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Abstract

We consider the statistical analysis of heterogeneous data for prediction in situations where
the observations include functions, typically time series. We extend the modeling with
Mixtures-of-Experts (ME), as a framework of choice in modeling heterogeneity in data
for prediction with vectorial observations, to this functional data analysis context. We
first present a new family of ME models, named functional ME (FME) in which the pre-
dictors are potentially noisy observations, from entire functions. Furthermore, the data
generating process of the predictor and the real response, is governed by a hidden dis-
crete variable representing an unknown partition. Second, by imposing sparsity on deriva-
tives of the underlying functional parameters via Lasso-like regularizations, we provide
sparse and interpretable functional representations of the FME models called iFME. We
develop dedicated expectation–maximization algorithms for Lasso-like (EM-Lasso) regular-
ized maximum-likelihood parameter estimation strategies to fit the models. The proposed
models and algorithms are studied in simulated scenarios and in applications to two real
data sets, and the obtained results demonstrate their performance in accurately capturing
complex nonlinear relationships and in clustering the heterogeneous regression data.

Keywords: Mixtures-of-Experts; Functional Data Analysis; EM algorithms; Maximum
likelihood Estimation; Lasso regularization; Clustering
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1 Introduction

Mixture-of-experts (ME), introduced by (Jacobs et al., 1991), is a successful and flexible
supervised learning architecture that allows one to efficiently represent complex non-linear
relationships in observed pairs of heterogeneous data (X, Y ). The ME model relies on the
divide and conquer principle, so that the response Y is gathered from soft-association of
several expert responses, each targeted to a homogeneous sub-population of the heteroge-
neous population, given the input covariates (predictors or features)X. From the statistical
modeling point of view, a ME model is an extension of the finite mixture model (McLachlan
and Peel., 2000) which explores the unconditional (mixture) distribution of a given set of the
features X. It is thus more tailored to unsupervised learning than to supervised learning
and it has the fully conditional mixture model of the form

ME(y|x) =
K∑
k=1

Gk(x)Ek(y|x)· (1)

In model (1) the ME distribution of the response y given the predictors x is a conditional
mixture distribution with predictor-dependent mixing weights, referred to as gating func-
tions, Gk(x), and conditional mixture components, referred to as experts Ek(y|x), K being
the number of experts.

Mixture of experts (ME) models thus allow one to better capture more complex relation-
ships between y and x in heterogeneous situations in non-linear regression y ∈ R, classifi-
cation y ∈ {1, . . . , G}, and in clustering the data by associating each expert component to
a cluster. The richness of the class of ME models in terms of conditional density approx-
imation capabilities has been recently demonstrated by proving denseness results (Nguyen
et al., 2021a, 2019).

They have been investigated in their simple form, as well as in their hierarchical form
(Jordan and Jacobs, 1994), for non-linear regression and model-based cluster and discrimi-
nant analyses and in different application domains. The inference in this case can be per-
formed by maximum likelihood estimation (MLE) via the expectation–maximization (EM)
algorithm (Jordan and Jacobs, 1994; McLachlan and Krishnan, 2008; Dempster et al., 1977)
or, when p is possibly larger than the sample size n, by regularized MLE via dedicated EM-
Lasso algorithms as in Khalili (2010); Montuelle et al. (2014); Chamroukhi et al. (2019);
Chamroukhi and Huynh (2019); Huynh and Chamroukhi (2019); Nguyen et al. (2020) which
include Lasso-like penalties (Tibshirani, 1996). For a more complete review of ME models,
the reader is referred to Yuksel et al. (2012) and Nguyen and Chamroukhi (2018). More
recent theoretical results about the ME estimation and model selection for different families
of ME models, can be found in Nguyen et al. (2021b,c, 2020).

To the best of our knowledge, ME models have been exclusively studied in multivariate
analysis when the inputs are vectors, i.e. X ∈ X = Rp. However, in many problems,
the predictors and/or the responses are observed from smooth functions. Indeed, in many
situations, unlike in predictive and cluster analyses of multivariate and potentially high-
dimensional heterogeneous data, which have been studied with the ME modeling in (1),
the observed data may arise from continuously observed processes, e.g. time series. Thus, a
multivariate (vectorial) analysis does not allow one to enough capture the inherent functional
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structure of the data. In such situations, classical multivariate models are not adapted as they
ignore the underlying intrinsic nature and structure of the data. Functional Data Analysis
(FDA) (Ramsay and Silverman, 2005; Ferraty and Vieu, 2006) in which the individual data
units are assumed to be functions, rather than vectors, offers an adapted framework to
deal with continuously observed data, including in regression, classification and clustering.
FDA considers the observed data as (discretized) values of smooth functions, rather than
multivariate observations represented in the form of “simple” vectors.

The study of functional data has been considered in most of the statistical modeling
and inference problems including regression, classification, clustering, functional graphical
models (Qiao et al., 2019), among others. In regression, functional linear models have been
introduced including penalized functional regression (Élodie Brunel et al., 2016; Goldsmith
et al., 2011) and in particular the FLiRTI approach, a functional linear regression constructed
upon interpretable regularization (James et al., 2009), and more generally generalized linear
models with functional predictors (Müller et al., 2005; James, 2002), which cover functional
logistic regression for classification. In classification, we can also cite functional linear dis-
criminant analysis (James and Hastie, 2001), and, as a penalized model, Lasso-regularized
functional logistic regression (Mousavi and Sørensen, 2017). To deal with heterogeneous
functional data, the construction of mixture models with functional data analytic aspects
have been introduced for model-based clustering (Liu and Yang (2009), Jacques and Preda
(2014a)) including Lasso-regularized mixtures for functional data (Devijver, 2017; James
and Sugar, 2003; Jacques and Preda, 2014b; Chamroukhi and Nguyen, 2019). The resulting
functional mixture models are better able to handle functional data structures compared to
standard multivariate mixtures.

The problem of clustering and prediction in presence of functional observations from het-
erogeneous populations, leading to complex distributions, is still however less investigated.
In this paper, we investigate the framework of Mixtures-of-Experts (ME) models, as models
of choice in modeling heterogeneity in data for prediction and clustering with vectorial ob-
servations, and extend it to the functional data framework. The main novelty of our paper is
to get interpretable results for functional ME (FME). First, the ME framework is extended
to a functional data setting to learn from functional predictors, and the statistical inference
in the resulting setting (ie. of the FME model) looks for estimating a sparse and inter-
pretable FME model parameters. The key technical challenges brought by this setting are
addressed by considering sparsity on the derivatives of the underlying functional parameters
of the FME model, thanks to Lasso-like regularizations, solved by a dedicated EM-Lasso
algorithm. To the best of our knowledge, this is we first time the ME model is constructed
upon functional predictors, and provides interpretable sparse estimates.

Firstly, we introduce in Section 2 a new family of ME models, referred to as FME,
to relate a functional predictor to a scalar response, and develop a dedicated EM algo-
rithm for the maximum-likelihood parameter estimation. Secondly, to deal with potential
high-dimensional setting of the introduced FME model, we develop in Section 3 a Lasso-
regularized approach, which consists of a penalized MLE estimation via an hybrid EM-Lasso
algorithm, which integrates an optimized coordinate ascent procedure to efficiently imple-
ment the M-Step. Thirdly, we in particular present in Section 3.2 and extended FME model,
which is constructed upon a sparse and highly-interpretable regularization of the functional
expert and gating parameters. The resulting model, abbreviated as iFME, is fitted by
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regularized MLE via an dedicated EM algorithm. The developed algorithms for the two
introduced ME models are applied and evaluated in Section 4 on several simulated scenarios
and on real data sets, in both clustering and non-linear regression.

2 Functional Mixtures-of-Experts (FME)

We wish to derive and fit new mixture-of-experts (ME) models in presence of functional
predictors, and potentially, functional responses. In this paper, we first consider ME models
with a functional predictor X(·) and a real response Y where the pair arises from hetero-
geneous population composed of unknown K homogeneous sub-populations. To the best of
our knowledge, this is the first time ME models are considered for functional data.

2.1 ME with functional predictor and scalar response

Let {Xi(t), Yi}ni=1, be a sample of n independently and identically distributed (i.i.d.) data
pairs where Yi is a real-valued response and Xi(t) is a functional predictor with t ∈ T ⊂ R,
for example the time in time series. First, to model the conditional relationships between the
continuous response Y and the functional predictor X(·), given an expert z, we formulate
each expert component Ez(y|x) in (1) as a functional regression model (cf. Müller et al.
(2005), James et al. (2009)). The resulting functional expert regression model for the ith
observation takes the following stochastic representation

Yi = βzi,0 +

∫
T
Xi(t)βzi(t)dt+ εi, i ∈ [n], (2)

where βzi,0 is an unknown constant intercept, βzi(t), t ∈ T is the function of unknown
coefficients of functional expert zi, and εi ∼ N (0, σ2

zi
) are independent Gaussian errors,

zi ∈ [K] being the unknown label of the expert generating the ith observation. The notation
zi ∈ [K] means zi = 1, . . . , K which is used throughout this paper. In this context, the
response Y is related to the entire trajectory of X(·). Let β = {βz,0, βz(t), t ∈ T }Kz=1

represents the set of unknown functional parameters for the experts network.
Now consider the modeling of the gating network in the proposed FME model. As in the

context of ME for vectorial data, different choices are possible to model the gating network
function, typically softmax-gated or Gaussian-gated ME (e.g. see Nguyen and Chamroukhi
(2018), Xu et al. (1994), Chamroukhi et al. (2019)). A standard choice as in Jacobs et al.
(1991) to model the gating network Gz(x) in (1) is to use the multinomial logistic (softmax)
function as a distribution of the latent variable Z. In this functional data modeling context
with K ≥ 2 experts, we use a multinomial logistic function as an extension of the functional
logistic regression presented in Mousavi and Sørensen (2018) for linear classification. The
resulting functional softmax gating network then takes the following form

πz (X(t), t ∈ T ;α) = P(Z = z|X(t), t ∈ T ;α)

=
exp{αz,0 +

∫
T X(t)αz(t)dt}

1 +
∑K−1

z′=1 exp{αz′,0 +
∫
T X(t)αz′(t)dt}

, (3)
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where α = {αz,0, αz(t), t ∈ T }Kz=1 is the set of unknown constant intercept coefficients αz,0

and functional parameters αz(t), t ∈ T for each expert z ∈ [K]. Note that model (3) is
equivalent to assuming that each expert z is related to the entire trajectory X(·) via the
following functional linear predictor for the gating network

hz(X(t), t ∈ T ;α) = log

{
πz (X(t), t ∈ T ;α)

πK (X(t), t ∈ T ;α)

}
= αz,0 +

∫
T
X(t)αz(t)dt. (4)

The objective is to estimate the functional parameters α and β of the FME model
defined by (2)-(3), from an observed sample. In this setting with functional predictors, this
requires estimating a possibly infinite number of coefficients (as many as the number of
temporal observations for the predictor). In order to reduce the complexity of the problem,
the observed functional predictor can be projected onto a fixed number of basis functions
so that we sufficiently capture enough the functional structure of the data, and sufficiently
reduce enough the number of coefficients to estimate.

2.2 Smoothing representation of the functional experts

Here we consider the case of fixed design, that is, the covariates Xi(t) are non-random
functions. We suppose that the Xi(·)’s are measured with error at any given time t. Hence,
instead of observing directly Xi(t), one has a noisy version of it Ui(t), defined as

Ui(t) = Xi(t) + δi(t), i ∈ [n],

where δi(·) ∼ N (0, σ2
δ ) are measurement errors assumed to be independent of the Xi(·)’s and

the Yi’s. Since the functional predictors Xi(t) are not directly observed, we first construct
an approximation of Xi(t) from the noisy predictors Ui(t) by projecting the latter onto a set
of continuous basis functions. Let br(t) = [b1(t), . . . , br(t)]

⊤ be a r-dimensional (B-spline,
Fourier, Wavelet) basis, then with r sufficiently large Xi(t) can be represented as

Xi(t) =
r∑

j=1

xijbj(t) = x
⊤
i br(t), (5)

where xij =
∫
T Xi(t)bj(t)dt for j ∈ [r] and xi = (xi1, . . . , xir)

⊤. Since Xi(t) is not observed,
the representation coefficients xij’s are unknown. Hence we propose an unbiased estimator
of xij defined as

x̂ij :=

∫
T
Ui(t)bj(t)dt.

Thus, an estimate X̂i(t) of Xi(t) is given by

X̂i(t) = x̂
⊤
i br(t), i ∈ [n], (6)

with x̂i = (x̂i1, . . . , x̂ir)
⊤.
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Similarly, to represent the regression coefficient functions βz(·), consider a p-dimensional
basis bp(t) = [b1(t), b2(t), . . . , bp(t)]

⊤. Then the function βz(t) can be represented as

βz(t) = η
⊤
z bp(t) (7)

where ηz = (ηz,1, ηz,2, . . . , ηz,p)
⊤ is the vector of unknown coefficients and the choice of p

should ensure the tradeoff between smoothness of the functional predictor and complexity
of the estimation problem. We select r ≥ p to satisfy the identifiability constraint (see for
instance Goldsmith et al. (2011), Ramsay and Silverman (2002)). Furthermore, rather than
assuming a perfect fit of βz(t) by bp(t) as in (7), we use for each Gaussian expert regressor z,
the following error model as proposed by James et al. (2009) for functional linear regression

βz(t) = η
⊤
z bp(t) + e(t)

where e(t) represents the approximation error of βz(t) by the linear projection (7). As we
choose p ≫ n, |e(t)| can be assumed to be small.

