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A basic introduction to ultrastable optical cavities for laser stabilization

Jamie A. Boyd and Thierry Lahaye
Université Paris-Saclay, Institut d’Optique Graduate School,

CNRS, Laboratoire Charles Fabry, 91127 Palaiseau Cedex, France
(Dated: August 17, 2023)

We give a simple introduction to the properties and use of ultrastable optical cavities, which are increasingly
common in atomic and molecular physics laboratories for stabilizing the frequency of lasers to linewidths at the
kHz level or below. Although the physics of Fabry-Perot interferometers is part of standard optics curricula,
the specificities of ultrastable optical cavities, such as their high finesse, fixed length, and the need to operate
under vacuum, can make their use appear relatively challenging to newcomers. Our aim in this work is to bridge
the gap between generic knowledge about Fabry-Perot resonators and the specialized literature about ultrastable
cavities. The intended audience includes students setting up an ultrastable cavity in a research laboratory for the
first time and instructors designing advanced laboratory courses on optics and laser stabilization techniques.

I. INTRODUCTION

Over the past two decades, optical clocks have revolution-
ized frequency standards, now achieving fractional accuracies
in the 10−18 range.1–4 Crucial to reaching such performance
are interrogation lasers whose frequencies are stabilized
through the use of high-finesse, ultrastable cavities. Similar
cavities are also used for gravitational wave interferometers.5

More recently, beyond the field of metrology, these ultrastable
cavities have become increasingly widespread in atomic and
molecular physics laboratories for addressing narrow transi-
tions. Cavities based on ultralow expansion (ULE) glass spac-
ers, which once required complex custom developments, are
now commercially available, making it relatively easy to reach
linewidths of a few kilohertz (corresponding to a quality fac-
tor Q ∼ 1011). These cavities facilitate research in a wide
range of areas, including quantum gases, molecular physics,
and R ydberg atoms.

Although the physics of Fabry-Perot interferometers is
commonly taught in undergraduate optics curricula, the dis-
tinct characteristics of such ultrastable cavities (high finesse
in the tens of thousands, operation under vacuum, choice of
spacer material, temperature stability, importance of realiz-
ing a proper mode-matching) are rarely covered, leading to
a knowledge gap for students and researchers when it comes
to setting one up for the first time. In this article, we aim to
provide a concise introduction to the physics of ultrastable,
high-finesse cavities, with the goal of bridging the gap be-
tween general knowledge of Fabry-Perot resonators and the
practical use of an ultrastable cavity in a laboratory setting.
For more detailed introductions along similar lines, we refer
readers to Refs. 6 and 7.

The article is structured as follows. In the first part, we pro-
vide background on the practical requirements of ultrastable
cavities to achieve ultralow fluctuations of the resonance fre-
quencies. In the second part, we explain how to set up an ul-
trastable cavity in practice, including mode-matching, imple-
menting a Pound-Drever-Hall lock, and measuring the finesse
of the cavity. We conclude with a discussion on why we be-
lieve that including such a setup in an advanced instructional
laboratory course can lead to a variety of interesting experi-
ments focusing on various aspects of optics for undergraduate
students.

II. CONCEPTUAL BACKGROUND

The ultimate goal of locking a laser to an optical cavity is
to minimize its frequency fluctuations. Laser frequency fluc-
tuations are primarily due to technical noise in the laser, such
as temperature fluctuations, mechanical vibrations, or fluctua-
tions in the current in the case of a semiconductor laser. Such
noise, in combination with the fundamental quantum noise,
contributes to increase the laser linewidth. Depending on the
source of noise, the fluctuations take place on different time
scales: “fast” fluctuations, which occur on the order of tens of
microseconds; low-frequency jitter, on timescales of millisec-
onds to seconds; and slow drifts of the central laser frequency
over the course of hours, days, and weeks, due primarily to
thermal effects.7,8

A cavity helps minimize laser frequency fluctuations pri-
marily on the first two time scales by serving as a precise, sta-
ble reference. The precision of the cavity is determined by its
resonance linewidth; narrow cavity linewidths help reduce the
fast fluctuations and jitter in the laser frequency. The stability
of the cavity determines the changes in the center frequency of
the resonances over time; high stability allows one to reduce
slow drifts of the laser’s central frequency. Ultimately, slow
drifts are accounted for by referencing the stabilized laser to
an atomic transition.

In this section, we start by a review of the basic physics of
optical cavities, including the relationship between linewidth
and finesse, and then turn our attention to the specific require-
ments for designing an ultrastable cavity.

A. Brief review of optical cavities

1. Linewidth and finesse

A linear optical cavity consists of two mirrors whose reflec-
tive surfaces face each other (see Fig. 1a). Monochromatic
light entering the cavity will be resonant when the round-trip
distance 2L is an integer multiple p of the light’s wavelength
λ. For a lossless cavity on resonance, the incoming light is
fully transmitted through the cavity, with none reflected (in-
tensity reflection coefficient R = 0), due to constructive in-
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terference of the field circulating within the cavity and de-
structive interference between the reflected field and the field
leaking out the first mirror. Off resonance, almost all light is
reflected and none transmitted, due to destructive interference
in the cavity.

