbitrary subgraphs. It is also worth noticing that most algorithms

targeting coarse-grain queries rely on anomaly definitions that do

not satisfactorily account for the highly uncertain and sparse na-

ture of temporal interactions. For example, many works rely on

anomaly definitions that are based on changes of node centrality,

walk statistics, spectral properties or community structures. These

definitions implicitly assume dense link streams that slowly evolve,

which may be unrealistic in numerous situations.

The aim of this work is to address the limitations listed above.

We introduce MAD, a novel anomaly detection algorithm that (i)

accepts arbitrary time-stamped subgraphs as queries; and (ii) labels

queries as abnormal if they have/lack many unlikely/likely inter-

actions, thus allowing to handle the data uncertainty and sparsity.

MAD is based on a novel multi-scale probabilistic analysis for sub-

graphs that essentially permits to map a query sub-graph into a set

of random variables from which it is possible to identify the scale(s)

at which a queried sub-graph cannot be well explained from its past

activity. Properties of the proposed contribution are as follows:

• Flexibility: MAD can be used to determine if any arbitrary time-

stamped subgraph is anomalous, thus making edge, node and

graph anomaly detection particular instances of our approach.

• Interpretability: the developed multi-scale analysis allows to iden-

tify the scale(s) and the nature of the event(s) making a query

abnormal.

• Efficiency: given a query of size 𝑀 and a historical context of

duration 𝑁 , MAD answers in O(𝑁𝑀).
• Effectiveness: MAD significantly outperforms state-of-the-art al-

ternatives for edge, node and graph anomaly detection in the tasks

of identifying communications that abnormally appear, disappear

or get redirected.

2 NOTATIONS AND RELATEDWORKS
2.1 Notations
Let 𝑉 be a set of vertices, 𝑇 refer to natural numbers, E = 𝑉 ×𝑉
denote a relation space, and 𝜙 ⊆ E be an arbitrary set of relations

of size |𝜙 | = 𝑀 . A discrete-time link stream is denoted by the set

𝐿 ⊆ 𝑇 × E. The restriction of 𝐿 to a time interval [𝑡1, 𝑡2] and set

of relations 𝜙 is expressed as 𝐿(𝑡1 : 𝑡2, 𝜙) = {(𝑡,𝑢, 𝑣) ∈ 𝐿 : 𝑡1 ≤
𝑡 ≤ 𝑡2, (𝑢, 𝑣) ∈ 𝜙}. The case 𝑡1 = 𝑡2 corresponds to a slice, or

snapshot, of 𝐿. Strictly speaking, the interactions of a slice remain

time-stamped, yet in some situations it is useful to strip the time

reference from them so that they can be considered as the edges of

a graph, that is independent of time. Therefore, given the restriction

sets 𝑡1 = 𝑡2 = 𝑡 and𝜙 , we let 𝐿(𝑡 : 𝑡, 𝜙) refer to the slice of 𝐿 in which
interactions remain time-stamped, while we let 𝐿(𝑡, 𝜙) denote the
the case in which the time-stamps are striped-out. Relations are

considered directed, hence (𝑢, 𝑣) ≠ (𝑣,𝑢). Moreover, for the sake of

notation lightness, the relations emerging from node 𝑢 are denoted

by E𝑢 = {(𝑢, 𝑣) : 𝑣 ∈ 𝑉 }.
In this work, we extensively use indicator functions to charac-

terize subsets of a set: a binary function indicating which elements

from the set belong or not to the subset. The concept plays an

important role in this work given that algorithms working directly

with a set 𝐴 ⊆ 𝐵 cannot make decisions based on the elements of 𝐵

not included in 𝐴, as they ignore them; while algorithms working

with the indicator function know such information. Formally, the

indicator function of 𝐴 ⊆ 𝐵 is denoted by 1
𝐵
𝐴
: 𝐵 → {0, 1}, where

1
𝐵
𝐴
(𝑥) = 1 if 𝑥 ∈ 𝐴 and zero otherwise. Thus, the indicator function

of a link stream is given by 1
𝑇×E
𝐿

(𝑡,𝑢, 𝑣) = 1 if (𝑡,𝑢, 𝑣) ∈ 𝐿 and

zero otherwise. Also, with the aim of notation lightness, we denote

the sum of a function 𝑓 : 𝐵 → R over a sub-domain 𝐶 ⊆ 𝐵 by

𝑓 (𝐶) = ∑
𝑐∈𝐶 𝑓 (𝑐). Hence, 1𝐵𝐴 (𝐶) =

∑
𝑐∈𝐶 1

𝐵
𝐴
(𝑐) for 𝐶 ⊆ 𝐵. Lastly,

Q refers to a query and H to a historical context. The nature of Q
andH depends on the considered algorithm, as detailed next.
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Figure 2: Unified view of anomaly detection. Algorithms aim
to assess the abnormality of a query in a given context.