2.3 Smoothing representation of the functional gating network

Since here we are examining functional predictors, an appropriate representation has also to
be given for the gating network (3) with functional parameters {αz(t), t ∈ T }Kz=1. Due to the
infinite number of these parameters, we also represent the gating network by a finite set of
basis functions similarly as for the experts network. For the representation of the functional
predictors Xi(t), i ∈ [n], we use X̂i(t) established in (6). The coefficients function αz(t) is
represented similarly as for the β coefficients function of the experts network, by using a
q-dimensional basis bq(t) = [b1(t), b2(t), . . . , bq(t)]

⊤, q ≤ r, via the projection

αz(t) = ζ
⊤
z bq(t), (8)

where ζz = (ζz1, ζz2, . . . , ζzq)
⊤ is the vector of softmax coefficients function. Note that here

we use the same type of basis functions for both representations of βz and αz, but one can
use different types of bases if needed. Then, by using the representations (6) and (8) of X(t)
and αz(t), respectively, in the linear predictor hz(·) defined in (4) for i ∈ [n], the latter is
thus approximated as

hz (Ui(t), t ∈ T ;α) = αzi,0 + ζ
⊤
zi
ri, (9)

where ri =
[∫

T br(t)bq(t)
⊤dt
]⊤
x̂i. Thus, following its definition in (3), the functional soft-

max gating network is approximated as

πk(ri; ξ) =
exp {αk,0 + ζ

⊤
k ri}

1 +
∑K−1

k′=1 exp {αk′,0 + ζ⊤k′ri}
, (10)

where ξ =
(
(α1,0, ζ

⊤
1 ), . . . , (αK−1,0, ζ

⊤
K−1)

)⊤ ∈ R(q+1)(K−1) is the unknown parameter vector
of the functional gating network to be estimated.
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2.4 The FME model conditional density

We now have appropriate representations for the functional predictors, as well as for both the
functional gating network and the functional experts network, involved in the construction of
the functional ME (FME) model (2)-(3). Gathering (6) and (7), the stochastic representation
(2) of the FME model can thus be defined as follows,

Yi|ui(·) = βzi,0 + η
⊤
zi
xi + ε⋆i , i ∈ [n], (11)

where xi =
[∫

T br(t)bp(t)
⊤dt
]⊤
x̂i and ε⋆i = εi + x̂

⊤
i

∫
T br(t)e(t)dt. We can see that the

problem is now reduced at the standard version of the ME model. From this stochastic rep-
resentation under the Gaussian assumption for the error variable εi, the conditional density
of each approximated functional expert zi = k is thus given by

f
(
yi|ui(·), zi = k;θk

)
= ϕ(yi; βk,0 + η

⊤
k xi, σ

2
k), (12)

where ϕ( · ;µ, v) is the Gaussian probability density function with mean µ and variance v,
βk,0 + η

⊤
k xi is the mean of the approximated functional regression expert, σ2

k its variance,
and θk = (βk,0,η

⊤
k , σ

2
k)

⊤ ∈ Rp+2 the unknown parameter vector of expert density k, k ∈ [K]
to be estimated. Finally, combining (12) and (10) in the ME model (1), leads to the the
following conditional density defining the FME model,

f(yi|ui(·);Ψ ) =
K∑
k=1

πk(ri; ξ)ϕ(yi; βk,0 + η
⊤
k xi, σ

2
k), (13)

where Ψ = (ξ⊤,θ⊤1 , . . . ,θ
⊤
K)

⊤ is the parameter vector of the model to be estimated.

2.5 Maximum likelihood estimation via the EM algorithm

The FME model (13) is now defined upon an adapted finite representation of the functional
predictors, and its parameter estimation can then be performed given an observed data sam-
ple. We first consider the maximum likelihood estimation framework via the EM algorithm
(Dempster et al., 1977; Jacobs et al., 1991) which has many desirable properties including
stability and convergence guarantees (e.g. see McLachlan and Krishnan (2008) for more de-
tails). Note that here we use the term maximum likelihood estimation to not unduly clutter
the clarity of the text, while as it will be specified later, we refer to the conditional maximum
likelihood estimator.

In practice, the data are available in the form of discretized values of functions. The noisy
functional predictors Ui(t) are usually observed at discrete sampling points ti1 < . . . < timi

with tij ∈ T for j ∈ [mi]. We suppose that Ui(t) is scaled such that 0 ≤ t ≤ 1 and divide the
time period [0, 1] up into a fine grid of mi points ti1, . . . , timi

. Thus, in (11) we have xi =[∑mi

j=1 br(tij)bp(tij)
⊤
]⊤
x̂i, ri =

[∑mi

j=1 br(tij)bq(tij)
⊤
]⊤
x̂i, where x̂ij =

∑mi

j=1 Ui(tij)bj(tij).

Note that if we choose p = q = r, then xi = ri = x̂i. Let D = {(u1, y1), . . . , (un, yn)} be an
i.i.d. sample of n observed data pairs where ui = (ui,1, . . . , ui,mi

) is the observed functional
predictor for the ith response yi.
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We use D to estimate the parameter vector Ψ by iteratively maximizing the observed
data log-likelihood,

logL(Ψ ) =
n∑

i=1

log
K∑
k=1

πk(ri; ξ)ϕ(yi; βk,0 + η
⊤
k xi, σ

2
k), (14)

via the EM algorithm. As detailed in Appendix, the EM algorithm for the FME model is
implemented as follows. After starting with an initial solution Ψ (0), it alternates, at each
iteration s, between the two following steps, until convergence (when there is no longer a
significant change in the values of the log-likelihood (14)).

E-step. Calculate the following conditional probability memberships τ
(s)
ik (for all i ∈ [n]),

that the observed pair (ui, yi) originates from the kth expert, given the observed data and
the current parameter estimate Ψ (s),

τ
(s)
ik = P(Zi = k|yi, ui(·);Ψ (s)) =

πk(ri; ξ
(s))ϕ(yi; β

(s)
k,0 + x⊤

i η
(s)
k , σ2

k
(s)
)

f(yi|ui(·);Ψ (s))
· (15)

M-step. Update the value of the parameter vector Ψ by maximizing the Q-function (43)
with respect to Ψ . The maximization is performed by separate maximizations with respect
to (w.r.t.) the gating network parameters ξ and, for each expert k, w.r.t. the expert network
parameters θk, for each of the K experts.

Updating the gating network’s parameters ξ consists of maximizing w.r.t. ξ the part of
(43) that is a function of ξ. Since we use a softmax-gated expert network in (10), this
maximization problem consists of a weighted multinomial logistic problem for which there is
no a closed-form solution. We then use a Newton-Raphson (NR) procedure, which iteratively
maximizes (44) after starting from an initial parameter vector ξ(0), by updating, at each NR
iteration t, the values of the parameter vector ξ according to the following updating formula:

ξ(t+1) = ξ(t) −
[
H(ξ;Ψ (s))

]−1

ξ=ξ(t)
g(ξ;Ψ (s))

∣∣∣
ξ=ξ(t)

(16)

where H(ξ;Ψ (s)) and g(ξ;Ψ (s)) are, respectively, the Hessian matrix and the gradient vector
of Q(ξ;Ψ (s)), and are provided in Appendix A. At each NR iteration, the Hessian matrix
and gradient vector are evaluated at the current value of ξ. We keep updating the gating
network parameter ξ according to (16) until there is no significant change in Q(ξ;Ψ ). The
maximization then provides ξ(s+1) for the next EM iteration. Alternatively, instead of using
the NR procedure, one can employ the Minorize-Maximization (MM) algorithm to update
the parameter ξ of the gating network. In this approach, the Hessian matrix in (16) is
approximated by a square matrix that is independent of ξ. This can offer an improved
computational efficiency, although it comes at the cost of requiring a greater number of
iterations. For further details, refer to Gormley and Murphy (2008).
Updating the experts network parameters θk consists of solving K independent weighted
regression problems where the weights are the conditional expert memberships τ

(s)
ik given by

9



(15). The updating formulas for the regression parameters (βk,0,ηk) and the noise variances
σ2
k for each expert k are straightforward and correspond to weighted versions of those of

standard Gaussian linear regression, i.e., weighted ordinary least squares. The updating
rules for the experts network parameters are given by the following formulas:

β
(s+1)
k,0 =

1

n
(s)
k

n∑
i=1

τ
(s)
ik (yi − x⊤

i η
(s)
k ), η

(s+1)
k =

1∑n
i=1 τ

(s)
ik xix⊤

i

n∑
i=1

τ
(s)
ik (yi − β

(s+1)
k,0 )xi,

σ2
k
(s+1)

=
1

n
(s)
k

n∑
i=1

τ
(s)
ik

[
yi − (β

(s+1)
k,0 + x⊤

i η
(s+1)
k )

]2
,

(17)

where n
(s)
k =

∑n
i=1 τ

(s)
ik represents the expected cardinal number of component k.

This EM algorithm, designed here for the FME that is constructed upon smoothing of
the functional data, can be seen as a direct extension of the vectorized version the ME model.
While it can hence be expected to provide accurate estimations as in the vector predictors
setting, the number of parameters to estimate here in the case of the FME can still be high, for
example when a big number of basis functions is used to have more accurate approximation
of the functional predictors. In that case, it is better to regularize the maximum likelihood
estimator in order to establish a compromise between the quality of fit and complexity.

3 Regularized maximum likelihood estimation

We rely on the LASSO (Tibshirani, 1996) as a successful procedure to encourage sparse
models in high-dimensional linear regression based on an ℓ1-penalty, and include it in this
mixture of experts modeling framework for functional data. The ℓ1-regularized ME models
have demonstrated their performance from a computational point of view (Chamroukhi
and Huynh, 2019; Huynh and Chamroukhi, 2019) and enjoy good theoretical properties
of universal approximation and consistent model selection in the high-dimensional setting.
(Nguyen et al., 2020, 2021d).

3.1 ℓ1-regularization and the EM-Lasso algorithm

We propose an ℓ1-regularization of the observed-data log-likelihood (18) to be maximized,
along with coordinate ascent algorithms to deal with the high-dimensional setting when
updating the parameters within the resulting EM-Lasso algorithm. The objective function
in this case is given by the following ℓ1-regularized observed-data log-likelihood,

L(Ψ ) = logL(Ψ )− Penλ,χ(Ψ ), (18)

where logL(Ψ ) is the observed-data log-likelihood of Ψ defined by (14), and Penλ,χ(Ψ ) is
a LASSO regularization term encouraging sparsity for the expert and the gating network
parameters, defined by

Penλ,χ(Ψ ) = λ

K∑
k=1

p∑
j=1

|ηk,j|+ χ
K−1∑
k=1

q∑
j=1

|ζk,j|, (19)

10



where λ and χ are positive real values representing tuning parameters. The maximization
of (18) cannot be performed in a closed form but again the EM algorithm can be adapted
to iteratively solve the maximization problem. The resulting algorithm for the FME model,
called EM-Lasso, takes the following form, as detailed in Appendix B. After starting with
an initial solution Ψ (0), it alternates between the two following steps, until convergence, i.e.,
when there is no longer a significant change in the values of the ℓ1-penalized log-likelihood
(18).

E-step. The E-Step in this EM-Lasso algorithm is unchanged compared to the previously
presented EM algorithm, and only requires the computation of the conditional expert mem-
berships τ

(s)
ik according to (15).

M-step. In this regularized MLE context, the parameter vector Ψ is now updated by max-
imizing the regularized Q-function (46), i.e., Ψ (s+1) = argmaxΨ

{
Q(Ψ ;Ψ (s))− Penλ,χ(Ψ )

}
.

This is performed by separate maximizations w.r.t. the gating network parameters ξ and,
for each expert k, w.r.t. the expert network parameters θk, k ∈ [K].
Updating the gating network parameters at iteration s of the EM-Lasso algorithm consists of
maximizing the following regularized Q-function w.r.t. ξ,

Qχ(ξ;Ψ
(s)) = Q(ξ;Ψ (s))− χ

K−1∑
k=1

∥ζk∥1, (20)

whereQ(ξ;Ψ (s)) =
∑n

i=1

[∑K−1
k=1 τ

(s)
ik

(
αk,0 + ζ

⊤
k ri
)
− log

(
1 +

∑K−1
k′=1 exp{αk′,0 + ζ

⊤
k′ri}

)]
. One

can see this is equivalent to solving a weighted regularized multinomial logistic regression
problem for which Qχ(ξ;Ψ

(s)) is its penalized log-likelihood, the weights being the condi-

tional probabilities τ
(s)
ik . There is no closed-form solution for this kind of problem. We then

use an iterative optimization algorithm to seek for a maximizer of Qχ(ξ;Ψ
(s)), i.e., an update

for the parameters of the gating network. To be effective when the number of parameters
to estimate is high, we propose a coordinate ascent algorithm to update the softmax gating
network coefficients in this regularized context.

Coordinate ascent for updating the gating network. The idea of the coordinate ascent al-
gorithm (e.g. see Hastie et al. (2015), Huynh and Chamroukhi (2019)), implemented in
our context at the sth EM-Lasso iteration to maximize Qχ(ξ;Ψ

(s)) at the M-Step, is as
follows. The gating function parameter vectors ξk = (αk,0, ζ

⊤
k )

⊤ as components of the whole
gating network parameters ξ = (ξ⊤1 , . . . , ξ

⊤
K−1)

⊤, are updated one at a time, while fixing
the other gate’s parameters to their previous estimates. Furthermore, to update a single
gating parameter vector ξk, we only update its coefficients ξkj one at a time, while fixing the
other coefficients to their previous values. More precisely, for each single gating function k,
we partially approximate the smooth part of Qχ(ξ;Ψ

(s)) with respect to ξk at the current
EM-Lasso estimate, say ξ(t), then optimize the resulting objective function (with respect to
ξk). This corresponds to solving penalized weighted least squares problems using coordinate
ascent. Thus, this results into an inner loop, indexed by m, that cycles over the components
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of ξk and updates them one by one, while the others are kept fixed to their previous values,
i.e., ξ

(m+1)
kh = ξ

(m)
kh for all h ̸= j, until the objective function (48) is not significantly increased.

The obtained closed form updates for each coefficient ζkj, j ∈ [q], and for the intercept
αk,0, are as follows

ζ
(m+1)
kj =

Sχ

(∑n
i=1 wikrij(cik − c̃

(m)
ikj )

)
∑n

i=1 wikr2ij
for j ∈ [q], α

(m+1)
k,0 =

∑n
i=1wik(cik − r⊤i ζ

(m+1)
k )∑n

i=1 wik

,

where c̃
(m)
ikj = α

(m)
k0 + r⊤i ζ

(m)
k − ζ

(m)
kj rij is the fitted value excluding the contribution from the

jth component of the ith vector rij in the design matrix of the gating network and Sχ(·) is
a soft-thresholding operator defined by Sχ(u) = sign(u)(|u| − χ)+ with (v)+ is a shorthand

for max{v, 0}. The values (α
(m+1)
k,0 , ζ

(m+1)
k ) obtained at convergence of the coordinate ascent

inner loop for the kth gating function are taken as the fixed values of that gating function,
in the procedure of updating the next parameter vector ξk+1. Finally, when all the gating
functions have their values updated, i.e., after K − 1 inner coordinate ascent loops, to avoid
numerical instability, we perform a backtracking line search, before actually updating the
gating network’s parameters for the next EM-Lasso iteration. More precisely, the update
is ξ(t+1) = (1 − ν)ξ(t) + νξ̄(t), where ξ̄(t) is the output after K − 1 inner loops and ν is
backtrackingly determined to ensure Qχ(ξ

(t+1);Ψ (s)) ≥ Qχ(ξ
(t);Ψ (s)).

