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DE RHAM Lp-COHOMOLOGY
FOR HIGHER RANK SPACES AND GROUPS:

CRITICAL EXPONENTS AND RIGIDITY

MARC BOURDON AND BERTRAND RÉMY

Abstract. We initiate the investigation of critical exponents (in
degree equal to the rank) for the vanishing of Lp-cohomology of
higher rank Lie groups and related manifolds. We deal with the
rank 2 case and exhibit such phenomena for SL3(R) and for a fam-
ily of 5-dimensional solvable Lie groups. This leads us to exhibit a
continuum of quasi-isometry classes of rank 2 solvable Lie groups
of non-positive curvature. We provide a detailed description of the
L
p-cohomology of the real and complex hyperbolic spaces, to be

combined with a spectral sequence argument for our higher-rank
results.
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Introduction

Lp-cohomology provides a family of large scale geometry invariants
for metric spaces and groups. It has many variants (such as asymptotic
Lp-cohomology, or group Lp-cohomology via continuous cohomology of
locally compact groups) which are all comparable to one another un-
der suitable, not so demanding, conditions. Each viewpoint brings its
own insights: for instance asymptotic Lp-cohomology shows that Lp-
cohomology is an invariant under quasi-isometry (in fact, under coarse
isometry), and continuous cohomology allows one to use standard al-
gebraic tools such as spectral sequences. In the present paper, we are
interested in the de Rham Lp-cohomology viewpoint; roughly speaking,
we are dealing with forms satisfying, together with their differentials,
Lp-integrability conditions with respect to measures given by suitable
Riemannian metrics.

Lp-cohomology is better understood in rank 1 situations, where con-
tractions and negative curvature arguments can be used to perform
some computations. In particular, critical exponent phenomena with
respect to p for vanishing vs non-vanishing of Lp-cohomology in de-
gree 1 sometimes have beautiful geometric interpretations, for instance
in terms of conformal dimension of the boundary at infinity of the
considered hyperbolic spaces. In higher rank, the existing results and
conjectures often deal with Lie groups (and associated homogeneous
spaces) which are assumed to be semisimple: this is a class of groups
which admit a well-known classification in terms of discrete combina-
torial objects.

References for Lp-cohomology include [Gro93, Pan95, Pan99, Pan07,
Pan08, Pan09, CT11, Gen14, SS18, Seq20, BR20, BR23, LN23].

In the present paper, we are interested in the de Rham Lp-cohomology
of solvable Lie groups of rank 2. More precisely, motivated by a ques-
tion of Cornulier, we exhibit, for some groups of this type, a critical
exponent phenomenon in degree 2 (see Theorem 5.2), which allows us
to prove the following quasi-isometric rigidity result:

Theorem A. Consider the solvable Lie groups Sα := R2
⋉αR

3, where
α : R2 → {diagonal automorphisms of R3} is any monomorphism
whose image contains the subgroup {e−tidR3}t∈R. Then:

(i) Any two such groups are quasi-isometric if, and only, if they
are isomorphic.

(ii) As a consequence, there exists a continuum of quasi-isometry
classes of rank 2 solvable groups of non-positive curvature.
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The fact that Sα admits a left-invariant Riemannian metric of non-
positive sectional curvature follows from the Azencott-Wilson classifi-
cation [AW76].

Going back to semisimple groups, the same approach – which we
describe below in more details – enables us to obtain another rank 2
critical exponent phenomenon (see Section 7.4):

Theorem B. Let S be the symmetric space SL3(R)/SO3(R). Then
LpH2

dR(S) is zero for p ∈ (1; 2)\{4
3
}, and non-zero for p ∈ (2; +∞)\{4}.

In fact, this theorem is also a result on Lie groups since, by Iwasawa
decomposition, we can replace the symmetric space S by the Borel
subgroup of SL3(R): it is a specific rank 2 solvable group, namely the
semidirect product of R2 and of the Heisenberg group in dimension 3,
which we denote by Heis(3).

In both instances of the solvable groups dealt with in the above
theorems, we can decompose the action of R2 on the 3-dimensional
subgroup R3 (resp. on Heis(3)) into two steps. In a first step, one
factor R of R2 acts on R3 (resp. on Heis(3)) so that the intermedi-
ate (rank 1) semidirect product is a non-unimodular solvable group
isometric to the real (resp. complex) hyperbolic space of real dimen-
sion 4. Then, as a second step, we consider the action of the second
factor R of R2 and use a spectral sequence argument, together with
the fact that we understand in detail the cohomology of the intermedi-
ate 4-dimensional group of the first step. Thus, at this stage, proving
the non-vanishing of the considered Lp-cohomology amounts to show-
ing that some de Rham classes on the rank 1 group satisfy a certain
Lp-integrability condition (see Section 5.4, and Relation 7.7 in Section
7.4). The vanishing part requires to use a Poincaré duality argument in
order to show the requested non-integrability of the relevant de Rham
classes.

The main result about the rank 1 intermediate solvable groups above
is Theorem 3.2. It provides a partial description of the Lp-cohomology
of Lie groups containing a suitable 1-parameter subgroup of (semi)
contractions acting on its complement. The obtained description com-
plements some previous results of Pansu [Pan99, Sections 9 and 10]; we
call it a strip decomposition since its hypotheses are stated as (double)
inequalities that must be satisfied by the exponent p with respect to
quantities depending on the degree k of the cohomology and on the in-
finitesimal eigenvalues of the contraction group. The conclusions deal
with the following properties: vanishing, Hausdorff property, density
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of some explicit subspaces of closed forms, and finally Poincaré duality
realized at infinity, i.e. on the group-theoretic complement of the con-
traction group (which is a Lie group seen as a boundary of the ambient
group).

To sum up this part of the paper, the statement of Theorem 3.2
is a group-theoretic way to obtain information on hyperbolic spaces
(real ones in Section 4 and complex ones in Section 6), while its proof
relies on general arguments from Riemannian geometry. We note that
the case of complex hyperbolic spaces requires a substantial additional
amount of work dealing with Heisenberg groups of arbitrary dimension,
elaborating on ideas due to Rumin [Rum94] and Pansu [Pan09].

Again, from a technical point of view, the paper deals with de Rham
cohomology only, and some of our results are valid for Riemannian man-
ifolds endowed with a suitable contracting vector field, even though the
main applications are relevant to the Lie group situation. This applies
in particular to the main new technical result (Theorem 2.5) which
translates the Poincaré duality in terms of currents on the “bound-
ary”.

Let us finish this introduction with three remarks.

1) In [Pan99, Corollary 2] Pansu already uses Lp-cohomology to show
that the groups Gα := R⋉Rn, with α = diag(α1, . . . , αn) and 1 = α1 6
α2 6 · · · 6 αn, form a continuous family of pairwise non-quasiisometric
negatively curved solvable Lie groups. This result has been generalized
by Xie [Xie14, Corollary 1.3] to non-diagonal automorphisms, by using
more geometric methods.

2) Our results in group theory apply to Lie groups endowed with
(semi-)contractions, hence cannot directly imply results on discrete
groups by seeing them as lattices in Lie groups (our Lie groups are
not unimodular). Nevertheless, the quasi-isometry invariance suggests
that a less naive approach may be used to investigate discrete groups
(note, for instance as in [EFW07, Introduction], that a surface group
is quasi-isometric to the affine group of dimension 2).

3) Our results on de Rham Lp-cohomology of hyperbolic spaces
can be compared with Borel’s on L2-cohomology of symmetric spaces
[Bor85]. It turns out that for complex hyperbolic spaces our results are
complementary in the sense that the exponent p = 2 is never contained
in the interior of the strips we distinguish. Nevertheless, for H

m
C

it is
in the closure (and in the middle) of the union ]2 m

m+1
; 2[ ⊔ ]2; 2 m

m−1
[ of

two critical strips. For p in the interior of each segment our Theorem
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6.1 says that LpHm
dR(H

m
C
) is Hausdorff and non-zero, while Theorem A

of [loc. cit.] says that L2Hm
dR(H

m
C
) is Hausdorff and non-zero. Moreover

it describes the latter space in representation-theoretic terms. For real
hyperbolic spaces Hn+1

R
, we have to distinguish two cases according to

the parity of n. When n is odd, our Theorem 4.1 recovers Theorem A(i)
of [loc. cit.], that says that L2H•

dR(H
n+1
R

) is Hausdorff and concentrated
in degree n+1

2
. When n is even, Theorem B of [loc. cit.] complements

our result by saying that L2H•
dR(H

n+1
R

) is zero and L2H•
dR(H

n+1
R

) is not
Hausdorff in degree n

2
+ 1.

Structure of the paper. Section 1 introduces currents in the context
of Lp-cohomology; it also recalls Poincaré duality for the reduced vari-
ant of it. Section 2 introduces flows with suitable contraction properties
on manifolds; it describes their effects on Lp-cohomology and intro-
duces a version of Poincaré duality involving currents on the ”bound-
ary” of such a manifold. In Section 3, the situation is specialized to
the case of Lie groups; the existence of a suitable 1-dimensional (semi)
contracting group leads to the strip description of the Lp-cohomology
of the groups under consideration. In Section 4, we apply the result
of the previous section to deduce the description of the Lp-cohomology
of real hyperbolic spaces. The objects of study in Section 5 are the
solvable Lie groups of rank 2 defined in Theorem A; this is where we
obtain our first critical exponent phenomenon and where we exhibit a
continuum of pairwise non-quasiisometric groups. Section 6 provides
the description of the Lp-cohomology of complex hyperbolic spaces; this
requires more care than for the real case, and in particular it leads to
an intensive use of Heisenberg groups. At last, in Section 7, using the
same strategy as for the quasi-isometry rigidity theorem of Section 5,
we obtain our second higher-rank critical exponent phenomenon, this
time for the symmetric space SL3(R)/SO3(R).

Acknowledgements. We thank Yves Cornulier who drawn our atten-
tion to the groups Sα (defined in Theorem A), and for useful remarks
and questions. M.B.was partially supported by the Labex Cempi.

1. Currents and de Rham Lp-cohomology

In this section, we give a quick presentation of de Rham Lp-cohomology
and related topics.
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1.1. Currents. Currents play a center role in classical de Rham coho-
mology. We recall some of the basic definitions and properties useful
for the Lp variant (see [DS05] for more informations).

LetM be a C∞ orientable D-manifold without boundary. For k ∈ Z,
let Ωk(M) be the space of C∞ differential k-forms onM , and let Ωk

c (M)
be the space of compactly supported C∞ differential k-forms, endowed
with the C∞ topology. As usual we set Ωk(M) = Ωk

c (M) = {0} for
k < 0.

A k-current on M is by definition a continuous real valued linear
form on ΩD−k

c (M). We denote by D′k(M) the space of k-currents on
M endowed with the weak*-topology.

To every ω ∈ Ωk(M), one associates the k-current Tω defined by
Tω(α) :=

∫

M
ω ∧ α. This defines an embedding of Ωk(M) into D′k(M),

whose image is known to be dense. The differential of a k-current T
is the (k+ 1)-current dT defined by dT (α) := (−1)k+1T (dα), for every
α ∈ ΩD−k−1

c (M). The so-obtained map d satisfies d◦d = 0. Since M is
assumed to have no boundary, this definition is consistent with Stokes’
formula:

∫

M

dω ∧ α = (−1)k+1

∫

M

ω ∧ dα.

More generally, suppose we are given ℓ ∈ Z, and a continuous linear
operator L : Ω∗(M) → Ω∗−ℓ(N) – where M and N are orientable
manifolds of dimension DM and DN respectively – such that there is a
continuous operator L̃ : ΩDN−∗+ℓ

c (N) → ΩDM−∗
c (M), with

∫

N

L(ω) ∧ α =

∫

M

ω ∧ L̃(α),

for every ω ∈ Ω∗(M) and α ∈ ΩDN−∗+ℓ
c (N). Then L extends by conti-

nuity to D′∗(M) → D′∗−ℓ(N), by setting (L(T ))(α) := T (L̃(α)). This
applies e.g. to inner products ιξ : Ω∗(M) → Ω∗−1(M) by a vector
field ξ on M . One has ι̃ξ = (−1)k+1ιξ on ΩD−k+1

c (M), since ιξ is an
anti-derivation (see e.g. [Tu08, Proposition 20.8]).

