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Modeling Rocky Scenery using Implicit Blocks

A. Paris1 · A. Peytavie1 · E. Guérin1 · J-M. Dischler2 · E. Galin1

Abstract We present a novel geologically-based me-
thod to generate vertical walls of rocky cliffs, crags

or promontories. Our method procedurally generates a
distribution of fractures in the bedrock to create a set of
tiling blocks defined as implicit volumetric primitives.

Blocks are in turn implicitly replicated over the verti-
cal parts of the terrain and combined together to obtain
a consistent volumetric representation of the fractured
bedrock patterns using generalized union and blending

operators. Our framework provides multiple levels of
control: in addition to automatically generated blocks,
the geometry of specific ones can be prescribed by the

user using implicit primitives or construction trees, the
shape of the blocks can be controlled by several param-
eters, and the placement rules may adapt according to
the underlying geological strata and geometry of the

terrain.

Keywords Implicit surfaces · Terrain Synthesis ·
Procedural Modeling

1 Introduction

Three-dimensional and vertical landforms such as cliffs,
steep-walled canyons, crags, promontories, or overhangs
are fundamental visual elements of scenic terrains. De-
spite the wide application of artificial terrains in the
entertainment industry as well as simulation, and ex-
tensive research in this area, modeling truly 3D land-

forms with a high level of detail such as eroded karst
tunnel networks, rocky cliff overhangs and arches with
bare rock strata remains an unsolved problem. The
vast majority of existing techniques addresses only 21
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Tabular

Fig. 1 Given an low resolution input terrain T , our method
generates fractured mesoscale blocks featuring small-scale de-
tails inside a cubic tile, and replicates them realistically in the
scene according to the geology of the different strata.

heightfield terrains which do not allow for an accurate

representation of vertical landforms. Even though re-
cent advanced techniques for modeling truly 3D ter-
rains have been proposed [22,3,18], most of them have
a limited resolution and only address the generation

of large-scale features. Hyper-textures [20] can synthe-
size fractal mesoscale and microscale details over the
surface of a coarse terrain, however, the self-similar ap-
pearance of the resulting bedrock, often corresponding
to sandstone, lacks structure. Generating the mesoscale
block structures and small-scale patterns of bedrock
that appear on bare rocky terrain and the vertical walls
of canyons, steep-walled cliffs or promontories, has re-
ceived little attention.

The challenge stems from the fact that the geome-
try of rocky surfaces results from different physical pro-
cesses (including fracturing, percolation, and erosion),
depends on the materials involved (such as limestone,
dolomite, sandstone or basalt), and shows in a vari-
ety of forms (from regular hexagonal prisms to seem-
ingly chaotic polyhedral shapes) and scales (from a few
decimeters to meters).

In this paper, we propose an amplification method
that enhances an otherwise smooth input terrain by au-
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tomatically carving geomorphologically consistent vol-

umetric details over cliffs and overhangs. Our method

consists in reproducing the fractures that exist in the

bedrock to generate blocks that will be visible on the

vertical walls of cliffs (Figure 1).

More precisely, the main contributions of our work

are as follows: 1) we present an original geologically-

based fracturing process to generate realistic blocks of

rock separated by fractures tiling space; 2) we introduce

a novel gradient-based warping operator for adding sur-

face details to implicit primitives which allows us to

carve small-scale rock patterns from synthetic or real

images over blocks; 3) we define a field function node

compatible with any hierarchical implicit surface mod-

eling framework for replicating the field functions char-

acterizing the blocks, therefore implicitly replicating

them over a volumetric terrain or a heightfield. Al-

together, we provide a unified implicit framework for

the representation of mesoscale (≈ 1 m) and small-scale

(≈ 1 cm) bedrock details allowing to reproduce complex

bedrock patterns and shapes. Moreover, our method

provides multiple levels of control, allowing the user to

author blocks and tune the placement rules.

2 Related work

Our method relates both to 3D terrain modeling and

to hyper-textures or amplification techniques that en-

hance an existing coarse terrain representation with

smaller-scale details. For a more complete coverage of

terrain modeling techniques, the reader is referred to

the review in [7].

Voxel representations were first employed for mod-

eling volumetric rocky landforms such as cliffs [12] by

simulating fracturing between neighboring cells along

rock joints. Stability analysis is then applied to remove

disconnected cells. Besides memory and computational

costs, the method does not scale to large terrains and

does not address the distribution of joints crucial for

synthesizing patterns observed in nature. Voxels were

also used for simulating spheroidal and cavernous ero-

sion producing volumetric structures such as hoodoos

and goblins [2,13]. Limiting the range to small features

allows to reproduce small-scale details on such specific

landforms, but does not lend itself to simulating erosion

on large terrains.

