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Abstract The Baker-Campbell-Hausdorff (BCH) formula links the Lie group and
Lie algebra by giving a formula for group multiplication of elements close to the
identity in terms of the Lie bracket. This has applications in geometry, algebra,
and partial differential equations, and provides simple proofs of further develop-
ments of Lie theory. To date, there is no BCH formula for the diffeomorphism
groups, although they are infinite dimensional analogues of Lie groups, because
the intrinsic group exponential map is not even locally surjective. In this paper we
provide the relevant background in an expository manner, starting with the finite
dimensional case, and then take a first step towards developing a BCH formula for
the exponential map of a right-invariant metric on a Lie Group G by deriving an
explicit formula for its derivative, in the spirit of Poincaré. We then identify fea-
tures that allow for the finite dimensional results to lift to the infinite dimensional
setting of the Diffeomorphism groups and re-prove our finite dimensional results
on the diffeomorphism groups. Along the way we discuss additional applications
of our formulas and conclude with a program to complete the BCH formula.

Introduction

In a normal coordinate neighbourhood of the identity in a (finite dimensional)
Lie group G with Lie algebra g the Baker-Campbell-Hausdorff (BCH) formula
expresses group multiplication in terms of Lie algebraic data in the form of a
power series whose terms are given by iterated Lie brackets. This provides an
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extremely useful general purpose tool with wide-reaching applications in physics,
group theory, the analysis of linear PDEs, the structure theory of Lie groups and
algebras, and even numerical analysis.

Achilles and Bonfiglioli [1] construct a fascinating timeline (summarised here)
documenting the earliest contributions to the formula, which go back to Friedrich
Heinrich Schur, Jules Henri Poincaré, and Ernesto Pascal. Around 1890, Schur
developed an alternative approach to the foundations of Lie’s theory of transfor-
mation groups; he explicitly parameterised a neighbourhood of the identity in G
by a neighbourhood of the origin in g in such a way that group multiplication
could be expressed as a convergent power series depending only on the algebra’s
structure constants and the Bernoulli numbers.

Pascal (1902) would later show how Schur’s explicit parameterisation could be
obtained from the BCH formula itself. The methods employed by Pascal, beginning
in 1901, involve developing and deconstructing power series expansions for the
group operation, and then reconstructing the result using a certain symmetrisation
of polynomials from which an iterative formula in terms of Lie brackets and the
Bernoulli numbers emerges. Campbell had earlier (1897) introduced a series similar
to the one derived by Pascal, and used it to recursively construct a sequence
consisting of Lie algebra polynomials approximating the group multiplication of
two elements.

Poincaré (1900) effectively framed the problem as an ODE by determining an
explicit formula for the derivative of the exponential map as a power series of an
analytic function whose inverse is also a power series with the Bernoulli numbers
as coefficients. He was able to obtain an explicit solution to the ODE via residue
calculus, which expressed group multiplication as the exponential of an infinite
series whose terms consist of polynomials in an indeterminate Lie algebra. In the
process, Poincaré invented nothing less than the universal enveloping algebra of
a Lie algebra, but what is striking is that the symmetrisation methods employed
by Poincaré and Pascal are remarkably similar, despite the fact that Pascal was
probably unaware of Poincaré’s earlier work and development of the universal
algebra.

Unfortunately, problems of universality and convergence lurked within these
contributions, as pointed out by numerous critics including Engel, Hausdorff, and
Bourbaki. These two issues were addressed by Baker (1905) and Hausdorff (1906),
although only Hausdorff was credited by Bourbaki as a reliable source. However,
in almost all of these early works a formula is actually difficult to find, and what
was proved was that group multiplication could be expressed as the exponential of
a power series involving Lie algebraic data; precisely, in the associative algebra of
the formal power series in two non-commuting indeterminates x and y, the series
related to log exey is a series of Lie polynomials.

Forty years after Baker and Hausdorff, Dynkin provided the first explicit closed-
form expression for log exey in terms of iterated Lie brackets (note that the only
other contributor to obtain a formula in terms of Lie brackets was Pascal).

Moving to the infinite dimensional (pseudo-) Lie groups, which is our primary
focus here, things are more complicated. Infinite dimensional Lie groups that do
admit a BCH formula are known as BCH-Lie groups or exponential-Lie groups. In
the survey by Neeb [36] one can find the fundamental results on these Lie groups;
in particular, every Banach Lie group is a BCH-Lie group and being a BCH-Lie
group is more-or-less a topological property.
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There is, however, a class of Lie groups that are not BCH: the diffeomorphism
groups. There exist diffeomorphisms arbitrarily close to the identity diffeomor-
phism that do not embed in any flow, thus the intrinsic group exponential map is
not even locally surjective – see [24],[38], [10], [30], [40] for the earliest and original
examples, and [50], [25], or [37] for extensions and collected results. The situation
is actually worse: there exist arc-wise connected free subgroups on infinitely many
generators which, except for the identity, do not lie in the image of the exponential
map [11]. In view of the simplicity of the identity component of the diffeomorphism
group (see [47] for the original theorem or [3] for a proof) every diffeomorphism can
be expressed as the product of a finite number of diffeomorphisms that do embed
in a flow, but the surjectivity failure still forbids writing down any mathematical
expression of the form:

eZ(t) = etX1 ◦ · · · ◦ etXn

which is also the starting point of Campbell’s, Poincaré’s, Baker’s and Hausdorff’s
derivation of the BCH statement. In summary, there seems to a fundamental
algebraic and topological disconnect between the diffeomorphism group and its
Lie algebra of vector fields.

On the other hand, Riemannian exponential maps of right-invariant metrics
on diffeomorphism groups have been of interest ever since the work of Arnold [2],
where he showed that the L2 metric on vector fields becomes right-invariant when
restricted to the group of volume-preserving diffeomorphisms Dµ and its tangent
space of divergence-free vector fields TeDµ. Moreover, geodesics of this metric
correspond to solutions of the Euler equations of hydrodynamics on the underly-
ing manifold M on which the diffeomorphism group acts. Ebin and Marsden [7]
exploited Arnold’s observation to great affect and showed that the L2 metric is
indeed a smooth Riemannian metric on Dµ that admits a smooth right-invariant
Levi-Civita connection and, consequently, a smooth right-invariant exponential
map that is a diffeomorphism in a neighbourhood of the identity.

Since then, much work has been done on the geometry and analysis of diffeo-
morphism groups with right-invariant metrics and their relationship to equations
from continuum mechanics. Misio lek and Preston [34] have shown that many right-
invariant metrics of Sobolev type admit “well behaved” exponential maps that
are, themselves, diffeomorphisms in a neighbourhood of the identity element of
the group on which they are defined, and are nonlinear Fredholm maps of index
zero in the sense of Smale. Recall that a bounded linear operator between Banach
spaces is said to be Fredholm if it has closed range and its kernel and co-kernel
are finite dimensional; the index is defined as the difference between the dimen-
sion of the kernel and the dimension of the co-kernel. A smooth map f is said
to be a Fredholm map if its Frechet derivative df(p) is a Fredholm operator at
each p. In particular, when equipped with a certain right-invariant metric the dif-
feomorphism group and its algebra are reconnected, and a neighbourhood of the
identity may be parameterised by infinitesimal transformations via an exponen-
tial map whose topological and analytic properties are similar to those of a finite
dimensional exponential map.