In local coordinates (x1, ..., xD) on an open subset U ⊂ M , every
k-current T ∈ D′k(U) can be written T =

∑

|I|=k TIdxI , with TI ∈

D′0(U). For every α ∈ ΩD−k
c (U), one has T (α) =

∑

|I|=k TI(dxI ∧ α).

1.2. De Rham Lp-cohomology: definitions and notations. We
list and fix the definitions and notations for several objects that will
appear repeatedly in the paper.
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Let M be a C∞ orientable manifold (without boundary), henceforth
endowed with a Riemannian metric. We denote by dvol its Riemannian
measure, and by |v| the Riemannian length of a vector v ∈ TM .

• Let p ∈ (1,+∞). The Lp-norm of ω ∈ Ωk(M) is

‖ω‖LpΩk =
(

∫

M

|ω|pm dvol(m)
)1/p

,

where we set

|ω|m := sup{|ω(m; v1, . . . , vk)| : v1, . . . , vk ∈ TmM, |vi| = 1}.

• The space LpΩk(M) is the norm completion of the normed space
{ω ∈ Ωk(M) : ‖ω‖LpΩk < +∞}, i.e. the Banach space of k-
differential forms with measurable Lp coefficients.

• To every ω ∈ LpΩk(M), one associates the k-current Tω defined
by Tω(α) :=

∫

M
ω ∧ α. The differential in the sense of currents

of ω ∈ LpΩk(M) is the (k + 1)-current dω := dTω. One says
that dω belongs to LpΩk+1(M) if there exists θ ∈ LpΩk+1(M)
such dω = Tθ. In this case we set ‖dω‖LpΩk+1 := ‖θ‖LpΩk+1.

• For ω ∈ Ωk(M), we set

‖ω‖Ωp,k := ‖ω‖LpΩk + ‖dω‖LpΩk+1.

The space Ωp,k(M) is the norm completion of the normed space
{ω ∈ Ωk(M) : ‖ω‖Ωp,k < +∞}. It is a Banach space that
coincides with the subspace of LpΩk(M) consisting of the Lp

k-forms whose differentials in the sense of currents belong to
LpΩk+1(M). Moreover the differential operator d on Ωp,∗(M)
agrees with the differential in the sense of currents. (See e.g.
[BR23, Lemma 1.5] for a proof).

• The de Rham Lp-cohomology of M is the cohomology of the
complex

Ωp,0(M)
d0→ Ωp,1(M)

d1→ Ωp,2(M)
d2→ . . .

It is denoted by LpH∗
dR(M). Its largest Hausdorff quotient is

denoted by LpH∗
dR(M) and is called the reduced de Rham Lp-

cohomology of M . The latter is a Banach space; its (quotient)
norm is denoted by ‖ · ‖LpH∗ .

• Following Pansu, we also define Ψp,k(M) to be the space of k-
currents ψ ∈ D′k(M) that can be written ψ = β + dγ, with
β ∈ LpΩk(M) and γ ∈ LpΩk−1(M). In particular we have
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Ψp,0(M) = Lp(M). Equipped with the norm

‖ψ‖Ψp,k := inf
{

‖β‖LpΩk + ‖γ‖LpΩk−1 : ψ = β + dγ,

with β ∈ LpΩk(M) and γ ∈ LpΩk−1(M)
}

,

the space Ψp,k(M) is a Banach space, and the inclusion maps
between differential complexes:

Ωp,∗(M) ⊂ Ψp,∗(M) ⊂ D′∗(M)

are continuous (see [BR23, Lemma 1.3] for a proof).
• Suppose that M carries a C∞ unit complete vector field ξ, and
let (ϕt)t∈R be its flow. Assume that ϕ∗

t : L
pΩk(M) → LpΩk(M)

is bounded for all t ∈ R, p ∈ (1,+∞) and k ∈ N. We set

Ψp,k(M, ξ) := {ψ ∈ Ψp,k(M) : ϕ∗
t (ψ) = ψ for every t ∈ R}.

The differential complex Ψp,∗(M, ξ) is a closed subcomplex of
Ψp,∗(M). Let

Zp,k(M, ξ) := Ker
(

d : Ψp,k(M, ξ) → Ψp,k+1(M, ξ)
)

be the space of k-cocycles.

1.3. Poincaré duality. Poincaré duality for de Rham Lp-cohomology
takes the following form.

Proposition 1.1. Let M be a complete oriented Riemannian manifold
of dimensionD. Let p ∈ (1,+∞), q = p/(p−1) be its Hölder conjugate,
and k ∈ {0, . . . , D}. Then

(1) LpHk
dR(M) is Hausdorff if and only if LqHD−k+1

dR (M) is.

(2) LpHk
dR(M) and LqHD−k

dR (M) are dual Banach spaces, via the

perfect pairing LpHk
dR(M)× LqHD−k

dR (M) → R, defined by

([ω1], [ω2]) 7→

∫

M

ω1 ∧ ω2.

Proof. See [Pan08, Corollaire 14] or [GT10]. �

The following terminology will be useful in the sequel.

Definition 1.2. Let p, q ∈ (1,+∞) and k, ℓ ∈ {0, . . . , D}. The couples
(p, k) and (q, ℓ) are said to be Poincaré dual if p and q are Hölder
conjugate and if ℓ = D − k.
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2. Flows and de Rham Lp-cohomology

This section exploits some dynamical properties of flows acting on
forms to extract information on Lp-cohomology. The objects appearing
in this section are defined in Section 1.2. In what follows, we keep M a
C∞ orientable manifold (without boundary) endowed with a Riemann-
ian metric.

2.1. Invariance, identification and vanishing. We review several
results due to Pansu, see [Pan08, Proposition 10] or [BR23, Section 1].

Let ξ be a C∞ unit complete vector field onM , and denote by (ϕt)t∈R
its flow. We assume that ϕ∗

t : LpΩk(M) → LpΩk(M) is bounded for
all t ∈ R, p ∈ (1,+∞) and k ∈ N. This happens e.g. when M is a
manifold of bounded geometry, i.e. a manifold whose injectivity radius
is bounded from below and whose sectional curvatures are bounded
from above and from below.

Proposition 2.1. Let p ∈ (1,+∞) and let k ∈ N. Then for every
ω ∈ Ωp,k(M)∩Ker d and t ∈ R, the forms ω and ϕ∗

tω are cohomologous
in LpHk

dR(M).

Proof. See e.g. [BR23, Lemma 1.3]. �

Proposition 2.2. Let p ∈ (1,+∞) and k ∈ N∗. Suppose that there
exist C, η > 0 such that for every t > 0, one has

‖ϕ∗
t‖LpΩk−1→LpΩk−1 6 Ce−ηt.

Then:

(1) Let ω ∈ Ωp,k(M) ∩ Ker d. When t → +∞, the form ϕ∗
tω con-

verges in the Banach space Ψp,k(M) (and so in the sense of
currents); its limit ω∞ is a closed current in Zp,k(M, ξ).

(2) The map ω 7→ ω∞ induces a canonical Banach isomorphism

LpHk
dR(M) ≃ Zp,k(M, ξ).

In particular LpHk
dR(M) is Hausdorff.

Proof. The statement is essentially contained in [Pan08, Proposition
10]. A proof also appears in [BR23, Proposition 1.9] under the stronger
assumption that maxi=k−2,k−1 ‖ϕ

∗
t‖LpΩi→LpΩi 6 Ce−ηt. The extra as-

sumption served only in parts (3) and (4) of the proof, to show that
lim

t→+∞
‖ϕ∗

t (dθ)‖Ψp,k = 0 for every θ ∈ LpΩk−1(M). But the weaker hy-

pothesis ‖ϕ∗
t‖LpΩk−1→LpΩk−1 6 Ce−ηt is enough to prove this property.
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Indeed, by combining the definition of ‖ · ‖Ψp,k with this assumption,
one has

‖ϕ∗
t (dθ)‖Ψp,k = ‖d(ϕ∗

tθ)‖Ψp,k 6 ‖ϕ∗
t θ‖LpΩk−1 → 0

when t→ ∞. �

Corollary 2.3. Let p ∈ (1,+∞) and k ∈ N∗. Suppose that there exist
C, η > 0 such that for every t > 0, one has

max
i=k−1,k

‖ϕ∗
t‖LpΩi→LpΩi 6 Ce−ηt.

Then LpHk
dR(M) = {0}.

Proof. Our assumption implies that ‖ϕ∗
t‖Ψp,k→Ψp,k 6 Ce−ηt; and also

that LpHk
dR(M) ≃ Zp,k(M, ξ) by Proposition 2.2. Since the elements of

Zp,k(M, ξ) are ϕt-invariant, one gets that Z
p,k(M, ξ) = {0}. Therefore

LpHk
dR(M) = {0}. �

2.2. Boundary values, Poincaré duality revisited. In this section,
the oriented Riemanniann manifoldM is supposed to be complete. We
assume futhermore that M and the unit vector field ξ are such that
the pair (M, ξ) is C∞-diffeomorphic to a pair of the form (R×N, ∂

∂t
),

where the vector field ∂
∂t

is carried by the R-factor.

We think of N as a “boundary” of M . Under some dynanical as-
sumptions, we will represent the spaces LpHk

dR(M) and the Poincaré
duality on the boundary N (see Proposition 2.4 and Theorem 2.5 be-
low).

Let π :M → N be the projection map and π∗ : D′i(N) → D′i(M) be
the continuous extension of the pull-back map π∗ : Ωi(N) → Ωi(M).
We set n =: dimN so that D := dimM = n+ 1.

Proposition 2.4. Let p ∈ (1,+∞) and k ∈ N∗. Suppose that there
exist C, η > 0 such that for t > 0:

‖ϕ∗
t‖LpΩk−1→LpΩk−1 6 Ce−ηt.

Then for every ψ ∈ Zp,k(M, ξ), there exists T ∈ D′k(N) ∩ Ker d such
that ψ = π∗(T ).

Proof. Recall that ξ = ∂
∂t

and that the flow of ξ is denoted by ϕt.
Every ψ ∈ Zp,k(M, ξ) is ϕt-invariant; therefore showing that ψ = π∗(T )
is equivalent to proving that ιξψ = 0. From Proposition 2.2, there
exists ω ∈ Ωp,k(M) ∩ Ker d such that ψ = limt→+∞ ϕ∗

t (ω) in the sense
of currents. Since the map ιξ : D′k(M) → D′k−1(M) is continuous,
one obtains that ιξψ = limt→+∞ ϕ∗

t (ιξω) in the sense of currents. But
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ιξω ∈ LpΩk−1(M), and by assumption one has ‖ϕ∗
t‖LpΩk−1→LpΩk−1 → 0

when t → +∞. Thus ιξψ = 0. Lastly, since dψ = 0 one gets that
π∗(dT ) = 0, which in turn implies that dT = 0. �

Let χ be a non-negative C∞ function on M , depending only on the
R-variable, such that χ(t) = 0 for t 6 0 and χ(t) = 1 for t > 1.

Theorem 2.5. Let p, q ∈ (1,+∞) and k, ℓ ∈ {1, . . . , n} be such that
(p, k) and (q, ℓ) are Poincaré dual — see Definition 1.2. Suppose that
there exist C, η > 0 such that for t > 0:

(1) ‖ϕ∗
t‖LpΩk−1→LpΩk−1 6 Ce−ηt,

(2) ‖ϕ∗
−t‖Ker ιξ∩LqΩℓ→Ker ιξ∩LqΩℓ 6 Ce−ηt.

Then for every θ ∈ Ωℓ−1
c (N), the form d(χ · π∗θ) belongs to the space

Ωq,ℓ(M) ∩Ker d; and for every ω ∈ Ωp,k(M) ∩Ker d, one has:
∫

M

ω ∧ d(χ · π∗θ) = T (θ),

where T is the closed k-current on N such that

ω∞ = lim
t→+∞

ϕ∗
t (ω) = π∗(T ),

as in Propositions 2.2 and 2.4.

As a consequence of Theorem 2.5, we will prove:

Corollary 2.6. Suppose that the assumptions of Theorem 2.5 are sat-
isfied. Then the classes of the d(χ · π∗θ)’s (where θ ∈ Ωℓ−1

c (N)) form a

dense subspace in LqHℓ
dR(M). Moreover when θ = dα is an exact form,

with α ∈ Ωℓ−2
c (N), then [d(χ · π∗θ)] = 0 in LqHℓ

dR(M).