Implicit surfaces provide an alternative function-

oriented mathematical framework for modeling 3D ter-

rains. Peytavie et al. extend the concept of stacked

layers, first introduced for erosion simulation, by in-

corporating water and air layers and thereby enabling

the construction of caves and overhangs [22]. The fi-

nal smooth surface is defined as a convolution of these

layers. Although more compact than voxels, material

stacks need to be stored explicitly and are limited in

terms of precision. Another approach consists in com-

bining voxels and feature curves [3] for modeling arches

and overhangs. Again the method explicitly stores the

voxels of the terrain making it memory demanding. Re-

cently, a hierarchical implicit construction tree combin-

ing feature primitives [18] was proposed for modeling a

vast variety of landforms including arches, caves, karsts,

sea cliffs, Goblins by simulating erosion processes by an

invasion percolation algorithm.

While effective for modeling general landforms, most

existing terrain modeling techniques successfully gen-

erate smooth large-scale landforms but suffer from a

lack of precision and fail at representing mesoscale and

small-scale details. While procedural sum of scales-noise

functions [6] can in theory compute an infinite amount

of details, the self-similar geometries resulting from the

fractal process do not capture the characteristic struc-

tures and patterns observed on real terrains. In con-

trast, our method generates an implicit tiling function

combined with small scale gradient-based warping for

representing the mesoscale structure and small-scale de-

tails conforming to observations in geomorphology.

A common approach often used in the entertain-

ment industry consists in decorating a heightfield by

distributing 3D meshes taken from an atlas of charac-

teristic landforms over the vertical parts on the terrain.

A specific technique for generating rock piles was pro-

posed in [21]. It consists in creating aperiodic rock tiles

to avoid computationally intensive physical simulation

for stabilizing rocks. Rock shapes are generated by com-

puting the Voronoi cells of a set of seed points using a

parametrized anisotropic distance. While this approach

can reproduce rock piles found at the bottom of cliffs,

it does neither accounts for geological correctness nor

follows a joint model, and therefore fails at reproducing

certain types of blocks. Ghost Tiles introduced in [11]

use a densely populated tile with pre-computed inter-

sections to synthesize the multitude of entangled ob-

jects fallen to the ground such as rocks, branches or

leaves. Those methods do not address the synthesis of

geologically consistent fractures and do not create real-

istic block structures.

Finally, textures without uv-maps can be used to

add details terrains by displacement mapping [28], but

only few texturing methods can be applied to introduce

real 3D features. Hyper-textures [20,6] often based on

noise [19] allow the synthesis of a theoretically infinite

amount of volumetric details. Hyper-textures perturb

an initial smooth volumetric model by adding a frac-

tal density function or warping space. Although this

method generates fractal surfaces with self-similar fea-
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tures such as powdery rocks or eroded limestone, it fails

at reproducing block structures such as fractured sand-

stone or columnar basaltic shapes. Cellular textures [25]

can be easily adapted to generalized Voronoi diagrams

and synthesize volumetric blocks patterns. Discrete el-

ement textures [15] synthesize distributions of objects

using a small input examplar, however, there is no guar-

antee to obtain geologically correct block structures.

Texel mapping enhances the surface of an object with

details stored in voxel grids and replicated around the

surface of the input object [16]. This method produces

3D features on a thick layer only, requires an explicit

parametrization of the surface, but fails at generat-

ing geomorphologically coherent mesoscale block struc-

tures, which is the focus of our work. An important

aspect of our method is that it is compatible with these

texturing techniques, which can be invoked to synthe-

size small and micro-scale details.

Contrary to previous approaches, our method is ca-

pable of reproducing geologically correct blocks enhanced

with small-scale details and implicitly places and com-

bines them over the original terrain to produce a de-

tailed representation featuring the complex patterns ob-

served in real landscapes.

3 Overview

Real terrains often feature complex rock formations in

areas such as cliffs or caves. These landforms are the re-

sult of complex, interconnected physical processes that

include glacial erosion, catastrophic rock collapses due

to instability, or aeolian erosion. To avoid computation-

ally intensive simulations, we propose a procedural ap-

proach to create block formations based on classifica-

tions used in geomorphology.

Polyhedral Equidimensional Prismatic

Tabular Rhombohedral Columnar

Fig. 2 Categories of blocks identified in geomorphology cor-
responding to various fracture distributions.

