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1 Introduction

Erratum: Previous versions of this paper were entitled ‘The Geometry of Right-
Invariant Metrics on Lie Groups: Towards a BCH Formula on Diffeomorphism
Groups’. They had a section deriving an expression for D exp. These were based on
what was then Lemma 1, which was incorrect. This version of the paper removes all
of that material, which leaves relatively little novel content. However, we hope that the
exposition of the problem may remain of interest to some.

In his much-celebrated geometric interpretation of hydrodynamics Arnold [1]
showed that geodesics of the right-invariant L2 metric on vector fields correspond to
solutions of the Euler equations of hydrodynamics on the underlying manifold M on
which the diffeomorphism group acts. The right-invariance is natural in the sense that
the L2 metric on vector fields becomes right-invariant when restricted to the group of
volume-preserving diffeomorphisms Dµ and its tangent space of divergence-free vec-
tor fields TeDµ. Ebin and Marsden [2] exploited Arnold’s observation to show that
the L2 metric is indeed a smooth Riemannian metric on Dµ that admits a smooth

1



right-invariant Levi-Civita connection and, consequently, a smooth right-invariant
exponential map that is a diffeomorphism in a neighbourhood of the identity.

The geometry and analysis of Riemannian exponential maps of right-invariant
metrics on diffeomorphism groups have been of interest ever since, particularly as they
are related to many equations from continuum mechanics.

Misio lek and Preston [3] showed that many right-invariant metrics of Sobolev type
admit “well behaved” exponential maps that are, themselves, diffeomorphisms in a
neighbourhood of the identity element of the group on which they are defined. They
are also nonlinear Fredholm maps of index zero in the sense of Smale, i.e., smooth
maps f with Frechét derivative df(p) being Fredholm operators at each p, where by
Fredholm operators we mean bounded linear operators between Banach spaces with
closed range and finite-dimensional kernel and co-kernel.

The particular importance of these metrics is that when equipped with a particular
right-invariant metric the diffeomorphism group and its algebra are reconnected, and a
neighbourhood of the identity may be parameterised by infinitesimal transformations
via an exponential map whose topological and analytic properties are similar to those
of a finite-dimensional exponential map.

In this paper we explore the geometry of right-invariant metrics on Lie and pseudo-
Lie groups, particularly the diffeomorphism groups. We begin with an accessible
introduction to the algebra and right-invariant geometry of a finite-dimensional Lie
group, and highlight the difficulties of working on diffeomorphism groups. We describe
Arnold’s framework for studying geodesics of one-sided metrics on Lie groups and
derive the basic results, along with a new form of the geodesic equations.

Following this introductory material, we derive an explicit formula for the deriva-
tive of the exponential map defined by a right-invariant metric on a Lie group G
(Theorem 3) in the spirit of Poincaré. The formula we obtain reduces to the known
formula for the group exponential map when ⟨·, ·⟩ is bi-invariant (assuming G allows
for one), but our derivation is fundamentally different from the original and operator
theoretic in nature.

One benefit of our formulation is that we can give a dynamical characterisation
of the conjugate locus of a right-invariant metric, which provides a new geometric
description of conjugate points (Theorem ??). In addition, we use the formula to show
how in/stability of the geodesic system measured through linearisation of the geodesic
equation (Eulerian stability) is related to in/stability measured through linearisation
of the corresponding flow. When G is compact and the metric is bi-invariant, for exam-
ple in a symmetric space, these two notions of stability coincide; our two examples
(Theorems ?? and ??) illustrate the topological and algebraic influence on the dis-
connect between these two in/stability measures when the symmetry is broken by a
one-sided invariant metric. The conclusion is that if one has control over the algebra
and topology then it is enough to study the first order stability problem (Eulerian sta-
bility) to understand the second order stability problem (Lagrangian stability) that
describes the geometry of G.