Recall that LpHk
dR(M) and LqHℓ

dR(M) are dual Banach spaces, via
the pairing ([ω1], [ω2]) 7→

∫

M
ω1∧ω2 (see Proposition 1.1). In combina-

tion with Theorem 2.5 and Corollary 2.6 above, this yields immediately
to the:

Corollary 2.7. Suppose that the assumptions of Theorem 2.5 are sat-
isfied. Let ω ∈ Ωp,k(M)∩Ker d and let T ∈ D′k(N)∩Ker d be such that
lim

t→+∞
ϕ∗
t (ω) = π∗(T ). Then the norm of [ω] in LpHk

dR(M) satisfies:

∥

∥[ω]
∥

∥

LpHk = sup
{

T (θ) : θ ∈ Ωℓ−1
c (N),

∥

∥[d(χ · π∗θ)]
∥

∥

LqHℓ 6 1
}

.
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Proof of Theorem 2.5. Step 1. We first show that the Lq-norm of the
form d(χ · π∗θ) is finite. Set α := π∗θ for simplicity. One has

d(χ · α) = dχ ∧ α + χ · dα.

The form dα belongs to Ker ιξ and is ϕt-invariant. With the assumption
(2) we obtain (since s > 0):

‖χ · dα‖LqΩℓ 6 ‖1t>0 · dα ‖LqΩℓ

=

∞
∑

i=0

‖1t∈[i,i+1] · dα‖LqΩℓ

6 C
∞
∑

i=0

e−ηi‖1t∈[0,1] · dα‖LqΩℓ

=
C

1− e−η
‖1t∈[0,1] · dα‖LqΩℓ .

which is finite since 1t∈[0,1] · dα has compact support.

It remains to bound from above the Lq-norm of dχ ∧ α. One has
dχ = χ′(t)dt, with χ′ supported on [0, 1]. Thus

‖dχ ∧ α‖LqΩℓ 6 ‖χ′ · α‖LqΩℓ−1 6 C1‖1t∈[0,1] · α‖LqΩℓ−1,

with C1 = ‖χ′‖∞. Since α · 1t∈[0,1] has compact support, the Lq-norm
of dχ ∧ α is finite too. The statement follows.

Step 2. We now compute
∫

ω∧d(χ ·α). Since ϕ∗
t (ω) and ω are coho-

mologous (by Proposition 2.1), one has thanks to Proposition 1.1(2):
∫

ω ∧ d(χ · α) =

∫

ϕ∗
t (ω) ∧ d(χ · α)

=

∫

ϕ∗
t (ω) ∧ dχ ∧ α+

∫

ϕ∗
t (ω) ∧ (χ · dα).

Since the form dχ ∧ α belongs to Ωℓ
c(M), one has

lim
t→∞

∫

ϕ∗
t (ω) ∧ dχ ∧ α = (π∗T )(dχ ∧ α),

indeed ϕ∗
t (ω) tends to π

∗T in the sense of currents thanks to assumption
(1), Propositions 2.2 and 2.4.

One observes that the map π∗ : D′i(N) → D′i(M) can be written as
(π∗T )(β) = T

(

j(β)
)

where j : ΩD−i
c (M) → ΩD−1−i

c (N) is defined by

j(β) =

∫

R

(ιξβ)(t,·) dt
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(we recall that ξ = ∂
∂t
). Since the inner product is an anti-derivation

(see e.g. [Tu08, Proposition 20.8]) and since ιξα = 0, one has

ιξ(dχ ∧ α) = (ιξdχ) ∧ α− dχ ∧ (ιξα) = χ′ · π∗θ.

Therefore j(dχ ∧ α) =
∫

R
χ′(t) · θ dt = θ, and we obtain

(π∗T )(dχ ∧ α) = T (θ).

Step 3. According to the previous paragraph, it remains to prove
that

lim
t→+∞

∫

ϕ∗
t (ω) ∧ (χ · dα) = 0.

For s > 0, let χs : M → R be a C∞-function depending only on the
R-variable, such that χs(t) = χ(t) for t 6 s and χs(t) = 0 for t > s+1.
Observe that χs · dα is C∞ with compact support. We claim that:

• For every s > 0, one has limt→+∞

∫

ϕ∗
t (ω) ∧ (χs · dα) = 0,

•
∫

ϕ∗
t (ω) ∧

(

(χ − χs) · dα
)

tends to 0 uniformly in t > 0 when
s→ +∞.

As explained above, the claim completes the proof of the theorem. The
first item of the claim follows from the same type of argument that we
used in Step 2. Note that here we have ιξ(χs · dα) = χs · ιξπ

∗θ = 0.

To prove the second item, recall from Proposition 2.2 that ϕ∗
t (ω)

converges in Ψp,k(M) when t → +∞. Therefore there exists M > 0
such that ‖ϕ∗

t (ω)‖Ψp,k 6 M for every t > 0. Write ϕ∗
t (ω) = βt + dγt

with ‖βt‖LpΩk + ‖γt‖LpΩk−1 6 2M . Observe that (χ− χs) · dα belongs
to Ωq,ℓ(M). Since M is complete, the space Ωℓ

c(M) is dense in Ωq,ℓ(M)
(see [GT10, Proof of Lemma 4]). Thus for every t > 0, one gets with
Hölder:

∣

∣

∫

ϕ∗
t (ω) ∧

(

(χ− χs) · dα
)∣

∣

=
∣

∣

∫

βt ∧
(

(χ− χs) · dα
)

+ (−1)k
∫

γt ∧ d(χ− χs) ∧ dα
∣

∣

6 2M‖(χ− χs) · dα‖LqΩℓ + 2M‖d(χ− χs) ∧ dα‖LqΩℓ+1.

By the same type of argument that we used in Step 1, one obtains that
the last two norms tend to 0 when s→ +∞. �

Proof of Corollary 2.6. Let ω ∈ Ωp,k(M) ∩Ker d be such that
∫

M

ω ∧ d(χ · π∗θ) = 0
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for every θ ∈ Ωℓ−1
c (N). According to Poincaré duality (Proposition

1.1), it is enough to show that [w] = 0 in LpHk
dR(M). By Propositions

2.2 and 2.4, this is equivalent to T = 0, where T ∈ D′k(N)∩Ker d is the
k-current so that ω∞ = π∗(T ). From Theorem 2.5 and our assumption,
one has for every θ ∈ Ωℓ−1

c (N):

T (θ) =

∫

M

ω ∧ d(χ · π∗θ) = 0.

Thus T = 0.

Suppose now that θ = dα is an exact form, with α ∈ Ωℓ−2
c (N). Then

by using again Poincaré duality as above, we obtain that the class of

d(χ · π∗θ) is null in LqHℓ
dR(M), since T (θ) = dT (α) = 0 for every

T ∈ D′k(N) ∩Ker d. �

3. The Lie group case

We consider in this section a connected Lie group G = R ⋉δH ,
whose law is (t, x) · (s, y) = (t + s, xetδ(y)), where δ ∈ Der(h) is a
derivation of the Lie algebra h of the closed subgroup H . We will
always assume that the eigenvalues of δ all have non-positive
real parts, and that trace(δ) < 0. In particular G is non-unimodular.
We set n := dimH so that D := dimG = n + 1. Equip G with a
left-invariant Riemannian metric and with the associated Riemannian
measure dvol.

3.1. A strip decomposition. We exhibit some regions of the set of
parameters (p, k) ∈ (1,+∞)×{1, . . . , n}, where the results of the previ-
ous sections apply and give some informations on the spaces LpHk

dR(G)
— see Theorem 3.2 below. These regions form a kind of a “strip decom-
position” of the set of parameters. Examples will be given in Sections
4 and 6.

We start with the following lemma which translates the norm as-
sumptions that appeared repeatedly in the previous sections, into sim-
ple inequalities between the exponent p and the eigenvalues of −δ.

Let 0 6 λ1 6 λ2 6 · · · 6 λn be the ordered list of the real parts
of the eigenvalues of −δ, enumerated with their multiplicities in the
generalized eigenspaces. We denote by wk =

∑k
i=1 λi the sum of the k

first real part eigenvalues, and by Wk =
∑k−1

j=0 λn−j the sum of the k
last ones. We also set w0 = W0 = 0.
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Note that we always have: wk−1 6 wk 6 Wk and wk−1 6 Wk−1 6
Wk, but the comparison between wk and Wk−1 is not automatic. This
can be seen for instance by considering the example where λ1 = λ2 =
· · · = λn−1 = 1 and λn = a > 1; then for a > 2 we have Wk−1 > wk,
for a = 2 we have Wk−1 = wk and for a < 2 we have Wk−1 < wk.

Let h =
∑n

i=1 λi > 0 be the trace of −δ. If wk = 0 (resp. Wk = 0),
we put h

wk
:= +∞ (resp. h

Wk
:= +∞). One has wk +Wn−k = h for

every k ∈ {0, . . . , n}; therefore h
wk

and h
Wn−k

are Hölder conjugated

(even if wk or Wn−k is 0).

Lemma 3.1. Let ξ = ∂
∂t

be the left-invariant vector field on G carried
by the R-factor, and let ϕt be its flow (it is just a translation along the
R-factor). Let p, q ∈ (1,+∞) and k, ℓ ∈ {1, . . . , n} be such that (p, k)
and (q, ℓ) are Poincaré dual. The following properties are equivalent:

(1) There exist C, η > 0 such that for t > 0:

‖ϕ∗
t‖LpΩk−1→LpΩk−1 6 Ce−ηt.

(2) There exist C, η > 0 such that for t > 0:

‖ϕ∗
−t‖Ker ιξ∩LqΩℓ→LqΩℓ∩Ker ιξ 6 Ce−ηt.

(3) We have: p < h
Wk−1

.

(4) We have: q > h
wℓ
.

In particular conditions (1) and (2) in Theorem 2.5 are equivalent when
M = G.

Proof. The equivalences (1)⇔(3) and (2)⇔(4) follow from the same
line of arguments as in [BR23, Proof of Proposition 2.1]. To obtain
(3)⇔(4) one notices that h

Wk−1
and h

wℓ
are Hölder conjugated, since

wD−k +Wk−1 = h. �

We can now summarize and specify the results of the previous sec-
tions, to obtain the following statement that complements results of
Pansu [Pan99, Corollaire 53 and Proposition 57].

Theorem 3.2. Let G be a Lie group as above. Let p ∈ (1,+∞) and
k ∈ {1, . . . , n}.

(1) [Vanishing] If p < h
Wk

or p > h
wk−1

, then LpHk
dR(G) = {0}.

(2) [Hausdorff property] If h
Wk

< p < h
Wk−1

, then LpHk
dR(G) is Haus-

dorff and Banach isomorphic to Zp,k(G, ξ).
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(3) [Density] If h
wk

< p < h
wk−1

, then the classes of the d(χ · π∗θ)’s

(where θ ∈ Ωk−1
c (H)) form a dense subspace in LpHk

dR(G).
(4) [Poincaré duality (on the boundary)] Let (q, ℓ) be the Poincaré

dual of (p, k). Then we have h
Wk

< p < h
Wk−1

if and only if
h
wℓ

< q < h
wℓ−1

, in which case for every [ω] ∈ LpHk
dR(G) and

every [d(χ · π∗θ)] ∈ LqHℓ
dR(G), we have

∫

G

ω ∧ d(χ · π∗θ) = T (θ),

where T is the closed k-current on H such that lim
t→+∞

ϕ∗
t (ω) =

π∗(T ) (as in Propositions 2.2 and 2.4). Moreover, one has:

∥

∥[ω]
∥

∥

LpHk = sup
{

T (θ) : θ ∈ Ωℓ−1
c (H),

∥

∥[d(χ · π∗θ)]
∥

∥

LqHℓ 6 1
}

.

Proof. Item (2) follows from Proposition 2.2 and Lemma 3.1. Item (3)
is a consequence of Corollary 2.6 and Lemma 3.1. One deduces Item
(4) from Theorem 2.5, Corollary 2.7 and Lemma 3.1.

It remains to prove Item (1). Suppose first that p < h
Wk

. Since h
Wk

6
h

Wk−1
, Lemma 3.1 implies that maxi=k−1,k ‖ϕ

∗
t‖LpΩi→LpΩi 6 Ce−ηt. Thus

by Corollary 2.3, one has LpHk
dR(G) = {0}, and the first part of Item

(1) is proved. The second part follows from the first one, in combination
with Poincaré duality (Proposition 1.1), and the fact that LqHD−k+1

dR (G)
is Hausdorff thanks to Lemma 3.1 and Proposition 2.2. �

Remark 3.3. In the special case where H = Rn, Pansu [Pan08,
Proposition 27] has complemented the picture seen in Theorem 3.2,
by showing that the torsion in LpHk

dR(G) – i.e. the quotient space

LpHk
dR(G)/L

pHk
dR(G) – is non-zero for h

Wk−1
< p < h

wk−1
(note that

there is no such p for real hyperbolic spaces).

