
HAL Id: hal-04360913
https://hal.science/hal-04360913

Submitted on 13 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tensor-based two-layer decoupling of multivariate
polynomial maps

Konstantin Usevich, Yassine Zniyed, Mariya Ishteva, Philippe Dreesen, André
de Almeida

To cite this version:
Konstantin Usevich, Yassine Zniyed, Mariya Ishteva, Philippe Dreesen, André de Almeida. Tensor-
based two-layer decoupling of multivariate polynomial maps. 31st European Signal Processing Con-
ference, EUSIPCO 2023, Sep 2023, Helsinki, Finland. �10.23919/EUSIPCO58844.2023.10289900�.
�hal-04360913�

https://hal.science/hal-04360913
https://hal.archives-ouvertes.fr


Tensor-based two-layer decoupling
of multivariate polynomial maps

Konstantin Usevich, Yassine Zniyed, Mariya Ishteva, Philippe Dreesen, André L. F. de Almeida

Abstract—In this paper, we introduce a new decomposition
of multivariate maps that generalizes the decoupling problem
recently proposed in the system identification community. In the
context of neural networks, this decomposition can be seen as a
two-layer feedforward network with flexible activation functions.
We show that for such maps the Jacobian and Hessian tensors
admit ParaTuck and CP decompositions respectively. We propose
a methodology to perform the two-layer decoupling of the given
polynomial maps based on joint ParaTuck and CP decomposition,
by combining first and second-order information.

Index Terms—tensor decomposition, polynomial decoupling,
ParaTuck, neural networks, coupled decompositions.

I. INTRODUCTION

The problem of learning to imitate and approximate com-
plex nonlinear functions is crucial for solving many scien-
tific challenges, including nonlinear system identification [1]
and neural network learning [2]. The decoupling problem
formulated in [3] and motivated by system identification
problems, aims at decomposing a multivariate map as linear
combinations of univariate functions in linear forms of the
input variables. From the neural network point of view, the
decoupling model of [3] corresponds to the usage of trainable
(flexible) activation functions, see e.g., [4], [5]. Flexible activa-
tion functions attracted recent interest in the machine learning
community since they can improve the expressive power of
neural networks (compared to fixed activation functions).

Several approaches relying on linear and multilinear algebra
[3], [6], [7] have been proposed to find decoupled represen-
tations. The most practically relevant approach of [3] relies
on the canonical polyadic decomposition (CP decomposition
or CPD) [8]–[10] of a third-order tensor constructed from
stacking evaluations at different points of the Jacobian matrix
of the function. It proved to be useful in many tasks in block-
structured nonlinear dynamical system identification [1], [11].
While formulated for the decoupling of polynomial maps,
the approach of [3] can be also adapted to a wider class of
differentiable functions [12]. However, the main drawback of
the decoupling approach of [3] is that it applies only to a single
hidden nonlinear layer.
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In this paper, we introduce a novel decoupled representation
that includes two hidden layers. For the proposed new repre-
sentation, we show that the Jacobian tensor follows a ParaTuck
decomposition (PTD) [13]–[15], and that the Hessian of the
multivariate map at a single point follows a CPD. Using these
results, we provide an algorithm that is based on a coupled
factorization of Jacobian and Hessian tensors, which allows
for retrieval of the two-layer decoupled representation (i.e.,
the weights and the flexible activation functions in the context
of neural networks) in the polynomial case. Proofs and details
omitted in this article can be found in the extended version of
the paper [16].

Related work. In the machine learning literature, decom-
positions of tensors of higher-order derivatives have been
already used to obtain guarantees for recovery of weights [17].
(This idea, in fact, goes back to earlier works in blind source
separation [18].) However, most of these results apply to the
case of a single hidden nonlinear layer and fixed activation
functions. The authors are aware of only one work [19] that
treats two-layer architecture, however, that work concerns
single-output maps, fixed activation functions with biases, and
also relies on matrix methods (singular value decomposition),
rather than tensor decompositions.