We keep cycling these updated iterates for the parameter vectors ξk, until convergence of
the whole coordinate ascent (CA) procedure inside the M-Step, i.e., when the relative increase
in the Lasso-regularized objective Qχ(ξ;Ψ

(s)) related to the softmax gating network is not
significant, e.g., less than a small tolerance. Then, the next EM-Lasso iteration is calculated
with the updated gating network’s parameters ξ(s+1) = (α̃1,0, ζ̃

⊤
1 , . . . , α̃K−1,0, ζ̃

⊤
K−1)

⊤ where

the values α̃k,0 and ζ̃kj for all k ∈ [K − 1], j ∈ [q] are those obtained for the αk,0’s and the
ζkj’s at convergence of the CA algorithm.

Updating the experts network parameters The maximization step for updating the expert
parameters θk consists of maximizing the function Qλ(θk;Ψ

(s)) given by

Qλ(θk;Ψ
(s)) = Q(θk;Ψ

(s))− λ∥ηk∥1, (21)

where Q(θk;Ψ
(s)) = − 1

2σ2
k

∑n
i=1 τ

(s)
ik

(
yi − (βk,0 + η

⊤
k xi)

)2 − n
2
log(2πσ2

k)· This corresponds to
solving a weighted LASSO problem where the weights are the conditional experts member-
ships τ

(s)
ik . We then solve it by an iterative optimization algorithm similarly to the previous

case of updating the gating network parameters. As it can be seen in Appendix B.2, updat-
ing (βk,0,ηk) according to (21) is obtained by coordinate ascent as follows. For each j ∈ [p],
the closed-form update for ηkj at the mth iteration of the coordinate ascent algorithm within
the M-Step of EM-Lasso, is given by

η
(m+1)
kj =

S
λσ2

k
(s)

(∑n
i=1 τ

(s)
ik xij(yi − ỹ

(m)
ij )

)
∑n

i=1 τ
(s)
ik x2ij

, β
(m+1)
k,0 =

∑n
i=1 τ

(s)
ik (yi − x⊤

i η
(m+1)
k )∑n

i=1 τ
(s)
ik

,

in which ỹ
(m)
ij = β

(m)
k,0 + x⊤

i η
(m)
k − η

(m)
kj xij is the fitted value excluding the contribution from

xij and S
λσ2

k
(s)(·) is the soft-thresholding operator. We keep updating the components of
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(βk,0,ηk) cyclically until no enough increase in objective function (21). Then, once (βk,0,ηk)
are updated while fixing the variance σ2

k, the latter is then updated straightforwardly as in
the case of standard weighted Gaussian regression, and it is update is given by

σ2
k
(s+1)

=

∑n
i=1 τ

(s)
ik

(
yi − β

(s+1)
k,0 − x⊤

i η
(s+1)
k

)2
∑n

i=1 τ
(s)
ik

,

where (β
(s+1)
k,0 ,η

(s+1)
k ) = (β̃k,0, η̃k) is the solution obtained at convergence of the CA algorithm,

which is taken as the update in the next EM-Lasso iteration.
This completes the parameter vector update Ψ (s+1) =

(
ξ(s+1),θ

(s+1)
1 , . . . ,θ

(s+1)
K

)
of the

regularized FME model, where ξ(s+1) and θ
(s+1)
k , k ∈ [K], are, respectively, the updates

of the gating network parameters and the experts network parameters, calculated by the
coordinate ascent algorithms.

The EM-Lasso algorithm provides an estimate of the FME parameters with sparsity
constraints on the values of the parameter vectors ξ and θk, k ∈ [K]. Actually, since
here these parameter vectors do not relate directly the original functional inputs, to the
output, assuming some of their values is zero is not necessarily justified, as there is no indeed
any reason that these values are zero, nor easily interpretable, compared to the sparsity in
vectorial generalized linear models, mixture of regressions and ME models.

From now on, we refer to FME and FME-Lasso, respectively, the FME model fitted by
EM algorithm in Section 2.5 and the regularized FME model fitted by EM-Lasso algorithm,
in Section 3.1. In the following Section, we introduce a regularization that is interpretable
and encourages sparsity in the FME model.

3.2 Interpretable Functional Mixture of Experts (iFME)

In this section, we provide a sparse and, especially highly-interpretable fit, for the coefficient
functions {βk(t), t ∈ T } and {αk(t), t ∈ T } representing each of theK functional experts and
gating network. We call our approach Interpretable Functional Mixture of Experts (iFME).
The presented iFME allows us to control the expert and gating parameter functions while
still providing performance as with the standard FME model presented previously.

3.2.1 Interpretable sparse regularization

We rely on the methodology of Functional Linear Regression That’s Interpretable (FLiRTI)
presented in James et al. (2009). The idea of the FLiRTI methodology is as follows. We
use variable selection with sparsity assumption on appropriate chosen derivatives of the
coefficient function, say βzi(t) here, in the case of the functional expert network, to produce

a highly interpretable estimate for the coefficient functions βzi(t). For instance, β
(0)
zi (t) = 0

implies that the predictor Xi(t) has no effect on the response Yi at t, β
(1)
zi (t) = 0 means that

βzi(t) is constant in t, β
(2)
zi (t) = 0 shows that βzi(t) is linear in t, etc. Assuming sparsity in

higher-order derivatives of βzi(t), for instance when d = 3 or d = 4, will however give us a
less easily interpretable fit. Hence, for example, if one believes that the expert parameter
function βzi(t) is exactly zero over a certain region and exactly linear over other region of
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t, then it is necessary to estimate βzi(t) such that β
(0)
zi (t) = 0 and β

(2)
zi (t) = 0 over those

regions, respectively. In this situation, we need to model βzi(t) assuming that its zeroth
and second derivatives are sparse. However, with the EM-Lasso method derived above via
the Lasso regularization, there is no actually any reason that we could obtain those desired
properties, which may result in an estimate for βzi(t) that is rarely exactly zeros (and/or
linear), and making the sparsity and coefficient curves hard to interpret. The same situation
may occur with the gating parameter functions. To handle this, we describe in what follows
the construction of our iFME model that produces flexible-shape and highly-interpretable
estimates for the expert and gating coefficient functions, by simultaneously constraining any
two of their derivatives to be sparse.

We start by selecting a p-dimensional basis bp(t) and a q-dimensional basis bq(t) for
approximating the experts and gating networks, respectively. For the expert network, if we
divide the time domain into a grid of p evenly spaced points, and let Dd be the dth finite
difference operator defined recursively as

Dbp(tj) = p [bp(tj)− bp(tj−1)] ,

D2bp(tj) = D [Dbp(tj)] = p2 [bp(tj)− 2bp(tj−1) + bp(tj−2)] ,
...

Ddbp(tj) = D
[
Dd−1bp(tj)

]
,

then Ddbp(tj) provides an approximation for b
(d)
p (tj) = [b

(d)
1 (tj), . . . , b

(d)
p (tj)]

⊤, j ∈ [p]. Let

Ap =
[
Dd1bp(t1), D

d1bp(t2), . . . , D
d1bp(tp)︸ ︷︷ ︸

A
[d1]
p

, Dd2bp(t1), D
d2bp(t2), . . . , D

d2bp(tp)︸ ︷︷ ︸
A

[d2]
p

]⊤

be the matrix of approximate d1th and d2th derivative of the basis bp(t). We denote A
[d1]
p

the first p rows of Ap and A
[d2]
p the remainder, i.e., Ap =

[
A

[d1]
p ,A

[d2]
p

]⊤
. One can see such

matrix Ap is in R2p×p and A
[d1]
p is a square invertible matrix.

Now, if we consider the following representation for the expert network coefficient function

γzi = Apηzi (22)

with γzi =
(
γ
[d1]
zi

⊤
,γ

[d2]
zi

⊤)⊤
, where γ

[d1]
zi =

(
γ
[d1]
1,zi

, . . . , γ
[d1]
p,zi

)⊤
, γ

[d2]
zi =

(
γ
[d2]
1,zi

, . . . , γ
[d2]
p,zi

)⊤
, and ηzi

defined as in relation to βzi(t) as in (7), then one can see that γ
[d1]
zi provides an approximation

to β
(d1)
zi (t), i.e. the d1th derivative of βzi(t). Respectively, γ

[d2]
zi provides an approximation

to β
(d2)
zi (t), the d2th derivative of βzi(t). Therefore, enforcing sparsity in γzi will constrain

β
(d1)
zi (t) and β

(d2)
zi (t) to be zero at most time points.

Similarly, let Aq =
[
A

[d1]
q ,A

[d2]
q

]⊤ ∈ R2q×q be the corresponding matrix defined for the
gating network. If we consider the following representation for the gating network coefficient
function

ωzi = Aqζzi (23)

with ωzi =
(
ω

[d1]
zi

⊤
,ω

[d2]
zi

⊤)⊤
, where ω

[d1]
zi =

(
ω
[d1]
1,zi

, . . . , ω
[d1]
q,zi

)⊤
, ω

[d2]
zi =

(
ω
[d2]
1,zi

, . . . , ω
[d2]
q,zi

)⊤
, and

ζzi defined as in relation to αzi(t) as in (8), then we can derive the same interpretation as
above for the coefficient vector ωzi and the gating parameter function αzi(t).
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Using simple calculations, the representations (22) and (23) imply the following relations
that subsequently used in the iFME model:

ηzi =
(
A[d1]

p

)−1
γ [d1]
zi

, γ [d2]
zi

= A[d2]
p

(
A[d1]

p

)−1
γ [d1]
zi

, (24)

and
ζzi =

(
A[d1]

q

)−1
ω[d1]

zi
, ω[d2]

zi
= A[d2]

q

(
A[d1]

q

)−1
ω[d1]

zi
, (25)

respectively.
In fact, one can construct Ap and Aq with only one derivative. Then the constraints

involved to the d2th derivative will be eliminated making the estimation easier, but also
limiting the flexibility in the shapes of the functions. That is why in this construction and
in our experimental studies, Ap and Aq are constructed with multiple derivatives in order
to produce curves of βzi(·) and αzi(·) with such many desired properties.

3.2.2 The iFME model

Combining the stochastic representation of the FME model in (11) for the experts model,
the linear predictor definition in (9), and the relations (24)-(25), we obtain the following
iFME model construction

Yi|ui(·) = βzi,0 + γ
[d1]
zi

⊤
vi + ε⋆i , (26)

hzi(ui(·);α) = αzi,0 + ω
[d1]
zi

⊤
si, (27)

subject to

γ [d2]
zi

= A[d2]
p A[d1]

p

−1
γ [d1]
zi

and ω[d2]
zi

= A[d2]
q A[d1]

q

−1
ω[d1]

zi
, (28)

where vi =
(
A

[d1]
p

−1)⊤
xi is the new design vector for the experts and si =

(
A

[d1]
q

−1)⊤
ri the

new one for the gating network. Hence, from (26) and (27), the conditional density of each
expert and the gating network are now written as

f(yi|ui(·);ψk) = ϕ(yi; βk,0 + γ
[d1]
k

⊤
vi, σ

2
k) (29)

and

πk(si;w) =
exp {αk,0 + ω

[d1]
k

⊤
si}

1 +
∑K−1

k′=1 exp {αk′,0 + ω
[d1]
k′

⊤
si}

, (30)

where ψk =
(
βk,0,γ

[d1]
k

⊤
, σ2

k

)⊤
is the unknown parameter vector of expert component density

k and w =
(
α1,0,ω

[d1]
1

⊤
, . . . , αK−1,0,ω

[d1]
K−1

⊤)⊤
, with

(
αK,0,ω

[d1]
K

⊤)⊤
a null vector, is the un-

known parameter vector of the gating network. Finally, gathering (29) and (30) as for (13),
the iFME model density is now given by

f(yi|ui(·);Ψ ) =
K∑
k=1

πk(si;w)ϕ(yi; βk,0 + γ
[d1]
k

⊤
vi, σ

2
k), (31)

where Ψ = (w⊤,ψ⊤
1 , . . . ,ψ

⊤
K)

⊤ is the parameter vector of the model to be estimated. Thus,
the iFME model constructed upon the parameter vectors γk’s and ωk’s, for which the sparsity
is assumed to obtain interpretable estimates.
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3.3 Regularized MLE via the EM-iFME algorithm

In order to fit the iFME model and to maintain the sparsity in γk and ωk, the following
EM-iFME algorithm is then developed to maximize the penalized log-likelihood function

L(Ψ ) =
n∑

i=1

log f(yi|ui(·);Ψ ) + Penλ,χ(Ψ ) (32)

with the conditional iFME density f(yi|ui(·);Ψ ) is defined in (31) and the new sparse and
interpretable regularization term is given by

Penλ,χ(Ψ ) = λ

K∑
k=1

(
∥γ [d1]

k ∥1 + ρ∥γ [d2]
k ∥1

)
+ χ

K−1∑
k=1

(
∥ω[d1]

k ∥1 + ϱ∥ω[d2]
k ∥1

)
, (33)

where ρ and ϱ are, respectively, the weights associated to the d2th derivative of the expert
and the gating parameter function. The appearance of the weighting parameters ρ and ϱ,
besides the usual regularization parameters λ and χ, is motivated by the fact that one may
wish to place a greater emphasis on sparsity in the d2th derivative than in the d1th derivative
of the parameter functions, or vice versa (we will see the usage of them in the subsequent
section of experimental study). In practice, the selection of ρ and ϱ is more about whether
they are greater than or less than one (i.e., the emphasis on d2th) rather than select an exact
value.

Note that, firstly, unlike the previous FME-Lasso, in iFME model the regularization
operates on the functional derivative γk’s rather than the functional coefficients ηk’s for the
experts, and on the functional derivatives ωk’s rather than the functional coefficients ζk’s
for the gating network. Secondly, maximizing the penalized log-likelihood function (32) with
penalization in (33) in iFME model must be coupled with the constrains (28). Follows are
the two steps of the proposed EM-iFME algorithm.

E-Step. The E-Step for the new iFME model calculates for each observation the condi-
tional probability memberships of each expert k

τ
(s)
ik = P(Zi = k|yi, ui(·);Ψ (s)) =

πk(si;w
(s))ϕ(yi; β

(s)
k,0 + v⊤

i γ
[d1]
k

(s)
, σ2

k
(s)
)

f(yi|ui(·);Ψ (s))
, (34)

where f(yi|ui(·);Ψ (s)) is now calculated according to the iFME density given by (31).

M-Step. The maximization is performed by separate maximizations w.r.t. the gating
network parameters w and the experts network parameters ψk’s.