3.2. Norm estimates. We complement the norm expression obtained
in Theorem 3.2(4). The following inequalities are not optimal, however
they are often sufficient for our purposes.

Proposition 3.4. Let ℓ ∈ {1, . . . , n} and q > h
wℓ
. There exists a

constant C > 0 such that for every θ ∈ Ωℓ−1
c (H), the norm of the class

of d(χ · π∗θ) in LqHℓ
dR(G) satisfies

∥

∥[d(χ · π∗θ)]
∥

∥

LqHℓ(G)
6 C inf

t∈R

{

‖(etδ)∗θ‖LqΩℓ−1(H) + ‖(etδ)∗dθ‖LqΩℓ(H)

}

.
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Proof. Since q > h
wℓ
, Lemma 3.1 shows that the assumptions of The-

orem 2.5 are satisfied. By analysing Step 1 in the proof of Theorem
2.5, and by using the homogeneity of G, one sees that there exists a
constant C > 0 such that for every θ ∈ Ωℓ−1

c (H):

(3.5) ‖d(χ · π∗θ)‖Ωq,ℓ(G) 6 C
(

‖θ‖LqΩℓ−1(H) + ‖dθ‖LqΩℓ(H)

)

.

The left translation by (t, 1H), which we denote by L(t,1H ), is an isom-

etry of G. Therefore it acts by isometry on LqHℓ
dR(G). One has:

L∗
(t,1H )

(

d(χ · π∗θ)
)

= d(χ ◦ ϕt · π
∗(etδ)∗θ) = ϕ∗

t

(

d(χ · π∗(etδ)∗θ)
)

.

Thus, by Proposition 2.1, the forms L∗
(t,1H )(d(χ·π

∗θ)) and d(χ·π∗(etδ)∗θ)

are cohomologous in LqHℓ
dR(G). So the classes of d(χ ·π∗θ) and of d(χ ·

π∗(etδ)∗θ) have equal norm. One obtains the proposition by applying
inequality (3.5) to the (etδ)∗θ’s. �

Proposition 3.4 provides upper bounds for norms of classes by means
of norms of forms. These upper bounds on norms of forms can themself
be obtained thanks to the following lemma:

Lemma 3.6. Let H be a connected Lie group equipped with a left-
invariant Riemannian metric, and let h be its Lie algebra. Let δ ∈
Der(h) be an R-diagonalizable derivation of h. Then for every k ∈
N the endomorphism δ∗ : Λkh∗ → Λkh∗ is diagonalizable too. Let
{ωI} ⊂ Λkh∗ be a basis of eigenvectors, and denote by µI ∈ R the
corresponding eigenvalues. By identifying Λkh∗ with the space of left-
invariant k-forms on H, every ω ∈ Ωk(H) decomposes uniquely as
ω =

∑

I fIωI , where fI ∈ Ω0(H). One has

‖(eδ)∗ω‖LpΩk(H) ≍D

∑

I

eµI−
h
p ‖fI‖Lp(H),

where h is the trace of δ, and D > 0 is a constant which depends only
on p and the choice of {ωI}.

Proof. Since the norms on Λkh∗ are all equivalent, there exists a con-
stant C > 0 such that for every ω =

∑

I fIωI ∈ Ωk(H) and g ∈ H :

|ω|g ≍C

(

∑

I

|fI(g)|
p
)

1

p .

On the other hand:

(eδ)∗ω =
∑

I

(fI ◦ e
δ) · (eδ)∗ωI =

∑

I

(fI ◦ e
δ) · eµIωI .



18 MARC BOURDON AND BERTRAND RÉMY

Therefore:

‖(eδ)∗ω‖p
LpΩk =

∫

H

|eδ
∗
ω|pg dvol(g)

≍Cp

∫

H

∑

I

|eµI (fI ◦ e
δ)(g)|p dvol(g)

=

∫

H

∑

I

epµI |fI(g)|
pJac(e−δ)(g) dvol(g)

=

∫

H

∑

I

ep(µI−
h
p
)|fI(g)|

p dvol(g)

=
∑

I

ep(µI−
h
p
)‖fI‖

p
Lp ,

since the Jacobian of eδ is eh. Thus:

‖(eδ)∗ω‖LpΩk ≍C

(

∑

I

ep(µI−
h
p
)‖fI‖

p
Lp

) 1

p≍D

∑

I

eµI−
h
p ‖fI‖Lp,

where D depends only on p and {ωI}. �

4. Real hyperbolic spaces

We collect applications to a first series of concrete examples, namely
real hyperbolic spaces. Let R = R ⋉δR

n with δ = −idRn ∈ Der(Rn).
Then R is a solvable Lie group isometric to the real hyperbolic space
H

n+1
R

. Its cohomology admits the following rather simple description,
which appears already in [Pan08] (apart from the density statement).

Theorem 4.1. For every k ∈ {1, . . . , n}, one has:

(1) LpHk
dR(R) = {0} for 1 < p < n

k
or p > n

k−1
.

(2) If n
k
< p < n

k−1
, then LpHk

dR(R) is Hausdorff and Banach iso-

morphic to Zp,k(R, ξ). The space {π∗dθ | θ ∈ Ωk−1
c (Rn)} is

dense in Zp,k(R, ξ); in particular LpHk
dR(R) is non-zero.

Proof. For k ∈ {1, . . . , n} one has wk = Wk = k and h = n. Item
(1) comes from Theorem 3.2(1). Item (2) is an application of Theorem
3.2(2) and (3), in combination with Proposition 2.2. Indeed we have:

lim
t→+∞

ϕ∗
t

(

d(χ · π∗θ)
)

= lim
t→+∞

d
(

(χ ◦ ϕt) · π
∗θ
)

= dπ∗θ = π∗dθ,

in the sense of currents. �
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We also obtain the following norm estimates. Recall from Proposi-
tion 2.4 that every ψ ∈ Zp,k(R, ξ) can be written as ψ = π∗T for some
(unique) T ∈ D′k(Rn).

Proposition 4.2. Let k ∈ {1, . . . , n}, n
k
< p < n

k−1
, and (q, ℓ) be the

Poincaré dual of (p, k). There exists some constant C > 0 such that
the norm of every current π∗(T ) ∈ Zp,k(R, ξ) satisfies

‖π∗T‖Ψp,k(R) ≍C sup
{

T (θ) : θ ∈ Ωℓ−1
c (Rn), ‖π∗dθ‖Ψq,ℓ(R) 6 1

}

.

Moreover for θ ∈ Ωk−1
c (Rn), the norm of the form π∗dθ ∈ Zp,k(R, ξ)

satisfies

‖π∗dθ‖Ψp,k(R) 6 C inf
t∈R

{

e−(k−n
p
)t‖dθ‖LpΩk(Rn) + e(1−k+n

p
)t‖θ‖LpΩk−1(Rn)

}

.

Observe that the exponents in the last inequality satisfy: k − n
p
> 0

and 1− k + n
p
> 0.

Proof. The spaces Zp,k(R, ξ) and LpHk
dR(R) are Banach isomorphic.

Thus the form π∗dθ ∈ Zp,k(R, ξ) and the class [d(χ · π∗θ)] ∈ LpHk
dR(R)

have comparable norms. The inequalities follow then from Theorem
3.2(4), Proposition 3.4 and Lemma 3.6, applied with H = Rn and
δ = −tidRn. �

5. Non-quasiisometric higher rank solvable groups

We prove Theorem A (stated in the Introduction) that exhibits
a continuum of rank 2 solvable Lie groups which are pairwise non-
quasiisometric. The way we show the latter property is by using Lp-
cohomology in degree 2, exploiting the fact that there is a critical ex-
ponent phenomenon for p in that degree.

5.1. Reformulation of Theorem A.

Recall from the Introduction that Sα denotes the solvable Lie group
R2

⋉α R3, where

α : R2 → {diagonal automorphisms of R3}

is any monomorphism whose image contains the subgroup {e−tidR3}t∈R.
Theorem A states that any two such groups are quasi-isometric if and
only if they are isomorphic.
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We give here a somethat different presentation of the groups Sα

(Proposition 5.1), that is exploited in Theorem 5.2 to exhibit a crit-
ical exponent for the second Lp-cohomology. This statement implies
Theorem A since Lp -cohomology is a quasi-isometric invariant.

Let Vα be the linear subspace of Diag(R3) such that α(R2) = exp Vα.
By assumption it contains the matrix −I3. Let W ⊂ Diag(R3) be the
orthogonal subspace to −I3, i.e. the set of diagonal matrices of zero-
trace. Then, since α : R2 contains {e−tidR3}t∈R, the vector space Vα
meets W along a line, say Dα, and the vector −I3 together with the
line Dα generate Vα.

Clearly the subspace Vα determines the group Sα. When conjugating
α with a permutation σ of the diagonal entries of Diag(R3), one obtains
a group Sβ isomorphic to Sα, such that Vβ = σ(Vα) and Dβ = σ(Dα).
Therefore, every Sα is isomorphic to an Sβ such that Dβ is generated
by a non-zero matrix diag(λ1, λ2, λ3), with

λ1 + λ2 + λ3 = 0, λ1 ≥ λ2 ≥ λ3 and λ1 − λ2 ≥ λ2 − λ3,

i.e. with (λ1, λ2, λ3) lying in a half Weyl chamber of the A2-type root
system. Such a matrix is a multiple of a unique matrix of the form

Bµ :=





2− µ 0 0
0 2µ− 1 0
0 0 −(1 + µ)



 ,

where µ lies in [0; 1
2
]. Summarizing, we have established:

Proposition 5.1. Every Sα is isomorphic to a group

Sµ := R2
⋉{−I3,Bµ} R

3,

for some µ ∈ [0; 1
2
].

The main result of the section deals with the second Lp-cohomology
of the groups Sµ:

Theorem 5.2. For every µ ∈ [0; 1
2
], set pµ := 1 − 1

µ−1
. One has

LpH2
dR(Sµ) = {0} for p ∈ (1; pµ) \ {3

2
}, and LpH2

dR(Sµ) 6= {0} for
p ∈ (pµ; +∞) \ {3}.

We note that the function µ 7→ pµ is increasing, hence injective, from
[0; 1

2
] onto [2; 3]. Since de Rham Lp-cohomology is a quasi-isometric

invariant among Lie groups that are diffeomorphic to Rn [Pan95] (see
also [BR23]), it follows from the above Theorem 5.2 that the groups
Sµ are pairwise non-quasiisometric. Therefore Theorem A is now a
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consequence of Theorem 5.2 and of Proposition 5.1. The rest of the
section is devoted to the proof of Theorem 5.2.

5.2. Notation and decompositions. We introduce some notation
and objects we will be working with in the sequel of the section.

Consider the following subgroups of Sµ:

R := R⋉−I3 R
3 and Hµ := R⋉Bµ

R3,

so that R is isometric to H
4
R
. Let r and hµ be their Lie algebras. Let

(0, Bµ) and (0,−I3) denote the derivations of r and hµ that trivially
extend −I3 and Bµ. Then the group Sµ admits two decompositions,
namely:

Sµ = R⋉(0,Bµ) R and Sµ = R⋉(0,−I3) Hµ.

We denote again by ξ the left-invariant vector field on R carried by the
R-factor, and by π the projection map from R onto R3.

The proof of Theorem 5.2 will mainly rely on the decomposition Sµ =
R⋉(0,Bµ)R, in combination with the description of the Lp-cohomology
of R ≃ H

4
R
given in Theorem 4.1 and Proposition 4.2. We will use the

realization of de Rham Lp-cohomology by means of currents, which
gives the Banach space isomorphism:

LpH2
dR(R) ≃ Zp,2(R, ξ),

where Zp,2(R, ξ) is the space of closed 2-currents ψ on R, invariant
under the flow (ϕt) of ξ and such that ‖ψ‖Ψp,2 < +∞. According to
Proposition 2.4, every ψ ∈ Zp,2(M, ξ) can be written ψ = π∗(T ) for
some T ∈ D′2(R3) ∩Ker d.

5.3. First observations. We derive from previous results some pre-
liminary observations on LpH2

dR(Sµ) whose statements do not depend
on the parameter µ. The notations are the same as in the previous
subsection.