Our work comes from the observation that fractures

in bedrock form blocks exhibiting a variety of shapes of

different sizes. Archetype structures such as prismatic,

equidimensional or rhombohedral (Figure 2) have been

identified in geomorphology [17,5]. A fracture is a break

of continuity in the body of rock whose origin is nat-

ural. It most frequently occurs as fracture sets that

are defined as a family of parallel, evenly spaced bro-

ken fractures that can be identified by analyzing their

orientations, spacing, and physical properties. Regular

and periodic distributions of fractures result in regu-

lar columnar blocks, whereas distributions with three

major orthogonal directions result in equidimensional

blocks; randomly distributed fractures produce polyhe-

dral type.

2D Terrain T

Amplified 3D terrain T

Tile generation

Amplification

~

User control

Set of cubic tiles C featuring blocks

Fig. 3 Overview of the algorithm: during a pre-processing
step, we generate cubic tiles containing 3D blocks of distinct
types according to different fracture distributions, then given
an initial coarse heightfield, strata definition and control re-
gions, we automatically generate a 3D implicit model defined
as a field function replicating the blocks for creating mesoscale
and small-scale details.

Fracturing the entire input terrain T would be com-

putationally and memory intensive. Therefore, we pro-

pose a procedural tiling method. The goal is to compute

cubic tiles containing geologically correct blocks that

will be placed over the vertical parts of bare bedrock.

The overall terrain amplification process is com-

posed of two steps (Figure 3). We first generate a set of

blocks Bi organized into a cubic tile denoted as C using

a procedural fracturing approach based on a geomor-

phological classification (Section 4). These blocks Bi
are implicitly defined by scalar functions bi : R3 → R,

which allows to obtain a 3D volumetric representation

of the mesoscale patterns and small-scale details using

a new gradient-based warping operator.

The second step consists in amplifying a smooth in-

put terrain T by replicating blocks over the bare verti-

cal parts of the bedrock (Section 5). The input terrain

can be any kind of 2 1
2D heightfield (resulting from edit-
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ing, simulation, procedural generation or synthesized

from examples, we refer to [7]), or a 3D terrain model

(see Section 2). The new 3D detailed terrain model T̃
is defined as an implicit surface whose scalar field func-

tion f̃ is a construction tree combining the field function

of the initial terrain f and the scalar functions of the

blocks bi.

The cubic tile C is virtually tiling R3, and only the

blocks Bi that straddle the vertical parts of the ter-

rain are replicated. To avoid explicit instantiation, we

propose an original selective field function replication

method inspired from [23] that allows to virtually repli-

cate the field functions bi of the blocks only over the

vertical parts of the input terrain.

4 Block tile generation

The key process in the formation of blocks is fracturing.

In geomorphology, fractures are represented and simu-

lated using 3D discs that define the formation of blocks

by breaking the continuity of the bedrock.

From this observation, we propose a procedural and

controllable method to simulate the different types of

block formations as found in nature. We address the

generation of blocks tiling space. In the following sec-

tion, we consider periodic tiling out of clarity, the gener-

ation of aperiodic tiling using Wang Cubes [4] or Corner

Cubes [14,21] is a direct technical generalization of this

work. Therefore, we address the generation of blocks in

a cubic tile C of size s (in our implementation we use

a cube with size s ≈ 20 m). The algorithm proceeds in

two steps as depicted in Figure 4.

Fr
ac

tu
rin

g

B
lo

ck
 g

en
er

at
io

n

Clusters G
Fractures D

i Blocks B iCubic tile C

Points P

k
Bi

Field function b (p)i

Gip

Fig. 4 Blocks generation pipeline inside a cubic tile C. We
first compute a nearest neighbor graph G over a set of sam-
ple points P inside the tile. Fracturing discs D remove edges
crossing fractures. We extract clusters Gi as the set of dis-
connected sub-graphs, and generate implicit primitives Bi for
each cluster. For the sake of clarity, the method is depicted
in 2D and edges of G are not represented.

Fracturing. Starting from an initial set of points

P = {pk} sampling the cubic tile, we compute the geo-

metric nearest neighbor graph G over this set. A set of

fractures D = {Di} where Di are discs is then generated

using procedural rules. These fractures cut edges from

the graph, thus creating connected sub-graphs called

clusters and denoted as Gi that will finally form the

blocks.

Implicit primitive generation. The coarse ge-

ometry of the blocks is defined as the convex hull of

the point sets for every cluster Gi. For every block, we

define a scalar function bi that computes a signed dis-

tance bound to the surface of the block. Its correspond-

ing construction tree combines the planes of the convex

hull using a smooth intersection operator. The convex

blocks are responsible for the mesoscale details of the

bare rock. We finally apply a new gradient-based warp-

ing operator for generating the small-scale volumetric

details.