2.2 Related Works
The ultimate algorithm for link stream-based anomaly detection is

one that receives two arbitrary sub-link streams as inputs, constitut-

ing a query Q and a context H , and that responds to the question:

can the query be explained from the provided context? See Fig-

ure 2 for an illustration. No algorithm is able to explore all the

possible ways in which an arbitrary query may be explained from

an arbitrary context. Thus, existing algorithms essentially narrow

the search by (i) focusing on queries and contexts that adhere to

a specific form; and (ii) establishing a specific normality criterion

that the query must possess in order to be considered as explained

by the context. As a result, there is a rich variety of approaches that

focus on different combinations of inputs and normality definitions.

We briefly review proposed algorithms, structured according to

types of queries they handle. Table 1 presents a summary.

Edge anomaly. Algorithms in this category respond to queries

consisting of time-stamped edges. The difference between them lies

in the criteria employed to consider a query as abnormal. Namely,

MIDAS [1] uses the history of the query edge to predict its future

activity. It labels the query as abnormal if it appears in a period pre-

dicted to be of low activity. F-FADE [2] uses historical interactions

to compute a node embedding that explains edge frequencies. It

considers a query to be abnormal if the observed distance between

edge ends is implausible. SEDANSPOT [3] uses the past to estimate

a graph of stable communities. The query is abnormal if its inclu-

sion to such graph breaks random walks statistics. AER-AD [5]

uses the past to train a recurrent neural network for link prediction.

It labels a query as abnormal if it is not predicted well. PIKACHU

[4] extracts temporal random walks from historical interactions to

train an encoder for link prediction. It labels a query as abnormal

if it is not predicted well.

Node anomaly. These algorithms address time-stamped nodes

as queries, which can be represented by their set of incident edges

or by the indicator function of such set. DYNANOM [6] uses a short

term context to monitor the evolution of PageRank scores. It la-

bels a query as abnormal if its PageRank score drastically changed.

BADSN [7] uses the historical interactions of the query node to

model the probability of observing it with a given degree. It labels

the query as abnormal if the observed degree is unlikely according

to the model. DSEDN [15] uses past interactions to train an auto-

encoder that embeds nodes in a way that stable structures over

time form clusters. It labels a query as abnormal if it is an outlier

in the embedding space. GEABS [16] leverages historical interac-

tions to fit a custom-made generative model that jointly accounts

for community structure and node popularity. It labels a query as

abnormal if its community membership is unstable according to the

Algorithm Query (Q) Context (H )

MIDAS [1] 𝐿(𝑡, (𝑢, 𝑣)) 𝐿(0 : 𝑡 − 1, (𝑢, 𝑣))

F-FADE [2] 𝐿(𝑡, (𝑢, 𝑣)) 𝐿(0 : 𝑡 − 1, E)

SEDANSPOT [3] 𝐿(𝑡, (𝑢, 𝑣)) 𝐿(0 : 𝑡 − 1, E)

DEGOD [17] 𝐿(𝑡, E𝑢 ) 𝐿(0 : 𝑡, E)

DYNANOM [6] 1
E𝑢

𝐿 (𝑡,E𝑢 ) 𝐿(𝑡 − 1 : 𝑡, E)

DSEDN [15] 1
E𝑢

𝐿 (𝑡,E𝑢 ) 𝐿(0 : 𝑡, E)

ANOMRANK [8] 1
E
𝐿 (𝑡,E) 𝐿(𝑡 − 2 : 𝑡, E)

SPOTLIGHT [9] 𝐿(𝑡, E) 𝐿(0 : 𝑡 − 1, E)

LAD [10] 1
E
𝐿 (𝑡,E) 𝐿(𝑡 − 𝑘 : 𝑡, E)

Table 1: Summary of themost representative works proposed
in the literature.

model. DEGOD [17] uses past interactions to compute the degree

distribution of nodes over time. It labels a query as abnormal if it

causes the current degree distribution to not match the past.

Graph anomaly. These algorithms accept entire time-stamped

slices as queries. In particular, ANOMRANK [8] uses a local context

to track the evolution of PageRank scores of vertices. It labels a

query as abnormal if its first derivatives indicate a drastic change.

SPOTLIGHT [9] measures the density of random partitions of his-

torical data to compute a set of reference vectors. It labels a query

as abnormal if its corresponding vector is an outlier with respect to

the computed references. LAD [10] uses long-term and short-term

contexts to predict the spectral shape of the query slice. It labels

the query as abnormal if its spectrum is far from the expected val-

ues. CADENCE [11] uses past interactions to identify community

structures that are stable over time. It labels a query as abnormal

if it implies a community reconfiguration. ODGS [18] uses histori-

cal data to fit a community-oriented generative model. A query is

abnormal if it contains many inter-community edges.