This seems a promising goal and line of attack: to produce a BCH-type formula
for the diffeomorphism group by using the exponential map of a right-invariant
Sobolev type metric whose index is sufficiently high so that the Fredholm property
is assured. Obviously, there is a price to pay when using these exponential maps:
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most straight lines in the algebra are not mapped to one-parameter subgroups,
which prevents any direct adaptation of the proof of the classical BCH formula
and greatly complicates the analysis.

In this paper we take a first step towards a BCH formula on the diffeomorphism
group by deriving an explicit formula for the derivative of the exponential map
defined by a right-invariant metric on a Lie group G (Theorem 1), in the spirit of
Poincaré. This is done first for a finite dimensional Lie group G with Lie algebra
g and arbitrary right-invariant metric ⟨·, ·⟩. The formula we obtain reduces to the
known formula for the group exponential map when ⟨·, ·⟩ is bi-invariant (assum-
ing G allows for one). Our derivation is different from the original and operator
theoretic in nature.

As an immediate application, of independent interest, we give a dynamical
characterisation of the conjugate locus of a right-invariant metric (Theorem 4),
which provides a new geometric description of conjugate points. In addition, we
use the formula to show how in/stability of the geodesic system measured through
linearisation of the geodesic equation (Eulerian stability) is related to in/stability
measured through linearisation of the corresponding flow. When G is compact and
the metric is bi-invariant, for example in a symmetric space, these two notions of
stability coincide; our two examples (Theorems 4 and 6) illustrate the topological
and algebraic influence on the disconnect between these two in/stability measures
when the symmetry is broken by a one-sided invariant metric. The conclusion is
that if one has control over the algebra and topology then it is enough to study the
first order stability problem (Eulerian stability) to understand the second order
stability problem (Lagrangian stability) which describes the geometry of G.

Following the finite dimensional analysis we reformulate the results in the con-
text of right-invariant Sobolev metrics on the infinite-dimensional diffeomorphism
groups using the theory of [34], and show that our finite dimensional results persist
whenever the exponential maps have the Fredholm property. These results become
immediately relevant to the stability of the Euler equations of hydrodynamics and
show that L2 Eulerian and Lagrangian stabilities, as well as instabilities, coin-
cide; thus the L2 metric on the volume-preserving diffeomorphism groups mimics
the behaviour of a bi-invariant metric on a compact Lie group. Both the conju-
gate point and stability results seem directly relevant to a problem (problem 11)
described in [20].

The purpose of presenting our finite dimensional results first is so that the
reader can see the derivation and application clearly without having to worry
about function spaces and regularity assumptions from the outset. Identifying
which Fredholm properties allow for the finite dimensional proofs to lift to the
infinite dimensional setting then greatly simplifies the second part.

It is worth explaining the potential interest in a ”right-invariant” BCH formula.
While we know that the intrinsic group exponential map is not locally surjective,
we do not have a good understanding of what the image of the group exponential
map is. The results of Palis [38] show that the set of diffeomorphisms generated
by vector fields form a set of first Baire category; consequently, cataloging vector
fields and the diffeomorphisms they integrate to, although interesting, won’t nec-
essarily identify those diffeomorphisms that do not embed any flow. Given that
the exponential map of a sufficiently regular right-invariant metric on the diffeo-
morphism group is a local a diffeomorphism, an accompanying BCH formula could
assist in characterising those diffeomorphisms that lie in the image of the group
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exponential map and those that do not, while also quantifying the extent to which
the classical BCH formula fails to hold on the diffeomorphism group. For example,
the results of Zajtz [50] show that Anosov diffeomorphisms do not embed in any
flow: on the one hand these diffeomorphisms exhibit exponential stretching and
compressing, while on the other hand they are structurally stable. Understanding
the qualitative stability properties of those diffeomorphisms which do not embed in
any flow could have interesting consequences for autonomous dynamical systems,
as-well as time-dependent systems where Anosov diffeomorphisms could embed. In
view of the above remarks on the simplicity of the diffeomorphism groups, a BCH
formula may also aid in determining the minimum number of embeddable diffeo-
morphisms that need to be composed together in order to reach a diffeomorphism
that does not embed. Additionally, a qualitative and quantitative understanding
of the failure of the classical BCH formula in the diffeomorphism group setting
is important for the Stationary Velocity Fields method in medical imaging and
registration since it is a key tool for the development of efficient gradient-based
optimization methods (see Chapter 5 of Pennec et al. [39]).

We close the article with a discussion on the difficulties in completing the BCH
formula from the results of this work, and outline a program of future development.
The central problem involves dealing with spectral representations of differences
and products of non-commuting operators, thus we require an appropriate func-
tional calculus for systems of non-commuting operators.

The paper is structured as follows: we first provide a very accessible introduc-
tion to the algebra and right-invariant geometry on finite dimensional Lie groups.
This will obviously be of use for the finite dimensional results, but will also high-
light the difficulties of working on diffeomorphism groups, which will be discussed
in the second half of the paper. We will discuss Arnold’s framework for studying
geodesics of one-sided metrics on Lie groups and derive the basic results, along with
a new form of the geodesic equations (Theorem 2). This will set us up for analysing
Jacobi fields and the derivative of the right-invariant exponential map. Theorem 3
contains our main results on the derivative of the right-invariant exponential map,
while Theorems 4, 5, and 6 contain applications to conjugate points and geodesic
stability. We then proceed to discuss diffeomorphism groups. A self-contained pre-
sentation of the analysis and algebra of diffeomorphism groups is impossible here
and so we have done our best to summarise the aspects relevant for our purposes
while referring the reader to several comprehensive sources. The goal is to identify
which features of the finite dimensional geometry can be reformulated in the in-
finite dimensional setting with comparable consequences. Theorem 9 contains the
diffeomorphism analogue of the derivative of the right-invariant exponential map
while Theorems 10 and 11 contain applications to conjugate points and geodesic
stability. Finally, potential BCH formulas and their difficulties are discussed.

Algebra and Geometry

Let G be a finite dimensional Lie group with group operation ⋆ and identity
element e. The classical operations of right and left translation are

R : G×G→ G L : G×G→ G

R(g, h) := Rg (h) = h ⋆ g L(g, h) := Lg (h) = g ⋆ h
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and for a fixed g ∈ G both Rg and Lg are smooth diffeomorphisms of G. A vector
field V on G is said to be right-invariant if the derivative dRg satisfies

dRg · V (h) = V (Rg (h)) .

Analogously, a vector field U on G is said to be left-invariant if

dLg · U(h) = U (Lg (h)) .

In what follows we will denote a vector field by a capital letter, for example V ,
and it’s value at e by the corresponding lower case letter, for example V (e) = v.

From here we can deduce several facts about right/left-invariant vector fields:
(1) the set of right/left-invariant vector fields on G is isomorphic to the tangent
space at the identity TeG =: g via the evaluation at e map; (2) right/left-invariant
vector fields are smooth which can be seen by writing the map g 7→ v (f ◦Rg)
as d

dt |t=0f ◦ R(g, η(t)) for any curve η(t) with η(0) = e and d
dt |t=0η(t) = v, and

any f ∈ C∞ (G); (3) the Lie bracket of two right/left-invariant vector fields is
itself right/left-invariant which follows from general principles of diffeomorphisms
and the Lie bracket; and (4) the vector space g forms a Lie algebra under the
Lie bracket of right/left-invariant vector fields. Specifically, the bracket operation
[·, ·]g in g is determined by:

[V,W ] = [dRg · v, dRg · w] = dRg · [v, w]g (1)

[V,W ] = [dLg · v, dLg · w] = dLg · [v, w]g (2)

depending on whether one is considering right-, or left-, invariant vector fields,
respectively.