II. NOTATION AND BACKGROUND

The symbols (·)† and rank(·) denote, respectively, the
pseudo-inverse and the rank of a matrix. The outer (tensor),
Hadamard and Khatri-Rao products are denoted by ⊗, ⊡, and
⊙, respectively. Tensors are represented by bold calligraphic
capital letters, e.g., X . For an n1 × n2 × n3 tensor X , the
i-th horizontal, j-th lateral and k-th frontal slices are denoted
X i,:,:, X :,j,: and X :,:,k, and are of sizes n2×n3, n1×n3 and
n1 × n2, respectively. The (Frobenius) norm of a tensor X is
the square root of the sum of the squares of all its elements,
i.e., ||X || =

√∑n1,n2,n3

i,j,k=1 X 2
i,j,k. The contraction on the kth

index of a tensor is denoted as •
k

[20], while diag(·) either
forms a diagonal matrix from its vector argument or captures
the diagonal of its matrix argument. unfoldkX refers to the
unfolding (flattening) of tensor X over its k-th mode [21].

A. CPD and matrix diagonalization

The CP decomposition (CPD) is a decomposition of a tensor
X of size n1 × n2 × n3 into a sum of r rank-1 tensors,

X = [[λ; A,B,C]]
def
=

r∑
k=1

λkak ⊗ bk ⊗ ck, (1)



with λ ∈ Rr and the factor matrices A ∈ Rn1×r,B ∈
Rn2×r,C ∈ Rn3×r given by A =

[
a1 · · · ar

]
, B =[

b1 · · · br

]
, C =

[
c1 · · · cr

]
. For λ = 1r

def
=

[
1 · · · 1

]T
in (1), we also use a shorthand notation

[[A,B,C]]
def
= [[1r; A,B,C]].

The CPD (1) of X can be also viewed as joint low-rank
decomposition (joint diagonalization) [22] of its frontal slices:

X :,:,k = Adiag(Ck,:)B
T. (2)

B. ParaTuck decomposition

The ParaTuck decomposition (PTD) of rank (r, s) of an
n1 × n2 × n3 tensor X is defined through its frontal slices:

X :,:,k = W diag(gk)Fdiag(hk)U
T, (3)

where the five factor matrices are W ∈ Rn1×r, U ∈ Rn2×s,
F ∈ Rr×s, G =

[
g1 · · · gn3

]
∈ Rr×n3 , and H =[

h1 · · · hn3

]
∈ Rs×n3 . Thus the PTD (3) can be seen

as a two-layer generalization of the CPD (2).
PTD has been proposed in psychometrics literature [13] in

1994 but was not widely used due to a lack of reliable algo-
rithms [15]. It has been exploited in wireless communication
problems [23], [24], [25] mostly assuming prior knowledge on
some factor matrices.

Alternatively, PTD can be defined in the Tucker [26] form:

X = C •
1
W •

2
U,

where the ParaTuck core tensor C ∈ Rr×s×n3 has structure

Cijk = FijGikHjk. (4)

If the outer factor matrices W and U are known, the remaining
factors can be easily recovered from (4) by elementwise divi-
sion [16]. However, if all factor matrices are unknown, to the
best of the authors’ knowledge, there are no reliable algorithms
that can find the PTD, except for the case (r, s) = (2, 2) [27].
For example, an alternating least squares algorithm, introduced
in [15], has been shown to have convergence issues. This
is why in many use cases of PTD [24], some of the factor
matrices are assumed to be known.

C. ParaTuck ambiguities and uniqueness

Similarly to the CPD, the PTD possesses trivial ambiguities
(due to permutations and rescaling), i.e., multiple decomposi-
tions may exist for the same tensor. It has been shown in
[14], that a third-order tensor X ∈ Rn1×n2×n3 with PTD (3),
admits a family of alternative PTDs

X :,:,k = W̃ diag(g̃k)F̃diag(h̃k)Ũ
T, (5)

with the factor matrices given as

W = W̃ · (ΠW ·ΛW), U = Ũ · (ΠU ·ΛU),

F = (Λ̄W ·Λ−1
W ·ΠT

W) · F̃ · (ΠU ·Λ−1
U · Λ̄U),

gk = (αk · Λ̄−1
WΠT

W) · g̃k, hk = (α−1
k · Λ̄−1

U ΠT
U) · h̃k,
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Fig. 1. Decoupled representation of y = f(x) into a single-layer model as
in (6). This naturally leads to the CPD of the corresponding Jacobian tensor.

where ΛW, ΛU, Λ̄W and Λ̄U are diagonal matrices, ΠW and
ΠU are permutation matrices, and αk are nonzero scalars.