Proposition 5.3. One has LpH2
dR(Sµ) = {0} for p < 3

2
.

Proof. One has Sµ = R ⋉δ Hµ, with δ = (0,−I3) ∈ Der(hµ). The
ordered list of eigenvalues of −δ enumerated with multiplicity, is

λ1 = 0 < λ2 = λ3 = λ4 = 1.

Thus, with the notations of Section 3, the trace of −δ is h = 3, and one
has W2 = λ3 + λ4 = 2. Therefore the statement follows from Theorem
3.2(1). �
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Proposition 5.4. For p ∈ (3
2
; 3), the Banach space Zp,2(R, ξ) is non-

zero, and there exists a linear isomorphism

LpH2
dR(Sµ) ≃

{

π∗T ∈ Zp,2(R, ξ) :

∫

R

‖π∗esBµ
∗
T‖pΨp,2(R)ds < +∞

}

.

Proof. When p ∈ (3
2
; 3), Theorem 4.1 shows that LpH2

dR(R) is non-zero

and Hausdorff, and that LpHk
dR(R) = {0} in all degrees k 6= 2. Since

Sµ = R ⋉(0,Bµ) R, the above description of the cohomology of R, in
combination with a Hochschild-Serre spectral sequence argument (see
[BR23, Corollary 6.10]), yields the following linear isomorphism

LpH2
dR(Sµ) ≃

{

[ω] ∈ LpH2
dR(R) :

∫

R

‖es(0,Bµ)∗[ω]‖pLpH2(R)ds < +∞
}

.

By Theorem 4.1(2), the Banach spaces LpH2
dR(R) and Zp,2(R, ξ) are

isomorphic. Moreover every ψ ∈ Zp,2(R, ξ) can be written ψ = π∗(T )
for some T ∈ D′2(R3) ∩Ker d (see Proposition 2.4). This leads to the
desired linear isomorphism. �

Proposition 5.5. For p > 3, the space LpH2
dR(Sµ) is non-zero.

Proof. Consider again λ1 = 0 < λ2 = λ3 = λ4 = 1 the list of the
eigenvalues of −δ = −(0,−I3) ∈ Der(hµ). The trace of −δ is h = 3,
and one has w2 = λ1 + λ2 = 1. Since the rank of Sµ is equal to 2, it

follows from [BR23, Theorem B and Corollary 3.4] that LpH2
dR(Sµ) is

non-zero for p > h
w2

= 3. �

5.4. Non-vanishing of the second Lp-cohomology. We wish to es-
tablish the non-vanishing part of Theorem 5.2. Thanks to Proposition
5.5, we just need to prove that LpH2

dR(Sµ) 6= {0} for p ∈ (pµ; 3).

Assume p ∈ (3
2
; 3). By Proposition 5.4 there is a linear isomorphism

LpH2
dR(Sµ) ≃

{

π∗T ∈ Zp,2(R, ξ) :

∫

R

‖π∗esBµ
∗
T‖pΨp,2(R)ds < +∞

}

.

Recall from Theorem 4.1(2) that the space Zp,2(R, ξ) contains the forms
π∗dθ, with θ ∈ Ω1

c(R
3). Therefore in order to show that LpH2

dR(Sµ) is
non-zero, it is enough to exhibit a non-zero form dθ with θ ∈ Ω1

c(R
3)

and ‖π∗esBµ
∗
dθ‖Ψp,2(R) → 0 exponentially fast when s→ ±∞.
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Let θ be a smooth compactly supported 1-form on R3. From Propo-
sition 4.2, with θ replaced by esBµ

∗
θ, we have:

‖π∗esBµ
∗
dθ‖Ψp,2(R) 6 C inf

t∈R

{

e−(2− 3

p
)t‖esBµ

∗
dθ‖LpΩ2(R3)

+ e(−1+ 3

p
)t‖esBµ

∗
θ‖LpΩ1(R3)

}

.

Write θ = fdx+gdy+hdz, so that dθ = Fdy∧dz+Gdx∧dz+Hdx∧dy.
Since the trace of Bµ is zero, Lemma 3.6 applied with H = R3 and
δ = Bµ gives the following estimates:

‖esBµ
∗
dθ‖LpΩ2 ≍ es(µ−2)‖F‖Lp + es(1−2µ)‖G‖Lp + es(1+µ)‖H‖Lp,

‖esBµ
∗
θ‖LpΩ1 ≍ es(2−µ)‖f‖Lp + es(2µ−1)‖g‖Lp + e−s(1+µ)‖h‖Lp.

We denote by α± the exponent of the leading term in the asymptotics of
‖esBµ

∗
dθ‖ when s→ ±∞, namely ‖esBµ

∗
dθ‖ ≍s→±∞ eα±s; note that α+

and α− are opposites of diagonal coefficients of Bµ since trace(Bµ) = 0.
Similarly, we denote by β± the exponent of the leading term in the
asymptotics of ‖esBµ

∗
θ‖ when s→ ±∞, namely ‖esBµ

∗
θ‖ ≍s→±∞ eβ±s;

note that β+ and β− are diagonal coefficients of the matrix Bµ. One
has:

Lemma 5.6. Let a, b > 0 be positive real numbers and let α, β ∈ R.
We assume that A = A(s) ≍ eαs and B = B(s) ≍ eβs when s → +∞

(resp. when s→ −∞). Then inft∈R{e
−at A+ ebt B} ≍ e

aβ+bα
a+b

s, when
s→ +∞ (resp. when s→ −∞). In particular, the infimum tends to 0
if and only if we have (aβ + bα)s → −∞, when s → +∞ (resp. when
s→ −∞); in which case the speed of convergence to 0 is exponential.

Proof. Assume first that A,B > 0 are fixed and consider the function
f defined by f(t) = e−at A + ebt B. We have limt→±∞ f(t) = +∞ so
f achieves its minimum at a point tmin such that f ′(tmin) = 0. Since
f ′(t) = −ae−at A + bebt B, we have A

B
= b

a
e(a+b)tmin and therefore the

minimal value of f is:

f(tmin) = Bebtmin(
A

B
e−(a+b)tmin + 1) = Bebtmin(

b

a
+ 1).

When A ≍ eαs and B ≍ eβs, we have e(α−β)s ≍ A
B
= b

a
e(a+b)tmin . Then

f(tmin) ≍ eβsebtmin ≍ e(β+bα−β
a+b

)s = e
aβ+bα
a+b

s. �

For p ∈ (3
2
; 3), with a = 2 − 3

p
and b = −1 + 3

p
in the above lemma,

we obtain the following estimate when s→ ±∞:

‖π∗esBµ
∗
dθ‖Ψp,2(R) . e

aβ±+bα±

a+b
s = e{(2p−3)β±+(−3+p)α±} s

p .
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This shows that for the condition
∫

R
‖π∗esBµ

∗
T‖pΨp,2(R)ds < +∞ to be

satisfied by T = dθ, it is sufficient to have:

(5.7) (2p− 3)β+ + (3− p)α+ < 0 and (2p− 3)β− + (3− p)α− > 0.

To exhibit such a form dθ, we will use the

Lemma 5.8. There exist forms θ = fdx and Θ = gdy+hdz in Ω1
c(R

3),
such that dθ = dΘ = Gdx ∧ dz +Hdx ∧ dy 6= 0.

Proof. Let u be an arbitrary non-zero function in Ω0
c(R

3). Its differen-
tial is du = ∂u

∂x
dx+ ∂u

∂y
dy+ ∂u

∂z
dz. Set θ := ∂u

∂x
dx and Θ := −∂u

∂y
dy− ∂u

∂z
dz.

Since ddu = 0, one has dθ = dΘ = − ∂2u
∂x∂z

dx ∧ dz − ∂2u
∂x∂y

dx ∧ dy. �

Let dθ = dΘ be as in the previous lemma. We have α+ = 1 + µ and
α− = 1−2µ. Moreover we have β− = β−(θ) = 2−µ and β+ = β+(Θ) =
2µ − 1. When s → +∞, the integrability conditions (5.7) lead to the
following condition

(2p− 3)(2µ− 1) + (3− p)(1 + µ) < 0,

hence p(3µ− 3) + (−3µ+ 6) < 0, amounting to

p >
µ− 2

µ− 1
= 1−

1

µ− 1
= pµ.

When s→ −∞, they lead to

(2p− 3)(2− µ) + (3− p)(1− 2µ) > 0,

hence 3p − (3 + 3µ) > 0, amounting to p > 1 + µ. The latter con-
dition is implied by the former one. To sum up, we have shown that
LpH2

dR(Sµ) 6= {0} for p ∈ (pµ; 3), as expected.

5.5. Vanishing of the second Lp-cohomology. It remains to prove
the vanishing statement in Theorem 5.2. It will be obtained by using
a Poincaré duality argument, together with some estimates similar to
those from the non-vanishing part.

According to Proposition 5.3, it is enough to consider the case p ∈
(3
2
; 3). We start again from the identification given in Proposition 5.4:

LpH2
dR(Sµ) ≃

{

π∗T ∈ Zp,2(R, ξ) :

∫

R

‖π∗esBµ
∗
T‖pΨp,2(R)ds < +∞

}

.

To show that LpH2
dR(Sµ) vanishes, it is enough to prove that every

π∗T ∈ Zp,2(R, ξ) satisfies ‖π∗esBµ
∗
T‖Ψp,2(R) → +∞, when s→ +∞ or

when s→ −∞. Recall from Proposition 4.2, that:

‖π∗T‖Ψp,2(R) ≍ sup{T (θ) : θ ∈ Ω1
c(R

3), ‖π∗dθ)‖Ψq,2(R) 6 1},
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where q denotes the Hölder conjugate of p. When replacing π∗T by
π∗esBµ

∗
T with s ∈ R, a change of variable provides:

‖π∗esBµ
∗
T‖Ψp,2(R) ≍ sup{T (θ) : θ ∈ Ω1

c(R
3), ‖π∗esBµ

∗
dθ)‖Ψq,2(R) 6 1}.

By Proposition 4.2, with θ replaced by esBµ
∗
θ, we obtain:

‖π∗esBµ
∗
dθ‖Ψq,2(R) 6 C inf

t∈R

{

e−( 3
p
−1)t‖esBµ

∗
dθ‖LqΩ2(R3)

+ e(2−
3

p
)t‖esBµ

∗
θ‖LqΩ1(R3)

}

,

where, in the upper bound, the coefficients in the exponentials in front
of the norms come from the identity 2− 3

q
= 3

p
− 1 and 1 + 3

q
= 2− 3

p
.

Using Lemma 5.6 with a = 3
p
− 1 and b = 2 − 3

p
, and keeping the

notation α± and β± defined after replacing Lp norms by Lq norms, we
obtain

(5.9) ‖π∗esBµ
∗
dθ‖Ψq,2(R) . e(aβ±+bα±)s,

when s→ ±∞. These observations lead to the

Lemma 5.10. Let π∗T ∈ Zp,2(R, ξ) and let T = T1dy ∧ dz + T2dx ∧
dz + T3dx ∧ dy, where Ti ∈ D′0(R3), be its writing in the canonical
global coordinates of R3.

(i) If T1 6= 0, then lim
s→−∞

‖π∗esBµ
∗
T‖Ψp,2(R) = +∞.

(ii) If T3 6= 0 and if p < pµ, then lim
s→+∞

‖π∗esBµ
∗
T‖Ψp,2(R) = +∞.

Proof. (i). Let θ be of the form θ = fdx with f a smooth compactly
supported function such that T1(f) = 1. Then T (θ) = T1(f) = 1. We
have dθ = −∂f

∂y
dx∧dy− ∂f

∂z
dx∧dz. In this case, we have α− = 1−2µ

and β− = 2− µ. We consider the quantity

p(aβ− + bα−) = (3− p)(2− µ) + (2p− 3)(1− 2µ) = 3(−µp+ 1 + µ).

Since p ∈ (3
2
; 3) and since µ ∈ [0; 1

2
], we deduce that aβ− + bα− > 0.

Relation (5.9) then implies that lim
s→−∞

‖π∗esBµ
∗
dθ‖Ψq,2(R) = 0, hence

that lim
s→−∞

‖π∗esBµ
∗
T‖Ψp,2(R) = +∞.