An operator that will feature significantly in later sections is the group adjoint
operator Ad : G → Aut (g) which gives a representation of G through an action
on its Lie algebra g

Adg : g → g

Adgv = dLgdRg−1 · v. (3)

Because the left and right translation maps commute their differentials commute
as-well and so the ordering of the differentials in (3) will not always be respected
but rather chosen according to what is convenient in the context (see the proof of
Proposition 1, for example).

The differential of Ad is the map ad : g → Aut (g) and gives a complementary
representation of g on itself

adv : g → g

advw =
d

dt
|t=0Adη(t)w, (4)

where η(t) is any smooth curve in G passing through the identity e at t = 0 with
velocity v.

To relate these operators to the Lie bracket in g we need to understand the
flows of right/left-invariant vectors and it is convenient to introduce the group
exponential map expG

e for this. Following Warner [48], the map

λ · d
dt

7→ λ · v ∈ g
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is a C∞ Lie algebra homomorphism from R into g. Since R is simply connected
there exists a unique C∞ homomorphism from R into G which we call

expv : R → G

and has the property

d expv

(
λ · d

dt

)
= λ · v.

- see Theorem 3.27 [48]. In other words, the map t 7→ expv(t) is the unique one-
parameter subgroup of G whose tangent vector at the identity e is v. Define the
group exponential map

expG
e : R× g → G

expG
e (tv) = expv(t). (5)

To be clear, the group homomorphism property implies two things about expG
e (tv):

expG
e (sv) ⋆ expG

e (tv) = expG
e ((s+ t)v), expG

e (tv)−1 = expG
e (−tv)

which is what it means for expG
e (tv) to be a one-parameter subgroup of G.

If V is a right-invariant vector field on G then the fundamental theorem on
existence and uniqueness of ODE’s says there exists a one-parameter subgroup of
diffeomorphisms φV

t acting on G and satisfying

∂tφ
V
t (g) = V

(
φV
t (g)

)
.

Since expG
e (tv) is the unique one parameter subgroup (5) of G passing through

the identity in the direction v = V (e) the flow φV
t (e) through the identity is given

by expG
e (tv). Right translating expG

e (tv) by an element g we see that Rg expG
e (tv)

satisfies the ODE

∂tRg expG
e (tv) = dRgV (expG

e (tv)) = V (Rg expG
e (tv)),

where we have used the right-invariance of V . So Rg expv(t) satisfies the same
ODE as φV

t (g) and has the same initial conditions and therefore the two curves
must coincide by uniqueness of solutions to ODE’s. Consequently, the flow φV

t (g)
is given by

φV
t (g) = Rg

(
expG

e (tv)
)

= expG
e (tv) ⋆ g = LexpG

e (tv) (g) . (6)

An identical argument shows that the flow ψU
t of a left-invariant vector field U is

given by
ψU
t (g) = RexpG

e (tv) (g) . (7)

Remark 1 Normally the group exponential map is defined by

expG
e : g → G

expG
e (v) = expv(1)

and then it is proved, using only the homomorphism property of expv, that expv(t)
is the unique integral curve of the right/left-invariant vector field V whose value
at the identity is v, from which it can be deduced that expG

e (tv) = expv(t) (see
Theorem 3.31 of [48]). Knowing this we have chosen to take expG

e (tv) = expv(t)
as the definition and work backwards.
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Proposition 1 Let G be a Lie group with Lie algebra g.

1. If X and Y are two left-invariant vector fields on G then the algebra adjoint
operator (4) is given by the Lie bracket in g

adxy = dLg−1 · [X,Y ] = [x, y]g

2. If V and W are two right-invariant vector fields on G then the algebra adjoint
operator (48) is given by minus the Lie bracket in g

advw = −dRg−1 · [V,W ] = −[v, w]g

Proof. (1) Proofs are better without surprises: what we’re going to show is

adXe
Ye =

d

dt
|t=0dψ

X
−tY

(
ψX
t (e)

)
=: [X,Y ](e) = dRg−1 · [X,Y ](g) = [Xe, Ye]g

where ψX
t is the flow of the left-invariant vector field X given in (7). Using the

definition of the algebra adjoint (4), the definition of the group adjoint (3), left-
invariance, the flow (7), and the definition of the Lie bracket of vector fields we
compute

adXe
Ye =

d

dt
|t=0AdexpG

e (tXe)Ye =
d

dt
|t=0dRexpG

e (−tXe)dLexpG
e (tXe)Ye

=
d

dt
|t=0dRexpG

e (−tXe)Y
(
LexpG

e (tXe
(e))

)
=

d

dt
|t=0dψ

X
−t · Y

(
RexpG

e (tXe
(e))

)
=

d

dt
|t=0dψ

X
−t · Y

(
ψX
t (e))

)
=: [X,Y ](e)

= dLg−1 · [X,Y ](g) = [Xe, Ye]g.

The statement is completed by using left-invariance of the vector fields and their
Lie bracket.

(2) Details will not be skipped: as above we will show that

advw =
d

dt
|t=0dψ

V
t W

(
ψV
−t(e)

)
=: [−V,W ](e) = −dRg−1 · [V,W ](g) = −[v, w]g

but notice that the time parameter has the opposite sign. If φV
t is the flow of the

right-invariant vector field V then φV
−t is the flow of the right-invariant vector field

−V . The difference between the algebra adjoint operator for left-invariant vector
fields and the algebra adjoint operator for right-invariant vector fields is due to
the way in which left/right-invariance absorbs the respective factors appearing in
the group adjoint operator Ad. Observe: using the definition of the algebra adjoint
(4), the definition of the group adjoint (3), right-invariance, the flow (6) and the
definition of the Lie bracket

advw =
d

dt
|t=0AdexpG

e (tv)w =
d

dt
|t=0dLexpG

e (tv)dRexpG
e (−tv)w

=
d

dt
|t=0dLexpG

e (tv)W
(
RexpG

e (−tv)(e))
)

=
d

dt
|t=0dφ

V
t ·W

(
LexpG

e (−tv)(e))
)

=
d

dt
|t=0dφ

V
t ·W

(
φV
−t(e))

)
=: [−V,W ](e)

= −dRg−1 · [V,W ](g) = −[v, w]g
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As in (1) the statement is completed by using right-invariance of the vector fields
and their Lie bracket.

Remark 2 The relationship between the contents of Proposition 1 and the differ-
ential geometry of a right/left-invariant metric on a Lie group has been opaque
for quite some time in the literature. Proposition 1 is purely algebraic and has
absolutely nothing to do with a choice of Riemannian metric on G; rather, it is
analogous to a choice of orientation on the group. We will refer to the “algebraic
orientation” in (1) as the left-handed algebra and the “algebraic orientation” in
(2) the right-handed algebra. When choosing a right/left-invariant metric on a
Lie group it makes sense to pair the right/left-invariant geometry with the corre-
sponding right/left-handed algebra but only because it simplifies the relationship
between the geometry and the algebra - there is no mathematical implication in
either direction.

But speaking of geometry, we haven’t seen any yet. So let’s give G a right-
invariant Riemannian metric ⟨·, ·⟩ - there is no obstruction in doing so since we
can give g any inner product and smoothly extend it to the rest of the group via

⟨Vg,Wg⟩g = ⟨dRg−1 · vg, dRg−1 ·Wg⟩e ∀Vg, Wg ∈ TgG.