Problem statement. As it can be seen, proposed algorithms

essentially fix a time 𝑡 and a group of relations 𝜙 of a specific form:

𝜙 = (𝑢, 𝑣), 𝜙 = E𝑢 , or 𝜙 = E and address 𝐿(𝑡, 𝜙) as queries. While

this allows to tackle many abnormal events, the fact that𝜙 must pos-

sess a specific form (either edges, nodes, or graphs) drastically limits

the flexibility and effectiveness of algorithms in many application

scenarios, like the one illustrated in Figure 1 where one may be in-

terested in monitoring an arbitrary group of communications. This

calls for an algorithm that allows to set 𝜙 as an arbitrary subgraph.

Some algorithms have been proposed to address the case in which 𝜙

is a community clique [12–14]. Yet, such algorithms automatically

search for a group of candidate communities, thus preventing users

to query the algorithms. Moreover, we stress that the community

criterion assumes slices of dense link streams, which is unrealistic

in most real-world interaction data. Thus, the aim of this work is to

address these two situations: to propose an algorithm that allows

to set 𝜙 as an arbitrary subgraph and that does it by taking into

account the highly uncertain and sparse nature of interactions.
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3 PROPOSED ALGORITHM
In this section, we introduce MAD, a novel solution to anomaly

detection. In addition to addressing arbitrary time-stamped sub-

graphs as queries, MAD also takes into account that (i) real-world

interactions are highly dynamic and uncertain; and (ii) anomalous

events can be of different scales. Indeed, it is normal that persons or

computers communicating at a time 𝑡 do not communicate at 𝑡 + 1,

even though it may not be surprising if it occurs, thus making the

data highly dynamic and uncertain. Moreover, a hacker intrusion

may reflect at the scale of a few communications, while an infras-

tructure failure may involve most of them. MAD is a solution to

these situations. It is developed as follows. Firstly, Section 3.1 devel-

ops a scoring function based on a novel probabilistic and multi-scale

analysis of subgraphs. It assumes that interactions are generated by

a known random process and defines a set of multi-scale random

variables that allow to spot queries deviating from the past in a way

that cannot be explained from the usual uncertainty. Section 3.2

addresses the problem of estimating the above random process from

the historical context. A stationary test is developed to automati-

cally identify the window length in which the process can be best

estimated. In sum, MAD is a multi-scale anomaly detection algo-

rithm that accepts Q = 1
𝜙

𝐿 (𝑡,𝜙 ) andH = 𝐿(𝑡 −𝑁 : 𝑡 −1, 𝜙) as inputs,
where 𝜙 is an arbitrary subgraph and 𝑁 is the context duration, and

returns an anomaly score denoted by 𝑠𝑐𝑜𝑟𝑒 (Q). H is introduced

here as a time window in the interactions that precede the query,

but MAD can indifferently consider any time window taken in the

history, which is especially useful to capture periodically stationary

interaction patterns.

3.1 A multi-scale analysis of sub-graphs
Our goal is to assess if the binary state (active or inactive) of a

group of relations 𝜙 ⊆ E at time 𝑡 is abnormal. For simplicity, we

denote the set of active relations by
ˆ𝜙 := 𝐿(𝑡, 𝜙) and its binary

state function by 1
𝜙

ˆ𝜙
:= 1

𝜙

𝐿 (𝑡,𝜙 ) . As mentioned above, an important

property to take into account concerns the uncertainty relative to

each interaction involved in 𝜙 . Thus, 𝜙 is interpreted as the result

of a random process. In particular, we assume the existence of a

function 𝑃 : 𝜙 → [0, 1] so that the state of each 𝑒𝑖 ∈ 𝜙 is seen

as the result of running a Bernoulli trial with probability 𝑃 (𝑒𝑖 ):
if the trial is successful then 1

𝜙

ˆ𝜙
(𝑒𝑖 ) = 1 and zero otherwise. In

the complex networks terminology, this is equivalent to interpret

that 1
𝜙

ˆ𝜙
is generated by an extended Erdös-Rényi model where the

probabilities of edges are individually tuned. Then, we consider an

observation 1
𝜙

ˆ𝜙
as abnormal if it is unlikely to have been generated

by such process. Throughout the rest of this subsection, we assume

that 𝑃 is known and that it accurately models normality. In practice,

we must estimate 𝑃 from H . Section 3.2 addresses such problem.

Given our assumed probabilistic model, a simple and straight-

forward way to spot unlikely realizations at the subgraph level

consists in computing the exact probability of observing 𝜙 , which

is given by:

𝑃𝑟 (1𝜙
ˆ𝜙
) = Π

𝑒𝑖 ∈ ˆ𝜙
𝑃 (𝑒𝑖 ) × Π

𝑒 𝑗 ∈𝜙\ ˆ𝜙 (1 − 𝑃 (𝑒 𝑗 )) . (1)

However, while simple, this approach is unsatisfactory for anom-

aly detection for the following two reasons: (i) small-scale anom-

alies have little impact in (1); and (ii) expected observations are not

ranked as the most probable (hence normal) by (1). Notice that a few

abnormal edges may not drive the value of (1) sufficiently low to

be considered as a clear anomaly. Moreover, consider a case where

𝜙 = {𝑒1, 𝑒2, 𝑒3} and 𝑃 (𝑒𝑖 ) = 1/3 for all 𝑒𝑖 . According to (1), the most

probable observation for this setting is the empty subgraph, i.e.

when
ˆ𝜙 = ∅. This is undesirable as the empty subgraph is not the

one expected to appear from such process: one success is expected.