Updating the gating network parameters. The maximization step for updating the gating

network parameters w =
(
α1,0,ω

[d1]
1

⊤
, . . . , αK−1,0,ω

[d1]
K−1

⊤)⊤
consists of maximizing the func-

tion Qχ(w;Ψ (s)) given by

Qχ(w;Ψ (s)) = Q(w;Ψ (s))− χ
K−1∑
k=1

(
∥ω[d1]

k ∥1 + ϱ∥ω[d2]
k ∥1

)
, (35)
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subject to

ω
[d2]
k = A[d2]

q A[d1]
q

−1
ω

[d1]
k , ∀k ∈ [K − 1], (36)

where Q(w;Ψ (s)) =
∑n

i=1

[∑K−1
k=1 τ

(s)
ik

(
αk,0 + ω

[d1]
k

⊤
si

)
− log

(
1 +

∑K−1
k′=1 exp{αk′,0 + ω

[d1]
k′

⊤
si}
)]

·

This is a constrained version of the weighted regularized multinomial logistic regression prob-
lem, where the weights are the conditional probabilities τ

(s)
ik .

To solve it, in the same spirit as when updating the gating network in the previous
EM-Lasso algorithm, we use an outer loop that cycles over the gating function parameters
to update them one by one. However, to update a single gating function parameter wk =

(αk,0,ω
[d1]
k

⊤
)⊤, k ∈ [K − 1], since the maximization problem (35) is now coupled with an

additional constraint (36), rather than using a coordinate ascent algorithm as in EM-Lasso,
we use the following alternative approach. For each single gating network k, using a Taylor
series expansion, we partially approximate the smooth part of Qχ(w;Ψ (s)) defined in (35)
w.r.t. wk at the current estimate w(t), then maximize the resulting objective function (w.r.t.
wk), subject to the corresponding constraint (w.r.t. k) in (36). It corresponds to solving the
following penalized weighted least squares problem with constraints,

max
(αk,0, ω

[d1]
k ,ω

[d2]
k )

−1

2

n∑
i=1

wik

(
cik − αk,0 − s⊤i ω

[d1]
k

)2
− χ

(
∥ω[d1]

k ∥1 + ϱ∥ω[d2]
k ∥1

)
subject to ω

[d2]
k = A[d2]

q A[d1]
q

−1
ω

[d1]
k ,

(37)

where wik = πk(w
(t); si)

(
1− πk(w

(t); si)
)
are the weights and cik = α

(t)
k,0 + s⊤i ω

[d1]
k

(t)
+

τ
(s)
ik −πk(w

(t);si)

wik
are the working responses computed given the current estimate w(t). This

problem can be solved by quadratic programming (see, e.g., Gaines et al. (2018)) or by using
the Dantzig selector (Candes et al., 2007), which we opt to use in our experimental studies.
The details of using Dantzig selector to solve problem (37) are given in Appendix C.1.

Therefore, if (α̃k,0, ω̃
[d1]
k , ω̃

[d2]
k ) is an optimal solution to problem (37), then w̃k = (α̃k,0, ω̃

[d1]
k

⊤
)⊤

is taken as an update for the gating parameter vector wk. We keep cycling over k ∈ [K − 1]
until there is no significant increase in the regularized Q−function (35).
Updating the experts network parameters. The maximization step for updating the expert

parameter vector ψk = (βk,0,γ
[d1]
k

⊤
, σ2

k)
⊤ consists of solving the following problem:

max
(βk,0, γ

[d1]
k ,γ

[d2]
k ,σ2

k)

n∑
i=1

τ
(s)
ik log ϕ

(
yi; βk,0 + v⊤

i γ
[d1]
k , σ2

k

)
− λ

(
∥γ [d1]

k ∥1 + ρ∥γ [d2]
k ∥1

)
subject to γ

[d2]
k = A[d2]

p A[d1]
p

−1
γ
[d1]
k .

(38)

As in the previous EM-Lasso algorithm, we first fix σ2
k to its previous estimate and perform

the update for (βk,0,γ
[d1]
k ), which corresponds to solving a penalized weighted least squares

problem with constraints. This is be performed by using the Dantzig selector, in the same
manner as previously for solving problem (37). The corresponding technical details can be
found in Appendix C.2.
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Once the (βk,0,γ
[d1]
k ) are updated, the straightforward update for the variance σ2

k is
given by the standard estimate of a weighted Gaussian regression. More specifically, let

(β̃k,0, γ̃
[d1]
k , γ̃

[d2]
k ) be the solution to the problem (38) (with σ2

k fixed to σ2
k
(s)
), the updates for

expert parameter vector ψk are given by

(β
(s+1)
k,0 ,γ

[d1]
k

(s+1)
) = (β̃k,0, γ̃

[d1]
k ),

σ2
k
(s+1)

=

∑n
i=1 τ

(s)
ik

(
yi − β

(s+1)
k,0 − v⊤

i γ
[d1]
k

(s+1)
)2

∑n
i=1 τ

(s)
ik

·

Thus, at the end of the M-Step, we obtain a parameter vector update Ψ (s+1) = (w(s+1),

ψ
(s+1)
1 , . . . ,ψ

(s+1)
K ) for the next EM iteration, where w(s+1) and ψ

(s+1)
k , k ∈ [K], are, respec-

tively, the updates of the gating network parameters and the experts network parameters,
calculated by the two procedures described above. Alternating the E-Step and M-Step until
convergence, i.e., when there is no longer a significant change in the values of the penalized
log-likelihood (32), leads to a penalized maximum likelihood estimate Ψ̂ for Ψ .
Estimating the coefficient functions: Finally, once the parameter vector of iFME model has
been estimated, the coefficient functions of the gating network αk(t), k ∈ [K − 1] and the
ones of the experts network βk(t), k ∈ [K], can be reconstructed by the following formulas

α̂k(t) = bq(t)
⊤A−1

q ω̂
[d1]
k ,

β̂k(t) = bp(t)
⊤A−1

p γ̂
[d1]
k ,

(39)

where ω̂
[d1]
k and γ̂

[d1]
k are respectively the regularized maximum likelihood estimates for ω

[d1]
k

and γ
[d1]
k .

3.4 Non-linear regression and clustering with FME models

Once the model parameters have been estimated, one can then construct an estimate of the
unknown functional non-linear regression function, as well as a clustering of the data into
groups of similar pairs of observations.

For the aim of functional non-linear regression, the unknown non-linear regression func-
tion with functional predictors is given by the following conditional expectation ŷ|u(·) =

E[Y |U(·); Ψ̂ ], which is defined by ŷi|ui(·) =
∑K

k=1 πk(ri; ξ̂)(β̂k,0 + η̂
⊤
k xi) for the FME model

(13), and by ŷi|ui(·) =
∑K

k=1 πk(si; ŵ)(β̂k,0 + γ
[d1]
k

⊤
vi) for the iFME model (31).

For clustering, a soft partition of the data into K clusters, represented by the estimated
posterior probabilities τ̂ik = P(Zi = k|ui, yi; Ψ̂ ), is obtained. A hard partition can also be
computed according to the Bayes’ optimal allocation rule. That is, by assigning each curve
to the component having the highest estimated posterior probability τik, defined by (15) for

FME or by (34) for the iFME model, using the MLE Ψ̂ of Ψ :

ẑi = arg max
1≤k≤K

τik(Ψ̂ ), i ∈ [n],

where ẑi denotes the estimated cluster label for the ith curve.
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3.5 Tuning parameters and model selection

In practice, appropriate values of the tuning parameters should be chosen. In using FME,
this cover the selection of K, the number of experts, and r, p, and q, the dimensions of
B-spline bases used to approximate, respectively, the predictors, the experts, and the gating
network functions, although they can be chosen to be equal. For the FME-Lasso, additionally
the ℓ1 penalty constants χ and λ in (19) should be chosen. For the iFME model, the tuning
parameters include also d1, d2, the two derivatives related to the sparsity constraints, and ρ,
ϱ, the weights associated to the d2th derivative of the expert and gating functions (see (33)).

The selection of the tuning parameters can be performed by a cross–validation procedure
with a grid search scheme to select the best combination. An alternative is to use the well-
known BIC criterion (Schwarz, 1978) or, in our paper, its extension, called modified BIC
(Städler et al., 2010) defined as

mBIC = L(Ψ̂ )− df(Ψ̂ )
log n

2
, (40)

where Ψ̂ is the obtained log-likelihood estimator (for the FME model) or penalized log-
likelihood estimator (for the FME-Lasso and iFME models), and the number of degrees of

freedom df(Ψ̂ ) is the effective number of parameters of the model, given by

df(Ψ̂ ) =

{
df(ζ) + (K − 1) + df(η) +K +K for the FME and FME-Lasso models,

df(ω) + (K − 1) + df(γ) +K +K for the iFME model,

in which the quantities df(ζ), df(η), df(ω) and df(γ) are, respectively, the counts for non-
zero free coefficients in the vectors ζ, η, ω, and γ. Note that, because of the constraints
(28) for the iFME model, free coefficients in ω and γ consist of only the part related to the
d1 derivative. That is, df(ζ) =

∑K−1
k=1

∑q
j=1 1{ζkj ̸=0}, df(η) =

∑K
k=1

∑p
j=1 1{ηkj ̸=0}, df(ω) =∑K−1

k=1

∑q
j=1 1{ω[d1]

kj ̸=0} and df(γ) =
∑K

k=1

∑p
j=1 1{γ[d1]

kj ̸=0}. We apply both the BIC and the

modified BIC in our experimental study.

4 Experimental study

We study the performances of the FME, FME-Lasso, and iFME models in regression and
clustering problems by considering simulated scenarios and real data with functional predic-
tors and scalar responses. The interests of this study consist of the prediction performance
as well as the estimation of the functional parameters, i.e., the expert and gating functions
in the ME model, along with the clustering partition of the considered heterogeneous data.

4.1 Evaluation criteria

We will use the following criteria, for where applicable, to assess and compare the perfor-
mances of the models and the related algorithms. For regression evaluation, we use the
relative prediction error (RPE) and the correlation (Corr) index as standard criteria to eval-
uate the prediction performance, i.e., to quantify the relationship between the true and the
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predicted values of the scalar outputs. The RPE is defined by RPE =
∑n

i=1(yi−ŷi)
2/
∑n

i=1 y
2
i ,

where yi and ŷi are, respectively, the true and the predicted response of the ith observation
in the testing set. For clustering evaluation, we use the Rand index (RI), the adjusted Rand
index (ARI), and the clustering error (ClusErr), as standard criteria to evaluate the cluster-
ing performance, i.e., to quantify how similar the testing observations are presented in the
true partition compared to the predicted partition. To evaluate the parameters estimation
performance, we compute the mean squared error (MSE) between the true and the estimated
functional parameters. The MSE between a true function g(·) and its estimate ĝ(·) is defined
by

MSE
(
ĝ(·)
)
=

1

m

m∑
j=1

(
g(tj)− ĝ(tj)

)2
, (41)

with m being the number of time points taken into account. The function g(·) here corre-
sponds to an expert function β(·), or a gating function α(·). The parameter functions are
reconstructed from the model parameters using (7) and (8) for both FME and FME-Lasso
models, and using (39) for iFME model.

The values of these criteria are averaged over N Monte Carlo runs (N = 100 for simula-
tion, for the real data, see the corresponding section). Note that, the average over N sample
replicates of MSE

(
ĝ(·)
)
is equivalent to the usual Mean Integrated Squared Error (MISE)

defined by MISE
(
ĝ(·)
)
= E

[∫
T

(
ĝ(t)− g(t)

)2
dt
]
, where the integral here is calculated nu-

merically by a Riemann sum over the grid t1, . . . , tm.

4.2 Simulation studies

4.2.1 Simulation parameters and experimental protocol

We generate data from a K-component functional mixture of Gaussian experts model that
relates a scalar response y ∈ R to a univariate functional predictor X(t), t ∈ T defined
on a domain T ⊂ R. The data generation protocol is detailed in Appendix D.1. The
parameters that were used in this data generating process (53) are described and provided
in the simulation parameters and experimental protocol section in Appendix D.2. We study
different simulation scenarios (sample sizes n, number of observations per time-series input
m, noise levels σ2

δ ,..) summarised in Section D.2 and Table. 9.
Figure 1 displays, for each scenario, 10 randomly taken predictors colored according to

their corresponding clusters. For each run, the concerned dataset is randomly split into a
training set and testing set of equal size, the model parameters are estimated using train-
ing set, with the tuning parameters selected by maximizing the modified BIC (40). The
evaluation criteria are computed on testing set and reported for each model accordingly.

4.2.2 Some implementation details

For all scenarios, for all datasets, we implemented the three proposed models with 10 EM runs
and with a tolerance of 10−6. For the iFME model, in principle, for each parameter function
the two derivatives d1 and d2 to be penalized, and the weights for the latter (i.e., ρ and ϱ) can
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Figure 1: 10 randomly taken predictors in scenarios S1 (large m and small σδ), S2 (small
m and small σδ), S3 (large m and large σδ), and S4 (small m and large σδ). Here, the
noisy predictors Ui(·) are colored (blue, red, yellow) according to their true cluster labels
Zi ∈ {1, 2, 3}.

be seen as tuning parameters. However, such an implementation could be computationally
expensive in this simulation study with 400 datasets in total and 10 EM runs for each dataset.
Therefore, we opted to fix d1 and d2 for all implementations (d1 = 0 and d2 = 3 for both
expert and gating networks.) and left ρ and ϱ to be selected in some sets of targeted values.
The choices of the targeted values were made by the following straightforward arguments.
Since β1(·) and β2(·) have zero-valued regions, the weight for their zeroth derivative in
penalization term should be large, equivalently, the weight for the third derivative should be
small, so ρ is selected in a set of small values: ρ ∈ {10−2, 10−3, 10−4}. On the other hand, for
α1(t) and α2(t), we select ϱ ∈ {10, 102, 103} as we should emphasize sparsity in their third
derivative.

4.2.3 Simulation results

Clustering and prediction performances. We report in Table 1 the results of regression
and clustering tasks on simulated datasets in the four considered scenarios. The mean and
standard error of the relative predictions error (RPE) and correlation (Corr) summarize the
regression performance, while the mean and standard error of the Rand index (RI), adjusted
Rand index (ARI) and clustering error (ClusErr) summarize the clustering performance.

As we can see from Table 1, all the models have very good performances on both regression
and clustering tasks, with high correlation, RI, ARI, and small RPE and clustering error.
The iFME appears to slightly have a better performance than the others in all scenarios.
The low standard errors confirm the stability of the algorithms.