The frequency spacing between two successive resonances
is called the free spectral range (FSR) and is determined by
the length of the cavity:

νFSR =
c/n

2L
, (1)

where c is the speed of light in a vacuum, n the refractive
index of the medium between the two mirrors, and L is the
length of the cavity. The finesse of the cavity is defined as the
ratio of the free spectral range to the full-width half-maximum
linewidth of the resonance peaks, denoted δν, and is deter-
mined by the reflectivity of the mirrors:8

F =
νFSR
δν

=
π
√
r1r2

1− r1r2
. (2)

Here, r1 and r2 are the electric field reflection coefficients of
the two mirrors. From Eq. (2), one can see that the higher the
reflectivity of the mirrors, the higher the finesse. For example,
|r1| = |r2| = 98.4% results in a finesse of 100, while |r1| =
|r2| = 99.992% yields a finesse of 20,000.

Once the finesse of the cavity is fixed, the choice of cav-
ity length must take into account several factors: the desired
free spectral range, the resulting linewidth of the resonances,
and the practical space considerations. Commonly, ultrastable
cavities used in atomic and molecular physics laboratories are
on the order of 10 cm long, giving νFSR ≃ 1.5 GHz. For
this free spectral range, a finesse of 100 gives δν ≃ 15 MHz,
whereas a finesse of 20,000 gives δν ≃ 75 kHz. Since the
achievable narrowing of a laser’s linewidth is a fraction of the
linewidth of the cavity’s resonance, high finesse is an impor-
tant requirement for designing cavities that can address nar-
row atomic and molecular transitions.

In the time domain, the ideal linewidth of the resonances is
directly related to the 1/e decay time τ of the intensity in the
cavity: δν = 1/(2πτ), giving

F = 2πτνFSR. (3)

A long cavity decay time corresponds to a high finesse and
a narrow linewidth on resonance. Measuring τ provides an
accurate way to measure the finesse of the cavity of a known
length L (see Sec. III D).

2. Higher-order modes

Thus far, we have considered the resonances of an optical
cavity as depending only on the longitudinal mode of the in-
coming light. This simplification is valid when considering
only the fundamental transverse mode: a pure Gaussian beam.
In reality, however, imperfect coupling of a laser into a cav-
ity leads to the excitation of higher-order transverse modes,

R
p p p

 m+n =     0          1          2          3          4          5          6

(a)

R1→∞ R2 

ω0

L

(b)

(c)

FIG. 1. (a) Diagram of a planoconvex optical cavity, where R1 and
R2 denote the radii of curvature of the two mirrors. (b) Calculated
Gauss-Hermite intensity profiles for each transverse mode. For a
perfectly cylindrical cavity, modes with the same value of m+n are
degenerate in frequency, and the transverse intensity profile in trans-
mission can be a superposition of all transverse modes with the same
value of m+n. (c) Calculated signal in reflection while scanning the
laser frequency slowly over three free spectral ranges, where R rep-
resents the intensity reflection coefficient and ν00p is the frequency
of a fundamental transverse mode resonance. Each dip corresponds
to a cavity resonance, with the deepest dip corresponding to the fun-
damental mode. The reflection signal was calculated for a cavity with
a finesse of 100 to portray the non-zero linewidth of the resonances
and a ratio L/R2 = 1/5, and the relative amplitudes were set to
match the experimental results in Fig. 5(b).

whose resonance frequencies differ from that of the funda-
mental mode. These higher-order transverse modes are typi-
cally of the Gauss-Hermite family and are denoted by two in-
tegers, m and n, for the two transverse directions [Figs. 1(b)
and 1(c)]. Their wave amplitudes are given by the product of
a Gaussian beam expression, two Hermite polynomials corre-
sponding to the two transverse directions, and a phase term,
referred to as the Gouy phase:

exp [−i(m+ n+ 1)arctan(z/zR)] , (4)

where zR is the Rayleigh range9 (see Appendix A for the full
expression of the wave amplitude).

For a mode to be resonant in the cavity, the phase accumu-
lated during one round trip must be a multiple of 2π. Equation
(4) therefore determines the resonance condition, from which
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one can derive the resonance frequencies to be:

νmnp

νFSR
= p+

(m+ n+ 1)

π
cos−1

√(
1− L

R1

)(
1− L

R2

)
,

(5)
where p is an integer labeling the longitudinal mode, L is the
length of the cavity, and R1 and R2 are the radii of curvature
of the two mirrors.10 The phase factor given by Eq. (4) lifts
the frequency degeneracy of transverse modes with different
values of m+ n.

From Eq. (5), one can see that for a given transverse mode
with fixed values for n and m, the resonance frequencies of
the corresponding longitudinal modes are spaced by the free
spectral range of the cavity. For a given longitudinal mode
p, the spacing depends on the ratio between the length of the
cavity and the radius of curvature of the mirrors. With all
else held constant, increasing the ratio L/R1,2 increases the
frequency spacing between corresponding transverse modes.