This raises the question of how to find meaningful anomaly scores

that allow to spot either small or large scale anomalies.

Interestingly, an alternative is to use random variables measuring

properties of the analyzed subgraphs, like their number of active

relations | ˆ𝜙 |. The advantage of using random variables is that we

can characterize the values they take when they are computed on

subgraphs generated by the underlying process. Thus, when rare

values are observed, the underlying subgraph can be considered

anomalous. The challenge with this approach lies in how to define

meaningful random variables that measure properties that can spot

all targeted anomalies. For instance, | ˆ𝜙 | is a useful random variable

that allows to readily spot densification or sparsification events by

using its expected value as a reference. However, | ˆ𝜙 | alone is not
enough to detect all anomalies: an event where 𝑘 likely relations

are inactive and 𝑘 unlikely ones are active would be normal under

the criterion of | ˆ𝜙 |. In the following, we address this challenge by

introducing a multi-scale analysis of subgraphs. It defines a group

of𝑀 = |𝜙 | random variables that quantify and compare the activity

of the query subgraph at multiple scales. We then characterize their

distribution for normal queries in order to spot the scale and group

of relations that make an observation anomalous.

Let us begin the development of our multi-scale analysis of 1
𝜙

ˆ𝜙

by making two assumptions about its domain. Firstly, we assume

𝑀 = |𝜙 | to be a power of two. If 𝜙 lacks relations for this to hold,

then we assume that virtual elements 𝑒𝑖 of probability 𝑃 (𝑒𝑖 ) = 0

are added into 𝜙 until the assumption holds. We stress that the

inclusion of these virtual relations is of pure mathematical conve-

nience and they do not hinder our analysis as those elements are

always switched-off in 1
𝜙

ˆ𝜙
, which is in agreement with their null

probability. Secondly, we assume that that the elements of 𝜙 are

indexed in decreasing order of their probability. It is assumed that

𝑃 (𝑒1) ≥ · · · ≥ 𝑃 (𝑒𝑖 ) ≥ 𝑃 (𝑒𝑖+1) ≥ · · · ≥ 𝑃 (𝑒𝑀 ) for all 𝑒𝑖 ∈ 𝜙 . Based
on these assumptions, the first step of our multi-scale analysis con-

sists in recursively partitioning 𝜙 at different resolution scales. To

do it, we set an initial set E (0)
0

= 𝜙 that we split in halves according

to the probability of its elements: the top-half likely relations are

assigned to a set E (1)
0

= {𝑒1, . . . , 𝑒𝑀
2

} and the bottom-half ones to

a set E (1)
1

= {𝑒𝑀
2
+1, . . . , 𝑒𝑀 }. This recursive partitioning is applied

until singletons are obtained E (log
2
(𝑀 ) )

𝑖
= 𝑒𝑖 . For a visual reference,

see the binary tree structure displayed in Figure 3, where the root

node is E (0)
0

and the children nodes represent the partitioned sets.

Algebraically, the partitioning rule is:

E (ℓ )
𝑘

= E (ℓ+1)
2𝑘

∪ E (ℓ+1)
2𝑘+1 , (2)
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where

E (ℓ )
𝑘

=

{
𝑒𝑖 ∈ 𝜙 :

𝑘𝑀

2
ℓ

+ 1 ≤ 𝑖 ≤ (𝑘 + 1)𝑀
2
ℓ

}
. (3)

Thus, the procedure above partitions 𝜙 into disjoint subgraphs at

different resolutions, as indicated by the super-script ℓ . Particularly,

2
ℓ
partitions arise at level ℓ and they satisfy the following crucial

property: no relation contained in E (ℓ )
𝑘+1 is more probable than the

relations contained in E (ℓ )
𝑘

. In the second step of our analysis, we

leverage this property by defining random variables that compare

the activity of E (ℓ )
𝑘

with that of E (ℓ )
𝑘+1. This is a natural approach to

spot anomalies at multiple scales, as we know that, by construction,

E (ℓ )
𝑘

should be more active than E (ℓ )
𝑘+1. In precise terms, we define

the following set of random variables:

𝑠 =
1

√
𝑀
1
𝜙

ˆ𝜙
(𝜙) , (4)

and

𝑤
(ℓ )
𝑘

=

√
2
ℓ

√
𝑀

[
1
𝜙

ˆ𝜙

(
E (ℓ+1)
2𝑘

)
− 1𝜙

ˆ𝜙

(
E (ℓ+1)
2𝑘+1

)]
. (5)

for all𝑘 and ℓ . In total, (4) and (5) define𝑀 random variables as there

are 2
ℓ
sets associated to ℓ and this one runs from 0 to log

2
(𝑀) − 1.