Similar to the CPD, the PTD is called essentially unique
if it is unique up to trivial ambiguities; essential uniqueness
can happen under mild conditions [14]. One of the main
distinctions between the CPD and PTD ambiguities lies in
the slice-wise ambiguities (coefficients αk), which should be
handled with care in decoupling problems, as shown later.

III. DECOUPLING POLYNOMIAL FUNCTIONS

The problem of decoupling refers to the representation of
a multivariate polynomial function as a linear combination of
univariate polynomials in terms of the input variables (Fig. 1).
In this paper, we take the classical decoupling problem one
step further and generalize the representation to a two-layer
model, in order to enhance its versatility and expressive power.

A. Reminder: one-layer structure

Let f : Rm → Rn be a multivariate map f(x) =
[f1(x) · · · fn(x)]T, with x = [x1 · · ·xm]T. It is said that f
has a decoupled representation (Fig. 1), if

f(x) = Wg(VTx), (6)

where W ∈ Rn×r, V ∈ Rm×r are transformation matrices,
wk and vk are respectively their columns, and g : Rr → Rr

follows g(z1, · · · , zr) =
[
g1(z1) · · · gr(zr)

]T
, with gk :

R → R univariate differentiable functions. From a neural
network point of view, (6) can be viewed as a model with
one nonlinear layer composed of flexible activation functions
[5] sandwiched between nonlinear layers.

It was shown in [3] that the Jacobian of a function of
form (6) can be factorized as Jf (x) = WD(x)VT where
D(x) is a diagonal matrix that depends on x. The idea of
[3] was to stack evaluations of Jacobians in different points
x(p), for p = 1, . . . , P into n×m×P tensor J , and use the
connection to joint matrix factorization (2) of its frontal slices.
Thus decoupling a given multivariate function from first order
information can be achieved using the CPD of the Jacobian
tensor. Initially proposed for exact decoupling of polynomial
maps [3], the approach is applicable for a wider range of
scenarios, and found many applications, in particular, in block-
structured system identification.

However, the approach [3] can only handle representations
with a single nonlinear layer, which limits its applicability and
expressive power. We are not aware of existing tensor-based
decoupling approaches for the case of several hidden layers.
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Fig. 2. Decoupled representation of y = f(x) into a two-layer model, as in (7). This naturally leads to a PTD of the corresponding Jacobian tensor.

B. Proposed two-layer structure

We propose to extend the decoupled representation in (6)
to a representation with two layers as follows (Fig. 2):

f(x) = Wg
(
VT · h(UTx)

)
, (7)

where W ∈ Rn×r , V ∈ Rs×r, U ∈ Rm×s, are transforma-
tion matrices, and h : Rs → Rs and g : Rr → Rr follow
g(z1, · · · , zr) = [g1(z1) · · · gr(zr)]T and h(t1, · · · , ts) =
[h1(t1) · · ·hs(ts)]

T, respectively, with differentiable hk and
gk. This two-layer generalization allows having more flexibil-
ity in the decoupling of multivariate nonlinear functions. As
we will show next, it is intricately connected to the ParaTuck
and CP decompositions when considering first- and second-
order information.

IV. TENSOR-BASED FUNCTION DECOMPOSITION

A. Jacobian and ParaTuck decomposition

The main idea to find the decomposition (7) of a nonlinear
function f relies on the evaluation of the Jacobian matrix in
different points x(p), for p = 1, . . . , P . This idea mirrors [3],
where it has been applied to the classical decoupling model.
In the sequel, we will replicate the procedure with the new
proposed structure in (7) and will derive the new expression
of the Jacobian tensor.

Lemma 1: The first-order derivatives of the parameteriza-
tion (7) are given by

Jf (x) : =


∂f1
∂x1

(x) · · · ∂f1
∂xm

(x)
...

...
∂fn
∂x1

(x) · · · ∂fn
∂xm

(x)

 (8)

= W · diag
([

g′1(z1) · · · g′r(zr)
])

·VT

· diag
([

h′
1(t1) · · ·h′

s(ts)
])

·UT. (9)

Proof: Proof follows by applying the chain rule to (7). □
Based on Lemma 1, we can see that Jacobian of (7) evaluated
at the points x(p) follows

Jf (x
(p)) = W · diag

(
gp

)
·VT · diag

(
hp

)
·UT, (10)

where the vectors gp ∈ Rr and hp ∈ Rs are given by

gp = g′(z(p)) =
[
g′1(z

(p)
1 ) · · · g′r(z(p)r )

]T
, (11)

hp = h′(t(p)) =
[
h′
1(t

(p)
1 ) · · ·h′

s(t
(p)
s )

]T
, (12)

with t(p) =
[
t
(p)
1 · · · t(p)s

]T
= UTx(p) and z(p) =[

z
(p)
1 · · · z(p)r

]T
= VTh(UTx(p)).