(ii). Let θ be of the form θ = hdz with h a smooth compactly
supported function such that T3(h) = 1. Then T (θ) = T3(h) = 1. We
have dθ = ∂h

∂x
dx ∧ dz + ∂h

∂y
dy ∧ dz. In this case, we have α+ = 1− 2µ

and β+ = −1− µ. We consider the quantity

p(aβ++bα+) = (3−p)(−1−µ)+(2p−3)(1−2µ) = 3p(1−µ)+3(µ−2).
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For µ ∈ [0; 1
2
] and p < pµ = 1 − 1

µ−1
, we have aβ+ + bα+ < 0. Re-

lation (5.9) then implies that lim
s→+∞

‖π∗esBµ
∗
dθ‖Ψq,2(R) = 0, hence that

lim
s→+∞

‖π∗esBµ
∗
T‖Ψp,2(R) = +∞. �

We can now turn to the

Proof of LpH2
dR(Sµ) = {0} for p ∈ (3

2
; pµ). Let π

∗T ∈ Zp,2(R, ξ) be in
correspondence with a non-zero class in LpH2

dR(Sµ). By Item (i) in the
previous lemma, we must have T1 = 0, which implies that both T2 and
T3 are 6= 0 because T is closed. By Item (ii) in the previous lemma, we
must have p > pµ. This proves the vanishing by contraposition. �

6. Complex hyperbolic spaces

Another family of concrete examples for which a strip decomposition
as stated in Theorem 3.2 can be derived, is provided by the so-called
complex hyperbolic spaces. Theorem 6.1 below describes the regions
where the cohomology vanishes or not. It also states that the cohomol-
ogy is Hausdorff. The proof of the (non-)vanishing statement relies on
Theorem 3.2, in combination with some additional analysis on Heisen-
berg groups that is developed in Section 6.1. The Hausdorff statement
is a deep result due to Pansu [Pan09, Théorème 1]. We refer to his
paper for a proof. The section ends with some complementary results
(Propositions 6.7 and 6.11) that provide a finer description of the co-
homology.

Let Heis(2m − 1) be the Heisenberg group of dimension 2m − 1
(m > 2), i.e. the simply connected nilpotent Lie group whose Lie
algebra n admits

X1, . . . , Xm−1, Y1, . . . , Ym−1, Z

as a basis, and where the only non-trivial relations between the above
generators are [Xi, Yi] = Z, for all i ∈ {1, . . . , m− 1}. Let R = R⋉δN
with N = Heis(2m − 1) and δ = −diag(1, . . . , 1, 2) ∈ Der(n). Then R
is a solvable Lie group isometric to the complex hyperbolic space H

m
C
.

Apart from the density statement and the (non-)vanishing statement
in Items (2) and (3) – when m > 3 –, the following result already
appears in [Pan99, Pan09].

Theorem 6.1. Let k ∈ {1, . . . , 2m− 1}. One has:

(1) LpHk
dR(R) = {0} for 1 < p < 2m

k+1
or p > 2m

k−1
.
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(2) If 2m
k+1

< p < 2m
k
, then LpHk

dR(R) is Hausdorff and Banach

isomorphic to Zp,k(R, ξ). Moreover LpHk
dR(R) 6= {0} if and

only if k > m.
(3) If 2m

k
< p < 2m

k−1
, then LpHk

dR(R) is Hausdorff and the classes

of the d(χ · π∗θ)’s (where θ ∈ Ωk−1
c (N)) form a dense subspace.

Moreover LpHk
dR(R) 6= {0} if and only if k 6 m.

We notice that the above statement will be complemented in Sec-
tion 6.2: Proposition 6.7 will describe the zero-elements among the
classes [d(χ ·π∗θ)]’s, while Proposition 6.11 will exhibit a natural dense
subspace in Zp,k(R, ξ).

Beginning of proof of Theorem 6.1. For k ∈ {0, . . . , 2m − 2}, one has
h = 2m, wk = k, and w2m−1 = h > 2m− 1. Similarly Wk = k + 1 for
k ∈ {1, . . . , 2m − 1} and W0 = 0 ≤ 1. Item (1) comes from Theorem
3.2(1). The first part of Item (2) follow from Theorem 3.2(2). The
Hausdorff statement in Item (3) is a deep theorem of Pansu [Pan09,
Théorème 1], in combination with Poincaré duality (Proposition 1.1).
The density property follows from Theorem 3.2(3).

It remains to establish the (non-)vanishing parts of Items (2) and
(3). It will require more material, and the proof will be completed only
at the end of the next section. �

6.1. Differential forms on the Heisenberg group. We complete
the proof of the (non-)vanishing statements in Theorem 6.1. They rely
on two lemmata (Lemma 6.3 and 6.5 below). The material is inspired
by Rumin’s paper [Rum94].

Recall that n denotes the Lie algebra of N = Heis(2m−1). It decom-
poses as n = n1 ⊕ n2, where n1 := Span(X1, . . . , Xm−1, Y1, . . . , Ym−1)
and n2 := Span(Z) are respectively the eigenspaces of −δ of eigenvalues
1 and 2.

Let x1, . . . , xm−1, y1, . . . , ym−1, z be the coordinates on N induced by
the exponential map n → N . Let τ := dz− 1

2

∑m−1
i=1 (xidyi−yidxi). We

identify n∗ with the space of the left-invariant 1-forms on N . One has
n∗ = n∗1 ⊕ n∗2, where n∗1 := Span(dx1, . . . , dxm−1, dy1, . . . , dym−1) and
n∗2 := Span(τ) are the eigenspaces of −δ of eigenvalues 1 and 2.

The form dτ = −
∑m−1

i=1 dxi∧dyi is a symplectic form when restricted
to n1. Therefore the Lefschetz map

(6.2) Lk : ∧kn∗1 → ∧k+2n∗1, α 7→ α ∧ dτ,
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is injective for k 6 m − 2 and surjective for k > m − 2, see [BBG03,
Proposition 1.1].

The weight decomposition ∧kn∗ = ∧kn∗1 ⊕ ∧k−1n∗1 ∧ τ associated to
−δ, yields a decomposition

Ωk(N) = Ωk
1 ⊕ Ωk

2,

with Ωk
2 = Ωk−1

1 ∧ τ . Therefore, every θ ∈ Ωk(N) decomposes uniquely
as

θ = θ1 + θ2 ∧ τ, with θ1 ∈ Ωk
1 and θ2 ∈ Ωk−1

1 .

The form θ1 is said to be horizontal and of pure weight k. The form
θ2 ∧ τ is said to be vertical and of pure weight k + 1.

When 2m
k
< p < 2m

k−1
, and according to Theorem 6.1(3), the space

LpHk
dR(R) is Hausdorff and admits {[d(χ · π∗θ)] : θ ∈ Ωk−1

c (N)} as a
dense subspace. One has in addition:

Lemma 6.3. Suppose k ∈ {2, . . . , 2m− 1} and 2m
k
< p < 2m

k−1
.

(1) Let θ ∈ Ωk−1
c (N). If θ = α∧ dτ + β ∧ τ , with α ∈ Ωk−3

c (N) and
β ∈ Ωk−2

c (N), then [d(χ · π∗θ)] = 0 in LpHk
dR(R).

(2) For k ≥ m+ 1, one has LpHk
dR(R) = {0}.

Proof. (1). Suppose first that θ = β ∧ τ . Since p > 2m
k

> h
wk
, Proposi-

tion 3.4 implies that
∥

∥[d(χ · π∗θ)]
∥

∥

LpHk(R)
6 C inf

t∈R

{

‖(etδ)∗θ‖LpΩk−1(N) + ‖(etδ)∗dθ‖LpΩk(N)

}

.

Since θ is of pure weight k, one has ‖(etδ)∗θ‖LpΩk−1 ≍ e(−k+ 2m
p

)t by
Lemma 3.6 . The weight of dθ is at least k, thus for t > 0 one has

‖(etδ)∗dθ‖LpΩk . e(−k+ 2m
p

)t. Therefore
∥

∥[d(χ · π∗θ)]
∥

∥

LpHk → 0 when

t→ +∞, and thus [d(χ · π∗θ)] = 0 in LpHk
dR(R).

Now suppose that θ = α ∧ dτ . We claim that there exists γ ∈
Ωk−1

c (N) such that dθ = d(γ∧τ). By Corollary 2.6, this will imply that
[d(χ·π∗θ)] = [d(χ·π∗(γ∧τ))]; which in turn implies that [d(χ·π∗θ)] = 0
from the previous case. Let γ := −(−1)d

◦αdα. One has

d(θ − γ ∧ τ) = dα ∧ dτ + (−1)d
◦α+1(−1)d

◦αdα ∧ dτ = 0,

and so dθ = d(γ ∧ τ).

(2). Let θ ∈ Ωk−1
c (N). Since the Lefschetz map Li, defined in (6.2),

is surjective for i ≥ m − 2, one can write the weight decomposition of
θ as

θ = α ∧ dτ + θ2 ∧ τ.
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Therefore Item (1) implies that [d(χ · π∗θ)] = 0 in LpHk
dR(R). This

in turn implies that LpHk
dR(R) = {0}, thanks to the density of the

[d(χ · π∗θ)]’s. �

The weight decomposition of k-forms can be extended to k-currents.
This induces a decomposition

D′k(N) = D′k
1 ⊕D′k

2 ,

with D′k
2 = D′k−1

1 ∧ τ . Concretely, every T ∈ D′k can be written
uniquely as

T =
∑

|I|=|J |=k

TIJdxI ∧ dyJ +
∑

|K|+|L|=k−1

TKLdxK ∧ dyL ∧ τ,

with TIJ , TKL ∈ D′0(N). Its weight decomposition is then T = T1 +
T2 ∧ τ , with

T1 =
∑

|I|+|J |=k

TIJdxI ∧ dyJ and T2 =
∑

|K|+|L|=k−1

TKLdxK ∧ dyL.

The current T1 is said to be horizontal, and T2 ∧ τ to be vertical. For
θ ∈ Ω2m−1−k

c (N), which weight decomposes as θ = θ1 + θ2 ∧ τ , one
shows easily that

(6.4) T (θ) = T1(θ2 ∧ τ) + T2(τ ∧ θ1).

In Theorem 6.1(2), we have seen that LpHk
dR(R) is Banach isomor-

phic to Zp,k(R, ξ), for every k ∈ {1, . . . , 2m − 1} and 2m
k+1

< p < 2m
k
.

Moreover we know from Proposition 2.4 that every ψ ∈ Zp,k(R, ξ) can
be written as ψ = π∗T for some (unique) T ∈ D′k(N). One has futher-
more:

Lemma 6.5. Let k ∈ {1, . . . , 2m− 1} and 2m
k+1

< p < 2m
k
.

(1) For every π∗T ∈ Zp,k(R, ξ) the k-current T is vertical.
(2) Conversely, if ϕ ∈ Ωk−1

c (N) is such that dϕ is vertical, then
π∗(dϕ) belongs to Zp,k(R, ξ).

(3) We have Zp,k(R, ξ) 6= {0} for every k ∈ {m, . . . , 2m− 1}.

Proof. (1). Every T ∈ D′2m−1(N) is vertical, thus we can assume that
k ∈ {1, . . . , 2m− 2}. Let (q, ℓ) be the Poincaré dual of (p, k) relatively
to R; it satisfies ℓ ∈ {2, . . . , 2m − 1} and 2m

ℓ
< q < 2m

ℓ−1
. For every

π∗T ∈ Zp,k(R, ξ) and every vertical θ ∈ Ωℓ−1
c (N), one has T (θ) = 0,

thanks to Theorem 3.2 and Lemma 6.3. According to Relation (6.4),
this implies that the weight decomposition of T satisfies T1 = 0. Thus
T is vertical.
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(2). Let ϕ ∈ Ωk−1
c (N) be such that dϕ is vertical. At first, we

claim that d(χ · π∗ϕ) belongs to Ωp,k(R)∩Ker d. One has d(χ · π∗ϕ) =
dχ ∧ π∗ϕ+ χ · π∗dϕ. Thus

‖d(χ ·π∗ϕ)‖Ωp,k = ‖d(χ ·π∗ϕ)‖LpΩk 6 ‖dχ∧π∗ϕ‖LpΩk + ‖χ ·π∗dϕ‖LpΩk .

The form dχ∧π∗ϕ is compactly supported, thus it belongs to LpΩk(R).
One has

‖χ · π∗dϕ‖p
LpΩk(R)

6 ‖1t≥0 · π
∗dϕ‖p

LpΩk(R)
=

∫ +∞

0

‖(etδ)∗dϕ‖p
LpΩk(N)

dt.