From now on we will restrict to right-invariant objects but the reader can make
the necessary changes for left-invariance using the above algebra.

We have the usual geometric objects associated with ⟨·, ·⟩; namely, a smooth
Levi-Civita connection ∇ and smooth Riemann curvature tensor R. Since right
translation Rg : G→ G is a global isometry of the metric ⟨·, ·⟩ both ∇ and R are
invariant under the pullback action of Rg which follows from general properties of
Levi-Civita connections (see Lee [26], for example): R∗

g∇ = ∇ and R∗
gR = R. In

symbols, for any g ∈ G and any vector fields U , V and W on G

dRg · ∇VW = ∇dRg·V dRg ·W (8)

dRg ·R(U, V )W = R(dRg · U, dRg · V )dRg ·W. (9)

So just like the metric ⟨·, ·⟩, both ∇ and R are themselves right-invariant. With
this in mind let’s relate the geometry back to the algebra.

The group coadjoint operator Ad∗
g : g → g is the metric adjoint of the group

adjoint operator

⟨Ad∗
gv, w⟩ = ⟨v,Adgw⟩, ∀ v, w ∈ g (10)

while the algebra coadjoint operator ad∗
u : g → g is the metric adjoint of the

algebra adjoint operator

⟨ad∗
uv, w⟩ = ⟨v, aduw⟩, ∀ v, w ∈ g. (11)

Proposition 2 Let G be a Lie group with a right-handed Lie algebra g, and right-
invariant metric ⟨·, ·⟩. Suppose V and W are any two right-invariant vector fields
on G. Then

∇VW = −1

2
dRg ·

(
advw − ad∗

vw − ad∗
wv

)
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Proof. Let Z be any other right-invariant vector field on G. Since the metric ⟨·, ·⟩
is right invariant the functions

⟨V,W ⟩, ⟨V,Z⟩, ⟨W,Z⟩

are all constant and Koszul’s formula for the connection gives

2⟨∇VW,Z⟩ = ⟨[V,W ], z⟩ − ⟨[W,Z], V ⟩ − ⟨[V,Z],W ⟩.

Since V , W , and Z are right invariant their Lie brackets are right-invariant and
since the connection is right-invariant (8) Koszul’s formula collapses to the Lie
algebra as

2⟨∇vw, z⟩ = ⟨[v, w]g, z⟩ − ⟨[w, z]g, v⟩ − ⟨[v, z]g, w⟩.

Using Proposition 1 (2) to write the Lie bracket in the algebra in terms of the
adjoint operator advw = −[v, w]g and taking metric adjoints we arrive at

2⟨∇vw, z⟩ = −⟨advw, z⟩ + ⟨z, ad∗
wv⟩ + ⟨z, ad∗

vw⟩.

Since this holds for any vector z ∈ g we obtain

∇vw = −1

2

(
advw − ad∗

wv − ad∗
vw

)
.

Multiplying both sides by dRg and using (8) once more gives the Proposition.

Remark 3 Proposition 2 does not hold for arbitrary smooth vector fields on G.
If {e1, . . . , en} is an orthonormal basis of g then we can right translate these
vectors around the group G to obtain a global right-invariant orthonormal frame
{E1, . . . , En}. Writing the vector fields V and W in terms of the global frame (Ei):

V = v1(g)E1 + · · · + vn(g)En

W = w1(g)E1 + . . . wn(g)En

we see that the covariant derivative (∇VW ) (e) depends on the values of the func-
tions wi(g) in a neighbourhood of the identity due to the Leibniz rule. But compare
this with Marsden, Ratiu, and Raugel (”Symplectic Connections and the Lineari-
sation of Hamiltonian Systems” - Proposition 3.1 and Corollary 3.2) or Bao, La-
fontaine, and Ratiu (”On a Non-Linear Equation Related to the Geometry of the
Diffeomorphism Group” - Proposition 1) where it is shown that any connection is
uniquely determined by its values on right-invariant vector fields, albeit through
a different relationship.

The tangent vector of a curve η : I → G defined on an interval I ⊂ R containing
zero such that η(0) = e can be right-translated back to the identity e to give a
curve v(t) ∈ g and we may write

∂tη(t) = dRη(t) · v(t).

If U : I → TG is any vector field along η(t), i.e. U(t) ∈ Tη(t)G, then it too can be
right-translated back to the identity to give a curve u(t) ∈ g:

U(t) = dRη(t) · u(t).
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The t-derivative (covariant derivative) of U(t) along η(t) is given as

∂tU(t) = dRη(t) · ∂tu(t) + ∇∂tηdRη(t) · u(t)

= dRη(t) ·
(
∂tu(t) + ∇v(t)u(t)

)
(12)

where right-invariance (8) of the connection has been used and the covariant
derivative in the Lie algebra has the interpretation given by Proposition 2.

Proposition 1 and 2 also give us a way of computing the Lie bracket of vector
fields along curves in g. If U : I → G and V : I → G are two vector fields along
a curve η : I → G with dRη(t) · U(t) = u(t) ∈ g and dRη(t) · V (t) = v(t) ∈ g
then subtracting the formula for ∇v(t)u(t) in Proposition 2 from the formula for
∇u(t)v(t) in Proposition 2

∇u(t)v(t) −∇v(t)u(t) = [u(t), v(t)]g = −adu(t)v(t) (13)

which is consistent with the symmetry of the Levi-Civita connection ∇.

The Geodesic Equations of a Right-Invariant Metric

Arnold developed a general framework in which to study geodesic equations of both
left- as well as right-invariant metrics on arbitrary Lie groups as Euler equations
on the associated Lie algebras. In everything that follows we will assume a right-
handed algebra.

Theorem 1 If G is a Lie group with a right-invariant metric ⟨·, ·⟩, then a curve
η(t) is a geodesic if and only if the curve v(t) in g, defined by the flow equation

η̇(t) = dRη(t)v(t) (14)

satisfies the Euler equations

v̇(t) = −ad∗
v(t)v(t). (15)

Proof. To derive the Euler equations on g we will write the energy of a one-
parameter family of curves (−ϵ, ϵ) ∋ s 7→ η(s, t) with fixed endpoints t = a and
t = b in the form

E(s) =
1

2

∫ b

a

∥η(s, t)∥2 dt =
1

2

∫ b

a

⟨dRη(s,t)−1∂tη(s, t), dRη(s,t)−1∂tη(s, t)⟩ dt

using right-invariance of the metric. To calculate ∂s|s=0

(
dRη(s,t)−1∂tη(s, t)

)
set

z(t) = ∂s|s=0v(s, t) = ∂s|s=0

(
dRη(s,t)−1∂tη(s, t)

)
y(t) = dRη(t)−1∂sη(s, t)|s=0

- the right translate of the variation vector field induced by η(s, t). Then using
(12)

∂t∂s|s=0η(s, t) = ∂tdRη(t)y(t) = dRη(t)

(
∂ty(t) + ∇v(t)y(t)

)
.

On the other hand, using (12) again

∂s|s=0∂tη(s, t) = ∂s|s=0dRη(s,t) · v(s, t) = dRη(t) · z(t) + dRη(t) ·
(
∇y(t)v(t)

)
.
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Since the left hand sides of each of the above equations are equal, putting the two
together and rearranging using (13) we have

∂s|s=0

(
dRη(s,t)−1∂tη(s, t)

)
= z(t) = ∂ty(t) − adv(t)y(t).