4.1 Fracturing

The fracturing process starts by generating a set of sam-

ple points pk inside the cube, using a Poisson sphere

distribution. Experiments demonstrated that a regu-

lar sampling leads to 3D aliasing with unnatural axis-

aligned fractured shapes.

The Poisson radius r influences the size and shape

of the blocks. Higher radius values yield tiles with fewer

points inside, which in turn leads to blocks with coarser

convex shapes and fewer polygonal faces after the frac-

turing process. For a cubic tile size of s ≈ 20 m, we

generate points with a Poisson radius r ≈ 10 cm which

leads to ≈ 14 000 points. After fracturing, each block

contains between 80 and 150 sample points (see Ta-

ble 1). We then compute the nearest neighbor graph G
connecting the set of points P using r as the neighbor-

ing distance threshold, i.e. an edge between points pi

and pj exists if ‖pi − pj‖ < r.

Fractures Di(ci, ri,ni) are defined as discs in space

characterized by their centers ci, radii ri and normal

orientation ni. Geomorphological types are distinguished

by the way fractures are distributed in the cube, i.e. by

the following parameters: number of fractures, average

radius size, distribution of disc centers, and relative ori-

entations. Without loss of generality, discs centers ci are

randomly generated in the cube using a Poisson sphere

sampling with an average radius of ≈ 2 m. Both ri and

ni distributions are tuned according to the block type

(see Figure 5).

The user may control the fracturing process either

by tuning the disc distribution parameters, or by plac-

ing specific fractures in the cubic tile, or by directly

placing several authored blocks in the tile (see Fig-

ure 6), and the system will adapt. It is also possible

to increase the overall amount of fracture by decreas-

ing the Poisson radius of the fracture centers distribu-
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tion. Other disc sampling strategies could be used, how-

ever we found Poisson sampling practical for obtaining

regular-pattern-free distributions with a practical con-

trol over the disc centers spacing.

The following paragraphs explain the different frac-

ture distributions, as described in [17] and their control

parameters.

Polyhedral Tabular

Equidimensional Rhombohedral

Fig. 5 Different types of blocks generated with different disc
distributions.

Equidimensional block type has three dominant sets

of fractures, approximately orthogonal, with occasional

irregular fractures, giving almost cubic-shaped blocks.

Prismatic blocks are similar in shape but are formed

under slightly more irregular fracture distributions. For

these types, normals ni are determined using a random

axis-aligned direction. Radii ri are randomly chosen in

an interval given by a user parameter. In our experi-

ments, we set the radii to ≈ 5m.

Polyhedral type shows irregular small blocks without

explicit arrangement into distinct sets. This type re-

quires more fractures due to the completely stochastic

essence of the distribution, therefore we set the radius

of the fracture centers distribution to ≈ 1 m and create

more fractures.

Rhombohedral blocks have three (or more) dominant

mutually oblique sets of fractures, giving oblique-shaped

blocks. The parameters are the same as for equidimen-

sional blocks, but with tilted axis-aligned directions to

obtain diagonal orientations.

Tabular block type has one dominant set of parallel

fractures orthogonal to a dominant axis direction, for

example bedding planes, with other non-persistent frac-

tures; thickness of blocks is much lower than length or

width. Discs orthogonal to the dominant axis orthogo-

nal have a large radius equal to the size s of the cubic

tile C, whereas the other discs parallel to the two or-

thogonal axes occur less frequently, and have with small

radii ri ≈ s/10.

Columnar type is composed of several (usually more

than three) sets of continuous, parallel fractures. The

length is much greater than other dimensions.

Type #P #D #B #Pi Time

Equidimensional 14 524 15 125 110 6.9

Rhombohedral 14 589 24 78 161 12.0

Polyhedral 14 532 44 100 140 25.4

Tabular 14 554 30 82 143 16.3

Table 1 Statistics for the generation tiles: number of points
#P, number of fracture discs #D, number of blocks #B, av-
erage number of points #Pi inside a block Bi, and generation
time (in seconds).

The next step consists in removing edges cut by a

disc Di and then create clusters Gi of connected nodes

pk. This is performed by using a greedy algorithm:

starting from a random point, aggregation propagates

through the graph until no more points can be con-

nected. Formally, an edge pjpk is kept if it does not

intersect any fracture:

∀Di ∈ D, Di ∩ pjpk = ∅

Finally, we check that all the points in a given clus-

ter are visible to each other, i.e. that fractures do not

cut an edge connecting any pair of points in the cluster.