Since dϕ is vertical, it is of pure weight k+1, and ‖(etδ)∗dϕ‖LpΩk(N) ≍

e(−k−1+ 2m
p

)t by Lemma 3.6. Since p > 2m
k+1

, the above integral converges
and the claim is proved.

One has π∗dϕ = limt→+∞ ϕ∗
t (d(χ ·π

∗ϕ)) in the sense of currents; thus
π∗(dϕ) ∈ Zp,k(R, ξ) by Proposition 2.2.

(3). It remains to show that there exists ϕ ∈ Ωk
c (N) such that dϕ is

vertical and non-zero. We distinguish the cases k > m and k = m.

Suppose k > m. Then Ker(L : Λk−2n∗1 → Λkn∗1) is non-zero. Let
α ∈ Ωk−2

1 be non-zero, compactly supported and such that α∧ dτ = 0.
For every f ∈ Ω0

c(N) consider the form ϕ = ϕ2 ∧ τ , with ϕ2 := f · α.
Then dϕ is vertical. Moreover dϕ 6= 0 for generic f .

Assume now that k = m. Then the Lefschetz map L : Λm−2n∗1 →
Λmn∗1 is an isomorphism. Pick any compactly supported ϕ1 ∈ Ωm−1

1 .
Let ϕ2 ∈ Ωm−2

1 be the unique solution of the equation:

(6.6) (dϕ1)1 = −(−1)mϕ2 ∧ dτ.

and set ϕ := ϕ1 + ϕ2 ∧ τ . Then dϕ is vertical. We claim that for
generic ϕ1, one has dϕ 6= 0. Indeed suppose that dϕ = 0. Then there
exists β ∈ Ωk−1

c (N) so that ϕ = dβ. Thus ϕ1 = (dβ)1. Let S ⊂ N be a
complete horizontal submanifold of dimension m−1 (e.g. the boundary
at infinity of an isometric copy of Hm

R
⊂ H

m
C
). Since S is horizontal,

one has by Stokes’ Theorem:
∫

S

ϕ1 =

∫

S

(dβ)1 =

∫

S

dβ = 0.

The claim follows. �

We can now give the
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End of proof of Theorem 6.1. Note that we can use Poincaré duality
(Proposition 1.1(2)) since we know at this stage that the cohomol-
ogy spaces we consider are Hausdorff. The vanishing results in Items
(2) and (3) follow from Lemma 6.3 and Poincaré duality. The non-
vanishing ones are consequence of Lemma 6.5 and Poincaré duality. �

6.2. Complement to Theorem 6.1. We establish two results (Prop-
sitions 6.7 and 6.11) that complement Theorem 6.1 and that could be
useful in the future. The first one will serve partially in Section 7 to
study the cohomology of SL3(R)/SO3(R). The objects and notations
are the same as in the previous section.

Recall from Theorem 6.1, that for k ∈ {1, . . . , m} and 2m
k
< p < 2m

k−1
,

the space LpHk
dR(R) is Hausdorff, non-zero, and admits the subspace

{[d(χ · π∗θ)] : θ ∈ Ωk−1
c (N)} as a dense subset. The first result of the

section describes the classes [d(χ · π∗θ)] that are null in LpHk
dR(R):

Proposition 6.7. Let k ∈ {1, . . . , m} and 2m
k
< p < 2m

k−1
. For every

θ ∈ Ωk−1
c (N), the following holds:

(1) When k < m, the class [d(χ · π∗θ)] is null in LpHk
dR(R) if and

only if (dθ)1 = γ ∧ dτ , for some horizontal form γ ∈ Ωk−2
c (N).

(2) When k = m, the class [d(χ · π∗θ)] is null in LpHk
dR(R) if and

only if

d
(

θ − L
(

(dθ)1
)

∧ τ
)

= 0,

where L : Ωm
1 → Ωm−2

1 denotes the pointwise operator induced
by the inverse of the Lefschetz isomorphism Lm−2 : ∧m−2n∗1 →
∧mn∗1.

Proof. (1). Let θ ∈ Ωk−1
c (N) and suppose that dθ can be written

dθ = γ ∧ dτ + δ ∧ τ , with γ and δ horizontal. When k = 1, such a
relation is impossible unless θ = 0. Namely the differential of a non-
zero compactely supported function has always a non-zero horizontal
component. Let assume k > 2. We claim that there exists a horizontal
form β ∈ Ωk−2

c (N), such that dθ = d(β ∧ τ). In combination with
Corollary 2.6 and Lemma 6.3, this yields that [d(χ · π∗θ)] = 0.

Since β, γ and δ are horizontal forms, the equation dθ = d(β ∧ τ) is
equivalent to the following system of two equations

γ ∧ dτ = (−1)kβ ∧ dτ and δ ∧ τ = dβ ∧ τ.

Set β := (−1)kγ. Then the first equation is satisfied. Moreover one
has dβ ∧ τ = (−1)kdγ ∧ τ = (−1)k(dγ)1 ∧ τ . Thus the second equation
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is satisfied if the relation δ = (−1)k(dγ)1 holds. Since ddθ = 0, one
has dγ ∧ dτ + dδ ∧ τ − (−1)kδ ∧ dτ = 0. This implies that ((dγ)1 −
(−1)kδ) ∧ dτ = 0, which in turn implies that (dγ)1 − (−1)kδ = 0 since
the Lefschetz map Lk−1 is injective (recall that k < m by assumption).
Therefore the second equation is satisfied and the claim is proved.

Conversely, let θ ∈ Ωk−1
c (N) be such that [d(χ · π∗θ)] = 0. Denote

by (q, ℓ) the Poincaré dual of (p, k) relatively to R. One has 2m
ℓ+1

< q <
2m
ℓ

and ℓ > m. In particular Lℓ−2 is not injective, and therefore the
following subspace is non-trivial

Γ = {α ∈ Ωℓ−2
c (N) : α is horizontal and α ∧ dτ = 0}.

Pick α ∈ Γ and consider the form ϕ = α ∧ τ ∈ Ωℓ−1
c (N). One has

dϕ = dα ∧ τ + (−1)ℓα ∧ dτ = dα ∧ τ . Thus dϕ is vertical, and so by
Lemma 6.5(2) the form π∗(dϕ) belongs to Zq,ℓ(R, ξ). Our assumption
[d(χ · π∗θ)] = 0, in combination with Theorem 3.2(4), implies that
∫

N
dϕ ∧ θ = 0. With Stokes’ formula and the definition of ϕ, it comes

that
∫

N
α ∧ τ ∧ dθ = 0, i.e.

∫

N
α ∧ τ ∧ (dθ)1 = 0. So far we have

established that every θ ∈ Ωk−1
c (N) such that [d(χ · π∗θ)] = 0 satisfies

the following property:

(6.8)

∫

N

α ∧ τ ∧ (dθ)1 = 0 for all α ∈ Γ.

When k > 2, we will show that Property (6.8) implies that (dθ)1 can be
written γ∧dτ . When k = 1, we will prove that (6.8) implies (dθ)1 = 0.

Suppose first that k = 1. One has ℓ = 2m − 1, Lℓ−2 = 0 and
Γ = Ωℓ−2

1 ∩Ωℓ−2
c (N). Thus Property (6.8) yields that

∫

N
ω∧τ∧(dθ)1 = 0

for every ω ∈ Ωℓ−2
c (N). This in turn implies that τ ∧ (dθ)1 = 0, i.e.

(dθ)1 = 0.

Suppose now that k > 2. We will use the following lemma:

Lemma 6.9. Let b : ∧ℓ−2n∗1 × ∧kn∗1 → R, be the non-degenerated
bilinear form defined by b(u, v) = u ∧ v. Relatively to b, one has
(KerLℓ−2)

⊥ = ImLk−2.

Proof of Lemma 6.9. Since b is non-degenerated, the statement is equiv-
alent to (ImLk−2)

⊥ = KerLℓ−2. Let u ∈ ∧ℓ−2n∗1. It belongs to
(ImLk−2)

⊥ if and only if u ∧ v ∧ dτ = 0 for all v ∈ ∧k−2n∗1. This
is equivalent to u ∧ dτ = 0, i.e. to u ∈ KerLℓ−2. �

Lemma 6.9 allows one to complete the proof of Item (1) as follows.
By definition, Γ is the space of compactly supported smooth sections of
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the left-invariant vector bundle over N generated by KerLℓ−2. Prop-
erty (6.8) can be interpreted as saying that (dθ)1 is a smooth sec-
tion of the left-invariant vector bundle generated by (KerLℓ−2)

⊥. By
Lemma 6.9, this is equivalent to (dθ)1 = γ ∧ dτ for some horizontal
form γ ∈ Ωk−2

c (N).

(2). Suppose that k = m, and let (q,m) be the Poincaré dual of
(p,m) relatively to R. One has 2m

m+1
< q < 2m

m
= 2. Let θ ∈ Ωm−1

c (N).
According to Theorem 3.2 and Poincaré duality (Proposition 1.1), the
class [d(χ · π∗θ)] vanishes in LpHm

dR(R) if and only if T (θ) = 0 for all
T ∈ D′m(N) such that π∗T ∈ Zq,m(R, ξ).

Since Lm−2 is an isomorphism, there exist unique horizontal forms
α ∈ Ωm−2

c (N) and β ∈ Ωm−1
c (N), such that dθ weight decomposes as

dθ = α ∧ dτ + β ∧ τ .

Let T ∈ D′m(N) be such that π∗T ∈ Zq,m(R, ξ). Since N is con-
tractible and T is closed, it admits a primitive, say S ∈ D′m−1(N).
Then T (θ) admits the following expression:

Lemma 6.10. With the notations above, one has

T (θ) = (−1)mS1

(

(

β − (−1)mdα
)

∧ τ
)

.

Moreover:
(

β − (−1)mdα
)

∧ τ = d
(

θ − (−1)mL
(

(dθ)1
)

∧ τ
)

.

Assume for a moment that the lemma holds. Then the “if” part
of item (2) follows immediately. To establish the “only if” part, we
apply the lemma with some explicit currents T . Let ϕ1 ∈ Ωm−1

c (N)
be an arbitrary horizontal form, let ϕ2 ∈ Ωm−2

c (N) be the horizontal
form uniquely determined by the equation (dϕ1)1 = −(−1)mϕ2 ∧ dτ .
Set ϕ := ϕ1 + ϕ2 ∧ τ . Then an easy computation shows that dϕ
is vertical. Thus, by Lemma 6.5(2), the current π∗(dϕ) belongs to
Zq,m(R, ξ). Lemma 6.10 applied to T = dϕ, yields that

∫

N

ϕ1 ∧
(

β − (−1)mdα
)

∧ τ = 0,

for every horizontal ϕ1 ∈ Ωm−1
c (N). Therefore

(

β− (−1)mdα
)

∧ τ = 0,
and the second part of the lemma completes the proof of item (2). �

It remains to give the
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Proof of Lemma 6.10. Since S is a primitive of T , we have T (θ) =
dS(θ) = (−1)mS(dθ). From Relation (6.4) and the expression dθ =
α ∧ dτ + β ∧ τ , it comes that S(dθ) = S1(β ∧ τ) + S2(τ ∧ α ∧ dτ).
By Lemma 6.5(1) the current T is vertical. This means (by a simple
computation) that (dS1)1 = −(−1)mS2 ∧ dτ . Therefore:

S2(τ ∧ α ∧ dτ) = (−1)mS2(dτ ∧ α ∧ τ) = −(dS1)1(α ∧ τ)

= −dS1(α ∧ τ) = −(−1)mS1

(

d(α ∧ τ)
)

= S1

(

−(−1)mdα ∧ τ
)

.

The expected formula for T (θ) follows. To establish the second formula,
we compute

d
(

θ − (−1)mL
(

(dθ)1
)

∧ τ
)

= d
(

θ − (−1)mα ∧ τ
)

= α ∧ dτ + β ∧ τ − (−1)mdα ∧ τ − α ∧ dτ

=
(

β − (−1)mdα
)

∧ τ.

The lemma is proved. �

The second result of the section deals with the Banach space Zp,k(R, ξ)
for k ∈ {m, 2m − 1} and 2m

k+1
< p < 2m

k
. According to Lemma 6.5(2),

the forms π∗(dϕ), where ϕ ∈ Ωk−1
c (N) and dϕ is vertical, belong to

Zp,k(R, ξ). A natural problem is to determine whether they form a
dense subspace. For the norm topology, we do not know, but for the
current topology this is indeed the case:

Proposition 6.11. Let k ∈ {m, . . . , 2m− 1} and 2m
k+1

< p < 2m
k
. The

set {dϕ : ϕ ∈ Ωk−1
c (N), dϕ is vertical} is a dense subspace in the sense

of currents in {T ∈ D′k(N) : π∗T ∈ Zp,k(R, ξ)}.