Differentiating the energy E with respect to s, then integrating by parts and using
the fact that y(a) = y(b) = 0 we obtain

∂s|s=0E(s) =

∫ b

a

⟨v, ∂ty − advy⟩ dt = −
∫ b

a

⟨∂tv + ad∗
vv, y⟩ dt

which is zero for any variation field y if and only if (15) holds.

Corollary 1 If η(t) is a curve in G with velocity field v(t) ∈ g defined through
(14) and satisfying (15) with initial conditions η(0) = e and v(0) = vo then we
have the conservation law

v(t) = Ad∗
η−1(t)vo. (16)

Proof. From the definition of the group and algebra adjoint operators we have

∂tAdη−1(t) = −Adη−1(t)adv(t)

and by general properties of adjoints

∂tAd∗
η−1(t) = −ad∗

v(t)Ad∗
η−1(t).

Multiplying both sides of the Euler equations (15) by Ad∗
η−1(t), reversing the prod-

uct rule, and integrating in time gives the result.

Introduce one more operator Kv : g → g

Kv(w) = ad∗
wv. (17)

for later use.

Corollary 2 If η(t) is a curve in G with velocity field v(t) ∈ g defined through
(14) and satisfying (15) with initial conditions η(0) = e and v(0) = vo then

Kv(t) = Ad∗
η−1(t)KvoAdη−1(t). (18)

Proof. For any u, w ∈ g we compute using the relationship between the algebra
adjoint and the Lie bracket, and the latter’s behaviour under pushforward by
diffeomorphisms:

⟨Ad∗
η(t)Kv(t)u,w⟩ = ⟨v(t), aduAdη(t)w⟩ = ⟨v(t),Adη(t)adAdη−1(t)u

w⟩

= ⟨Ad∗
η(t)v(t), adAdη−1(t)u

w⟩

= ⟨vo, adAdη−1(t)u
w⟩

= ⟨KvoAdη−1(t)u,w⟩

where we have used Corollary 1 in the penultimate equality.
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The Exponential Map

We have not discussed the existence and uniqueness of solutions to the geodesic
equations, nor their smooth dependence on initial conditions, but the standard
analysis of geodesic systems on smooth finite dimensional Riemannian manifolds
applies (see [26] or [22], for example) and it can be shown that geodesics of a
right-invariant metric on G exist, are unique, and do depend smoothly on initial
conditions. Given this, we now introduce the exponential of the right-invariant
metric.

In parallel with the group exponential map expG
e , the (Riemannian) exponen-

tial map of the right invariant metric ⟨·, ·⟩

expe : g → G

maps a vector v ∈ g to the value of the (Riemannian) geodesic η(t) with initial
conditions η(0) = e, η′(0) = v at time t = 1

expe(v) = η(1).

The group exponential map expG
e is never identically equal to the Riemannian

exponential map expe unless ⟨·, ·⟩ is both left and right invariant, although it is
a Theorem of Kaiser [19] that there always exists a one-parameter subgroup of G
which is a solution to the right-invariant geodesic system (15) so that the images
of the two exponential maps do have a non-empty intersection. A standard re-
scaling procedure show that the exponential map is the data-to-solution map of
the geodesic equations (15) assigning to each (e, v) ∈ {e} × g the unique geodesic
η(t) with those initial conditions:

expe(tv) = η(t).

Since solutions of the geodesic system depend smoothly on the initial conditions,
the exponential map is smooth and whose derivative at t = 0 can be shown to equal
the identity operator - by the inverse function theorem expe is a diffeomorphism
between a neighbourhood of e ∈ G and a neighbourhood of the origin in g.

As a map from the Lie algebra g - the model space - to the Lie group G - the
manifold - the exponential map expe contains the geometry of G with ⟨·, ·⟩ and
it is therefore of interest to study its properties and singularities. Alternatively,
one could ask in what way the singularities of expe could restrict the algebraic,
topological, and differentiable structure of G. See [23], [12], [21], or [49] for early
examples of the latter line of questioning; we’ll proceed more in the direction of
the former (with a view towards a BCH type formula).

So we turn to the Jacobi equation whose solutions give us precise information
about the Riemannian exponential map expe : g → G and its derivative. Consider
a geodesic η(t) = expe(tvo) starting from the identity e in the direction vo ∈ g;
perturb the initial condition vo by a vector zo, and consider the one-parameter
family of geodesics η(s, t) = expe(t (vo + szo). The Jacobi field J(t) along η(t)
satisfying J(0) = 0 and J̇(0) = zo is the variation field of η(s, t)

J(t) = ∂s|s=0η(s, t) = D expe(tvo)tzo.
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Proposition 3 Suppose G is any Lie group with a right-invariant metric ⟨·, ·⟩.
Let η(t) be a geodesic with η(0) = e and η̇(0) = vo. Then every Jacobi field J(t)
along η(t), with initial conditions J(0) = 0 and J̇(0) = zo, satisfies the following
system of equations on g

∂ty − advy = z (19)

∂tz + ad∗
vz +Kvz = 0 (20)

where J(t) = dRη(t)y(t) and η̇(t) = dRη(t)v(t) as in (15).

Proof. Equation (19) is the linearisation of the flow equation (14) and was derived
in the proof of Theorem 1. Indeed, if η(s, t) is a variation of a geodesic η(t) which
continues to be a geodesic for each s, with v(s, t) the corresponding solution to
the Euler equations (15), then after setting

z(t) = ∂s|s=0v(s, t) = ∂s|s=0

(
dRη(s,t)−1∂tη(s, t)

)
y(t) = dRη(t)−1∂sη(s, t)|s=0

we saw that
z(t) = ∂s|s=0

(
dRη(s,t)−1∂tη(s, t)

)
= ∂ty − advy.

Linearising the Euler equations (15) gives (20).

Equation (20) is the linearised Euler equation and we denote its solution op-
erator by S(t) : g → g

S(t)zo = z(t). (21)

Denote the solution operator to the Jacobi system (20) and (19) by

Φ(t)zo := J(t) (22)

which is a bounded linear operator from g = TeG to Tη(t)G.

Proposition 4 Let G, η(t), and v(t) be as in Proposition 3. Then the solution op-
erator (21) to the linearised Euler equation (20) is related to the solution operator
(22) to the Jacobi system (19) and (20) by

Ad∗
η−1(t) = S(t) +Kv(t) ◦ dRη−1(t) ◦ Φ(t) (23)

Proof. If η(s, t) is a smooth variation of η(t) with corresponding variation of the ve-
locity v(s, t) then z(t) = ∂s|s=0v(s, t), z0 = ∂s|s=0v(s, 0) and y(t) = dRη−1(t)∂s|s=0η(s, t).
By Corollary 1

v(s, t) = Ad∗
η−1(s,t)vo(s)

for each s and differentiating both sides with respect to s and setting s = 0 we
obtain

z(t) = −ad∗
y(t)Ad∗

η−1(t)vo + Ad∗
η−1(t)zo.

Using Corollary 1 again and rewriting the expression in terms of the operator
Kv(t) and the solution operators (21) and (22) we get

Ad∗
η−1(t)zo = S(t)zo +Kv(t) ◦ dRη−1(t) ◦ Φ(t)zo
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Proposition 4 together with Corollary 1 give another form of the Euler-Arnold
equations. A simple of read of this new form for the equations is that the geodesic
evolution is the time average of the linearised geodesic evolution.