Moving to reformulate our finite-dimensional results in the context of right-
invariant Sobolev metrics on the infinite-dimensional diffeomorphism groups we use
the theory of [3], and show that our finite-dimensional results persist whenever the
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exponential maps have the Fredholm property (Theorems ?? to ??). These results
become immediately relevant to the stability of the Euler equations of hydrodynamics
and show that L2 Eulerian and Lagrangian stabilities, as well as instabilities, coincide
for large times; thus the L2 metric on the volume-preserving diffeomorphism group
mimics the behaviour of a bi-invariant metric on a compact Lie group.

Our conjugate point and stability results seem directly relevant to Problem 11 of
[4]. However, there is another problem that our work has the potential to contribute
to, namely the desire for a BCH formula on diffeomorphism groups, and we dedi-
cate the last section to exploring this further. In a normal coordinate neighbourhood
of the identity in a finite-dimensional Lie group G with Lie algebra g the Baker-
Campbell-Hausdorff (BCH) formula expresses group multiplication as a power series
in the Lie algebra whose terms are given by iterated Lie brackets. While some infinite-
dimensional Lie groups readily admit a BCH formula (known as BCH-Lie groups or
exponential-Lie groups), there is an important class of Lie groups that are not BCH:
the diffeomorphism groups. This is because there exist diffeomorphisms arbitrarily
close to the identity diffeomorphism that do not embed in any flow, thus the intrin-
sic group exponential map is not even locally surjective – see [5],[6], [7], [8], [9] for
the earliest and original examples, and [10], [11], or [12] for extensions and collected
results. The situation is actually worse: there exist arc-wise connected free subgroups
on infinitely many generators which, except for the identity, do not lie in the image of
the exponential map [13].

2 Background in Algebra and Geometry

Let G be a finite-dimensional Lie group with group operation ⋆ and identity element
e. The classical operations of right and left translation are:

R : G×G→ G L : G×G→ G

R(g, h) := Rg (h) = h ⋆ g L(g, h) := Lg (h) = g ⋆ h.

For a fixed g ∈ G both Rg and Lg are smooth diffeomorphisms of G. Vector fields U
and V on G are said to be (respectively) left- or right-invariant if the derivative d·g
satisfies:

dLg · U(h) = U (Lg (h)) or dRg · V (h) = V (Rg (h)) .

In what follows we will denote a vector field by a capital letter, for example V , and
the value of the vector field at e by the corresponding lower case letter: V (e) = v.

We can deduce several facts about left/right-invariant vector fields: (1) the set
of left/right-invariant vector fields on G is isomorphic to the tangent space at the
identity TeG =: g via the evaluation at e map; (2) left/right-invariant vector fields are
smooth (this can be seen by writing the map g 7→ v (f ◦Rg) as d

dt

∣∣
t=0

f ◦ R(g, η(t))

for any curve η(t) with η(0) = e and d
dt

∣∣
t=0

η(t) = v, and any f ∈ C∞ (G)); (3) the
Lie bracket of two left/right-invariant vector fields is itself left/right-invariant, which
follows from general principles of diffeomorphisms and the Lie bracket; and (4) the
vector space g forms a Lie algebra under the Lie bracket of left/right-invariant vector
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fields. Specifically, the bracket operation [·, ·]g in g is determined by:

[V,W ] = [dRg · v, dRg · w] = dRg · [v, w]g (1)

[V,W ] = [dLg · v, dLg · w] = dLg · [v, w]g (2)

depending on whether one is considering left-, or right-, invariant vector fields,
respectively.

An operator that will feature significantly in later sections is the group adjoint
operator Ad : G → Aut (g), which gives a representation of G through an action on
its Lie algebra g by:

Adg : g → g, Adgv = dLgdRg−1 · v. (3)

The left and right translation maps commute, and so their differentials commute
as well. Hence the ordering of the differentials in (3) will not always be respected,
but rather chosen according to what is convenient in the context (see the proof of
Proposition 1 for example).