Proof. Set F := {dϕ : ϕ ∈ Ωk−1
c (N), dϕ is vertical} and E := {T ∈

D′k(N) : π∗T ∈ Zp,k(R, ξ)} for simplicity. Let (q, ℓ) be the Poincaré
dual of (p, k) relatively to R. The topology on E, which is induced
by the weak*-topology of D′k(N), is generated by the linear forms
Λθ : E → R defined by Λθ(T ) = T (θ), where θ belongs to Ωℓ−1

c (N).
We shall let Etop denote E equipped with this topology.

According to the Hahn-Banach Theorem, showing that F is dense
in Etop, is equivalent to proving the triviality of every Λ ∈ E∗

top such
that Λ(F ) = {0}.

Since every element of E∗
top is a Λθ for some θ ∈ Ωℓ−1

c (N) (see [Ru74,

Theorem 3.10]), we are led to showing the following: if θ ∈ Ωℓ−1
c (N)

satisfies
∫

N
dϕ ∧ θ = 0 for every dϕ ∈ F , then Λθ = 0.
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By analysing the “only if” parts of the proof of the previous Proposi-
tion 6.7, one sees that the θ’s such that

∫

N
dϕ∧θ = 0 for every dϕ ∈ F ,

are precisely those for which [d(χ · π∗θ)] = 0 in LqHℓ
dR(R). Therefore

they satisfy Λθ = 0, thanks to Theorem 3.2(4). �

7. The symmetric space SL3(R)/SO3(R)

We prove Theorem B (stated in the Introduction) which describes
the second Lp-cohomology of SL3(R)/SO3(R). The strategy is similar
to the one conducted in Section 5 to study the second Lp-cohomology
of the groups Sµ. It highly relies on the description of the cohomology
of the complex hyperbolic plane discussed in Section 6.

7.1. Notation and decomposition of SL3(R). At first we introduce
the various subgroups of SL3(R) we will be working with in the sequel.

The relevant Iwasawa decomposition here is SL3(R) = KAN , with
K = SO3(R), A = Diag(R3) ∩ SL3(R) and

N =
{





1 x z
0 1 y
0 0 1



 : x, y, z ∈ R
}

≃ Heis(3).

Let a and n be the Lie algebras of A and N respectively. Every element
of n can be naturally denoted by a triple (x, y, z) ∈ R3.

Let ξ, η ∈ a be defined by ξ = diag(−1, 0, 1) and η = 1
3
diag(1,−2, 1).

They act on n by:

(7.1) adξ · (x, y, z) = (−x,−y,−2z) and adη · (x, y, z) = (x,−y, 0).

We consider the following subgroups of SL3(R):

R := {etξ}t∈R ⋉N ≃ H
2
C
, H := {esη}s∈R ⋉N and

S := A⋉N = {esη}s∈R ⋉R = {etξ}t∈R ⋉H.

The Lie group S is isometric to the symmetric space SL3(R)/SO3(R).

7.2. First observations. We derive from previous results some pre-
liminary observations on LpH2

dR(S). The notations are the same as in
the previous section.

Proposition 7.2. One has LpH2
dR(S) = {0} for p < 4

3
.
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Proof. Let h denotes the Lie algebra of H . Set δ := adξ|
h
∈ Der(h), so

that S can be written S = R ⋉δ H . The ordered list of eigenvalues of
−δ enumerated with multiplicity, is

λ1 = 0 < λ2 = λ3 = 1 < λ4 = 2.

Thus, with the notations of Section 3, the trace of −δ is h = 4, and one
has W2 = λ3 + λ4 = 3. Therefore the statement follows from Theorem
3.2(1). �

Proposition 7.3. For p ∈ (4
3
; 4)\{2}, the space LpH2

dR(R) is non-zero
and Hausdorff, and there exists a linear isomorphism

LpH2
dR(S) ≃

{

[ω] ∈ LpH2
dR(R) :

∫

R

‖esadη
∗
[ω]‖pLpH2(R)ds < +∞

}

.

Proof. When p ∈ (4
3
; 4)\{2}, Theorem 6.1 shows that LpH2

dR(R) is non-

zero and Hausdorff, and that LpHk
dR(R) = {0} in all degrees k 6= 2.

Since S = {esη}s∈R ⋉ R, the above description of the cohomology of
R, in combination with a Hochschild-Serre spectral sequence argument
(see [BR23, Corollary 6.10]), yields the desired linear isomorphism. �

Proposition 7.4. For p > 4, the space LpH2
dR(S) is non-zero.

Proof. Consider again λ1 = 0 < λ2 = λ3 = 1 < λ4 = 2 the list of the

eigenvalues of −δ = −adξ|
h
∈ Der(h). The trace of −δ is h = 4, and

one has w2 = λ1 + λ2 = 1. Since the rank of S is equal to 2, it follows

from [BR23, Theorem C and Corollary 3.4] that LpH2
dR(S) is non-zero

for p > h
w2

= 4. �

7.3. Auxiliary results on H
2
C
. This section is devoted to auxiliary

results (Lemmata 7.5 and 7.6) that will serve in the next section to
prove Theorem B.

Recall that R = {etξ}t∈R ⋉N ≃ H
2
C
. Let πN be the projection map

from R onto N .

Lemma 7.5. Suppose that p ∈ (2; 4) and let θ ∈ Ω1
c(N) \ {0} be of the

form θ = fdx or gdy. Then:

(1) The class [d(χ · π∗
Nθ)] is non-zero in LpH2

dR(R).
(2) If θ = fdx (resp. gdy), one has

∥

∥[d(χ · π∗
Ne

sadη∗θ)]
∥

∥

LpH2(R)
→ 0

exponentially fast, when s tends to −∞ (resp. +∞).
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Proof. (1). We apply the criteria in Proposition 6.7(2). Suppose first
that θ = fdx. With the notations of Sections 6.1 and 6.2, one has
dθ = (Y · f)dy ∧ dx+ (Z · f)τ ∧ dx. Since dτ = −dx ∧ dy, we get that

d
(

θ − L
(

(dθ)1
)

τ
)

= d
(

θ − (Y · f)τ
)

= −(Z · f +X · Y · f)dx ∧ τ − (Y 2 · f)dy ∧ τ.

The term Y 2 · f is non-zero since the function f is non-zero and has
compact support. Therefore d(θ−L((dθ)1τ) is non-zero, and the state-
ment follows from Proposition 6.7(2). The case θ = gdy is similar.

(2). Suppose that θ = fdx. For (s, t) ∈ R2, one has

etadξ
∗
(esadη

∗
θ) = (etadξ+sadη)∗θ and etadξ

∗
(desadη

∗
θ) = (etadξ+sadη)∗dθ.

By Lemma 3.6 and relation (7.1), their Lp-norms satisfy

∥

∥(etadξ+sadη)∗θ
∥

∥

LpΩ1(N)
≍ e(

4

p
−1)t+s‖f‖p,

and
∥

∥(etadξ+sadη)∗dθ
∥

∥

LpΩ2(N)
≍ e−(2− 4

p
)t‖Y · f‖p + e−(3− 4

p
)t+s‖Z · f‖p.

Set a = 4
p
− 1, b = 2 − 4

p
and c = 3 − 4

p
. One has a, b, c > 0 since

2 < p < 4. From Proposition 3.4, it follows that
∥

∥[d(χ · π∗
Ne

sadη∗θ)]
∥

∥

LpH2(R)
6 C inf

t∈R

{

(eat + e−ct)es + e−bt
}

.

Suppose that s→ −∞, and set t = − s
2a
. Then

(eat + e−ct)es + e−bt = e
s
2 + e(

c
2a

+1)s + e
b
2a

s,

which tends to 0 exponentially fast. The case θ = gdy is similar. �

Lemma 7.6. Suppose that p ∈ (2; 4). There exist non-zero forms
θ = fdx and Θ = gdy in Ω1

c(N), such that [d(χ · π∗
Nθ)] = [d(χ · π∗

NΘ)]
in LpH2

dR(R).

Proof. Let u be an arbitrarily non-zero function in Ω0
c(N). Its differ-

ential is (X · u)dx+ (Y · u)dy + (Z · u)τ . Set f := X · u, g := −Y · u,
h := −Z · u, and let θ = fdx and Θ = gdy. By Proposition 6.7(2), one
has [d(χ · π∗

Nθ)] = [d(χ · π∗
NΘ)] in LpH2

dR(R). Indeed:

d(θ −Θ) = d(hτ) = dh ∧ τ + hdτ,

thus L((θ−Θ)1) = h, and we get that d(θ−Θ−L((θ−Θ)1)τ) = 0. �
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7.4. Proof of Theorem B. Thanks to Propositions 7.2 and 7.4, we
can restrict ourselves to the region p ∈ (4

3
; 4). In this region, Proposi-

tion 7.3 shows that there is a linear isomorphism

(7.7) LpH2
dR(S) ≃

{

[ω] ∈ LpH2
dR(R) :

∫

R

‖esadη
∗
[ω]‖pLpH2(R)ds <∞

}

.

We will use this representation to prove the theorem.

Step 1. LpH2
dR(S) = {0} when p ∈ (4

3
; 2).

Let p ∈ (4
3
, 2) and let (q, 2) be the Poincaré dual of (p, 2) relatively to

R. One has q ∈ (2; 4). According to the relation (7.7), it is enough to
show that for every non-trivial [ω], one has ‖esadη

∗
[ω]‖LpH2(R) → +∞,

either when s tends to +∞ or to −∞.

So let [ω] be a non-trivial class in LpH2
dR(R). By Theorem 3.2(4), it

admits a boundary value T ∈ D′2(N) ∩Ker d, so that

‖[ω]‖LpH2(R) = sup
{

T (θ) : θ ∈ Ω1
c(N),

∥

∥[d(χ · π∗
Nθ)]

∥

∥

LqH2(R)
6 1

}

.

In the group R, right multiplication by exp tξ commutes with conjugacy
by exp sη. Therefore the boundary value of the class esadη

∗
[ω] is the

current esadη
∗
T . With a change of variable, one gets

‖esadη
∗
[ω]‖LpH2(R) = sup

{

T (θ) : θ ∈ Ω1
c(N), with

∥

∥[d(χ · π∗
Ne

sadη∗θ)]
∥

∥

LqH2(R)
6 1

}

.

By Lemma 6.5, the current T is vertical, thus it can be written as
T = Fdy ∧ τ + Gdx ∧ τ , with F,G ∈ D′0(N). If F 6= 0 (resp. G 6= 0),
then for θ = fdx ∈ Ω1

c(N) (resp. θ = gdy), one has T (θ) = F (fvol)
(resp. −G(gvol)). In any case, there exists θ ∈ Ω1

c(N), of the form fdx
or gdy, such that T (θ) = 1. The above equality in combination with
Lemma 7.5(2), yields that

‖esadη
∗
[ω]‖LpH2(R) >

∥

∥[d(χ · π∗
Ne

sadη∗θ)]
∥

∥

−1

LqH2(R)
→ +∞,

either when s tends to +∞ or to −∞.

Step 2. LpH2
dR(S) 6= {0} when p ∈ (2; 4).

Let p ∈ (2; 4). We will exhibit some non-trivial element in the right-
hand side of (7.7).

Let θ = fdx and Θ = gdy be as in Lemma 7.6. Set ω := d(χ · π∗
Nθ)

and Ω := d(χ ·π∗
NΘ). By Lemmata 7.6 and 7.5(1), their classes [ω] and

[Ω] are equal and non-zero in LpH2
dR(R).
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Since ξ and η commute, one has esadη
∗
ω = d(χ · π∗

Ne
sadη∗θ). Thus

by Lemma 7.5(2), the norm ‖esadη
∗
[ω]‖LpH2(R) tends to 0 exponentially

fast when s tends to −∞, and similarly for ‖esadη
∗
[Ω]‖LpH2(S) when

s tends to +∞. Since [ω] = [Ω], the integral
∫

R
‖esadη

∗
[ω]‖pLpH2(R)ds

converges. Thus [ω] provides a non-trivial element in the right-hand
side of (7.7).
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