We can then define the matrices H and G as

G =
[
g1 · · · gP

]
∈ Rr×P , H =

[
h1 · · · hP

]
∈ Rs×P .

Thus Lemma 1 shows that the expression of the Jacobian
tensor for the two-layer model (7) corresponds to the frontal
slices of a PTD (3) of rank (r, s). Indeed, a Jacobian tensor
J ∈ Rn×m×P constructed by stacking the Jacobian evalua-
tions at sampling points x(p) ∈ Rm, for p = 1, . . . , P :

J :,:,p = Jf (x
(p)), (13)

admits a PTD (3) with factors U, F = VT, W, G and H
(where U, V and W do not depend on p).

B. Second-order information and structured CPD
To improve the usefulness of the PT formulation, we will

examine the second-order information of (7), and show that
it is very helpful for the decoupling problem since the PTD
lacks reliable algorithms for the moment. In this subsection,
we derive an expression for the Hessians at each point. The
Hessian tensor H(x) ∈ Rn×m×m at a point x is defined as

Hijk(x) =
∂2fi

∂xj∂xk
(x).

We will show the H(x) admits a CPD of a special form. For
that, we introduce the following notation for the factors of the
Jacobians in (9):

A(x) = W · diag
(
g′(z(x))

)
·VT ∈ Rn×s, (14)

B(x) = VT · diag
(
h′(t(x))

)
·UT ∈ Rr×m, (15)

where
t(x) = UTx and z(x) = VTh(UTx),

so that we can rewrite (9) as

Jf (x) = A(x) diag
(
h′(t(x))

)
UT

= W diag
(
g′(z(x))

)
B(x).

(16)

Armed with this notation, we are ready to formulate the
following result on the structure of the Hessian tensor.

Lemma 2: The Hessian tensor has the following (r+s)-term
CPD:

H(x) = [[g′′(z(x)); W,BT(x),BT(x)]]

+ [[h′′(t(x)); A(x),U,U]]. (17)

Proof: Follows by applying the Leibniz rule to (16). □
It is worth noting that (i) the Hessian tensor is partially

symmetric (i.e., Hijk = Hikj), thus the factors in (17) cannot
be recovered from the CPD due to loss of uniqueness.



V. CONSTRAINED COUPLED DECOMPOSITION APPROACH

We propose to rephrase the new decoupling problem as
a constrained coupled tensor decomposition, using both the
first and second-order information. Before that, we specify the
assumptions considered in our approach:

1) m ≥ s and n ≥ r ≥ s,
2) W is known and has full column rank r,
3) U and unfold2J have rank s.

Under the conditions above, we can always reduce the problem
to the case

r = n, s = m, and W = Ir. (18)

It is important to mention that despite these simplifying
assumptions, the PTD remains a challenging problem, for
example, for ALS-type algorithms [15].

A. Reformulation as a constrained CPD

We assume that we are given Jacobians and Hessians of f at
P evaluation points, and that f satisfies the assumption (18).
Additionally, we impose that the elements of G are nonzero.
Then the following proposition can be proved.

Proposition 1: Let us take all the Hessians at P points and
stack them into a third-order Pn×m×m tensor T hess as

(T hess)1+(p−1)n:pn,:,: = H(x(p)). (19)

We also stack Jacobians in one matrix Jall ∈ RPn×m as

Jall
1+(p−1)n:pn,: = Jf (x

(p)). (20)

Then, T hess has the following CPD with structured factors:

T hess = [[diag(c), (Jall)T, (Jall)T]] + [[E,U,U]], (21)

where E ∈ RPn×m and c ∈ RPn.
Proof: The proof of Proposition 1 as well as the expression
for E and c can be found in [16]. □

B. Reformulation as structured low-rank matrix completion

In order to find the structured CPD of the tensor T hess, we
reformulate the problem as low-rank matrix recovery. To do
so, consider the unfolding

Thess = (unfold3(T hess))T ∈ Rm2×nP ,

which admits the factorization

Thess =
(
(Jall)T ⊙ (Jall)T

)
diag(c) + (U⊙U)ET.