The differential of Ad is the map ad : g → Aut (g) and gives a complementary
representation of g on itself:

adv : g → g, advw =
d

dt

∣∣∣∣
t=0

Adη(t)w, (4)

where η(t) is any smooth curve in G passing through the identity e at t = 0 with
velocity v.

To relate these operators to the Lie bracket in g we need to understand the flows
of left/right-invariant vectors. It is convenient to introduce the group exponential map
expG

e for this. Following Warner [14], the map λ · d
dt 7→ λ · v ∈ g (λ ∈ R) is a C∞

Lie algebra homomorphism from R into g. Since R is simply connected there exists a
unique C∞ homomorphism from R into G which we call expv : R → G and has the
property (see Theorem 3.27 [14]):

d expv

(
λ · d

dt

)
= λ · v.

In other words, the map t 7→ expv(t) is the unique one-parameter subgroup of G whose
tangent vector at the identity e is v. Define the group exponential map:

expG
e : R× g → G, expG

e (tv) = expv(t). (5)

The group homomorphism property implies two things about expG
e (tv):

expG
e (sv) ⋆ expG

e (tv) = expG
e ((s+ t)v), expG

e (tv)−1 = expG
e (−tv),

i.e., expG
e (tv) is a one-parameter subgroup of G.
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If V is a right-invariant vector field onG then the fundamental theorem on existence
and uniqueness of ODEs says that there exists a one-parameter subgroup of diffeo-
morphisms φV

t acting on G and satisfying ∂tφ
V
t (g) = V

(
φV
t (g)

)
. Since expG

e (tv) is the
unique one-parameter subgroup (5) of G passing through the identity in the direction
v = V (e) the flow φV

t (e) through the identity is given by expG
e (tv). Right-translating

expG
e (tv) by an element g ∈ G we see that Rg expG

e (tv) satisfies the ODE:

∂tRg expG
e (tv) = dRgV (expG

e (tv)) = V (Rg expG
e (tv)),

where we have used the right-invariance of V . So Rg expv(t) satisfies the same ODE as
φV
t (g) and has the same initial conditions and therefore the two curves must coincide

by uniqueness of solutions to ODEs. Consequently, the flow φV
t (g) is given by:

φV
t (g) = Rg

(
expG

e (tv)
)

= expG
e (tv) ⋆ g = LexpG

e (tv) (g) . (6)

An identical argument shows that the flow ψU
t of a left-invariant vector field U is given

by:
ψU
t (g) = RexpG

e (tv) (g) . (7)

Remark 1. Normally the group exponential map is defined by:

expG
e : g → G, expG

e (v) = expv(1)

and it is then proved, using only the homomorphism property of expv, that expv(t) is
the unique integral curve of the left/right-invariant vector field V whose value at the
identity is v. From this it can be deduced that expG

e (tv) = expv(t) (see Theorem 3.31
of [14]). In contrast, we have chosen to take expG

e (tv) = expv(t) as the definition and
work backwards.
Proposition 1. Let G be a Lie group with Lie algebra g.
1. If X and Y are two left-invariant vector fields on G then the algebra adjoint

operator (4) is given by the Lie bracket in g:

adxy = dLg−1 · [X,Y ] = [x, y]g

2. If V and W are two right-invariant vector fields on G then the algebra adjoint
operator (??) is given by minus the Lie bracket in g:

advw = −dRg−1 · [V,W ] = −[v, w]g

Proof. For Part (1) we are going to show that

adXe
Ye =

d

dt

∣∣∣∣
t=0

dψX
−tY

(
ψX
t (e)

)
=: [X,Y ](e) = dLg−1 · [X,Y ](g) = [Xe, Ye]g,

where ψX
t is the flow of the left-invariant vector field X given in (7).
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Using the definition of the algebra adjoint (4), the definition of the group adjoint
(3), left-invariance, the flow (7), and the definition of the Lie bracket of vector fields
we compute:

adXe
Ye =

d

dt

∣∣∣∣
t=0

AdexpG
e (tXe)Ye =

d

dt

∣∣∣∣
t=0

dRexpG
e (−tXe)dLexpG

e (tXe)Ye

=
d

dt

∣∣∣∣
t=0

dRexpG
e (−tXe)Y

(
LexpG

e (tXe
(e))

)
=

d

dt

∣∣∣∣
t=0

dψX
−t · Y

(
RexpG

e (tXe
(e))

)
=

d

dt

∣∣∣∣
t=0

dψX
−t · Y

(
ψX
t (e))

)
=: [X,Y ](e)

= dLg−1 · [X,Y ](g) = [Xe, Ye]g.