Therefore, by doing this analysis we do not change the size of the

problem: we transition from analyzing the state of𝑀 relations in

1
𝜙

ˆ𝜙
to𝑀 random variables. Moreover, it is worth noticing that the

random variables can be computed in O(𝑀) using the binary tree

shown in Figure 3: by setting 1
𝜙

ˆ𝜙
in the leaves, successive parents

compare the activity of relations appearing in their left and right

branches, producing the desired random variables.

Concerning the analysis of the random variables, notice that, on

the one hand 𝑠 corresponds to a normalized version of | ˆ𝜙 |, which,
as mentioned previously, is relevant to detect densification or spar-

sification events. And on the other hand, the variables𝑤
(ℓ )
𝑘

spot the

anomalies not captured by 𝑠 . They do it by comparing the activity

between E (ℓ )
𝑘

and E (ℓ )
𝑘+1, where the former has relations that are

more probable to appear than the latter. This way, a group of likely

relations in E (ℓ )
𝑘

suddenly disappearing and a group of less likely

ones in E (ℓ )
𝑘+1 suddenly appearing have a strong impact in𝑤

(ℓ )
𝑘

. A

natural question that may arise is why (5) activities between such

specific choices of subsets of relations are compared only, given

that there are many more ways in which two groups, one with

elements more probable than the other, may be envisaged to define

similar random variables. Our next result demonstrates that the

family defined by (4) and (5) already contains all the necessary

details to discern anomalies, as it does not involve any information

loss about 1
𝜙

ˆ𝜙
.

Proposition 1. Let 1𝜙
ˆ𝜙
and {𝑠,𝑤 (ℓ )

𝑘
} denote a binary state func-

tion and its associated set of random variables as defined in (4) and
(5), respectively. It holds that:

1
𝜙

ˆ𝜙
=

1

√
𝑀
𝑠1
𝜙

𝜙
+
∑︁
ℓ,𝑘

√
2
ℓ

√
𝑀
𝑤

(ℓ )
𝑘

[
1
𝜙

E (ℓ+1)
2𝑘

− 1𝜙
E (ℓ+1)
2𝑘+1

]
. (6)

The interesting connection between this multi-scale analysis and

the assumed random process is that the first and second theoretical

moments of 𝑠 and 𝑤
(ℓ )
𝑘

can be expressed in terms of 𝑃 . This is a

crucial property for anomaly detection as it allows to characterize

the ranges of values that 𝑠 and𝑤
(ℓ )
𝑘

normally take when they are

computed on realizations generated by 𝑃 . Our next result states

this connection.

Proposition 2. Let E[·] and 𝜎2 [·] denote the expectation and
variance operators, respectively. If the functions 1𝜙

ˆ𝜙
are drawn from

the generative model defined above, it holds that:

(a) E[𝑠] = 1√
𝑀
𝑃 (𝜙),

(b) E[𝑤 (ℓ )
𝑘

] =
√
2
ℓ√
𝑀

[
𝑃

(
E (ℓ+1)
2𝑘

)
− 𝑃

(
E (ℓ+1)
2𝑘+1

)]
,

(c) 𝜎2 [𝑠] = 1

𝑀

∑
𝑒𝑖 ∈𝜙 𝑃 (𝑒𝑖 ) [1 − 𝑃 (𝑒𝑖 )],

(d) 𝜎2 [𝑤 (ℓ )
𝑘

] = 2
ℓ

𝑀

∑
𝑒𝑖 ∈E (ℓ )

𝑘

𝑃 (𝑒𝑖 ) [1 − 𝑃 (𝑒𝑖 )] .

From the Chebyshev inequality, we know that the probability

that a random process produces observations of a random variable

that are 𝜆 standard deviations away from its expectation cannot be

larger than 1/𝜆2. Hence, our suspicion about an observation should

increase quadratically in the number of standard deviations that

its random variables values are away from the mean. Based on this

property, we can define an anomaly score for each random variable

given as the inverse of its Chebyshev bound. If 𝑥𝑖 denotes the 𝑖-th

random variable, then its anomaly score is given as follows:

score(𝑥𝑖 ) = (𝑥𝑖 − E[𝑥𝑖 ])2/𝜎2 [𝑥𝑖 ] . (7)

If we aim to favor interpretability, we can return the𝑀 anomaly

scores above as the output of the algorithm, allowing a user to

identify which parts of the query subgraph are at the origin of an

anomaly. For simplicity, we return a single anomaly score summa-

rizing the total anomaly level of the query. Yet, we stress that, for

a more refined study, it is possible to recompute our multi-scale

analysis on the queries that our approach identifies as abnormal.