The need for narrow linewidth resonances therefore relates
to the choice of mirror geometry for the cavity and explains
why, despite its frequent use in scanning Fabry-Perot cavi-
ties, a confocal geometry (L = R1 = R2) is not optimal for
applications where high-finesse is crucial. In a confocal ge-
ometry, the spacing between two consecutive resonances is
given by νFSR/2, so all even higher-order modes are degener-
ate with the fundamental mode. However, this degeneracy is
never perfect; higher-order modes will appear as many small
peaks close to the fundamental resonance. These peaks in-
crease the linewidth of the resonance and reduce the effective
finesse of the cavity. Therefore, when designing high-finesse
cavities for locking lasers, one aims to space the resonances
of the higher-order modes sufficiently far away from the fun-
damental mode. In addition, one wants to choose a spacing
such that the higher-order transverse modes do not overlap
with any fundamental transverse modes (of higher longitudi-
nal modes). It is common to choose a planoconvex cavity with
a ratio L/R2 that gives a frequency spacing between consec-
utive higher-order transverse modes on the order of 100 MHz
and a high least common multiple with the free spectral range.

Figure 1(c) shows an example of the calculated intensity re-
flected from a cavity with a ratio L/R2 = 1/5 when scanning
the laser over three free spectral ranges11. The higher-order
modes are equally spaced with decreasing amplitudes away
from the fundamental mode. Calculated images of the inten-
sity patterns of the transverse modes are pictured in Fig. 1(b).
Assuming the cavity has perfect cylindrical symmetry, trans-
verse modes with the same value of m + n are degenerate
in frequency, and the intensity pattern viewed in transmission
through the cavity is a superposition of all modes with the
same value m + n. In practice, however, no cavity has per-
fect cylindrical symmetry due to minute imperfections of the
mirrors. These imperfections lift the degeneracy of the trans-
verse modes, and the corresponding frequency splitting can be
measured for cavities with sufficiently high finesse.12

B. Design requirements for ultrastable cavities

In addition to having a high finesse and optimally spaced
higher-order modes, a cavity for locking lasers should be ul-
trastable to avoid slow drifts of the laser frequency. Ideally,
the resonance frequency of the cavity should drift as little as
possible. Practically, it is relatively easy to achieve variations
of less than several hundred kHz over the course of one day
using a ULE spacer. As shown in Eqs. (1) and (5), the cavity’s
resonance frequencies depend primarily on its length and the
index of refraction of the medium between the mirrors.13 The
relative variation in resonance frequency then fulfills

δν

ν
≤ δn

n
+

δL

L
. (6)

To achieve δν < 1 MHz at optical frequencies, the relative
fluctuations δν/ν should be less than 10−9.

In the following sections, we explain how cavities are de-
signed to reach such stunning stabilities.

1. Operating under vacuum

The index of refraction n of air at room temperature and
pressure is on the order of n − 1 ≃ 3 × 10−4. However,
atmospheric pressure depends on many factors and can vary
by up to 10% over the course of several days. Thus, with
ambient air between a cavity’s mirrors, the resulting relative
fluctuations δn/n would be on the order of 10−5, yielding an
unacceptably large value for δν/ν. To eliminate these fluctu-
ations, the space in between the two cavity mirrors needs to
be evacuated. A moderate vacuum, with a residual pressure
below 10−3 mbar, reduce the relative fluctuations of the index
of refraction sufficiently.

In practice, the choice of the vacuum pump is determined
by the requirement that it introduce no vibrations to the sys-
tem. Pumps that operate using spinning parts are therefore
not good options. Instead, ion pumps are typically used as
they have no moving parts. Ion pumps easily maintain pres-
sures around 10−7 mbar without bakeout. In these conditions,
the relative fluctuations of the refractive index are on the order
of 10−14 and are thus entirely negligible.

2. Minimizing length fluctuations

The remaining frequency fluctuations arise primarily from
variations in the distance between the two mirrors. The mir-
rors are fixed to the ends of a spacer of solid material (see
Fig. 3) so that the distance between them depends on varia-
tions in the length of the spacer. Such length variations are
due primarily to changes in temperature. To first order, the
relative change in length of a material due to changes in tem-
perature is given by

δL

L
= α(T ) δT, (7)
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FIG. 2. (a) Coefficient of thermal expansion (CTE) and thermal ex-
pansion vs. temperature for a batch of ultralow expansion (ULE)
glass with a zero-crossing temperature TZC = 30.4 °C. At TZC, the
relative length fluctuations for a spacer of length 10 cm are on the
order of 10−14 for temperature fluctuations of ±10 mK. (b) A sim-
ple setting illustrating the influence of vibrations on the length of a
cavity, and how this can be mitigated by a proper choice of the sus-
pension. A vertical cavity, of length L in the absence of acceleration,
is either supported from the bottom (i), suspended from the top (ii),
or suspended mid-point (iii). When the cavity undergoes an upwards
acceleration a, its length decreases in the first case (iv) and increases
in the second case (v). For the mid-point suspension, the upper part
of the cavity gets compressed, while the lower part gets elongated,
resulting in an overall unchanged cavity length.

where α(T ) is the coefficient of thermal expansion (CTE) of
the material. To minimize length fluctuations, spacers are
made of a material with the lowest possible CTE near room
temperature. The most common choice of material is ultralow
expansion (ULE) glass, which is a compound of silica and
titanium dioxide, as its CTE is very low near room temper-
ature and even vanishes at a so-called zero-crossing temper-
ature TZC. The CTE and exact value of TZC is empirically
determined for each ULE spacer, as it depends not only on the
composition of the material but also on its fabrication condi-
tions, which can vary between each production cycle.