The statement is completed by using left-invariance of the vector fields and their Lie
bracket.

For Part (2) we will show that:

advw =
d

dt

∣∣∣∣
t=0

dψV
t W

(
ψV
−t(e)

)
=: [−V,W ](e) = −dRg−1 · [V,W ](g) = −[v, w]g.

Note that the time parameter has the opposite sign. If φV
t is the flow of the right-

invariant vector field V then φV
−t is the flow of the right-invariant vector field −V .

The difference between the algebra adjoint operator for left-invariant vector fields and
the algebra adjoint operator for right-invariant vector fields is due to the way in which
left/right-invariance absorbs the respective factors appearing in the group adjoint
operator Ad. So using the definition of the algebra adjoint (4), the definition of the
group adjoint (3), right-invariance, the flow (6) and the definition of the Lie bracket:

advw =
d

dt

∣∣∣∣
t=0

AdexpG
e (tv)w =

d

dt

∣∣∣∣
t=0

dLexpG
e (tv)dRexpG

e (−tv)w

=
d

dt

∣∣∣∣
t=0

dLexpG
e (tv)W

(
RexpG

e (−tv)(e))
)

=
d

dt

∣∣∣∣
t=0

dφV
t ·W

(
LexpG

e (−tv)(e))
)

=
d

dt

∣∣∣∣
t=0

dφV
t ·W

(
φV
−t(e))

)
=: [−V,W ](e)

= −dRg−1 · [V,W ](g) = −[v, w]g.

Analogously to Part (1), the statement is completed by using right-invariance of the
vector fields and their Lie bracket.

Remark 2. The relationship between the contents of Proposition 1 and the differential
geometry of a left/right-invariant metric on a Lie group has been opaque for quite some
time in the literature. Proposition 1 is purely algebraic and has absolutely nothing to
do with a choice of Riemannian metric on G; rather, it is analogous to a choice of
orientation on the group. We will refer to the “algebraic orientation” in (1) as the
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left-handed algebra and the “algebraic orientation” in (2) as the right-handed algebra.
When choosing a left/right-invariant metric on a Lie group it makes sense to pair
the left/right-invariant geometry with the corresponding left/right-handed algebra, but
only because it simplifies the relationship between the geometry and the algebra: there
is no mathematical implication in either direction.

From now on we will restrict to right-invariant objects, but the reader can make
the necessary changes for left-invariance using the above algebra.

Turning to the geometric viewpoint, we endow G with a right-invariant Riemannian
metric ⟨·, ·⟩. There is no obstruction in doing so since we can give g any inner product
and smoothly extend it to the rest of the group via:

⟨Vg,Wg⟩g = ⟨dRg−1 · vg, dRg−1 ·Wg⟩e ∀Vg, Wg ∈ TgG.

We have the usual geometric objects associated with ⟨·, ·⟩; namely, a smooth Levi-
Civita connection ∇ and smooth Riemann curvature tensor R. Right translation Rg :
G→ G is a global isometry of the metric ⟨·, ·⟩, so both ∇ and R are invariant under the
pullback action of Rg, which follows from general properties of Levi-Civita connections
(see Lee [15], for example): R∗

g∇ = ∇ and R∗
gR = R, i.e., for any g ∈ G and any vector

fields U , V and W on G:

dRg · ∇VW = ∇dRg·V dRg ·W (8)

dRg ·R(U, V )W = R(dRg · U, dRg · V )dRg ·W. (9)