Figure 2 shows the clustering results obtained by the models with highest values of the
modified BIC criterion, on a dataset selected in scenario S1. Here, we plotted the responses
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RPE Corr ARI ClusErr
S1 (m = 300, σ2

δ = 1)
FME .1552(.1282) .9188(.0602) .7852(.0934) .0899(.0434)

FME-Lasso .1390(.1074) .9224(.0603) .7670(.1436) .1112(.0891)
iFME .1334(.0977) .9287(.0504) .7997(.0796) .0792(.0340)

S2 (m = 100, σ2
δ = 1)
FME .1600(.1698) .9164(.0712) .7966(.0881) .0852(.0427)

FME-Lasso .1656(.1316) .9071(.0733) .7455(.1520) .1236(.0961)
iFME .1540(.0950) .9192(.0476) .7955(.0822) .0820(.0341)

S3 (m = 300, σ2
δ = 4)
FME .1724(.1807) .9110(.0778) .7798(.0838) .0918(.0415)

FME-Lasso .1457(.1504) .9197(.0785) .7629(.1524) .1115(.0928)
iFME .1432(.0860) .9228(.0448) .7987(.0899) .0783(.0361)

S4 (m = 100, σ2
δ = 4)
FME .2251(.4462) .9048(.0822) .7816(.1040) .0927(.0497)

FME-Lasso .1432(.1229) .9188(.0683) .7526(.1654) .1215(.1055)
iFME .1639(.0978) .9125(.0521) .7798(.0848) .0864(.0325)

Table 1: Evaluation criteria of FME, FME-Lasso and iFME models for test data in scenarios
S1, . . . , S4. The reported values are the averages of 100 Monte Carlo runs with standard
errors in parentheses. The bold values correspond to the best solution.

against the predictors at two specific time points: t1 = 0 and t50 = 0.5. The highly accurate
predictions (in both regression and clustering) can be seen visually through Figure 2. This
figure also shows that it is difficult to cluster these data according to a few number of time
observations, for example in R2, according to {(Ui(t0), yi)}ni=1 or {(Ui(t50), yi)}ni=1, which
suggests using functional approaches.

Comparison with functional regression mixtures (FMR): Finally, we compare our pro-
posed models with the functional mixture regression (FMR) model proposed in Yao et al.
(2010). In their approach, the functional predictors are first projected onto its eigenspace,
then the obtained new coordinates are fed to the standard mixture regression model to
estimate the weights and the coefficients of the β̂(·) in that eigenspace. They performed
functional principal component analysis (FPCA) to obtain estimates for the eigenfunctions
and the principal component scores (which serve as predictors). The number of relevant
FPCA components are chosen automatically for each dataset by selecting the minimum
number of components that explain 90% of the total variation of the predictors. It is no-
ticed that, in their simulation studies, the authors computed the scalar responses by using
conditional prediction, i.e., the true yi were used to determine which cluster the observation
belongs to. Then the predicted ŷi is calculated as the conditional mean of the density of
the corresponding cluster. For comparison with that approach, we also used this strategy
to make predictions in our models. We further employed the FMR model with the B-spline
functional representation, instead of the functional PCA, the number of B-spline functions
is set to be the same as the number of basis functions used in our models. Table 2 shows
the evaluation criteria corresponding to the considered models evaluated on 100 datasets in
scenario S3. Here, FMR-PC is the original model of Yao et al. (2010) and FMR-B is the
modified one with B-spline bases. As expected, FME, FME-Lasso, and iFME, which are
more flexible compared to the the FMR model, allows to capture more complexity in the
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Figure 2: Scatter plots of ŷi against Ui(t1) (top panels) and Ui(t50) (bottom panels) on a
randomly selected dataset. Here, the clustering errors are 5.5%, 4.75% and 5.0% for FME,
FME-Lasso and iFME models, respectively.

data, thanks to the predictor-depending mixture weights, and provides clearly better results
than the FMR alternatives.

RPE Corr ARI ClusErr
FME .0614(.0896) .9681(.0469) .8523(.0934) .0618(.0490)

FME-Lasso .0145(.0254) .9924(.0133) .9582(.0641) .0174(.0325)
iFME .0139(.0086) .9928(.0046) .9594(.0430) .0151(.0166)

FMR-B .0460(.0399) .9768(.0201) .7064(.1044) .1124(.0434)
FMR-PC .0191(.0331) .9902(.0164) .8345(.0794) .0612(.0361)

Table 2: Performance comparison of the models for datasets in scenarios S3. The reported
values are the averages of 100 Monte Carlo samples with standard errors in parentheses.

Parameter estimation performance. To evaluate the parameter estimation perfor-
mance, we consider the functional parameter functions estimation error as defined by (41).
This error between the true function and the estimated one, provides an evaluation of how
well the proposed models reconstruct the hidden functional gating and expert networks. In
this evaluation, we considered scenario S1, i.e., m = 300, σ2

δ = 1. Moreover, in order to pro-
vide an idea of the impact of training size on parameter estimation, we run the models with
different training sizes (share the same scenario S1) and report the MSE for each function,
for each model in Table 3. It shows that there are significant improvements, even with small
training size, when using iFME model in estimating the gating network, compared to the
FME and FME-Lasso model.
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β̂1(·) β̂2(·) β̂3(·) α̂1(·) α̂2(·)
Training size: 100

FME 11.68(56.63) 6.21(24.34) 8.57(27.60) 5.15e+04
(7.23e+04)

5.69e+04
(5.90e+06)

FME-Lasso 0.53(0.19) 0.66(0.55) 0.62(0.79) 17.06(28.68) 19.50(37.07)
iFME 1.09(0.78) 1.05(0.82) 2.44(3.06) 5.76(7.78) 4.25(3.58)

Training size: 200

FME 0.77(0.48) 0.61(0.30) 0.19(0.20) 8.55(11.99) 9.57(8.29)
FME-Lasso 0.54(0.18) 0.54(0.20) 0.31(0.81) 10.71(16.63) 12.64(16.33)

iFME 0.55(0.50) 0.48(0.38) 1.26(2.91) 5.34(6.21) 2.81(2.82)

Training size: 300

FME 0.62(0.56) 0.59(0.50) 0.16(0.18) 12.58(19.83) 16.49(30.97)
FME-Lasso 0.60(0.52) 0.57(0.44) 0.17(0.19) 11.26(16.56) 13.15(24.80)

iFME 0.56(0.43) 0.59(0.50) 0.49(0.47) 2.98(3.12) 3.16(3.02)

Training size: 400

FME 0.54(0.23) 0.53(0.19) 0.11(0.12) 8.27(11.73) 7.08(8.53)
FME-Lasso 0.52(0.18) 0.51(0.16) 0.15(0.18) 6.09(8.98) 5.14(6.51)

iFME 0.34(0.19) 0.38(0.25) 0.74(0.62) 3.06(4.21) 2.77(3.21)

Training size: 500

FME 0.49(0.22) 0.50(0.28) 0.09(0.11) 5.17(7.52) 3.90(5.69)
FME-Lasso 0.49(0.18) 0.49(0.21) 0.09(0.11) 4.62(7.28) 7.63(16.27)

iFME 0.35(0.23) 0.40(0.25) 0.55(0.63) 2.11(2.82) 2.68(4.70)

Table 3: Average of 100 Monte Carlo runs of MSE between the estimated functions resulted
by FME, FME-Lasso and iFME models in S1 scenario.
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Now, in order to evaluate the designed sparsity of zeroth and third derivatives of the
reconstructed functions, we compute the MSEs versus their true values, i.e., zeros, on each
designed intervals. In particular, we divide the domain T = [0, 1] into three parts: T1 =
[0, 0.3), T2 = [0.3, 0.7), and T3 = [0.7, 1], then for each model the MSEs on the corresponding
intervals are reported in Table 4.

on T2 on T1 ∪ T3 on T

β̂
(0)
1 (·) β̂

(0)
2 (·) β̂

(3)
1 (·) β̂

(3)
2 (·) β̂

(3)
3 (·) α̂

(3)
1 (·) α̂

(3)
2 (·)

Training size: 100

FME 0.26
(0.15)

0.48
(0.91)

0.15
(0.07)

0.12
(0.08)

3.96e908
(1.37e907)

9.24e906
(3.32e905)

1.08e905
(2.62e905)

FME-Lasso 0.27
(0.19)

0.26
(0.16)

0.14
(0.07)

0.15
(0.09)

1.64e909
(7.64e909)

7.37e909
(2.64e908)

5.12e909
(1.70e908)

iFME 0.40
(0.26)

0.37
(0.30)

0.20
(0.10)

0.18
(0.11)

6.48e909
(2.44e908)

4.05e909
(1.33e908)

2.46e909
(4.51e909)

Training size: 200

FME 0.43
(0.56)

0.22
(0.09)

0.16
(0.10)

0.14
(0.05)

2.23e911
(2.69e911)

1.64e910
(2.33e910)

3.83e910
(8.90e910)

FME-Lasso 0.21
(0.11)

0.20
(0.09)

0.15
(0.05)

0.15
(0.05)

3.62e911
(6.04e911)

2.36e910
(3.38e910)

2.96e910
(6.41e910)

iFME 0.18
(0.08)

0.17
(0.09)

0.12
(0.05)

0.12
(0.05)

9.95e910
(2.00e909)

1.44e909
(2.72e909)

8.52e910
(1.22e909)

Training size: 300

FME 0.25
(0.30)

0.22
(0.25)

0.16
(0.10)

0.15
(0.09)

1.72e911
(2.30e911)

2.55e910
(4.61e910)

1.01e910
(1.42e910)

FME-Lasso 0.25
(0.28)

0.21
(0.23)

0.16
(0.09)

0.15
(0.08)

1.73e911
(2.52e911)

1.41e910
(2.00e910)

1.64e910
(3.77e910)

iFME 0.25
(0.19)

0.24
(0.19)

0.16
(0.08)

0.15
(0.08)

5.94e910
(1.26e909)

5.41e910
(7.26e910)

7.15e910
(1.05e909)

Training size: 400

FME 0.23
(0.12)

0.23
(0.10)

0.16
(0.05)

0.16
(0.06)

1.62e911
(3.53e911)

1.29e910
(3.59e910)

8.14e911
(1.02e910)

FME-Lasso 0.22
(0.11)

0.21
(0.10)

0.16
(0.05)

0.16
(0.05)

1.90e911
(3.55e911)

9.71e911
(1.63e910)

1.03e910
(1.54e910)

iFME 0.14
(0.08)

0.16
(0.09)

0.08
(0.03)

0.08
(0.04)

1.87e908
(1.42e908)

1.13e908
(1.77e908)

9.91e909
(1.05e908)

Training size: 500

FME 0.22
(0.11)

0.21
(0.10)

0.17
(0.05)

0.17
(0.05)

2.12e911
(4.66e911)

8.98e911
(2.70e910)

1.03e910
(2.83e910)

FME-Lasso 0.21
(0.09)

0.20
(0.09)

0.17
(0.05)

0.17
(0.05)

1.90e911
(3.64e911)

7.02e911
(1.44e910)

8.91e911
(1.69e910)

iFME 0.14
(0.07)

0.16
(0.08)

0.08
(0.04)

0.08
(0.04)

1.55e908
(1.34e908)

1.03e908
(1.58e908)

8.34e909
(1.20e908)

Table 4: MSE of the derivatives of reconstructed functions on the corresponding interested
intervals, in which, T1 = [0, 0.3), T2 = [0.3, 0.7), T3 = [0.7, 1] and T = [0, 1]. The reported
values are the averaged of 100 Monte Carlo samples with standard errors in parentheses.

The reported values show that, as expected, iFME model is better than both FME and
FME-Lasso in providing sparse solutions with respect to the derivatives of the parameter
functions.

Table 5 shows the means and the standard errors of the estimated intercepts and vari-
ances. Note that these coefficients are not considered in the penalization. For the intercepts
βk,0, all the models estimated them very well, while for the intercepts αk,0, iFME is slightly
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better than the others. For the variances, FME-Lasso gave the estimated values closest with
the true values on average.

β̂1,0 β̂2,0 β̂3,0 α̂1,0 α̂2,0 σ̂1 σ̂2 σ̂3

True value −5 0 5 −10 −10 5 5 5
Training size: 100

FME −16.90
(18.91)

−3.18
(3.25)

4.17
(8.87)

−31.37
(30.74)

−25.20
(41.27)

32.38
(40.05)

15.19
(25.15)

21.47
(24.71)

FME-Lasso −6.48
(9.37)

−0.07
(1.95)

5.51
(4.63)

−12.53
(8.99)

−12.69
(10.99)

6.86
(10.98)

6.73
(8.08)

10.01
(20.60)

iFME −4.95
(1.14)

0.21
(1.08)

5.05
(0.90)

−9.44
(3.85)

−9.39
(3.31)

5.70
(1.46)

5.75
(1.49)

4.70
(1.51)

Training size: 200

FME −4.83
(0.78)

0.14
(0.54)

4.89
(0.38)

−23.77
(26.36)

−16.10
(6.65)

5.77
(1.26)

5.63
(0.95)

5.24
(0.79)

FME-Lasso −4.97
(0.66)

0.07
(0.60)

4.99
(0.45)

−12.70
(4.45)

−13.72
(4.38)

5.94
(1.23)

5.99
(1.12)

4.92
(1.30)

iFME −4.85
(0.72)

0.19
(0.68)

4.99
(0.42)

−9.30
(3.15)

−9.21
(2.83)

5.77
(0.90)

5.72
(1.02)

5.28
(1.27)

Training size: 300

FME −4.99
(0.55)

−0.06
(0.54)

4.98
(0.26)

−16.82
(13.09)

−17.18
(14.89)

5.92
(1.14)

5.87
(0.94)

5.34
(0.84)

FME-Lasso −5.03
(0.54)

−0.03
(0.53)

4.98
(0.27)

−13.06
(4.54)

−12.96
(4.96)

6.08
(1.10)

5.99
(1.07)

5.37
(0.89)

iFME −4.93
(0.61)

0.04
(0.56)

5.00
(0.29)

−8.96
(2.48)

−8.85
(2.57)

5.54
(0.75)

5.53
(0.72)

5.53
(0.87)

Training size: 400

FME −5.02
(0.43)

0.01
(0.40)

5.04
(0.28)

−16.37
(9.93)

−15.39
(7.83)

5.99
(1.01)

6.20
(1.09)

5.47
(0.77)

FME-Lasso −5.03
(0.43)

−0.02
(0.38)

5.02
(0.27)

−13.18
(4.61)

−12.65
(4.57)

5.99
(0.94)

6.13
(1.01)

5.45
(0.84)

iFME −4.89
(0.45)

0.05
(0.35)

5.01
(0.27)

−10.17
(2.79)

−9.82
(2.61)

5.08
(0.60)

5.22
(0.58)

5.57
(0.85)

Training size: 500

FME −5.00
(0.41)

−0.01
(0.38)

5.01
(0.25)

−14.09
(7.26)

−15.42
(9.64)

6.09
(0.98)

6.06
(0.93)

5.44
(0.69)

FME-Lasso −4.99
(0.40)

−0.01
(0.37)

5.01
(0.26)

−11.35
(3.27)

−12.38
(4.15)

6.13
(0.98)

6.06
(0.90)

5.44
(0.68)

iFME −4.92
(0.44)

0.06
(0.34)

5.02
(0.27)

−9.23
(1.93)

−9.61
(2.68)

5.23
(0.55)

5.13
(0.55)

5.60
(0.75)

Table 5: Intercepts and variances obtained by FME, FME-Lasso and iFME models in sce-
nario S1. The reported values are the averages of 100 Monte Carlo samples with standard
errors in parentheses.