This guarantees that clusters should not spread around

fracture discs, which would create blocks that do re-

spect the constraints.

RhombohedralTabular

Fig. 6 Example of user-control during the fracturing step:
the user authored specific tabular blocks (left), and rhombo-
hedral blocks (right) inside an equidimensional block tile.

The complexity of the fracturing step depends on

the number of fractures #D: a highly fractured cube

will require more intersection tests between edges of
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the graph and the discs. Table 1 reports some statistics

for the different types illustrated in Figure 5.

4.2 Implicit block generation

Recall that we aim at generating an amplified terrain

model T̃ as an implicit surface. Implicit surfaces allow

us to create a unified volumetric representation for both

the base terrain and the mesoscale and small-scale de-

tails of the bedrock. We create the scalar field bi from

the previously computed clusters Gi as a construction

tree defined as the smooth-intersection of half-spaces

forming a base convex shape, and then deformed using

a gradient-based warping operator (Figure 7).

Smooth intersection

Set of planes H

Warping

Prismatic Tabular

Fig. 7 Simplified hierarchical representation of blocks Bi:
the base convex shape is defined as the smooth intersection
of a set of plane primitives H, and procedurally warped.

We first compute the convex hull of each cluster

and extract a corresponding polygonal mesh Mi. We

compute the planes Hk = (ok,uk) associated to every

polygon of Mi such that their normal uk should be

oriented towards the exterior of Mi. The correspond-

ing scalar function of the convex base ci is defined as

the smooth intersection of the half-spaces functions hk
associated to planes Hk. Every half-space is defined by

the signed distance to the plane hk(p) = (p− ok) · uk.

The final implicit convex blocks Bi are finally defined

as:

bi(p) = ci ◦ ω−1(p)

where ci(p) denotes the function associated to the block

Bi, and ω−1 denotes a gradient-based warping operator

modeling small-scale details. Should the points of the

cluster Gi be coplanar, or contain less than 3 points,

we define the base geometry as a thick polygon, line

segment or point primitive.

Smooth convex base Using a traditional intersec-

tion operator [26] defined as fA∩B = max(fA, fB) cre-

ates gradient discontinuities (Figure 8) which prevents

the use of gradient-based warping as the resulting field

function would no longer be continuous. Therefore, we

use the smooth intersection operator introduced in [1]

over the n planes of the block Bi. Without loss of gen-

erality, we consider the intersection in the case of two

half-spaces A and B. The field function of the smooth

Continuous gradient 

Smooth intersectionIntersection

f      
A ∩ B

~

Gradient discontinuities

f      
A ∩ B

Planes H
k

Fig. 8 Smooth intersection generates a convex block shape
with rounded edges and preserves the continuity of the gradi-
ent ∇ci, therefore allowing a correct gradient-based warping.

intersection A∩̃B is parameterized by a radius R and

defined as:

fA∩̃B = max(fA, fB)−Rk(fA, fB)3/6

k(fA, fB) = max(1− |fA − fB |/R, 0)

Higher values for R lead to smoother shapes, whereas

smaller values preserve sharp features. In our method,

we set R = 25 cm. Since the smooth intersection op-

erator is not associative, the order in which intersec-

tions are performed may influence the final scalar field.

In practice, the impact of the ordering is limited and

appears not to have any visual impact over the block

shape. Different operators [10] could also be used, as

long as they do not introduce gradient discontinuities.

Fig. 9 Examples of gradient-based warping with different
reliefs applied to a sphere primitive.

Surface details Adding surface details to implicit

surfaces is a challenging problem as implicit surfaces

do not provide an explicit parameterization. Existing

methods rely either on interactive authoring [24] or re-

quire an explicit parameterization of the implicit sur-

face [29], and do not lend themselves for generating the

surface details of blocks. We introduce a new gradient-

based warping operator for adding details to any im-

plicit surfaces, taking inspiration from tri-planar pro-

jection [9]. This warping, applied for every block, does

not require an explicit parameterization of the surface,

and introduces small-scale volumetric details as dis-

placements that enhance the model. Figure 9 shows

the effect of warping with different relief functions d

encoded as images. The operator is defined as:

ω−1(p) = p + δ(p)
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Let g(p) = ∇b(p)/‖∇b(p)‖ denote the normalized gra-

dient. Let γi(p) : R3 → R2 denote the projection of

p on the i-th plane, namely xy, xz and yz. The func-

tion δ(p) : R3 → R3 computes the 3D warping of p

according to a 2D displacement function d : R2 → R:

δ(p) = g(p)

3∑
i=0

αi ◦ g(p)) · d ◦ γi(p)

The weighting function αi : R3 → R weights the contri-

butions of the three displacements d ◦ γi(p) according

to the scalar product between the normalized gradient

and the unit axis-aligned vectors ui: αi(p) = |g(p) ·ui|.