Figure 2(a) shows the CTE of a particular batch of ULE
with a zero-crossing temperature at 30.4 ◦C. Usually, the zero-
crossing temperature is chosen to be slightly above room tem-
perature (typically around 30− 35 ◦C) as it is easier to main-
tain a constant temperature by heating than by cooling. Resis-
tive heaters encircle the vacuum chamber containing the cav-
ity, as shown in Fig. 3(c), maintaining temperature stability
better than ±10 mK. As can be inferred from Fig. 2(a), such
temperature fluctuations around the zero-crossing temperature
induce relative length fluctuations for a spacer of 10 cm on the
order of 10−14. Even at a deviation of ±0.5 ◦C from the zero-
crossing temperature, the relative length fluctuations are on
the order of 10−11 and are thus negligible.

3. Minimizing the effects of vibrations

Mechanical vibrations due to acoustic or seismic noise can
be another significant source of fluctuations of the cavity
length. For applications where one does not need to address

extremely narrow transitions (below the kilohertz range), the
effects of such vibrations can usually be neglected. However,
it is crucial to minimize their effect to reach state-of-the-art
performance for gravitational wave detectors5 or for locking
ultrastable lasers used in the operation of optical clocks.6 This
is achieved by (i) using vibration-isolation platforms on which
the reference cavity is mounted, and (ii) using a clever shaping
and mechanical suspension of the cavity that minimizes the
influence of a given level of vibrations on the cavity length.
Several approaches exist, ultimately relying on finite-element
modeling of the cavity response to accelerations.14 In this sec-
tion, we illustrate this type of vibration mitigation on a con-
ceptually s imple case, namely that of a midpoint vertically
suspended cavity, a configuration often used in actual setups
to minimize sensitivity to vertical vibrations.

Figure 2(b) shows three possible ways to hold a vertical
cavity spacer of length L: it can (i) rest on the bottom, (ii) be
hanging from the top, or (iii) be suspended midpoint. Now
suppose the cavity is subjected to vertical vibrations. For
frequencies much lower than the mechanical resonance fre-
quency of the spacer, the change ∆L of the cavity length due
to an upwards acceleration a can be calculated in the qua-
sistatic case. In case (i), the cavity length decreases by a quan-
tity which can be shown to be ∆L = aρL2/(2E), where ρ is
the density of the spacer material and E its Young’s modulus
[Fig. 2(b), panel (iv)]. For the case of a spacer hanging from
the top, the same acceleration would produce an increase in
length [Fig. 2(b), panel (v)], by the same quantity. Thus, if
the cavity is suspended in the middle, its top part contracts
while its lower part extends by the same length, resulting i n
a vanishing net change in the spacer length [Fig. 2(b), panel
(vi)].

4. Recent developments in ultrastable cavity design

Another important effect that impacts the stability of a cav-
ity is thermal noise. Even for a perfectly stable temperature
T , the spacer, mirror substrates, and mirror coatings undergo
Brownian fluctuations that lead to noise in the effective cavity
length scaling as

√
T . For state-of-the-art optical clocks, this

noise is a major limitation. The current strategy to circumvent
this problem is to use a cryogenic cavity with a spacer made
of a single crystal silicon held at its zero-crossing temperature
of 16 K.15,16 This approach, which is obviously quite involved
technically, has two main advantages: (i) at cryogenic tem-
peratures, thermal fluctuations are drastically reduced relative
to those at room temperature; and (ii) using a single crystal
nearly eliminates longterm length drift (“aging”) of the spacer,
due to the crystal’s almost-perfect lattice structure.

III. ULTRASTABLE CAVITIES IN PRACTICE

We now turn to the practical implementation of a room-
temperature ultrastable ULE cavity for locking a 780 nm ex-
ternal cavity diode laser (ECDL). In this work, we use an ul-
trastable cavity from Stable Laser Systems (SLS) that we pre-
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FIG. 3. (a) Photo showing the ULE glass spacer and mirrors of an ultrastable cavity (image courtesy of Stable Laser Systems). The pump-
out hole for evacuating the cavity is visible on the left. (b) Photo of our SLS cavity showing both the Zerodur support and the radiation
shield. (c) Diagram of the cross-section of an SLS ultrastable cavity. The ULE glass spacer is supported by fluororubber balls for thermal and
vibrational insulation and surrounded by a radiation shield. The radiation shield rests on a support in Zerodur, which is supported on the walls
of the vacuum chamber. Around the vacuum chamber, heating elements maintain the inside at a constant temperature. The external enclosure
surrounds thermal insulation around the vacuum chamber. (d) Photo of our setup showing the external enclosure of the cavity connected to the
ion pump as well as the camera and photodiode for measuring the signal in transmission.

viously used for two-photon Rydberg excitation of single Rb
atoms.17 Since this application required laser linewidths only
on the order of tens of kilohertz, our cavity is horizontally
rather than vertically suspended and kept near room tempera-
ture. It has a nominal finesse of 25,200 at 780 nm, and a free
spectral range of 1.5 GHz.