So just like the metric ⟨·, ·⟩, both ∇ and R are themselves right-invariant.
Linking this back to the algebra we define the group coadjoint operator Ad∗

g : g → g
as the metric adjoint of the group adjoint operator:

⟨Ad∗
gv, w⟩ = ⟨v,Adgw⟩, ∀ v, w ∈ g; (10)

the algebra coadjoint operator ad∗
u : g → g is the metric adjoint of the algebra adjoint

operator:
⟨ad∗

uv, w⟩ = ⟨v, aduw⟩, ∀ v, w ∈ g. (11)

Proposition 2. Let G be a Lie group with a right-handed Lie algebra g, and right-
invariant metric ⟨·, ·⟩. Suppose V and W are any two right-invariant vector fields on
G. Then:

∇VW = −1

2
dRg · (advw − ad∗

vw − ad∗
wv)

Proof. Let Z be any other right-invariant vector field on G. Since the metric ⟨·, ·⟩
is right-invariant the functions ⟨V,W ⟩, ⟨V,Z⟩, ⟨W,Z⟩ are all constant, and Koszul’s
formula for the connection gives:

2⟨∇VW,Z⟩ = ⟨[V,W ], z⟩ − ⟨[W,Z], V ⟩ − ⟨[V,Z],W ⟩.
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Since V , W , and Z are right-invariant their Lie brackets are right-invariant and since
the connection is right-invariant, Koszul’s formula collapses to the Lie algebra as:

2⟨∇vw, z⟩ = ⟨[v, w]g, z⟩ − ⟨[w, z]g, v⟩ − ⟨[v, z]g, w⟩.

Using Part (2) of Proposition 1 to write the Lie bracket in the algebra in terms of the
adjoint operator advw = −[v, w]g and taking metric adjoints we conclude:

2⟨∇vw, z⟩ = −⟨advw, z⟩ + ⟨z, ad∗
wv⟩ + ⟨z, ad∗

vw⟩,

and since this holds for any vector z ∈ g we obtain:

∇vw = −1

2
(advw − ad∗

wv − ad∗
vw) .

Multiplying both sides by dRg and using (8) once more gives the result.

Remark 3. Proposition 2 does not hold for arbitrary smooth vector fields on G. If
{e1, . . . , en} is an orthonormal basis of g then we can right-translate these vectors
around the group G to obtain a global right-invariant orthonormal frame {E1, . . . , En}.
Writing the vector fields V and W in terms of the global frame (Ei):

V = v1(g)E1 + · · · + vn(g)En, W = w1(g)E1 + . . . wn(g)En.

we see that the covariant derivative (∇VW ) (e) depends on the values of the functions
wi(g) in a neighbourhood of the identity due to the Leibniz rule. In comparison, c.f.
Proposition 3.1 and Corollary 3.2 of [16] and Proposition 1 of [17], where it is shown
that any connection is uniquely determined by its values on right-invariant vector
fields, albeit through a different relationship.

The tangent vector of a curve η : I → G defined on an interval I ⊂ R containing
zero such that η(0) = e can be right-translated back to the identity e to give a curve
v(t) ∈ g and we may write ∂tη(t) = dRη(t) · v(t). If U : I → TG is any vector field
along η(t), i.e., U(t) ∈ Tη(t)G, then it too can be right-translated back to the identity
to give a curve u(t) ∈ g:

U(t) = dRη(t) · u(t).

The t-derivative (covariant derivative) of U(t) along η(t) is given as:

∂tU(t) = dRη(t) · ∂tu(t) + ∇∂tηdRη(t) · u(t)

= dRη(t) ·
(
∂tu(t) + ∇v(t)u(t)

)
(12)

where right-invariance of the connection (8) has been used and the covariant derivative
in the Lie algebra has the interpretation given by Proposition 2.