The initialization is crucial for the EM algorithm. In all of our experimental studies,
the model parameter vector Ψ of the FME model was initialized as follows (similar for the
FME-Lasso and iFME models). Firstly, we perform a K-means algorithm on the predictors

{xi}ni=1, then for each estimated group k, (β
(0)
k,0,η

(0)
k ) is initialized as the solution to the linear

regression problem yi = βk,0 + x⊤
i ηk, for i belongs to group kth. The parameter σ

(0)
k is then
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log likelihood RPE Time (s)

rand. zeros LR rand. zeros LR rand. zeros LR

FME −215.52
(24.77)

−221.03
(18.51)

−285.23
(69.30)

0.19
(0.16)

0.20
(0.13)

0.38
(0.29)

0.21
(0.50)

0.16
(0.12)

0.52
(1.99)

FME-Lasso −235.35
(21.98)

−239.47
(18.54)

−244.99
(63.09)

0.14
(0.11)

0.13
(0.10)

0.20
(0.16)

1.13
(1.23)

1.08
(2.48)

4.63
(15.51)

iFME −254.65
(7.83)

−256.26
(13.76)

−336.87
(80.38)

0.13
(0.09)

0.13
(0.09)

0.35
(0.30)

6.58
(4.45)

4.17
(3.65)

3.91
(2.08)

Table 6: Comparison of different initialization strategies. The reported values are the mean
and standard error (in parentheses) over 100 Monte Carlo runs.

initialized as the estimated variance within group kth. For the gating parameter, we simply
drawn each component of ξ(0) randomly from the uniform distribution U(0, 1).

However, to see the impact of different initialization strategies, we performed a side
experiment with data taken from S1 scenario. In particular, the initialization for expert
parameters is fixed as described before, while that for gating parameter varies in “rand.”,
“zeros”, and “LR”. Here, “rand.” is the random strategy described above, “zeros” is the
strategy where all coefficients of ξ are initialized as zeros, i.e., we are putting equal weights
for the experts; and “LR” is the strategy where we perform a logistic regression with the
predictors are ri (for FME, FME-Lasso) or si (for iFME), and the responses are the labels
resulted byK-means on them. Table 6 shows the time to convergence, and the log-likelihood,
RPE on testing sets corresponding with the three strategies. We can see that, in terms of
log-likelihood and RPE, simple strategies as “rand.” and “zeros” perform quite well, while
in terms of time to convergence, LR is a good choice for the iFME model.

Finally, to illustrate the selection of the number of expert components using BIC and/or
modified BIC in this simulation study, we provide, in Figure 3, the plots of these criteria
against the number of experts for each model. Here, we implemented the models with all
fixed tuning parameters, except K which varies in the set {1, . . . , 6}. We can observe that
BIC selects the correct number K = 3 for both FME-Lasso and iFME, while it selects
K = 4 for FME. However, the modified BIC selects K = 4 for both FME and FME-Lasso,
and selects the true number of components K = 3 for iFME.

4.3 Application to real data

In this section, we apply the FME, FME-Lasso and iFME models to two well-known real
datasets, Canadian weather and Diffusion Tensor Imaging (DTI). For each dataset, we per-
form clustering and investigate the prediction performance, estimate the functional mixture
of experts models with different number of experts K and perform the selection of K using
modified BIC, and discuss the obtained results.

4.3.1 Canadian weather data

Canadian weather data has been introduced in Ramsay and Silverman (2005) and is also
available in the R package fda. This dataset consists of m = 365 daily temperature measure-
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Figure 3: Values of BIC (top) and modified BIC (bottom) for (a) FME, (b) FME-Lasso
and (c) iFME model versus the number of experts K, fitted on a randomly taken dataset in
scenario S1. Here, the square points correspond to the highest values.

ments (averaged over the year 1961 to 1994) at n = 35 weather stations in Canada, and their
corresponding average annual precipitation (in log scale). The weather stations are located
in 4 climate zones: Atlantic, Pacific, Continental and Arctic (Figure 4b). In this dataset,
presented in Figure 4a, the noisy functional predictors Ui(·) are the curves of 365 averaged
daily temperature measurements, the scalar responses Yi are the corresponding total precipi-
tation at each station i, during the year, for 35 stations. Its station climate zone is taken as a
cluster label (the cluster label Zi ∈ {1, . . . , 4}. The aim here is to use the daily temperature
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Figure 4: (a) 35 daily mean temperature measurement curves; (b) Geographical visualization
of the stations, in which the sizes of the bubbles corresponds to their log of precipitation
values and the colors correspond to their climate regions.

curves (functional predictors) to predict the precipitations (scalar responses) at each station.
Moreover, in addition to predicting the precipitation values, we are interested in clustering
the temperature curves (therefore the stations), as well as identifying the periods of time of
the year that have effect on prediction for each group of curves.
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Corr SSE RPE
FME 0.690 14.410 0.290

FME-Lasso 0.632 2.011 0.045
iFME 0.944 0.582 0.012

Table 7: 7-fold cross-validated correlation (Corr), sum of squared errors (SSE) and relative
prediction error (RPE) of predictions on Canadian weather data.

Firstly, in order to assess the prediction performance of the FME, FME-Lasso and iFME
models on this dataset, we implement the models by selecting the tuning parameters, in-
cluding the number of expert components K in the set {1, 2, 3, 4, 5, 6}, by maximizing the
modified BIC criterion, given its performance as shown in the simulation study. We report in
Table 7 the results in terms of correlations, sum of squared errors (SSE) and relative predic-
tion errors. According to the obtained results, iFME provides the best results w.r.t. all the
criteria. The cross-validated RPE provided by iFME is only of 1.2%, the next is FME-Lasso
with 4.5%, while the FME model has the worst RPE value. Note that in James et al. (2009),
the authors applied their proposed model to Canadian weather data and obtained a 10-fold
cross-validated SSE of 4.77. Clearly, with the smaller cross-validated SSEs, the FME-Lasso
and iFME models significantly improve the prediction.

Figure 5 shows the obtained results with the FME, FME-Lasso and iFME models, with
K = 4, and with the derivatives d1 = 0, d2 = 3 for the iFME model. The estimated
experts functions and gating functions are presented in the two top panels of the curve,
while the clustering for the temperature curves and the stations are shown in the two bottom
panels. As we can see, all models provide reasonable clustering for the curves which may be
corresponding to different complicated underlying meteorological forecasting mechanisms.
Particularly, although not using any spatial information, merely temperature information,
the obtained clustering for the stations is also comparable with the original labels of the
stations. For example, the FME and FME-Lasso models identify exactly the Arctic stations,
while iFME identifies exactly the Pacific stations, and all of the models provide reasonable
spatially organized clusters. However, what is interesting here is the shape of the expert and
gating functions α̂(·)’s and β̂(·)’s obtained by the models. While FME and FME-Lasso gave
less interpretable estimations, iFME appears to give, as it can be seen in the two top-right
panels, piece-wise zero-valued and possibly quadratic estimated functions, which have a wide
range of flat relationship from January to February and from June to September.

Motivated by the above results, on direction of identifying the periods of time of the
year that truly have an effect on prediction, we implement the iFME model with K = 2,
and the derivative levels d1 and d2 are set to be the zeroth and the third derivatives. The
reason for the choices of d1 and d2 is that the penalization on the zeroth derivative would
take into account zero ranges in the expert and gating functions, while the penalization on
the third derivative, would take into account the smoothness for the changes between the
periods of times in the functions. The obtained results are shown in Figure 6. As we can
see, there are differences in the prediction mechanisms of the models between the northern
stations and the southern stations. At southern stations, the obtained β̂2(t) shows that there
is a negative relationship in the spring and a positive relationship in the late fall, but no
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Figure 5: Results obtained by FME (left panels), FME-Lasso (middle panels) and iFME
(right panels) on Canadian weather data with K = 4. For each column, the panels are
respectively the estimated functional experts network, estimated functional gating network,
estimated clusters of the temperature curves and estimated clusters of the stations.
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Figure 6: Results obtained by iFME model with K = 2, d1 = 0, d2 = 3: (a) Estimated
functional expert network, (b) Estimated functional gating network, (c) Estimated clusters
of the temperature curves, and (d) Estimated clusters of the stations.

relationship in the remaining period of the year. This phenomenon is concordant with the
result obtained in James et al. (2009), where the authors obtained the same relationships
in the same periods of time. However, our iFME model additionally suggests that, at the
northern stations, the relationship between temperature and precipitation may differ from
that of southern stations. This may be explained by the differences in mean temperatures
and climatic characteristics between the two regions.

Finally, Figure 7 displays the values of modified BIC for varying number of expert com-
ponent for the proposed models on Canadian weather data. According to these values,
FME-Lasso and iFME select K = 2, while FME selects K = 3.

4.3.2 Diffusion tensor imaging data for multiple sclerosis subjects

We now apply our proposed models to the diffusion tensor imaging (DTI) data for subjects
with multiple sclerosis (MS), discussed in Goldsmith et al. (2012). The data come from a
longitudinal study investigating the cerebral white matter tracts of subjects with multiple
sclerosis, recruited from an outpatient neurology clinic and healthy controls. We are inter-
ested in the underlying relationship between the fractional anisotropy profile (FAP) from
the corpus callosum and the paced auditory serial addition test (PASAT) score, which is a
commonly used examination of cognitive function affected by MS. The FAP curves are de-
rived from DTI data, which are obtained by a Magnetic Resonance Imaging (MRI) scanner.
Each curve is recorded at 93 locations along the corpus callosum. The PASAT score is the
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Figure 7: Values of modified BIC for (a) FME, (b) FME-Lasso and (c) iFME model, versus
the number of experts K, fitted on Canadian weather data. The square points correspond
to highest values. Here, iFME is implemented with d1 = 0, d2 = 3 and ρ = ϱ = 100.

number of correct answers out of 60 questions, and thus ranges from 0 to 60. In our context,
the FAP curves serve as the noisy functional predictors Ui(·) and the PASAT scores serve as
the scalar responses Yi. So this dataset consists of n = 99 pairs (Ui(·), Yi), i ∈ [n], with each
Ui(·) contains m = 93 fractional anisotropy values. Figure 9a shows all the predictors (FAP
curves), and Figure 8 (most-right panels) shows the responses (PASAT Scores).

In Ciarleglio and Ogden (2016), the authors applied their Wavelet-based functional mix-
ture regression (WBFMR) model with two components to this dataset, and observed that
there is one group in which there is no association between the FAP and the PASAT score
for those subjects belonging to it. We accordingly fix K = 2 in our models. Figure 8 displays
the obtained results for each of the three models, and Figure 9a shows the functional pre-
dictors FAP curves clustered with the iFME model. In this implementation, we tried iFME
model with two different combinations of d1 and d2: (d1, d2) = (0, 2) and (d1, d2) = (0, 3).
As expected, when d2 is the second derivative, the reconstructed parameter functions are
piecewise zero and linear, while when d2 is the third derivative, the reconstructed functions
have smooth changes along the tract location.

In Figure 8, we have the three following observations. First, as it can be observed in Figure
8 right-panel, all models give a threshold of 50 that clusters the PASAT scores, this is the
same as the threshold observed in Ciarleglio and Ogden (2016). Second, the absolute values

of the coefficient functions β̂2(t)’s are significantly smaller than those of β̂1(t)’s, this is again

the same with the result obtained by the WBFMR model. Third, when β̂2(t) is estimated as

zero in the FME-Lasso and iFME models, the shape of β̂1(t) is almost the same as the shape
obtained in Ciarleglio and Ogden (2016), particularly, the peak at around the tract location
of 0.42. These confirm the underlying relationship between the fractional anisotropy and
the cognitive function: higher fractional anisotropy values between the locations about 0.2
to 0.7 results in higher PASAT scores for subjects in Group 1. The clustering of the FAP
curves, resulted by the iFME model with d1 = 0, d2 = 2, is shown in Figure 9 (b)-(d).

Next, to compare with Ciarleglio and Ogden (2016), we investigate the prediction per-
formance of the proposed models with respect to the leave-one-out cross validated relative
prediction errors defined by CVRPE =

∑n
i=1(yi− ŷ

(−i)
i )2/

∑n
i=1 y

2
i , where yi is the true score

for subject i and ŷ
(−i)
i is the score predicted by the model fit on data without subject i.

In this implementation, we keep fixing K = 2 and select the other tuning parameters by
maximizing the modified BIC. The CVRPEs corresponding to the models are provided in
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Figure 8: The estimated expert and gating coefficient functions, the estimated groups of the
PASAT scores, resulted by FME, FME-Lasso and iFME models with K = 2 for the DTI
dataset. For iFME model, the upper is implemented with penalization on the zeroth and
third derivatives, while the lower is with penalized zeroth and second derivatives.

Table 8. Note that, for comparison, in Ciarleglio and Ogden (2016), the CVRPE of their
WBFMR model is 0.0315 and of the wavelet based functional linear model (FLM) is 0.0723.

Finally, we present in Figure 10 the selection of the number of experts K with modified
BIC. In this case, FME and FME-Lasso select K = 2, and iFME selects K = 4.
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Figure 9: DTI data with (a) FAP curves of all subjects, (b) Cluster 1 and (c) Cluster 2,
obtained by iFME model with d1 = 0, d2 = 2, and (d) the point-wise average of the curves
in each of the two clusters.
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Figure 10: Values of modified BIC for (a) FME, (b) FME-Lasso and (c) iFME, versus the
number of experts K, fitted on DTI data. The square points correspond to highest values.

CVRPE
FME 0.0273

FME-Lasso 0.0280
iFME (with 0th and 3nd derivatives) 0.0271
iFME (with 0th and 2nd derivatives) 0.0267

Table 8: CVRPEs of the models on the DTI data.

34



5 Conclusion and discussion

The first algorithm for mixtures-of-experts constructed upon functional predictors is pre-
sented in this paper. Beside the classic maximum likelihood parameter estimation, we pro-
posed two other regularized versions that allow sparse and notably interpretable solutions,
by regularizing in particular the derivatives of the underlying functional parameters of the
model, after projecting onto a set of continuous basis functions. The performances of the pro-
posed approaches are evaluated in data prediction and clustering via experiments involving
simulated and two real-world functional data.

The presented FME models can be extended in different ways. First direct extensions of
the modeling framework presented here can be considered with categorical response, to per-
form supervised classification with functional predictors, or with vector response, to perform
multivariate functional regression. Then, it may be interesting to consider the extension of
the FME model to setting involving vector (or scalar) predictors and functional responses
(Chiou et al., 2004).