Theorem 2 The Euler-Arnold equations of Theorem 1 can be re-written as a
feedback system

∂tṽ(t) = −ad∗
v(t)ṽ(t) −Kv(t)ṽ(t)

v(t) =
1

t

∫ t

0

ṽ(s) ds

v(0) = ṽ(0) = vo

Proof. If v(t) is a solution to the Euler-Arnold equations with initial condition vo
then setting zo = vo and applying Corollary 1 to the left hand side of equation
(23) in Proposition 4, while making use of the fact that Φ(t)vo = tdRη(t) · v(t) for
the right hand side of equation (23), we get

v(t) = S(t)vo + t ·Kv(t)v(t).

The curve v(t) does not solve the linearised Euler equation (20) unless v(t) = vo
is stationary (in which case the above equation reads vo = vo). So if v(t) is non-
stationary this equation says v(t) decomposes as the solution to the linearised
Euler equation (20) with the same initial condition as v(t) plus an extra term Kvv.
Making use of the Euler-Arnold equations once more we can substitute −∂tv(t)
for Kvv and obtain a new form of the geodesic equations:

t · ∂tv(t) = −v(t) + S(t)vo = −v(t) + ṽ(t).

which folds, using the product rule, as

∂t (t · v(t)) = ṽ(t).

Integrating both sides in t, we see that the geodesic equation of a right-invariant
metric on a Lie group can be written as a feedback system

∂tṽ(t) = −ad∗
v(t)ṽ(t) −Kv(t)ṽ(t)

v(t) =
1

t

∫ t

0

ṽ(s) ds

v(0) = ṽ(0) = vo

where v(t) is the output - the geodesic dynamics - which, at every moment, is fed
back into the first equation generating the dynamics.

The Derivative of the Exponential Map

Using Propositions 3 and 4 we can derive a formula for the derivative of the
exponential map associated to a right-invariant metric ⟨·, ·⟩ on a Lie group G.
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Theorem 3 Suppose G is any Lie group with a right-invariant metric ⟨·, ·⟩. Let
η(t) be a geodesic with η(0) = e and η̇(0) = vo ∈ g, let J(t) = dRη(t)y(t) be the

Jacobi field along η(t) with initial conditions J(0) = 0, J̇(0) = zo ∈ g, and let z(t)
be the solution to (20) with initial condition z(0) = zo ∈ g. Then

1. If zo ∈ (kerKvo)⊥ then y(t) ∈
(
kerKv(t)

)⊥
for all t and the derivative of the

exponential map is given by

D expe(tvo)tzo = dRη(t)K̃
−1
v(t)

(
Ad∗

η−1(t) − S(t)
)
zo (24)

where K̃v(t) denotes the restriction of Kv(t) to
(
kerKv(t)

)⊥
on which it is an

isomorphism.
2. If zo ∈ kerKvo then y(t) ∈ kerKv(t) for all t and is never zero for t > 0. The

derivative of the exponential map is given by

D expe(tvo)tzo = dLη(t)

∫ t

0

Adη−1(t)Ad∗
η−1(t)zo ds (25)

Observe that when ⟨·, ·⟩ is bi-invariant (assuming G allows for it) formula (24)
reduces to the known formula for the derivative of the exponential map. Indeed,
in this setting

Ad∗
η(t)−1 = Adη(t), ad∗

v = −adv, Kv = adv

and together these imply that all solutions to the Euler-Arnold equations are
stationary (v(t) = vo), the Riemannian exponential map and group exponential
map coincide (expe = expG

e ) and

S(t) = I, ∀ t.

Substituting these relationships into (24) for appropriate zo gives

D expG
e (tvo)tzo = dRη(t)ad−1

vo

(
Adη(t) − I

)
zo

= dLη(t)ad−1
vo

(
I − Adη(t)−1

)
zo

= dLexpG
e (tvo)ad−1

vo

(
I − e−tadvo

)
zo.

Substituting the same relationships into (25) for appropriate zo gives

D expG
e (tvo)tzo = dLexpG

e tvo
· tzo.

Comparing the Taylor series of the former with the latter we see that the two
expression coincide when zo ∈ ker advo and can therefore be reduced to a single
formula written in terms of the functional calculus

D expe(tvo)tzo = dLexpG
e (tvo) ·

I − e−tadvo

advo

zo = dRexpG
e (tvo) ·

etadvo − I

advo

zo.

This is exactly the derivative of the (group) exponential map of a bi-invariant
metric, see Duistermaat and Kolk [6] or Hall [14].

The proof of Theorem 2 will be broken down into a series of Lemmas which
collectively show that Φ(t) kerKvo = kerKvo and Φ(t) (kerKvo)⊥ ⊆ (kerKvo)⊥

for each t. This allows us to invert Kv(t) in (23) and obtain (24). The bulk of the
argument amounts to keeping track of how the operators Adη(t) and Ad∗

η(t) act
on the subspace kerKvo .
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Lemma 1 For each t we have

Adη−1(t) kerKv(t) = kerKvo , Adη−1(t)

(
kerKv(t)

)⊥
= (kerKvo)⊥ (26)

Ad∗
η−1(t) kerKvo = kerKv(t), Ad∗

η−1(t) (kerKvo)⊥ =
(
kerKv(t)

)⊥
(27)

Proof. Corollary 2 gave a decomposition of the operator Kv(t) as

Kv(t) = Ad∗
η−1(t)KvoAdη−1(t)

from which it becomes clear that w ∈ kerKv(t) if and only if Adη−1(t)w ∈
kerKvo . Since Adη−1(t) is an automorphism of g for each t we must have that

w ∈
(
kerKv(t)

)⊥
if and only if Adη−1(t)w ∈ (kerKvo)⊥ as well; this gives (26).

Suppose w ∈ kerKv(t) so that Adη(t)−1w ∈ kerKvo by (26), and let u ∈
(kerKvo)⊥. Then

0 = ⟨u,Adη(t)−1w⟩ = ⟨Ad∗
η(t)−1u,w⟩.

Since this identity holds for all w ∈ kerKv(t) we must have Ad∗
η(t)−1u ∈

(
kerKv(t)

)⊥
;

that is,

Ad∗
η(t)−1 (kerKvo)⊥ ⊆

(
kerKv(t)

)⊥
.

Similarly, if w ∈ kerKv(t)
⊥ so that Adη(t)−1w ∈ kerKvo

⊥ by (26), and u ∈
kerKvo then

0 = ⟨u,Adη(t)−1w⟩ = ⟨Ad∗
η(t)−1u,w⟩

so that Ad∗
η(t)−1u is orthogonal to kerKv(t)

⊥; that is,

Ad∗
η(t)−1 (kerKvo) ⊆

(
kerKv(t)

)
.

Since Ad∗
η(t) is also an automorphism of g the inclusions must also be equalities -

this gives (27).

Lemma 2 The operator

Ω(t) : g → g (28)

Ω(t)w =

∫ t

0

Adη−1(s)Ad∗
η−1(s)w ds

is an isomorphism with

Ω(t) kerKvo = kerKvo Ω(t) (kerKvo)⊥ = (kerKvo)⊥ (29)

for each t.

Proof. We have

⟨w,Ω(t)w⟩ =

∫ t

0

⟨w,Adη−1(s)Ad∗
η−1(s)w⟩ ds =

∫ t

0

∥∥Ad∗
η−1(s)w

∥∥2 ds
≥

∫ t

0

1∥∥∥Ad∗
η(s)

∥∥∥2 ds
 ∥w∥2 .
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Now ∥∥Ad∗
η(s)

∥∥2 =
∥∥Adη(s)

∥∥2 ≤
∥∥∥dLT

η(s)dLη(s)

∥∥∥
L∞

where the L∞ norm denotes the absolute value of the largest eigenvalue of the
symmetric matrix dLT

η(s)dLη(s). By the Schwartz inequality we have

C(t) ∥w∥ ≤ ∥Ω(t)w∥ ,

C(t) =

∫ t

0

1∥∥∥dLT
η(s)dLη(s)

∥∥∥
L∞

ds.