Blocks Warped Blocks

Fig. 10 Tabular block tile without warping (left) and after
gradient-based warping (right): this new operator allows to
create highly detailed blocks without holes.

The function d : R2 → R computes the displace-

ment distance and can be effectively defined either as a

procedurally defined turbulence, or from real displace-

ment images. It is computed for every projection of the

point p, thus three times. Figure 10 shows the effect of

gradient warping for the tabular type.

5 Terrain amplification

The amplification process aims at generating a modified

terrain T̃ = T ∪ R defined as the union of T and the

replication R of some of the blocks Bi in C over the bare

vertical walls of the cliffs. We propose a new replication

operator transforming the initial scalar field f into an

amplified model f̃ .

Infinite replication of a scalar field bi over the en-

tire space, first addressed in [23], can be obtained by

directly computing bi with the modulo between the

argument point p and the size s of the tiling cube:

bi(p mod s) with p mod s = p − s bp/sc. In our case,

the challenge consists of computing the scalar fields bi
only for the blocks Bi that straddle the terrain at cer-

tain positions, therefore according to the field function

representing the terrain f . We employ a presence func-

tion e : R3 → {0, 1} that evaluates whether a block Bi
should be replicated or not.

For every block Bi, we define a corresponding an-

chor point ai that will be used to evaluate its presence.

Here we present the concept with only one anchor point

per block out of clarity, but the method can be easily

generalized for a set of anchor points. Recall that bp/sc
denote the integer coordinates of the virtual cell con-

taining p. Blocks are selectively replicated by comput-

ing the presence e function at the virtual anchor point

in world space ai + s bp/sc. The replication operator

is a function t which defines its field function as the

union of all block field function bi times their presence

function ei.

t(p) = max
i
bi(p mod s) ei(ai + s bp/sc)

The final function f̃ of the terrain is defined as f̃ =

max(f, t).

More precisely, the evaluation of the replication op-

erator at a point p is performed as follows. We evaluate

in which cell of the grid lies p, using a modulo operation

on the floating point coordinates of p. We compute the

contribution of each block function bi, virtually trans-

lated in the cell for the point p.

If the distance from p to a border of a cell is less

than a given threshold we compute the contribution

in neighboring cells to account for blocks straddling C.
Therefore, we compute the total contribution as the

union between blocks in the current cell and 2, 4 or 8

neighboring cells.

In the case of a set A = {ak} of several anchor

points, the presence function ei computes the percent-

age of anchor points ai of Bi which satisfy geometric

criteria. In our implementation, we replicate a block if

more than half, i.e. #A/2, of the anchor points satisfy

e(ak) = 1.

The presence function can be any combination of

a variety of criteria; here we briefly review some im-

portant ones that allow for the automatic placement of

blocks over the vertical walls, and that provide control

by prescribing a geological strata definition as presented

in [18].

We first define criteria based on the distance to the

surface: in our model, a block can be replicated only if

enough anchor points ak are in a given distance range

[va, vb] to the surface, i.e f(ak) ∈ [va, vb]. To only repli-

cate blocks on steep slopes and vertical walls, we com-

pare the direction of the gradient with the up direction

uz; recall that g denotes the normalized gradient of the

terrain, we set e(ak) = 1 if |g(p) · uz| < ε, with ε the

maximum slope parameter. Finally, we extend on the

implicit geological function γ defined in [18] and define

different bedrock material at different location in the

scene. Therefore, an anchor point ak satisfies the repli-
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Tabular Equidimensional

Fig. 11 A canyon amplified with equidimensional blocks located at the bottom of the canyon, and tabular blocks placed on
the higher parts of the cliff walls.

cation criteria if the material γ(ak) corresponds to the

material of the underlying block Bi.
Note that the presence function is generic and can

be easily extended to account for other criteria such as

the presence of a water level, trees and obstacles.

6 Results

We implemented our method in C++ and all the scenes

were generated on a desktop computer equipped with

Intel R© Core i7, clocked at 4 GHz with 16GB of RAM,

and an NVidia GTX 970 graphics card. The implicit

surface representing the amplified terrain was polygo-

nized [27] and the resulting mesh directly streamed into

Vue Xstream R© to produce the final images (Figures 5,

6, 9, 10, 11, 12, 13, 14).