Another extension, which we intend also to investigate in the future, concerns the case
when we observe pairs of functional data, i.e., a sample of n functional data pairs {Xi(t), Yi(u)}ni=1,
t ∈ T ⊂ R, u ∈ U ⊂ R, where Yi(·) is a functional response, explained by a functional
predictor Xi(·). The modeling with such FME extension then takes the form Yi(u) =
βzi,0(u) +

∫
t
Xi(t)βzi(t, u)dt + εi(u), to explain the functional response Y by the functional

predictor X via the unknown discrete variable z. The particularity with this model is that,
for the clustering, as well as for the prediction, we model the relation between Y at any
time u and the entire curve of X, or the entire curve of each variable Xij in the case of
multivariate functional predictor Xi.

Since we look for sparse estimates in the space of the derivatives of the functional param-
eters, and provided the resulting estimates with highly structured shapes, we believe that
using the fused LASSO (Tibshirani et al., 2005) rather than the LASSO could be expected
to take accommodate more the targeted sparsity. The choice of the regularization constants
for the derivatives is more about the targeted penalization magnitude (i.e., very large or
very small) rather than the exact values. Typically, in the case one has no idea about the
shape of the functional experts, but still want them to be interpretable, then it is practical
to consider the zeroth and third derivatives (since they produce smooth changes), with the
grid for ρ containing both very small and very large values. The same for the functional
gating network. Furthermore, if we believe that the relation of the response on the predictor
is very sparse, except over some small regions where they are linearly related, then we will
penalize the zeroth and second derivatives of the functional experts, and we will put very
small regularization on the second derivative. This could produce curves such as those in
bottom panels of Figure 8. For a more general tuning of the regularization constant values,
we recommend performing a complete cross-validation study to select the best values of the
regularization constants.

35



6 Acknowledgements

This research was partly supported by an Ethel Raybould Fellowship, University of Queens-
land (FC), the Australian Research Council grant number DP180101192 (GJM), the French
National Research Agency ANR grant SMILES ANR-18-CE40-0014 (FC and NTP), Région
Normandie grant RIN AStERiCs (FC and VHH), Vietnam National University – Ho Chi
Minh City (VNU- HCM) grant number C2022-18-01 (VHH), and the exploratory research
facility “EXPLO” at SystemX (FC).

References

Candes, E., Tao, T., et al. (2007). The dantzig selector: Statistical estimation when p is

much larger than n. Annals of Statistics, 35(6):2313–2351.

Chamroukhi, F. and Huynh, B.-T. (2019). Regularized maximum likelihood estimation

and feature selection in mixtures-of-experts models. Journal de la Société Française de
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A EM for the FME model

The FME model can be fitted by iteratively maximizing the observed-data log-likelihood
(14) iteratively via the EM algorithm. For FME, the EM takes the following form. The
complete-data log-likelihood upon which the EM principle is constructed is defined by

logLc(Ψ ) =
n∑

i=1

K∑
k=1

Zik log
[
πk(ri; ξ)ϕ(yi; βk,0 + η

⊤
k xi, σ

2
k)
]
, (42)

Zik being an indicator binary-valued variable such that Zik = 1 if Zi = k (i.e., if the ith pair
(xi,yi) is generated from the kth expert component) and Zik = 0, otherwise.

E-step This step computes at each EM iteration s the expectation of the complete-data
log-likelihood (42), given the observed data D, and the current parameter vector Ψ (s):

Q(Ψ ;Ψ (s)) = E
[
logLc(Ψ )|D;Ψ (s)

]
=

n∑
i=1

K∑
k=1

τ
(s)
ik log

[
πk(ri; ξ)ϕ(yi; βk,0 + η

⊤
k xi, σ

2
k)
]
, (43)

where τ
(s)
ik = P(Zi = k|yi, ui(·);Ψ (s)) is the conditional probability that the observed pair

(ui(·), yi) is generated by the kth expert. This step therefore only requires the computation

of the conditional probabilities τ
(s)
ik as defined by (15).

M-step This step updates the value of the parameter vector Ψ by maximizing the Q-
function (43) with respect to Ψ , that is Ψ (s+1) = argmaxΨ Q(Ψ ;Ψ (s)), via separate max-
imizations w.r.t. the gating network parameters, and the experts network parameters as
follows.

Updating the the gating network parameters Updating the the gating network’s
parameters ξ consists of maximizing w.r.t. ξ the following function

Q(ξ;Ψ (s)) =
n∑

i=1

K∑
k=1

τ
(s)
ik log πk(ri; ξ)

=
n∑

i=1

[
K−1∑
k=1

τ
(s)
ik (αk,0 + ζ

⊤
k ri)− log

(
1 +

K−1∑
k′=1

exp{αk′,0 + ζ
⊤
k′ri}

)]
· (44)

This consists of a weighted multinomial logistic problem for which there is no closed-form
solution. This can be performed by the Newton-Raphson (NR) algorithm which iteratively
maximizes (44) according to the procedure (16).

Let us denote by ξ1, . . . , ξK−1 the parameter vectors (α1,0, ζ
⊤
1 )

⊤, . . . , (αK−1,0, ζ
⊤
K−1)

⊤.
Since there are K − 1 parameter vectors to be estimated, the Hessian matrix H(ξ;Ψ (s)) is



a block-matrix, consists of (K − 1) × (K − 1) blocks, in which each block Hkℓ(ξ;Ψ
(s)), for

k, ℓ ∈ [K − 1], is given by:

Hkℓ(ξ;Ψ
(s)) =

∂2Q(ξ;Ψ (s))

∂ξk∂ξ⊤ℓ
= −

n∑
i=1

πk(ri; ξ
(t))
[
δkℓ − πl(ri; ξ

(t))
]
rir

⊤
i ,

where δkℓ is the Kronecker symbol (δkℓ = 1 if k = ℓ, 0 otherwise). The gradient vector
consists of K − 1 gradients corresponding to the vectors ξk, for k ∈ [K − 1], and is given by

g(ξ;Ψ (s)) =
∂Q(ξ;Ψ (s))

∂ξ
=
[
g1(ξ

(t)), . . . , gK−1(ξ
(t))
]⊤

,

where, for k ∈ [K − 1], gk(ξ
(t)) = ∂Q(ξ;Ψ (s))

∂ξk
=
∑n

i=1

[
τ
(s)
ik − πk(ξ

(t); ri)
]
r⊤i .

Updating the experts network parameters Updating the experts network’s parame-
ters θk consists of maximizing the function Q(θk;Ψ

(s)) given by

Q(θk;Ψ
(s)) =

n∑
i=1

τ
(s)
ik log ϕ(yi; βk,0 + η

⊤
k xi, σ

2
k)

= − 1

2σ2
k

n∑
i=1

τ
(s)
ik

[
yi − (βk,0 + η

⊤
k xi)

]2 − n

2
log(2πσ2

k)·

Thus, updating θk = (βk,0,η
⊤
k , σ

2
k)

⊤, consists of a weighted Gaussian regression problem

where the weights are the conditional memberships τ
(s)
ik , and the updates are given by (17).

B EM-Lasso for ℓ1-regularized MLE of the FME model

The EM-Lasso algorithm for the maximization of (18) firstly requires the construction of the
penalized complete-data log-likelihood

Lc(Ψ ) = logLc(Ψ )− Penλ,χ(Ψ ) (45)

where logLc(Ψ ) is the non-regularized complete-data log-likelihood log-likelihood defined by
(42). Thus, the EM algorithm for the FME model is implemented as follows. After starting
with an initial solution Ψ (0), it alternates between the two following steps, until convergence
(when there is no longer a significant change in the values of the penalized log-likelihood
(18)).

E-step. This step computes the expectation of the complete-data log-likelihood (45), given
the observed data D, using the current parameter vector Ψ (s):

Qλ,χ(Ψ ;Ψ (s)) = E
[
Lc(Ψ )|D;Ψ (s)

]
= Q(Ψ ;Ψ (s))− Penλ,χ(Ψ ), (46)

which only requires the computation of the posterior probabilities of component membership
τ
(s)
ik (i ∈ [n]), for each of the K experts as defined by (15).
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M-step. This step updates the value of the parameter vector Ψ by maximizing the Q-
function (46) with respect to Ψ , that is, by computing the parameter vector update

Ψ (s+1) = argmax
Ψ

Qλ,χ(Ψ ;Ψ (s)). (47)

The maximization is performed by separate maximizations w.r.t. the gating network param-
eters and the experts network parameters.

B.1 Updating the gating network parameters

Updating the gating network parameters at the sth EM iteration consists of maximizing the
following function

Qχ(ξ;Ψ
(s)) = Q(ξ;Ψ (s))− χ

K−1∑
k=1

∥ζk∥1,

with

Q(ξ;Ψ (s)) =
∑n

i=1

[∑K−1
k=1 τ

(s)
ik

(
αk,0 + ζ

⊤
k ri
)
− log

(
1 +

∑K−1
k′=1 exp{αk′,0 + ζ

⊤
k′ri}

)]
where ξ = (α1,0, ζ

⊤
1 , . . . , αK−1, ζ

⊤
K−1)

⊤ ∈ R(q+1)(K−1) is the gating network parameter vector
and Ψ (s) is the current estimation of model’s parameters. One can see this is equivalent
to solving a weighted regularized multinomial logistic problem for which Qχ(ξ;Ψ

(s)) is its
penalized log-likelihood. There is no closed-form solution for this kind of problem. We then
use an iterative optimization algorithm to seek for a maximizer of Qχ(ξ;Ψ

(s)), i.e., an update
for the parameters of the gating network. The idea is to update only a single gate at a time,
while fixing other gate’s parameters to their previous estimates. Again, to update that single
gate, we only update one component at a time, while fixing the other components to their
previous values. This procedure for updating the gating network parameters is supported
by the methodology of coordinate ascent algorithm: if the objective function consists of a
concave, differentiable function and a sum of concave functions then the maximizer can be
achieved by iteratively maximizing with respect to each coordinate direction at a time.

Coordinate ascent for updating the gating network. Suppose at the sth EM itera-
tion, we wish to update the gates one by one such that it maximizes Qχ(ξ;Ψ

(s)). To do that,
we create an outer loop, indexed by t, which cycles over the gates. For each single gate, say
gate k, we partially approximate the smooth part of Qχ(ξ;Ψ

(s)) with respect to (αk,0, ζk) at
ξ(t), then optimize the obtained objective function (with respect to (αk,0, ζk)) by solving a
penalized weighted least square problem using coordinate ascent algorithm. Note that ξ(t)

denotes the current value of ξ at the iteration tth of the outer loop, while ξ(s) is the value
of ξ before entering the outer loop.

In particular, using Taylor expansion, one has a quadratic approximation for smooth part
of Qχ(ξ;Ψ

(s)) with respect to (αk,0, ζk) at ξ
(t) given by

lk(αk,0, ζk) = −1

2

n∑
i=1

wik(cik − αk,0 − r⊤i ζk)
2 + C(ξ(t)),
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where

wik = πk(ξ
(t); ri)

[
1− πk(ξ

(t); ri)
]
, (weights)

cik = α
(t)
k,0 + r⊤i ζ

(t)
k +

τ
(s)
ik − πk(ξ

(t); ri)

wik

, (working response)

and C(ξ(t)) is a function of ξ(t). After calculating the partial quadratic approximation
lk(αk,0, ζk) about the current estimator ξ(t), we then solve the following penalized weighted
least square problem

max
(αk,0,ζk)

lk(αk,0, ζk)− χ∥ζk∥1, χ > 0, (48)

to obtain an update for the parameters of gate k.
As mentioned above, this problem could be solved by coordinate ascent algorithm. This

means we will create an inner loop, indexed by m, cycles over the components of (αk,0, ζk)
and update them one by one until the objective function of (48) does not gain any significant
increase. For each j ∈ [q], using the soft-thresholding operator (see Hastie et al. (2015), sec.
5.4), one can obtain the closed form update for ζkj as follows

ζ
(m+1)
kj =

Sχ

(∑n
i=1wikrij(cik − c̃

(m)
ikj )

)
∑n

i=1wikr2ij
,

in which c̃
(m)
ikj = α

(m)
k0 + r⊤i ζ

(m)
k − ζ

(m)
kj rij is the fitted value excluding the contribution from

rij, Sχ(·) is a soft-thresholding operator defined by Sχ(u) = sign(u)(|u| − χ)+ and (v)+ a
shorthand for max{v, 0}. Note that at each iteration of the inner loop, only one component

is updated while the others are kept to their previous values, that means ζ
(m+1)
kh = ζ

(m)
kh for

all h ̸= j. For αk,0, the closed-form update is given by

α
(m+1)
k,0 =

∑n
i=1wik(cik − r⊤i ζ

(m+1)
k )∑n

i=1wik

.

Once the inner loop converges, the new values of (αk,0, ζk) are used for the updating procedure
of the next gate. When all the gates have their new values, i.e., after K − 1 inner loops, we
perform a backtracking line search before actually updating the gating network’s parameters
for the next t-indexed iteration. More precisely, the update is ξ(t+1) = (1 − ν)ξ(t) + νξ̄(t)

where ξ̄(t) is the output after K−1 inner loops and ν is backtrackingly determined to ensure
Qχ(ξ

(t+1);Ψ (s)) > Qχ(ξ
(t);Ψ (s)).

We keep running the t-indexed loop until convergence, i.e., when there is no significant
relative variation in Qχ(ξ;Ψ

(s)). Once αk,0 and ζkj reach their optimal values α̃k,0 and ζ̃kj
for all k ∈ [K − 1], j ∈ [q], the update for gating network’s parameters is then ξ(s+1) =

(α̃1,0, ζ̃
⊤
1 , . . . , α̃K−1,0, ζ

⊤
K−1)

⊤.

B.2 Updating the experts network parameters

The maximization step for updating the expert parameters θk consists of maximizing the
function Qλ(θk;Ψ

(s)) given by

Qλ(θk;Ψ
(s)) = Q(θk;Ψ

(s))− λ∥ηk∥1,
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with

Q(θk;Ψ
(s)) = − 1

2σ2
k

n∑
i=1

τ
(s)
ik

[
yi − (βk,0 + η

⊤
k xi)

]2 − n

2
log(2πσ2

k),

where θk = (βk,0,η
⊤
k , σ

2
k)

⊤ ∈ Rp+2 is the unknown vector and Ψ (s) is the current estimation
of model’s parameters. There is no closed-form solution for this optimization problem, we
then solve it by an iterative optimization algorithm similarly to updating the gating network
parameters. We first perform the update for (βk,0,ηk) while fixing σ2

k. This corresponds to
solving a weighted LASSO problem where the weights are the the posterior experts mem-
berships τ

(s)
ik . Once (βk,0,ηk) has new value, the variance σ2

k is updated straightforwardly by
the standard update of a weighted Gaussian regression.