A. Experimental setup

Figure 3 shows a cross-sectional diagram and photos of our
cavity. A cylindrical spacer made of ULE glass separates the
two cavity mirrors fixed on either end. A long, cylindrical
hole is bored through the center of the spacer and maintained
under vacuum via a pump-out hole. The spacer rests on four
Viton balls supported by a V-shaped Zerodur support. The
viton balls minimize both vibrational and thermal couplings
to the external environment. A radiation shield surrounds the
spacer, resting on the Zerodur support, to minimize radiative
heat transfer. This entire ensemble is enclosed in a vacuum
chamber pumped typically to 10−7 mbar using a 10 L/s ion
pump. The Zerodur support rests on the inner walls of the vac-
uum chamber. The whole chamber is maintained at the zero-
crossing temperature of our spacer (34.49 ◦C) using resistive
heating elements and a PID controller (Wavelength Electron-
ics, LFI-3751). Outside the vacuum chamber is further therma
l insulation, surrounded by a final external enclosure.

B. Mode matching

Our cavity is planoconvex, as depicted in Fig. 1(a), with a
radius of curvature R2 = 500 mm and length L = 100 mm.
To mode-match the incoming beam with the fundamental
Gaussian mode of the cavity, we must match the waist size
and position of the incoming laser beam to those of the cav-
ity’s fundamental mode. Knowing R2 and L, we can calculate
the Rayleigh range zR of the fundamental Gaussian mode of
the cavity. The radius of curvature of the Gaussian wavefront,
given by

R(z) = z +
z2R
z
, (8)

where z denotes the distance from the waist, must match the
mirrors’ radii of curvature. Thus, the waist position z = 0
coincides with that of the flat mirror, and setting R(L) = R2

determines the Rayleigh range:

zR =
√
L(R2 − L). (9)

The 1/e2 radius is then given by

w0 =

√
zRλ

π
, (10)

where λ is the laser wavelength. Combining Eqs. (9) and (10)
for 780 nm gives the 1/e2 radius of our cavity’s fundamental
mode as 223 µm.

The almost-perfectly Gaussian beam coming out of the
fiber collimator (Thorlabs, CFC-2-B), with its own waist size
and position, needs to be matched to the cavity mode us-
ing an appropriately placed lens (or combination of lenses).
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FIG. 4. Simple optical setup for coupling light into a cavity with
photodiodes in reflection and transmission. In our setup, we use a
lens with f = 150 mm for mode matching.

Using Gaussian optics with ABCD matrices9,18 or an online
Gaussian beam calculator,19 one can find the optimal com-
bination of fiber collimator position, lens position, and lens
focal length. For our setup, we measure that the waist almost
coincides with the output of the fiber collimator, with a 1/e2

radius of 100 µm. We then calculate that using a single lens of
f = 150 mm positioned at 204 mm from the collimator and
421 mm from the plane cavity mirror is a good solution, as it
gives a reasonably compact setup.

As shown in Fig. 4, we also use a λ/2 waveplate and beam-
splitter before the cavity to reduce the power of the incident
laser beam. It is important to have low power at the input
of the cavity since, on resonance, the field circulating in the
cavity has an intensity orders of magnitude greater than the
incident field, given by Icav/Iinc = F/π. For our cavity,
the intracavity field is approximately 8, 000 times the incident
power, so we use an incident beam of ∼ 100 µW to give < 1
W within the cavity. Too much intracavity power can tem-
porarily deform, or even permanently damage, the cavity mir-
rors.

Aligning the laser into the cavity from scratch is challeng-
ing, so it is helpful to use multiple diagnostic tools. We use
a combination of a camera in transmission and photodiode in
reflection, as shown in Fig. 4, to find and optimize the sig-
nal. While scanning the laser frequency over more than one
FSR, we adjust the alignment of the incoming beam into the
cavity using the mirrors until we see a transmission signal on
the camera, as in Fig. 5(a). Scanning the laser frequency rela-
tively slowly (1−5 Hz) helps us to distinguish a genuine signal
from background reflections, as a signal flashes on the camera
at a rate proportional to the scan frequency. After finding a
signal, we align the photodiode in reflection. While scanning
the laser frequency, the signal on the reflection photodiode
should resemble that of Fig. 5(b). The goal is to maximize the
coupling into the cavity for the fundamental Gaussian mode.
To do so, we use the camera and reduce the scan amplitude
until the fundamental mode is the only one flashing on the
camera. Then, we maximize the depth of the corresponding
dip on the reflection photodiode relative to the fully reflected
signal, by adjusting the coupling mirrors.