Scene Figure Size #R Memory

Sea cliff 1, 14 100× 100 959 0.57

Canyon 11 100× 50 1041 0.54

Sea spire 3 150× 150 1680 0.53

Table 2 Statistics for the scenes: size (in meters), number of
replicated blocks #R, and amount of memory (in megabytes)
needed to store the field functions bi representing the blocks
Bi in the cubic tiles C.

Table 2 reports some statistics about the different

scenes. Contrary to noise-based hyper-textures that only

require a few dozens of parameters, our method needs

to store the hierarchical implicit models of the different

blocks; the required amount of memory remains small

(less than a megabyte).

6.1 Control

Figure 5 a variety of types of blocks: different fractures

distributions were prescribed (Section 4) and lead to

different shapes such as polyhedral, rhombohedral or

tabular blocks. The user can tune the parameters of

different fractures within a tile, and our method auto-

matically computes block shapes that adapt to these

constraints; it is also possible to sculpt specific blocks

and let the system automatically adapt and generate

the remaining ones, as demonstrated by Figure 6, where

the user placed specific tabular or rhombohedral blocks

at the desired locations in the tiles.

Figure 11 illustrates user-control over the block place-

ment: an equidimensional bedrock strata was defined by

the user at the bottom of the cliff resulting in regular

cliff walls. A second strata with tabular type was pre-

scribed above the previous one and tabular blocks were

automatically added to account for the specified mate-

rial. In practice, it takes a few iterations for the user to

tune the placement rules of the different block tiles for

a specific scene; the main limitation remains the com-

putationally intensive visualization of the final implicit

surface (see Section 6.4).

Figure 11 also demonstrates the effectiveness of con-

trol based on the computation of the gradient ∇f for

detecting the vertical parts of the terrain: no blocks

were generated on the top of the plateau, thus keeping

the ground flat where trees appear. Figure 14 shows

different styles of blocks applied to a sea cliff scene,

completely changing the overall mesoscale geometry of

the final landscape.

Finally, micro-scale details are defined by using the

gradient-based warping operator combined with differ-

ent displacement maps as showcased in Figure 9. The

relief function d can be painted by the user; procedu-

rally defined by combining noise functions in construc-

tion tree of scalar primitives or scanned from real rock

surfaces.

6.2 Comparison with other methods

While the sum of scaled-noise functions [6] can, in the-

ory, produce an infinite amount of details, the self-

similar geometries resulting from the fractal process do

not capture the characteristic structures and patterns

observed on real terrains. Figure 12 shows a comparison
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of different methods used to add details onto a sphere.

Hyper-textures [20,6] may generate holes and discon-

nected parts, star-shaped primitives with a radial tur-

bulence [18] avoids artifacts but both methods lack ge-

ological structure. In contrast, fracturing generates ge-

omorphologically consistent blocks, and gradient-based

warping allows for the generation of small-scale details

captured from real rocks. Hyper-textures [20] could also

be used to add small-scale details, however gradient-

based warping allows for better control over the dis-

placement by using reliefs from real rocks.

Hyper texture Radial displacement Our method

Fig. 12 Comparison of different methods used to add details
onto an implicit sphere, with an ambient shading (top) and
a high resolution texture (bottom).

In terms of mesoscale details, our method improves

existing volumetric terrain models. Global warping op-

erators [8] do not provide sufficient accuracy to repro-

duce the complex geometry of the vertical parts of the

bedrock. Voxels and features curves-based approaches [3]

are limited by the grid resolution and generate smooth

large-scale terrains.

While the system described in [18] can generate large

scale landforms such as arches, overhangs, and simu-

late large scale erosion effects, the vertical surface of

cliffs lacks geometrical patterns and bedrock details.

Although primitive-based implicit surfaces can theo-

retically reproduce small-scale details, their modeling

comes at the price of defining a huge number of small

primitives in the construction tree, a memory-intensive

process. In contrast, our method defines a memory-

efficient tiling and replication function that implicitly

tiles space with a union of blocks to amplify and add

details to cliffs.

In spirit, generating and replicating instances resem-

bles the Ghost Tiling approach [11], and the rock pile

generation based on aperiodic tiling [21] that instan-

tiate rock meshes. Our approach differs in the sense

that blocks are defined as implicit primitives and virtu-

ally replicated by using a replication operator combined

with a presence function, which allows us to combine

them to produce a consistent volumetric model. More-

over, these methods would need to be improved to ac-

count for fracture distributions to guarantee the repli-

cability of certain block types - which is one primary

focus of our work.