Propositions 1 and 2 also give us a way of computing the Lie bracket of vector
fields along curves in g. If U : I → G and V : I → G are two vector fields along
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a curve η : I → G with dRη(t) · U(t) = u(t) ∈ g and dRη(t) · V (t) = v(t) ∈ g then
subtracting the formulas given in Proposition 2 for ∇v(t)u(t) and ∇u(t)v(t) gives:

∇u(t)v(t) −∇v(t)u(t) = [u(t), v(t)]g = −adu(t)v(t), (13)

which is consistent with the symmetry of the Levi-Civita connection ∇.

3 The Geodesic Equations of a Right-Invariant
Metric

Arnold developed a general framework in which to study geodesic equations of both
left- and right-invariant metrics on arbitrary Lie groups as Euler equations on the
associated Lie algebras. In everything that follows we will assume a right-handed
algebra.

Theorem 3. If G is a Lie group with a right-invariant metric ⟨·, ·⟩, then a curve η(t)
is a geodesic if and only if the curve v(t) in g, defined by the flow equation

η̇(t) = dRη(t)v(t) (14)

satisfies the Euler equations

v̇(t) = −ad∗
v(t)v(t). (15)

Proof. To derive the Euler equations on g we write the energy of a one-parameter
family of curves (−ϵ, ϵ) ∋ s 7→ η(s, t) with fixed endpoints t = a, b in the form:

E(s) =
1

2

∫ b

a

∥η(s, t)∥2 dt =
1

2

∫ b

a

⟨dRη(s,t)−1∂tη(s, t), dRη(s,t)−1∂tη(s, t)⟩ dt

using right-invariance of the metric. To calculate ∂s|s=0

(
dRη(s,t)−1∂tη(s, t)

)
use the

right-translation of the variation vector field induced by η(s, t) to define:

z(t) = ∂s|s=0v(s, t) = ∂s|s=0

(
dRη(s,t)−1∂tη(s, t)

)
y(t) = dRη(t)−1∂sη(s, t)|s=0.

Then using (12):

∂t∂s|s=0η(s, t) = ∂tdRη(t)y(t) = dRη(t)

(
∂ty(t) + ∇v(t)y(t)

)
.

On the other hand, using (12) again

∂s|s=0∂tη(s, t) = ∂s|s=0dRη(s,t) · v(s, t) = dRη(t) · z(t) + dRη(t) ·
(
∇y(t)v(t)

)
.
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Since the left-hand sides of each of the above equations are equal, putting the two
together and rearranging using (13) we have:

∂s|s=0

(
dRη(s,t)−1∂tη(s, t)

)
= z(t) = ∂ty(t) − adv(t)y(t).

Differentiating the energy E with respect to s, then integrating by parts and using
the fact that y(a) = y(b) = 0 we obtain:

∂s|s=0E(s) =

∫ b

a

⟨v, ∂ty − advy⟩ dt = −
∫ b

a

⟨∂tv + ad∗
vv, y⟩ dt,

which is zero for any variation field y if and only if (15) holds.

Corollary 1. If η(t) is a curve in G with velocity field v(t) ∈ g defined through (14)
and satisfying (15) with initial conditions η(0) = e and v(0) = vo then we have the
conservation law

v(t) = Ad∗
η−1(t)vo. (16)

Proof. Since d
dtAdη(t)w = advAdη(t)w we have, by general properties of adjoints,

d

dt
Ad∗

η(t)w = Ad∗
η(t)ad∗

vw.

Multiplying both sides of the Euler equations (15) by Ad∗
η(t), reversing the product

rule, and integrating in time gives the result.

Let us introduce one more operator

Kv : g → g

Kv(w) = ad∗
wv

for later use.