The process of coupling is iterative: if the signal after align-
ing the mirrors is still sub-optimal, we slightly adjust the po-
sition of the lens and restart the process. We aim for the re-
flection dip to be ≳ 80% of the fully reflected signal while

R
R

R

m+n  =       0          1          2         3          4          5          6

(a)

(c)

(d)

(b)

FIG. 5. Measured reflection coefficient R from cavity while scan-
ning the laser frequency quickly over approximately three free spec-
tral ranges. (a) Cavity modes imaged in transmission through the
cavity, where m and n denote the integers labelling the transverse
modes TEMm,n. The gain and exposure time of the camera were
increased to image each successive mode, so the relative intensity
is not comparable between images. (b) Full scan over three FSR.
Here, the coupling into the cavity was purposely not optimized into
the fundamental mode to enhance the visibility of the higher-order
modes. In (c), we decrease the time scale by a factor of approxi-
mately 10 and center on the first two modes depicted in (b). Here,
it starts to become noticeable that the resonance dips and peaks have
non-zero linewidths. From (c) to (d), we decrease the time scale by
a factor of approximately 30 and center on the fundamental mode.
The reflection signal decreases on resonance, here to approximately
85% of complete reflection. It then increases past 115% reflection
and oscillates at an increasing frequency with an amplitude that de-
cays exponentially. Here, the cavity resonance FWHM is δν ≃ 60
kHz, corresponding to a 1/e decay time of τ = 2.7 µs, and we scan
the laser frequency at a rate of approximately 900 MHz/ms.

scanning the laser and for the higher-order modes to be nearly
nonexistent. Decreasing the scan speed helps one achieve
deeper dips in reflection, as the laser spends more time on
resonance.

Figures 5(b) and 5(c) shows the intensity of the reflected
light from our cavity (after coupling, but before fully optimiz-
ing into the fundamental mode) when scanning a laser quickly
over three free spectral ranges. The higher order modes are
visible with decreasing amplitude and equally spaced in fre-
quency. Having previously calibrated the conversion between
the piezo scan amplitude and the change in frequency for our
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laser, we measure the frequency spacing between the differ-
ent modes to be 222 MHz, which is the same as the expected
value we calculate from Eq. (5) for our cavity. The trans-
verse modes were imaged by a camera in transmission and
show the expected Hermite-Gaussian intensity patterns. If the
setup were perfectly cylindrically symmetric, the modes with
the same value of m + n would be exactly degenerate in fre-
quency, and the intensity pattern would be the superposition
of all degenerate modes. In Fig. 5(a), the ob served mode
for m + n = 2 corresponds to a superposition of the three
modes shown in Fig. 1(b). The images of other higher-order
modes show less perfect superposition due to the combined
effect of imperfections in the cavity symmetry, which lift the
degeneracy of modes with the same value of m+ n,12 and of
a nonsymmetric coupling of the incident beam, which favors
some modes.

Figure 5 also shows that the signal in reflection when scan-
ning the laser frequency is not the expected quasi-static re-
sponse with approximately Lorentzian dips at resonance, as
sketched in Fig. 1(c). If one zooms on resonance, one ob-
serves an asymmetric, oscillating response [Figs. 5(c) and
5(d)]. Closer inspection shows a chirped oscillation with a
decaying envelope. In Appendix B, we investigate this os-
cillating response in more detail and show how it provides
information on the laser scan rate and cavity finesse.

C. Pound-Drever-Hall locking of the laser

We now turn to locking the laser to our ultrastable cavity
using the Pound-Drever-Hall (PDH) technique. In short, the
PDH technique generates an error signal with a large capture
range. This is achieved by using phase modulation at a fre-
quency fmod to create sidebands on the laser light; when the
carrier is not exactly resonant with the cavity, it is partially
reflected and beats with the reflected sidebands. The PDH er-
ror signal is derived from the amplitude of this beat note, and
the capture range is given by ±fmod. For an in-depth explana-
tion of the concepts underlying PDH locking, we refer readers
to the excellent introduction in Ref. 20. In the following, we
focus on the practical implementation of the PDH lock.

Our setup is depicted in Fig. 6(a). As the local oscillator for
generating the PDH signal, we use an arbitrary function gen-
erator at fmod = 20 MHz to drive a fiber EOM that modulates
the phase of the laser light.21 The reflection photodiode signal
is amplified and mixed with a phase-shifted version of the 20
MHz modulation and then lowpass filtered before being fed
into the proportional-integral-derivative (PID) controller. The
error signal from the Error Monitor output of our PID con-
troller is shown in Fig. 6(b). We optimize the phase of the
local oscillator by first finding the phase that minimizes the
error signal peaks and then adding 90◦. We then adjust the
DC offset on the PID controller such that the baseline of the
error signal is at 0 V. To lock the laser, we slowly decrease the
scan amplitude to zero while adjusting the laser frequency to
stay centered on the middle error signal peak. We then acti-
vate the lock. T o check whether the laser remains locked on
resonance or not, we monitor the signal from the transmission