6.3 Compatibility with other techniques

An important aspect of this work is that it is compati-

ble with other terrain modeling techniques. Our method

can benefit to implicit surface-based terrain representa-

tions such as the hybrid layer-stack convolution-surface

framework described in [22] or the primitive-based sys-

tem [18]. Those models, designed for modeling large scale

terrains, can be amplified with mesoscale details as demon-

strated in Figure 13. Moreover, our method lends itself

to amplifying heightmaps or procedurally defined ele-

vations since a three-dimensional scalar field f : R3 →
R can be directly derived from the elevation function

h : R2 → R by defining f(p) = pz − h(pxy).

Arches Our method

Fig. 13 Side by side comparison showing a canyon with
smooth overhangs produced by the layer-stack model, and
the rocky amplified vertical-wall generated by blocks.

Finally, although we used implicit surfaces for mod-

eling the complex mesoscale 3D features of terrains, the

block generation algorithm (Section 4) can also produce

a mesh representationMk for every block Bk in the tile.

In this context, our method can be streamed in pro-

duction environments using mesh representations and is

compatible with standard instantiation techniques such

as the ones described in [21] or [11] to distribute block

meshes over the vertical parts of the input terrain.

6.4 Limitations

The block tile generation process (Section 4) can take

up to 30s because of the many intersection tests be-

tween segments (linking two points in the tile) and frac-

tures discs. However, time was not spent on optimizing
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Tabular Equidimensional Rhombohedral

Fig. 14 Different styles of blocks generated on a cliff and arches. From left to right, tabular block style, equidimensional
blocks and finally rhombohedral block style.

this step of our pipeline, since it is done once in pre pro-

cessing. A more limiting property of our method is the

fact that our block primitives can only model convex

shapes. This could be resolved by developing primitives

more suited for non-convex shapes, but it is beyond the

scope of this paper and is left as future work.

Although implicit surfaces provide a powerful, sparse,

and compact framework for generating complex volu-

metric structures, their visualization remains compu-

tationally intensive. In particular, the computation of

the field function bi for one single block Bi requires

many half space distance computations, combined with

a warping operator: blocks could be optimized with a

limited number of primitives to reduce the overall num-

ber of field function queries.

Using a limited set of block tiles sometimes yields

visible repetitions when applied to flat cliff walls paral-

lel to the tiling directions. Aperiodic tiling using Wang

cubes [4] or Corner Cubes [14,22] would reduce visible

artifacts, yet at the price of a larger number of pre-

computed tiles and, therefore, a more memory demand-

ing implementation.

Finally, the procedural fracturing tool only provides
an indirect control over the distribution of fractures,

and thus the shape of the blocks: a better interactive

material editing tool would allow the user to author a

wider range of shapes conforming to his intent.

7 Conclusion

We have introduced an implicit representation of blocks

for automatically generating mesoscale and microscale

details on the vertical walls of rocky cliffs, crags, or

promontories. Our method relies on the decomposition

of a bedrock tile into blocks using a fracturing ap-

proach based on classifications in geomorphology. The

implicit surface description allows generating realistic

shapes enhanced with details organized into patterns

and structures as observed in geomorphology. Our method

is compatible with other terrain modeling techniques:

the block generation algorithm can additionally pro-

duce triangle meshes, which in turn can be instantiated

to enhance heightfields. We also introduced a warping

operator that can be applied to any implicit surface

model to add small-scale details.

A direct extension of this work would consist of

generalizing with different types of blocks, in particu-

lar prismatic and columnar configurations that require

specific fractures distributions. Another avenue of re-

search worth investigating would be to generate large-

scale fractures spreading over hundreds of meters and

shaping the vertical walls of cliffs by taking into account

the underlying strata of the bedrock.
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Génevaux, J.D.: Efficient modeling of entangled details
for natural scenes. Computer Graphics Forum (Proceed-
ings of Pacific Graphics 2016) 35(7), 257–267 (2016)

12. Ito, T., Fujimoto, T., Muraoka, K., Chiba, N.: Modeling
rocky scenery taking into account joints. In: Proceedings
of Computer Graphics International, pp. 244–247. IEEE,
Tokyo, Japan (2003)

13. Jones, M., Farlay, M., Butler, M., Beardall, M.: Di-
rectable weathering of concave rock using curvature esti-
mation. IEEE Transactions on Visualization and Com-
puter Graphics 16(1), 81–97 (2010)
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