Corollary 2. If η(t) is a curve in G with velocity field v(t) ∈ g defined through (14)
and satisfying (15) with initial conditions η(0) = e and v(0) = vo then:

Kv(t) = Ad∗
η−1(t)KvoAdη−1(t). (17)

Proof. For any u, w ∈ g we compute using the relationship between the algebra adjoint
and the Lie bracket, and the latter’s behaviour under pushforward by diffeomorphisms:

⟨Ad∗
η(t)Kv(t)u,w⟩ = ⟨v(t), aduAdη(t)w⟩ = ⟨v(t),Adη(t)adAdη−1(t)u

w⟩

= ⟨Ad∗
η(t)v(t), adAdη−1(t)u

w⟩

= ⟨vo, adAdη−1(t)u
w⟩

= ⟨KvoAdη−1(t)u,w⟩,

where we have used Corollary 1 in the penultimate equality.
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4 The Exponential Map

We have not discussed the existence and uniqueness of solutions to the geodesic
equations, nor their smooth dependence on initial conditions, but the standard anal-
ysis of geodesic systems on smooth finite-dimensional Riemannian manifolds applies
(see [15] or [18], for example) and it can be shown that geodesics of a right-invariant
metric on G exist, are unique, and do depend smoothly on initial conditions. Given
this, we now introduce the exponential of the right-invariant metric.

In parallel with the group exponential map expG
e , the (Riemannian) exponential

map of the right-invariant metric ⟨·, ·⟩, expe : g → G maps a vector v ∈ g to the value
of the (Riemannian) geodesic η(t) with initial conditions η(0) = e, η′(0) = v at time
t = 1: expe(v) = η(1).

The group exponential map expG
e is never identically equal to the Riemannian

exponential map expe unless ⟨·, ·⟩ is both left- and right-invariant, although it is a
Theorem of Kaiser [19] that there always exists a one-parameter subgroup of G that
is a solution to the right-invariant geodesic system (15) so that the images of the two
exponential maps do have a non-empty intersection. A standard rescaling procedure
show that the exponential map is the data-to-solution map of the geodesic equations
(15) assigning to each (e, v) ∈ {e} × g the unique geodesic η(t) with those initial
conditions: expe(tv) = η(t).

Since solutions of the geodesic system depend smoothly on the initial conditions,
the exponential map is smooth, and since the derivative at t = 0 is equal to the
identity operator, expe is a diffeomorphism between a neighbourhood of e ∈ G and a
neighbourhood of the origin in g, by the inverse function Theorem.

As a map from the Lie algebra g – the model space – to the Lie group G – the
manifold – the exponential map expe contains the geometry of G with ⟨·, ·⟩ and it is
therefore of interest to study its properties and singularities. Alternatively, one could
ask in what way the singularities of expe could restrict the algebraic, topological, and
differentiable structure of G. See [20], [21], [22], or [23] for early examples of the latter
line of questioning; we will proceed in the direction of the former.

Consider a geodesic η(t) = expe(tvo) starting from the identity e in the direction
vo ∈ g. Perturb the initial condition vo by a vector zo, and consider the one-parameter
family of geodesics η(s, t) = expe(t (vo + szo); the Jacobi field J(t) along η(t) satisfying
J(0) = 0 and J̇(0) = zo is the variation field of η(s, t):

J(t) = ∂s|s=0η(s, t) = D expe(tvo)tzo.

Proposition 4. Suppose G is any Lie group with a right-invariant metric ⟨·, ·⟩. Let
η(t) be a geodesic with η(0) = e and η̇(0) = vo. Then every Jacobi field J(t) =
dRη(t)y(t) along η(t) with initial conditions J(0) = 0 and J̇(0) = zo satisfies the
following system of equations on g:

∂ty − advy = z (18)

∂tz + ad∗
vz +Kvz = 0, (19)

where η̇(t) = dRη(t)v(t) as in (14).
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Proof. Equation (18) is the linearisation of the flow equation (14) and was derived
in the proof of Theorem 3. Indeed, if η(s, t) is a variation of a geodesic η(t) that
continues to be a geodesic for each s, with v(s, t) the corresponding solution to the
Euler equations (15), then after setting:

z(t) = ∂s|s=0v(s, t) = ∂s|s=0

(
dRη(s,t)−1∂tη(s, t)

)
y(t) = dRη(t)−1∂sη(s, t)|s=0

we see that:
z(t) = ∂s|s=0

(
dRη(s,t)−1∂tη(s, t)

)
= ∂ty − advy.