FIG. 6. (a) Optical setup for PDH locking of the laser to the cav-
ity. We use a Toptica DL-pro laser that outputs 80 mW and send
approximately 350 µW to a fiber EOM (EOSPACE) modulated at
20 MHz by an arbitrary function generator (Tektronix AFG 3022C).
The reflection signal from the cavity is sent to a photodiode (Thor-
Labs PDA10A-EC), and the photodiode signal is amplified (Mini-
Circuits ZFL-500+) before being mixed (Mini-Circuits ZAD-1H+)
with a phase-shifted version of the modulation signal and sent to the
PID controller (Vescent D2-125). The error signal is monitored by
an output from the PID and is shown in (b) and (c). For (d) and (e),
we use the AOM (AA Opto Electronics at 80 MHz) to abruptly cut
the light in the cavity and measure the decay of the transmission sig-
nal; TSS is the intensity transmission coefficient in the steady state.
Fitting to an exponential decay gives τ = 2.6 µs.

photodiode on the oscilloscope; when locked, the transmis-
sion signal should remain near the peak value observed when
scanning the laser frequency.

The PID parameters must then be tuned to optimize the
lock. The goal is to maximize the amount of time for which
the laser remains locked and to minimize the amplitude of the
remaining fluctuations of the error signal. The optimal PID
parameters vary for each setup and depend on the parameters
of the feedback loop. Manufacturers of PID controllers of-
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ten have useful information in the provided manuals.22 Figure
6(c) shows our error signal when the laser is locked, with RMS
fluctuations of 0.14 V. Using the slope of the central error sig-
nal peak from Fig. 6(b), which is 27 V/MHz, we estimate
that the RMS frequency fluctuations of our laser are approx-
imately 5 kHz.23 To further characterize the frequency noise,
one can analyze the full noise spectrum of the error signal, as
done for instance in Ref. 24.

D. Measuring cavity finesse using the ringdown technique

Once the laser is locked, it is possible to measure accu-
rately the cavity decay time τ using the ringdown method,
which consists in abruptly switching off the incident beam to
the cavity and measuring the temporal decay of the transmit-
ted signal. Using an AOM, we shut off the light sent to the
cavity in less than 200 ns. Figure 6(d) shows the evolution of
the signal in transmission. Fitting the decay by an exponen-
tial, we measure a 1/e decay constant τ = 2.6(1)µs, giving a
finesse of 2.5(1) × 104, which is in good agreement with the
nominal finesse of the cavity (25,200).

IV. DISCUSSION

In this article, we have given an introductory overview of
both the conceptual background and practical setup of ul-
trastable cavities for locking lasers. We believe this article
will be useful for students and researchers setting up ultra-
stable cavities for use in atomic and molecular physics ex-
periments. In addition, the material presented here could be
adapted for advanced undergraduate instructional laboratory
courses to design several projects, such as coupling and mode
matching into the cavity, including imaging the higher-order
modes (Sec. III B); locking the laser using the PDH method
(Sec. III C); measuring the finesse of the cavity using the ring-
down technique (Sec. III D); and investigating the temporal
response of the cavity to frequency sweeps in reflection and
transmission (Appendix B). Such experiments will give stu-
dents exposure to many essential concepts in modern experi-
mental optics, including Gaussian beam physics, signal modu-
lation, the use of electro-optic and acousto-optic devices, laser
locking, and data analysis. We emphasize that for such peda-
gogical applications, the state-of-the-art equipment described
here—such as an ultrastable ULE cavity under vacuum, a fiber
EOM, and a high-quality ECDL—is not necessarily required.
For instance, it is possible to build a (nonultrastable) cavity
of finesse ≃ 20, 000 using off-the-shelf commercial mirrors
and a stainless steel spacer within a budget of a couple thou-
sand dollars,25 making the experiments described in this ar-
ticle more accessible to students in undergraduate laboratory
courses.
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Appendix A: Higher-order Gauss-Hermite beams

For the sake of completeness, we include here the full
expression for the wave amplitudes of higher-order Gauss-
Hermite beams in cylindrical coordinates, which is

Em,n(r, z) =E0
w0

w(z)
exp (−ikz)×

Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
×

exp

[
−r2

(
1

w2(z)
+

k

2R(z)

)]
×

exp

[
−i(m+ n+ 1) tan−1

(
z

zR

)]
,

where w(z) = w0

√
1 + (z/zR)

2, k = 2π/λ is the angular
wavenumber, Hi are the Hermite polynomials, and the waist
is located at z = 09.

Appendix B: Cavity response to a frequency sweep

To gain some insight on the origin of the chirped oscilla-
tions seen in Fig. 5(d), we vary the rate ν̇L at which we scan
the laser frequency. Figure 7(a) shows the calculated signal
that we would expect at very low scan rates (1 MHz/ms) for
a laser with zero jitter. Figure 7(b) shows the measured signal
in reflection for the same scan rate. Instead of the expected
Lorentzian dip, we observe an erratic signal that originates
from the laser frequency jumping in and out of resonance with
the cavity, as the laser frequency fluctuates erratically on the
timescale of tens to hundreds of microseconds during the ap-
plied linear scan.