Since C(t) is the integral of a positive function it is itself positive and therefore
Ω(t) has empty kernel. Since Ω(t) is self-adjoint it also has empty co-kernel and is
therefore an isomorphism on g.

From (26) and (27) we have

Adη−1(s)Ad∗
η−1(s) kerKvo = kerKvo , Adη−1(s)Ad∗

η−1(s) (kerKvo)⊥ = (kerKvo)⊥

for each s. If {Eker
1 , . . . , Eker

m } span kerKvo and {E⊥
m+1, . . . , E

⊥
n } span (kerKvo)⊥

then for any w ∈ kerKvo and any u ∈ (kerKvo)⊥ we can express Adη−1(s)Ad∗
η−1(s)w

and Adη−1(s)Ad∗
η−1(s)u as

Adη−1(s)Ad∗
η−1(s)w = w1(s) · Eker

1 + · · · + wm(s) · Eker
m

Adη−1(s)Ad∗
η−1(s)u = um+1(s) · E⊥

m+1 + · · · + un(s) · E⊥
n .

Linearity of the integral then gives

Ω(t)w =

(∫ t

0

w1(s) ds

)
· Eker

1 + · · · +

(∫ t

0

w1(s) ds

)
· Eker

m ∈ kerKvo

Ω(t)u =

(∫ t

0

u1(s) ds

)
· E⊥

m+1 + · · · +

(∫ t

0

u1(s) ds

)
· E⊥

n ∈ (kerKvo)⊥

so that

Ω(t) kerKvo ⊂ kerKvo Ω(t) (kerKvo)⊥ ⊂ (kerKvo)⊥ .

But since Ω(t) is an isomorphism we must have

Ω(t) kerKvo = kerKvo Ω(t) (kerKvo)⊥ = (kerKvo)⊥ .

Lemma 3 The operator

Γ(t) : g → g (30)

w 7→
∫ t

0

Adη−1(s)Kv(s)dRη−1(s)Φ(s)w ds

satisfies

Γ(t)g ⊆ (kerKvo)⊥ (31)

for each t.
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Proof. The map Φ(t) sends w to the Jacobi field J(t) along η(t) with initial con-
ditions J(0) = 0 and J̇(0) = w. Let y(s) = dRη−1(s)Φ(s)w be the right-translated

Jacobi field which is a curve in g. For each s we have Kv(s)y(s) ∈
(
kerKv(s)

)⊥
. To

see this, suppose that y⊥(s) ∈
(
kerKv(s)

)⊥
and yker(s) ∈ kerKv(s)

⊥ then using
Corollary 2 and (26)

Kv(s)y(s) = Ad∗
η−1(s)KvoAdη−1(s)y(s) = Ad∗

η−1(s)KvoAdη−1(s)y
⊥(s)

since KvoAdη−1(s)y
ker(s) = 0. What remains belongs to

(
kerKv(s)

)⊥
by (27).

Using (26) of Lemma 1 once more

Adη−1(s)Kv(s)y(s) ∈ (kerKvo)⊥

for each s. Expanding Adη−1(s)Kv(s)y(s) in a basis of eigenvectors of Kvo spanning

(kerKvo)⊥

Adη−1(s)Kv(s)y(s) = w1(s) · E⊥
1 + · · · + wn(s) · E⊥

k .

Then

Γ(t)w =

(∫ t

0

w1(s) ds

)
· E⊥

1 + · · · +

(∫ t

0

wn(s) ds

)
· E⊥

k ∈ (kerKvo)⊥ .

Lemma 4 Let η(t) be a geodesic in G with velocity v(t) defined through (14) and
let J(t) = dRη(t)y(t) be the Jacobi field along η with initial conditions J(0) = 0

and J̇(0) = zo. Then y(t) ∈ g is given by

y(t) = Adη(t) [Ω(t) − Γ(t)] zo (32)

Proof. Since
d

dt
Adη(t)w = advAdη(t)w

differentiating both sides of the identity

Adη(t)Adη(t)−1w = w

shows that
d

dt
Adη(t)−1w = −Adη(t)−1advw.

Multiplying both sides of (19) by Adη(t)−1 and using the product rule we get

d

dt

(
Adη(t)−1y(t)

)
= Adη(t)−1z(t). (33)

Re-arranging the identity in Proposition 4 for z(t) and substituting the result into
(33) gives

∂t
(
Adη−1(t)y(t)

)
= Adη−1(t)Ad∗

η−1(t)zo − Adη−1(t)Kv(t)y(t)

Integrating this equation from 0 to t, multiplying both sides by Adη(t) and rewrit-
ing the result in terms of Ω(t) and Γ(t) gives (32).
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Proof of Theorem 2 . Suppose zo ∈ (kerKvo)⊥ and let J(t) = Φ(t)zo be the
Jacobi field along η(t) with initial conditions J(0) = 0 and J̇(0) = zo. From Lemma
4 the right-translated Jacobi field y(t) = dRη−1(t)J(t) is given by

y(t) = Adη(t) [Ω(t) − Γ(t)] zo. (34)

By Lemmas 2 and 3

Ω(t)zo − Γ(t)zo ∈ (kerKvo)⊥

and by (26) of Lemma 1 we have

y(t) = Adη(t) [Ω(t) − Γ(t)] zo ∈
(
kerKv(t)

)⊥
for all t. By Proposition 4

Ad∗
η−1(t)zo = z(t) +Kv(t)y(t)

and since y(t) ∈
(
kerKv(t)

)⊥
we can invert Kv(t) to obtain

y(t) = K̃−1
v(t)

(
Ad∗

η−1(t)zo − z(t)
)

(35)

where K̃v(t) is the restriction of Kv(t) to
(
kerKv(t)

)⊥
. Right-translating by η(t)

and rewriting the right-hand side of (35) in terms of the solution operator S(t) to
the linearised Euler equation (20) we obtain

D expe(tvo)tzo = J(t) = dRη(t)K̃
−1
v(t)

(
Ad∗

η−1(t)zo − S(t)
)
zo

which is part 1. of Theorem 2.
For part 2. we take a detour: Part 1. showed that given zo ∈ (kerKvo)⊥ the

curve y(t) = dRη−1(t)J(t) ∈ g defined through the Jacobi field J(t) along η(t) with

initial conditions J(0) = 0 and J̇(0) = zo belongs to
(
kerKv(t)

)⊥
for all t - we’ll

first show that z(t) = S(t)zo ∈
(
kerKv(t)

)⊥
for all t whenever zo ∈ (kerKvo)⊥

and z(t) = S(t)zo ∈ kerKv(t) for all t whenever zo ∈ kerKvo . Let zo ∈ (kerKvo)⊥;

as noted, the associated curve y(t) ∈
(
kerKv(t)

)⊥
for all t and according to (26) of

Lemma 1, Adη−1(t)y(t) ∈ (kerKvo)⊥ for all t. Write this in the basis of eigenvectors
provided by Kvo

Adη−1(t)y(t) = y1(t)E⊥
1 + . . . yk(t)E⊥

k

and note that ∂t
(
Adη−1(t)y(t)

)
∈ (kerKvo)⊥ aswell. Equation (33) relates ∂t

(
Adη−1(t)y(t)

)
to the solution z(t) of the linearised Euler equations (20) with initial condition
z(0) = zo and shows that

Adη−1(t)z(t) ∈ (kerKvo)⊥ .