We produce anomaly score for the entire query as follows:

score(1𝜙
ˆ𝜙
) = (𝑠 − E[𝑠])2

𝜎2 [𝑠]
+
∑︁
ℓ,𝑘

(
𝑤

(ℓ )
𝑘

− E[𝑤 (ℓ )
𝑘

]
)
2

𝜎2 [𝑤 (ℓ )
𝑘

]
. (8)

Figure 3 provides a comprehensive illustration of our multi-scale

approach to anomaly detection. In short, MAD takes as input a

history of past interactionsH and query Q. It constructs a model 𝑃

from H (see Section 3.2) and uses it to set the ordering of the tree.

Then, the tree is used to decompose the query into a set of random

variables. MAD also leverages the model to estimate the theoretical

moments of the multi-scale random variables. Then, it measures

how many standard deviations away from the mean the query is in

order to set an anomaly score. While MAD sets equal importance to

the different random variables involved in the computation of the

anomaly score, making both large-scale or small-scale anomalies

equally relevant, we stress that it is possible to favor anomalies at

any desired scale by giving more weight to the random variables

associated to such level.
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Figure 3: Schematic representation of the proposed multi-scale approach for anomaly detection.

3.2 Estimation of the Model Probabilities
This section addresses the estimation of the model 𝑃 assumed above

from the historyH . 𝑃 must represent what we intend by normality.

In this work, we assume that normal interactions should be locally

stationary. Stationarity means that the underlying random process

generating the data remains stable over time. Thus, we assume that

there is a single model that produced interactions in the recent past

and that, in order to consider the interactions at time 𝑡 as normal,

they should also be generated by such model. Our challenge is

thus to spot the model that produced interactions in the recent

past and use it to define normality at time 𝑡 . Notice that if we

identify a window in which the interactions are stationary, then we

can straightforwardly estimate 𝑃 through a simple time averaging.

This is because stationarity means that all the observed states of

relation 𝑒𝑖 over time are samples of the same Bernoulli experiment

of probability 𝑃 (𝑒𝑖 ). Hence, 𝑃 (𝑒𝑖 ) can be estimated from its time

samples as:

𝑃 =
1

𝐾

𝐾∑︁
𝑘=1

1
𝜙

𝐿 (𝑡−𝑘,𝜙 ) (9)

where 𝐾 is the length of the stationary window. The challenge of

estimating 𝑃 therefore lies in identifying a sub-window of length 𝐾

from the context of length 𝑁 in which all the slices are stationary.

Notably, we can leverage our multi-scale analysis to design a simple

stationarity test that addresses this challenge.

The idea of our stationarity test is an hypothesis testing one: we

hypothesize that the window is stationary and then we try to reject

the hypothesis using our multi-scale analysis. Assuming stationary

means that all the 𝐾 slices within the window are realizations of a

same 𝑃 , which can be estimated as in (9). Then, if we compute one

of our random variables across all the slices within the window, we

must obtain 𝐾 values that are distributed as predicted by Proposi-

tion 2, given that they are realizations of the same 𝑃 . One can assess

if these 𝐾 values are indeed distributed in such a way by comparing

their sample moments with the theoretical ones predicted by Propo-

sition 2. The stationarity hypothesis is therefore rejected if these

Synthetic Hospital Emails Traffic

Triplets 1.24M 32.4K 30.7K 382K

Nodes 925 75 1646 1622

Max. time 5K 17.4K 44.5K 7.2K

Empty slices 0 7.9K 32K 0

Activity peak 308 20 76 94

Table 2: Datasets statistics.

two distributions differ. This test allows us to automatically explore

the 𝑁 -length context to identify the sub-window of size 𝐾 in which

the stationarity assumption best holds: we simply run a window

backwardly, starting from 𝑡 − 1, for all possible values of 𝐾 and run

the test for each window, retaining the one in which the distribu-

tions best match. The match of distributions is quantified by setting

a fitness score given by the sum of squared differences between the

sample and theoretical variance for each random variable.
1

4 NUMERICAL EXPERIMENTS
This section evaluates the performance of MAD through experimen-

tations that aim to address the following questions. Q1. Accuracy:
how accurately can MAD detect anomalous events consisting com-

pared to baselines? Q2. Flexibility: can MAD handle equally well

queries of varying form? Q3. Interpretability: does MAD allow

to characterize the signature of abnormal events? The implementa-

tion of MAD and code to reproduce the experiments is available in

https://gitlab.imt-atlantique.fr/publications1/mad.

Datasets. One synthetic and three real world datasets are used

(Table 2). The synthetic one is composed of a graph sequence with

stable community structure but where some edges appear more

frequently than others. It is done by fixing a model 𝑃 and generating

a sequence of realizations according to the procedure detailed in

Section 3.1. The model 𝑃 consists of a heterogeneous stochastic

1
Only the variance is employed as the fact that 𝑃 is estimated using a sample mean

implies that the expectations from Proposition 2 equal the sample ones.

https://gitlab.imt-atlantique.fr/publications1/mad
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block model: edges within and between communities have different

probabilities. See the supplementary for a detailed description of

how the model is set. Real datasets are: Hospital [19] containing
temporal interactions between patients and health-care workers

in a hospital ward (slices of 20-seconds); Emails [20]: the directed
network of emails in the 2016 Democratic National Committee

email leak (slices of one minute); Traffic [21]: two-hours of TCP
traffic between the Lawrence Berkeley Laboratory and the rest of

the world (slices of one second). In general, these datasets are very

dynamic and sparse.