More specifically, when σ2
k, the variance of expert k, is fixed to σ2

k
(s)
, updating (βk,0,ηk)

consists of solving the following weighted LASSO problem:

max
(βk,0,ηk)

− 1

2σ2
k
(s)

n∑
i=1

τ
(s)
ik

[
yi − (βk,0 + η

⊤
k xi)

]2 − n

2
log(2πσ2

k
(s)
)− λ

q∑
j=1

|ηkj|, λ > 0, (49)

which can be solved by coordinate ascent algorithm. For each j ∈ [p], the closed-form update
for ηkj is given by

η
(m+1)
kj =

S
λσ2

k
(s)

(∑n
i=1 τ

(s)
ik xij(yi − ỹ

(m)
ij )

)
∑n

i=1 τ
(s)
ik x2ij

,

in which ỹ
(m)
ij = β

(m)
k,0 + x⊤

i η
(m)
k − η

(m)
kj xij is the fitted value excluding the contribution from

xij and Sχ(·) is the soft-thresholding operator (see Hastie et al. (2015), sec. 5.4). Here m
denotes the mth iteration of the coordinate ascent algorithm. The update for βk,0 is

β
(m+1)
k,0 =

∑n
i=1 τ

(s)
ik (yi − x⊤

i η
(m+1)
k )∑n

i=1 τ
(s)
ik

·

We keep updating the components of (βk,0,ηk) cyclically until the change in objective func-
tion of (49) is small enough. So, the update for (βk,0,ηk) in this EM iteration is then

(β
(s+1)
k,0 ,η

(s+1)
k ) = (β∗

k,0,η
∗
k) where the latter is the optimal solution of (49). Finally, the

update for σ2
k is given by

σ2(s+1)
k =

∑n
i=1 τ

(s)
ik (yi − β

(s+1)
k,0 − x⊤

i η
(s+1)
k )2∑n

i=1 τ
(s)
ik

·

Hence, the update for the value of parameters vector Ψ at M-step, i.e., the solution to
problem (47), is Ψ (s+1) = (ξ(s+1),θ

(s+1)
1 , . . . ,θ

(s+1)
K ) where ξ(s+1) and θ

(s+1)
k , k ∈ [K], are

solved by maximizing Qχ(ξ;Ψ
(s)) and Qλ(θk;Ψ

(s)), respectively, using the algorithms de-
scribed above. The EM algorithm monotonically increases (18). Furthermore, the sequence
of parameter estimates generated by the EM algorithm converges toward a local maximum
of the log-likelihood function (Dempster et al., 1977; McLachlan and Krishnan, 2008; Wu,
1983).
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C EM-iFME for updating iFME model parameters

C.1 Updating the gating network parameters

This section presents the using of Dantzig selector to solve problem (37). Let us simplify
the subscript k in the notations and rewrite the problem under matrix form as follows

max
ω̃∈R2q+1

− 1

2
∥cw −Xwω̃∥22 − χ∥Ωω̃∥1

subject to Aω̃ = 0q,
(50)

where ω̃ = (α0, ω
[d1]⊤,ω[d2]⊤)⊤ is the unknown coefficients vector, cw = (

√
w1c1, . . . ,

√
wncn)

⊤

is the weighted working response vector, Xw = [
√
w|Sw|0n×q] ∈ R2q+1 is the weighted design

matrix, Ω = diag(0,1⊤
q , ϱ1

⊤
q ) is the diagonal weighting matrix and A = [0q|A[d2]

q A
[d1]
q

−1
|−Iq]

is the constraints matrix. Here,
√
w = (

√
w1, . . . ,

√
wn)

⊤, Sw = [
√
w1s1, . . . ,

√
wnsn]

⊤, with
si are the design vectors (see (28)), 0n×q ∈ Rn×q contains 0’s, 0q ∈ Rq contains 0’s, 1q ∈ Rq

contains 1’s and Iq is the identity matrix in Rq×q. This problem can be viewed as the problem
of finding a sparse solution via Lasso estimate for a linear regression model with constraints.
Therefore, we can solve it alternatively by Dantzig selector estimate as the solution to the
following problem

max
ω̃∈R2q+1

−∥Ωω̃∥1

subject to

{
|X⊤

w(cw −Xwω̃)| ≤ χ12q+1,
Aω̃ = 0q,

where the absolute value operator is understood componentwise. By decomposing ω̃ into its
positive and negative parts, ω̃ = ω̃+ − ω̃−, the above problem becomes

max
(ω̃+,ω̃−)∈R4q+2

− [0,1⊤
q , ϱ1

⊤
q , 0,1

⊤
q , ϱ1

⊤
q ]

[
ω̃+

ω̃−

]

subject to



[
X⊤

wXw −X⊤
wXw

−X⊤
wXw X⊤

wXw

] [
ω̃+

ω̃−

]
≤
[
χ+X⊤

wcw
χ−X⊤

wcw

]
,[

A −A
] [ω̃+

ω̃−

]
= 04q+2,

ω̃+ ≥ 02q+1, ω̃− ≥ 02q+1,

(51)

which is a standard linear program with 4q + 2 variables, therefore can be easily solved
by available toolboxes for linear programming, e.g., Matlab’s linprog function. Finally, the

solution ω̃∗ = (α∗
0, ω

[d1]∗⊤,ω[d2]∗⊤)⊤ to the original problem could be retrieved by the relation
ω̃∗ = ω̃∗

+ − ω̃∗
− where (ω̃∗⊤

+ , ω̃∗⊤
− )⊤ is the solution of (51).

C.2 Updating the expert network parameters

This section presents how to solve problem (38). Firstly, we fix σ2
k to its previous estimate and

perform an update for (βk,0,γ
[d1]
k ), it corresponds to solving a penalized weighted least square
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problem with constraints. From now on, let us simplify the subscript k in the notations and
rewrite the problem under matrix form as follows

max
γ̃∈R2p+1

− 1

2
∥yστ −Xστ γ̃∥22 − λ∥Λγ̃∥1 −

nk

2
log(2πσ2)

subject to Aγ̃ = 0p,

where γ̃ = (β0, γ
[d1]⊤,γ [d2]⊤)⊤ is the unknown coefficients vector, yστ = (σ

√
τ1y1, . . . , σ

√
τnyn)

⊤

∈ Rn is the weighted response vector, Xστ = σ ⊙ [
√
τ |Vτ |0n×p] ∈ Rn×(2p+1) is the weighted

design matrix, Λ = diag(0,1⊤
p , ρ1

⊤
p ) is the diagonal weighting matrix, nk =

∑n
i=1 τik andA =

[0p|A[d2]
p A

[d1]
p

−1
| − Ip] ∈ Rp×(2p+1) is the constraints matrix. Here,

√
τ = (

√
τ1, . . . ,

√
τn)

⊤ ∈
Rn, Vτ = [

√
τ1v1, . . . ,

√
τnvn]

⊤ ∈ Rn×p, with vi are the design vectors (see (28)), 0n×p ∈
Rn×p contains 0’s, 0p ∈ Rp contains 0’s, 1p ∈ Rp contains 1’s and Ip is the identity matrix in
Rp×p. As the last term in the objective function is independent of γ̃, this problem is similar
to the problem (50) and then can be solved by Dantzig selector estimate as the solution to
the following problem

max
γ̃∈R2p+1

− ∥Λγ̃∥1

subject to

{
|X⊤

στ (yστ −Xστ γ̃)| ≤ λ12p+1,
Aγ̃ = 0p.

Similarly to the problem in the gating network update, by decomposing γ̃ into its positive
and negative parts, γ̃ = γ̃+ − γ̃−, the above problem becomes

max
(γ̃+,γ̃−)∈R4p+2

− [0,1⊤
p , ρ1

⊤
p , 0,1

⊤
p , ϱ1

⊤
p ]

[
γ̃+
γ̃−

]

subject to



[
X⊤

στXστ −X⊤
στXστ

−X⊤
στXστ X⊤

στXστ

] [
γ̃+
γ̃−

]
≤
[
λ+X⊤

στyστ

λ−X⊤
στyστ

]
,[

A −A
] [γ̃+
γ̃−

]
= 04p+2,

γ̃+ ≥ 02p+1, γ̃− ≥ 02p+1,

(52)

which is a standard linear program with 4q + 2 variables and can be solved similarly to the

gating network case. The solution γ̃∗ = (β∗
0 , γ

[d1]∗⊤,γ [d2]∗⊤)⊤ to the original problem is
retrieved by the relation γ̃∗ = γ̃∗

+ − γ̃∗
− where (γ̃∗⊤

+ , γ̃∗⊤
− )⊤ is the solution of (52).

Finally, the update for σ2
k is

σ2
k
(s+1)

=

∑n
i=1 τ

(s)
ik (yi − β

(s+1)
k,0 − v⊤

i γ
[d1]
k

(s+1)
)2∑n

i=1 τ
(s)
ik

,

in which β
(s+1)
k,0 ,γ

[d1]
k

(s+1)
are the new updates for βk,0 and γ

[d1]
k .
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D Detailed Data generating protocol, simulation pa-

rameters and experimental protocol

D.1 Data generating protocol

In the simulated data, the data generation protocol is as follows. We consider aK-component
functional mixture of Gaussian experts model that relates a scalar response y ∈ R to a uni-
variate functional predictor X(t), t ∈ T defined on a domain T ⊂ R. Given the model pa-
rameters (defined in the next paragraph) β = {βk,0, βk(t), σ

2
k}Kk=1 and α = {αk,0, αk(t)}Kk=1,

t ∈ T , we first construct the functional predictors Xi(·) for i ∈ [n] using the representa-
tion defined in (5), with detailed parameterization in (54). Then, for each i ∈ [n], con-
ditional on the functional predictor Xi(·), a hidden categorical random variable Zi ∈ [K]

is generated following the multinomial distribution M
(
1,
(
π1(Xi(t);α), . . . , πK(Xi(t);α)

))
,

where πk(Xi(t);α) for k ∈ [K] is given by (3). Finally, conditional on Zi = zi and Xi(·),
the scalar response Yi is obtained by sampling from the Gaussian distribution with mean
βzi,0 +

∫
T Xi(t)βzi(t)dt and variance σ2

zi
. The value zi is then the true cluster label of the

predictor Xi(·). This hierarchical generative process can be summarized as follows:

Yi|Zi = zi, Xi(t) ∼ N
(
βzi,0 +

∫
T
Xi(t)βzi(t)dt; σ2

zi

)
,

Zi|Xi(t) ∼ M
(
1,
(
π1(Xi(t);α), . . . , πK(Xi(t);α)

))
.

(53)

The true generated data, i.e.,
(
Xi(·), Yi, Zi

)n
i=1

, are used for evaluating the prediction and
clustering performance.

Finally, to mimic real data, in our simulations, the generated predictors Xi(·) are con-
taminated with measurement errors, that means we will not use Xi(·) for analysis, but

Ui(t) = Xi(t) + δi(t),

with δi(t) is an independent Gaussian noise with mean zero and constant variance σ2
δ for all

t ∈ T . We considered different noise levels σ2
δ (see Table 9).

D.2 Simulation parameters and experimental protocol

The parameters that were used in the data generating process (53) are as follows. We
consider K = 3 components and a time domain T = [0, 1].
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Functional experts and gating parameters: The functional experts parameters are
given by

β1(t) =


−50(t− 0.5)2 + 4 if 0 ≤ t < 0.3,
0 if 0.3 ≤ t < 0.7,
50(t− 0.5)2 − 4 if 0.7 ≤ t ≤ 1,

β2(t) = −β1(t),

β3(t) = 100(t− 0.5)2 − 10, 0 ≤ t ≤ 1,

(β1,0, β2,0, β3,0)
⊤ = (−5, 0, 5)⊤,

(σ2
1, σ

2
2, σ

2
3)

⊤ = (5, 5, 5)⊤,

and the functional gating network parameters are given by

α1(t) = 80(t− 0.5)2 − 8,

α2(t) = −α1(t), α3(t) = 0, 0 ≤ t ≤ 1,

(α1,0, α2,0, α3,0)
⊤ = (−10,−10, 0)⊤.

Note that to satisfy the identifiability condition (see Jiang and Tanner (1999)), the experts
are ordered, for instance (β1,0, β1, σ

2
1) ≺ . . . ≺ (βK,0, βK , σ

2
K), and the last gating network

parameters, αK,0, αK(t), are initialized, i.e. fixed to zeros. Here, “≺” is the lexicographical
order on Rp+2.

As it can be seen in Figure 11, the expert parameter functions β1(t) and β2(t) have a flat
region in the interval 0.3 ≤ t < 0.7, outside of which they are quadratic, while β3(t) and the
gating parameter functions α1(t), α2(t) are all quadratic on the whole domain. By choosing
these functional experts and gating parameters, we can later compare the sparsity in the
zeroth and third derivatives of the solutions obtained by the proposed models.
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Figure 11: The true expert and gating functions used in simulations.

Functional predictors parameters: In this simulation, the functional predictors Xi(·)
are constructed using the following formula,

Xi(t) = x
⊤
i b(t), t ∈ T , (54)

in which b(t) = [b1(t), . . . , b10(t)]
⊤ is a 10-dimensional B-spline basis xi ∈ R10 is a coefficient

vector defined as xi =Wvi, whereW ∈ R10×10 is a matrix of i.i.d. random values from the
uniform distribution U(0, 1) and vi ∈ R10 is a vector of i.i.d. random values from the normal
distribution N (0, 10). Here, the matrix W acts as a factor to facilitate the fluctuation of
the generated Xi(·).
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Scenario S1 S2 S3 S4
σ2
δ 1 1 4 4
m 300 100 300 100

Table 9: Simulation scenarios with different noise level σ2
δ and curve sampling level m.

Noisy functional predictors: Since in real practical situations we do not usually directly
observe the true functional predictors X(·)’s, but only a noisy and discretized version of
them, we thus consider several scenarios with different noise and sampling levels. To this
end, in the data generating protocol we consider noisy versions Ui(tj) = Xi(tj)+ δi(tj) of the
functional predictors values Xi(tj), where δi(tj) ∼ N (0, σ2

δ ) is a centred Gaussian noise with
variance σ2

δ , for all i ∈ [n], j ∈ [m]. We investigate simulated scenarios S1, . . . , S4 with curve
length m and the noise level σ2

δ of the functional predictors, including two levels of sampling
m ∈ {300, 100}, and two levels of noise σ2

δ ∈ {1, 4}. The resulting four considered scenarios of
simulated data are presented in Table 9. For each considered scenario, we generate N = 100
datasets, each dataset contains n pairs of

(
Ui(t), Yi

)
, with n ∈ {200, 400, 600, 800, 1000}.
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