Assuming the exact model (21), we just need to find vector
c ∈ RPn so that the following matrix has rank s

S (c) = Thess −
(
(Jall)T ⊙ (Jall)T

)
diag(c).

We pose this problem as rank minimization of S (c), which
can be solved as the minimization over the low-rank manifold:

min
P,L

∥ΠS (PL−Thess)∥F , (22)

where ΠS is the projection on the set of structured matrices,
see e.g., [28] for more details on the reformulation (22). We
summarize our approach in the following algorithm.

Fig. 3. The convergence plot shows a linear convergence of the cost function
in (22) to an error of order 10−10 in 46 out of 100 random initializations.

Algorithm 1: Two-layer decoupling using PTD

assume eqn. (18)
input: Jacobian evaluations Jf (x

(1)), . . . ,Jf (x
(P ))

Hessian evaluations T (x(1)), . . . ,T (x(P ))
output: factors U, V; coefficients of g, h

1) stack the Jacobians into matrix Jall, see (20)
2) stack the Hessians into tensor T hess, see (19)
3) find PL from the rank minimization problem (22)
4) reshape P into a m×m×m tensor
5) compute its rank-m CPD [[U,U,Q]] and extract U
6) find the ParaTuck core tensor C = J •2 U†

7) from C and (4), recover V, G, and H
8) fix αk ambiguities (see the next section)

VI. NUMERICAL EXAMPLES

A. Example of decoupling with r = s = 3

We consider a concrete example of decoupling for polyno-
mial functions that are shifts of the same function

h1(t) = ϕ(t− 0.5), h2(t) = ϕ(t+ 0.2), h3(t) = ϕ(t)

g1(t) = ϕ(t+ 0.1), g2(t) = ϕ(t+ 0.4), g3(t) = ϕ(t)

where ϕ(t) = t2 − 0.25t4 + t3 − 3t. In our experiment, the
matrices V and U were generated randomly, with i.i.d. ele-
ments from the uniform distribution on [−1; 1]. The P = 100
sampling points x(p) are drawn uniformly from [−0.5; 0.5].

In Fig. 3, we show the cost function (22) as a function
of iteration (out of maximum 1000 iterations). We run 100
random initializations of P as P0 = U0⊙U0 with U0 drawn
from standard Gaussian i.i.d. distribution. We observe that in
46 cases out of 100, the algorithm shows linear convergence
to an error of order 10−10. Taking one of the runs with the
best cost function value, we are able to recover the original
U and the nonlinearities as explained in the next subsection.

B. Ambiguities in the problem and recovering the functions

The problem which remains for the decoupling approach is
the reconstruction of functions. The issue is that the approach
suggested in [3] (regression of Hk,: versus (t

(1)
k , . . . , t

(P )
k ))

does not directly work, due to the presence of the ambiguities
αp for each of the columns of G. To recover the functions
hk(·), we need more assumptions, for example, impose that
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the functions are polynomials of low order. To estimate the
ambiguities, we solve the following system of equations

aTkX(t, d) ≈ Hk,: diag(α), k = 1, . . . , s,

where d is the polynomial degree, X(t, d) is the Vandermonde
matrix (for points t and up to degree d), and we solve for aTk
(coefficients of polynomials) and α = (α1, . . . , αP ) (vector
of scalings). This is a problem of intersection of two linear
subspaces and can be solved with alternating projections.

As shown in Fig. 4, the proposed estimation of slice
ambiguities αp, helps to recover the functions h (and g), which
is otherwise not possible to estimate from the factors of the
PTD without additional assumptions. Note that the proposed
correction is not limited to polynomials, but can be applied to
other bases of functions (see, e.g., [5]).

VII. CONCLUSION AND OUTLOOK

We presented a new method for multivariate function ap-
proximation that couples the PT and CP decompositions. Our
approach utilizes both first and second-order information of the
original function and has been shown to be effective through
numerical simulations on a simple synthetic example. Al-
though the PT decomposition remains a challenging problem,
our results demonstrate the potential of the proposed method
for addressing this issue and provide a promising direction for
future work in the field of multivariate function approximation.
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