Anomaly injection. There are no known anomalies within

the selected datasets. Therefore, the whole datasets are considerd

normal and different abnormal events are added: (i) sudden den-

sifications; (ii) sudden sparsifications; and (iii) sudden rewirings.

We inject abnormal events according to the type of queries to be

assessed (see the supplementary for a full description):

• Edge anomalies. A relation (𝑢, 𝑣) is randomly selected and

attacked at various times. Densification attacks make (𝑢, 𝑣)
active at times where it is very infrequent, while sparsi-

fication attacks suppress (𝑢, 𝑣) at times where it appears

frequently. For each dataset, 50 relations are attacked.

• Node anomalies. A randomly selected node is attacked at var-

ious times with densifications/sparsifications or rewirings.

The former attack injects/suppresses communications emerg-

ing from the attacked node, while the latter redirects its

communications towards other nodes. Created edges due to

attacks always point towards nodes that the attacked node

has already communicated with. For each dataset, 10 nodes

are attacked over time. Attacks are bounded to 3 edges.

• Graph anomalies. Anomalies here concern densification/-

sparsification or rewiring events applied to link stream slices

chosen at random. For each dataset, 1% of its active slices

are attacked. Attacks are bounded to 5 edges.

Baselines. Six state-of-the-art algorithms form the baselines.

Two for edge anomalies: MIDAS [1] and F-FADE [2]. Two for node

anomalies: DynAnom [6] and F-FADE-N [2], the variant of F-FADE

proposed by their authors to address node anomalies. Two for graph

anomalies: AnomRank [8] and LAD [10].

4.1 Accuracy of MAD
This subsection aims to address Q1 andQ2 by assessing the accuracy

of MAD and baselines, in AUC score, in the tasks of edge, node and

graph anomaly detection. For all experiments we tried numerous

hyper-parameters configurations and retained the best ones. See

the supplementary for our choices of hyper-parameters.

Edge detection. MAD and edge-anomaly baselines are ques-

tioned as follows: for each relation (𝑢, 𝑣) that was attacked, we ask
algorithms to produce an anomaly score for (𝑢, 𝑣) at all possible
timestamps (attacked and non-attacked times). Algorithms must

then return high scores for timestamps at which (𝑢, 𝑣) was attacked.
Two versions of each dataset are analyzed, one with injected densi-

fications and one with injected sparsifications.

Results are reported in Table 3. It can be seen that MAD systemat-

ically performs well in detecting both anomalies, while MIDAS and

F-FADE are inconsistent with densifications and they cannot handle

sparsification anomalies. Such inconsistent behavior may be due

MIDAS F-FADE MAD

Densification

Synthetic 0.49 0.53 0.58
Hospital 0.50 0.80 0.82
Emails 0.73 0.98 0.76

Traffic 0.52 0.56 0.76

Sparsification

Synthetic - - 0.80
Hospital - - 0.85
Emails - - 0.84
Traffic - - 0.89

Table 3: Edge anomaly detection performance in AUC.

F-FADE-N
∗

DynAnom MAD

Densification

&

Sparsification

Synthetic 0.52 0.56 0.88
Hospital 0.82 0.51 0.92
Emails 0.82 0.54 0.84
Traffic 0.77 0.51 0.74

Rewiring

Synthetic 0.53 0.52 0.83
Hospital 0.57 0.54 0.99
Emails 0.59 0.51 0.99
Traffic 0.53 0.54 0.99

Table 4: Node anomaly detection performance in AUC. ∗F-
FADE-N is evaluated only on the subset of scores that it is
able to produce.

to the fact that (i) MIDAS considers global aggregates and hence is

agnostic to short intervals of low activity; and (ii) F-FADE requires

a stable embedding to produce accurate frequency estimations and

is only able to attain it for the datasets that have many empty slices.

Moreover, we stress that MIDAS and F-FADE cannot respond to

queries consisting of inactive relations, making them unable to spot

sparsifications. Notice that MAD solves these two issues by being

able to spot the two anomaly types and in a consistent manner.

Additionally, MAD does it by just considering a context based on

the past activity of the query edge while F-FADE needs to use all

the past link stream interactions.

Node detection. MAD and baselines are also evaluated in a

node detection setting trough a similar experimental setup: algo-

rithms are asked to determine the abnormality of each node 𝑢 that

was attacked for all possible timestamps. F-FADE-N is not able to

produce an answer for queries with no communications in them,

hence its accuracy is assessed on the subset of scores that it is

able to produce. Two versions of each dataset are analyzed, one

with injected densifications/sparsifications and one with rewiring

events.