Linearising the Euler equations (15) gives (19).

We denote the solution operator to the linearised Euler equation (19) by:

S(t) : g → g, S(t)zo = z(t). (20)

Denote the solution operator to the Jacobi system (19) and (18) by:

Φ(t)zo := J(t) (21)

which is a bounded linear operator from g = TeG to Tη(t)G.

Proposition 5. Let G, η(t), and v(t) be as in Proposition 4. Then the solution oper-
ator (20) to the linearised Euler equation (19) is related to the solution operator (21)
to the Jacobi system (18) and (19) by:

Ad∗
η−1(t) = S(t) +Kv(t) ◦ dRη−1(t) ◦ Φ(t) (22)

Proof. If η(s, t) is a smooth variation of η(t) with corresponding variation of the veloc-
ity v(s, t) then z(t) = ∂s|s=0v(s, t), z0 = ∂s|s=0v(s, 0) and y(t) = dRη−1(t)∂s|s=0η(s, t).
By Corollary 1:

v(s, t) = Ad∗
η−1(s,t)vo(s)

for each s and differentiating both sides with respect to s and setting s = 0 we obtain:

z(t) = −ad∗
y(t)Ad∗

η−1(t)vo + Ad∗
η−1(t)zo.

Using Corollary 1 again and rewriting the expression in terms of the operator Kv(t)

and the solution operators (20) and (21) we find:

Ad∗
η−1(t)zo = S(t)zo +Kv(t) ◦ dRη−1(t) ◦ Φ(t)zo.

Proposition 5 together with Corollary 1 give another form of the Euler-Arnold
equations which decribes the geodesic evolution as the time average of the linearised
geodesic evolution.
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Theorem 6. The Euler-Arnold equations of Theorem 3 can be re-written as a feedback
system

∂tṽ(t) = −ad∗
v(t)ṽ(t) −Kv(t)ṽ(t)

v(t) =
1

t

∫ t

0

ṽ(s) ds

v(0) = ṽ(0) = vo

Proof. If v(t) is a solution to the Euler-Arnold equations with initial condition vo then
setting zo = vo and applying Corollary 1 to the left-hand side of equation (22) in
Proposition 5, while making use of the fact that Φ(t)vo = tdRη(t) · v(t) for the right
hand side of equation (22), we obtain:

v(t) = S(t)vo + t ·Kv(t)v(t).

The curve v(t) does not solve the linearised Euler equation (19) unless v(t) = vo is
stationary (in which case the above equation reads vo = vo). So if v(t) is non-stationary
this equation says v(t) decomposes as the solution to the linearised Euler equation
(19) with the same initial condition as v(t) plus an extra term Kvv. Making use of
the Euler-Arnold equations once more we can substitute −∂tv(t) for Kvv and obtain
a new form of the geodesic equations:

t · ∂tv(t) = −v(t) + S(t)vo = −v(t) + ṽ(t).

which can be written using the product rule as ∂t (t · v(t)) = ṽ(t).
Integrating both sides in t, we see that the geodesic equation of a right-invariant

metric on a Lie group can be written as a feedback system:

∂tṽ(t) = −ad∗
v(t)ṽ(t) −Kv(t)ṽ(t)

v(t) =
1

t

∫ t

0

ṽ(s) ds

v(0) = ṽ(0) = vo.

where v(t) is the output - the geodesic dynamics - which, at every moment, is fed back
into the first equation generating the dynamics.

It is probably easiest to interpret these equations in terms of an Euler integration
scheme: using the initial velocities v(0) and ṽ(0) obtain the next ṽ by taking a step in
the direction of the right-hand side of the first equation, and then obtain the next v by
averaging the two ṽ’s. In this way one can see the solution v to the geodesic equations
as a moving average of it’s linearization.
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