As we increase the scan rate [Fig. 7(c) – 7(e)], we focus
on time scales where the laser jitter is less noticeable, and the
signal becomes cleaner. As previously noted, the reflection
signal shows an oscillatory behavior with a chirp rate that de-
pends on the laser frequency scan rate, ν̇L. To quantify this
dependence, we measure the instantaneous frequency νosc of
the oscillations as a function of time and plot one such mea-
surement (for ν̇L ≃ 700 MHz/ms) in Fig. 7(f). From Fig.
7(f), it is clear that the oscillations have a linear chirp, with a
slope we denote ν̇osc. Plotting ν̇osc as a function of ν̇L [Fig.
7(g)] shows that, to a very good approximation, ν̇osc = ν̇L:
the instantaneous oscillation frequency increases at the same
rate as the laser frequency.
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FIG. 7. Measured reflection coefficient R for different laser fre-
quency scan rates. (a) Simulation of reflection intensity for ν̇L ≃ 1
MHz/ms. (b) Measured reflection signal for ν̇L ≃ 1 MHz/ms show-
ing the widening of the resonance relative to (a) due to laser jit-
ter. (c, d, e) Measured reflection signals for increasing frequency
scan rates, showing that the oscillations increase in frequency with
the scan rate. (f) Measured instantaneous oscillation frequency for
ν̇L ≃ 700 MHz/ms. As shown, the oscillation frequency is a linear
chirp whose slope gives the measured value of ν̇osc. (g) Measured
values of ν̇osc for different values of ν̇L, with the gray line represent-
ing ν̇osc = ν̇L.

To understand better this behavior, we consider in more de-
tail Fig. 7(e). At times prior to approximately 11 µs, the laser
is off-resonance, and the intra-cavity field is zero. We thus
see the cavity’s expected response: all incident light is re-
flected. Around 12 µs, the laser becomes resonant with the
cavity, and we observe a dip in the reflected signal as we in-
ject light into the cavity. After this initial dip, the incident
laser frequency continues to scan away from resonance. We
then observe oscillations due to the beating of two fields: the
resonant field Ecav at frequency ν0 that has built up within
the cavity and is leaking out the first mirror, and the reflected
incident laser field Einc, whose frequency νL(t) is sweeping
away from resonance. These two fields beat at their differ-
ence frequency: νosc(t) = νL(t) − ν0, thus explaining the

observed relationship ν̇osc = ν̇L. We can express the mea-
sured intensity in reflection as Iref ∝ |Ecav e

−t/2τ + Einc|2,
where τ is the 1/e lifetime of the intracavity intensity. The
oscillating term that we observe in the signal arises from the
cross-terms and is proportional to |Einc| |Ecav| e−t/2τ . By
contrast, in transmission, the measured intensity is given by
Itr ∝ |Ecav e

−t/2τ |2 = |Ecav|2 e−t/τ . Thus, in transmission,
we expect a signal that decays as e−t/τ , twice as fast as that
in reflection, which decays as e−t/2τ .

To confirm this interpretation, we compare in Fig. 8 the re-
flected and transmitted signals for a scan rate of 300 MHz/ms.
In transmission [Fig. 8(b)], the signal starts at zero when
the laser is off-resonance and then peaks on resonance, as
expected. It then decays as the intra-cavity field leaks out.
During the decay, the signal exhibits similar oscillations as in
reflection, albeit with smaller amplitude. Direct interpretation
in terms of beating between different fields is less simple to
understand than in reflection, but fitting the decay confirms
that it is indeed exponential with time constants in reflection
(τref ) and transmission (τtr) related by τref ≃ 2τtr. For the
data in Fig. 8, we find that τref = 4 µs and τtr = 2 µs. The
time constant τtr is close to the expected value of 2.67 µs for
the cavity decay time τ calculated from th e cavity’s nominal
finesse of 25,200 [see Eq. (3)]. Measuring the decay constant
of the overall envelope in reflection or transmission thus gives
a simple way to estimate the finesse of the cavity, though with
less accuracy and precision than the (more involved) ringdown
technique that we describe in Sec. III D.

Figure 8 calls for two other observations. First, the reflec-
tion signal has a significantly better signal-to-noise ratio than
the transmission signal; this is due to heterodyning. The small
intracavity field leaking out the first mirror is heterodyned
with the relatively large reflected field, which has a much
greater amplitude, leading to a better signal quality than the
transmitted signal. Additionally, in both reflection and trans-

T
/T

m
ax

R

(a)

(b)

FIG. 8. Comparison of signals in reflection (a) and transmission (b).
Both signals show chirped oscillations with an overall decaying ex-
ponential envelope. Exponential fits of the envelopes give the 1/e
decay time of the reflection signal as τref = 4 µs and of the transmis-
sion signal as τtr = 2 µs. The signal-to-noise ratio is significantly
better in the reflection signal due to heterodyning. Here, we scan the
laser frequency at a rate of approximately 300 MHz/ms.
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more quantitative models, see Refs. 26–29.
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