Table 4 clearly shows that MAD performs very well in the de-

tection of both sparsification/densification and rewiring events. In

particular, MAD is able to detect the rewiring events in the real

datasets with almost perfect accuracy. Such a performance of MAD

is due to the fact that rewiring events in those very sparse datasets

essentially replace their few likely edges with unlikely ones only,
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making the attacked queries extremely inconsistent with the recent

past. It can be observed that F-FADE-N performs well in detect-

ing densifications/sparsifications, even though it only produces an

output at times when the queried nodes have communications in

them. Thus, a massive event that completely shuts-down a node

would be missed by F-FADE-N. DynAnom systematically performs

very poorly. This poor performance should not come as a surprise:

DynAnom computes anomaly scores based on the stability of the

PageRank of nodes, which is clearly not a meaningful feature for

such sparse and quickly evolving link streams.

Graph detection. The accuracy of MAD and baselines are eval-

uated in a graph detection setting by feeding the algorithms with

the slices of the attacked datasets. Two versions of each dataset are

analyzed, one with injected densifications/sparsifications and one

with rewiring events.

Results are reported in Table 5. As it can be seen, MAD performs

very well in the detection of both events regardless of the dataset,

while LAD performs inconsistently and AnomRank very poorly. As

in the node case, attacks make likely edges disappear and unlikely

ones appear. Therefore, MAD sees those collective events as hard to

explain from the context, explaining its good accuracy. LAD is in-

consistent as it depends on the stability of eigenvalue distributions,

which is not guaranteed when edges are fully replaced between

snapshots. AnomRank relies on PageRank, thus it suffers from the

same issues of DynAnom.

4.2 Interpretability of MAD
In this subsection, Q3 is addressed by studying how the different

attacks influence the individual anomaly scores produced by Equa-

tion (7). This study is conducted by (i) taking our model 𝑃 used to

generate synthetic data; (ii) generating a normal graph using the

model; (iii) applying different types of attacks on this graph; (iv)

performing the multi-scale analysis to each of the resulting graphs;

and (v) computing the anomaly scores of each random variable.

Figure 4 displays the distribution of anomaly scores for the dif-

ferent types of attacks. The random variables are ordered so that

the left-most ones in the plot are the ones associated with the coars-

est scales, i.e. 𝑠 and 𝑤
(0)
0

, and the right-most ones are the ones

associated to the finest scales. As it can be seen, the normal graph

produces low anomaly scores for most random variables: only few

fine-scale ones have large scores, which is due to the inherent un-

certainty associated to a graph generated at random. When this

graph is subject to a densification attack, it can be seen that a large

number of random variables immediately yield large scores. Since

the likely edges remain present in the graph and the majority of un-

likely ones remains inactive in the attacked graph, the large scores

mostly appear at fine scales as most of the activity in the graph

remains well explained by the model. Yet, notice that 𝑠 immediately

activates, thus pointing the densification. Notice that a sparsifi-

cation attack suppresses most likely edges and this immediately

triggers the scores associated to coarse resolutions, particularly 𝑠

and𝑤
(0)
0

. The random variables 𝑠 and𝑤
(0)
0

significantly increase

because the activity of this graph does not match the expected one

for the former, and because the attack mostly affects the left-side

of the tree for the latter. Since a rewiring attack is essentially a

combination of a sparsification and a densification, one can remark

AnomRank LAD MAD

Densification

&

Sparsification

Synthetic 0.49 0.50 0.76
Hospital 0.51 0.80 0.95
Emails 0.54 0.92 0.98
Traffic 0.43 0.46 0.77

Rewiring

Synthetic 0.59 0.52 0.63
Hospital 0.58 0.77 0.94
Emails 0.53 0.87 0.87
Traffic 0.44 0.55 0.85

Table 5: Graph anomaly detection performance in AUC.

Figure 4: Distribution of anomaly scores across random vari-
ables. Different attacks produce different signatures.

that the anomaly scores of this event combine the signature of the

previous two. Thus, in sum, the different attacks produce differ-

ent signatures in our anomaly scores, paving the way to study the

signature of more complex and real events as further research.

5 CONCLUSION
In this work we introduced MAD, a Multi-scale Anomaly Detection

algorithm for link streams that allows to evaluate if any arbitrary

time-stamped subgraph is abnormal. Through a numerical eval-

uation, we demonstrated that MAD performs significantly better

than state-of-the-art alternatives, even when the data at hand is

very uncertain and sparse, in the tasks of detecting edges, nodes or

graphs that were subject to densification, sparsification and redirec-

tion attacks. This flexibility and good accuracy of MAD stems from

its scoring mechanism, which builds on a novel probabilistic and

multi-scale analysis of sub-graphs that allows to decompose them

into a set of random variables that capture anomalies at various

resolution scales. This makes MAD not only accurate but also inher-

ently interpretable and theoretically sound. The next step concerns

the combination of MAD with an anomaly explanation mechanism

to assist final users in the analysis of the found anomalies.
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