Lemma 1, (26) then gives

z(t) ∈
(
kerKv(t)

)⊥ ∀t

and shows that

S(t) (kerKvo)⊥ ⊂
(
kerKv(t)

)⊥
. (36)
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Since S(t) is the solution operator to a first order linear differential equation,
S(t∗)w = 0 at some time t∗ if and only if w = 0 - for otherwise this contradicts
uniqueness of solutions. Therefore S(t) has empty kernel for as long as it is defined
and consequently is an automorphism of g for as long as it is defined - this, in

conjunction with the fact that dim (kerKvo)⊥ = dim
(
kerKv(t)

)⊥
by Lemma 1,

means the inclusion (36) is an equality and

S(t) (kerKvo)⊥ =
(
kerKv(t)

)⊥
. (37)

Now isomorphicity of S(t) also implies

S(t) kerKvo = kerKv(t). (38)

Now let zo ∈ kerKvo , z(t) = S(t)zo, and y(t) = dRη−1(t)Φ(t)zo. Then by Propo-
sition 2, Lemma 1 (27), and (38)

Kv(t)y(t) = Ad∗
η−1zo − z(t) ∈ kerKv(t)

for each t. But this implies Kv(t)y(t) = 0 for each t: indeed, for a fixed t let

u ∈
(
kerKv(t)

)⊥
; then, since Kv(t) is a skew self-adjoint operator on g

0 = ⟨Kv(t)y(t), u⟩ = −⟨y(t),Kv(t)u⟩

and since Kv(t) is also an isomorphism on
(
kerKv(t)

)⊥
and the the identity holds

for any u ∈
(
kerKv(t)

)⊥
we must have that y(t) ∈ kerKv(t). Since this holds for

any t

y(t) ∈ kerKv(t) ∀t

and

Ad∗
η−1zo = z(t) ∀t. (39)

Finally, to prove (65) use (39) and (33) to write

∂t
(
Adη−1(t)y(t)

)
= Adη−1(t)Ad∗

η−1(t)zo.

Integrating this equation from 0 to t and multiplying both sides by dLη(t) we
obtain

D expe(tvo)tzo = dRη(t)y(t) = dLη(t)

∫ t

0

Adη−1(s)Ad∗
η−1(s)zo ds = dLη(t)Ω(t)zo

which is never zero for all t since Ω(t) is an automorphism by Lemma 2 and dLη(t)

is an isomorphism.
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Conjugate Points

An immediate application of Theorem 2 is to conjugate points of a right-invariant
metric on G - these are singularities of expe. Let η(t) be a geodesic of the right
invariant metric ⟨·, ·⟩ in G issuing from the identity e in the direction vo. A point
η(t∗ > 0) is said to be conjugate to e if the linear operator

D expe(t∗vo)t∗ : g → Tη(t∗)G

fails to be an isomorphism. If dim kerD expe(t∗vo)t∗ = k then k is called the
multiplicity of the conjugate point η(t∗). After the first conjugate point the in-
finitesimal geometry along η(t) ceases to resemble the infinitesimal geometry along
the straight line segment tvo in the model space. They contain information about
the topological and differentiable structure of G and relate to covering proper-
ties of the exponential map. In the infinite dimensional situation conjugate points
contain information on the stability of physical systems described by geodesics;
for example, Hoffman and Manning showed how conjugate points are related to
the the buckling of elastic planar rods, while Sokolowski [44] studied conjugate
points and their relationship to the twin paradox in general relativity (although
the metrics are not Riemannian here).

An immediate consequence of Theorem 2 is the following

Theorem 4 Let G, ⟨·, ·⟩, η(t), v(t), J(t), and z(t) be as in Theorem 2. Then η(t∗)
is conjugate to e if and only if there exists a zo ∈ (kerKvo)⊥ and orthogonal to vo
such that

Ad∗
η−1(t∗)zo = S(t∗)zo (40)

Proof. If η(t∗) is conjugate to the identity e then D expe(t∗vo)t∗ fails to be an
isomorphism between g and Tη(t∗)G. Since D expe(t∗vo)t∗|kerKvo

is never zero by

part 2. of Theorem 2, the injectivity failure must occur on (kerKvo)⊥. Formula
(24) shows that D expe(t∗vo)t∗ fails to be injective if and only if there exists a
zo ∈ (kerKvo)⊥ such that (40) holds.

Conversely if there exists a zo ∈ (kerKvo)⊥ such that (40) holds thenD expe(t∗vo)t∗

fails to be an isomorphism by Theorem 2 and therefore η(t∗) is conjugate to the
identity e.

By Corollary 1, a solution to the geodesic equations (15) evolves on the coad-
joint orbit {Ad∗

gvo : g ∈ G} of its initial condition. The solution operator S(t) to
the Linearised Euler equations (20) therefore measures the rate at which coadjoint
orbits separate. Theorem 3 says a conjugate point along η(t) occurs whenever
a solution to the linearised Euler equations passes through the geodesic orbit
Ad∗

η−1(t∗)zo of its initial condition. It could interesting to understand what this
actually means.

Stability

Another application of Proposition 4 and Theorem 2 is to the stability of the
Euler-Arnold equations and the stability of geodesics. In continuum mechanics
it is common to study the stability of stationary or equilibrium solutions to a



Right-Invariant Geometry 23

set of equations. In our setting, a vector vo ∈ g is a stationary or equilibrium
point of the Euler-Arnold equations (15) if and only if ad∗

vo
vo = 0. The linearised

Euler-Arnold equations (20) describe the effect small perturbations of vo have
on the corresponding solutions to the Euler-Arnold equations and analysing the
growth of the norm of solutions to (20) is called Eulerian stability. The geodesic
η(t) = expe(tvo) generated by the stationary solution vo is called a stationary
geodesic. The Jacobi equation (??) describes the effect small perturbations of vo
have on the corresponding geodesics and analysing the growth of the norm of
Jacobi fields is called Lagrangian stability.

Since the Jacobi equation (??) decouples as the linearised Euler equation and
the linearised flow equation it should come as no surprise that Eulerian stability
is related to Lagrangian stability. Proposition 4 tells us that this relationship is
determined by the coadjoint operator and Kvo . In some simple but general situa-
tions we can determine the precise relationship between Eulerian and Lagrangian
stability and the conclusion is that it is enough to study the first order stabil-
ity problem (Eulerian stability) to understand the second order stability problem
(Lagrangian stability).

In both of the following theorems, and their proofs, we will assume: G is a Lie
group with Lie algebra g and right-invariant metric ⟨·, ·⟩ with induced norm ∥·∥R;
vo is a stationary solution to the Euler-Arnold equations (15) with corresponding
geodesic η(t); z(t) is a solution to the linearised (about vo) Euler-Arnold equations
(20) with initial condition zo; and J(t) is a solution to the Jacobi equation along
η(t) with initial conditions J(0) = 0, d

dtJ(0) = zo.

Theorem 5 Suppose G is compact. Then:

1. If zo ∈ kerKvo then the norm of z(t) is uniformly bounded in t while the
corresponding Jacobi field grows at most linearly in t

∥z(t)∥R ≤ C1 ∥zo∥R , ∥J(t)∥R ≤ C2t ∥zo∥R

for finite constants C1 and C2;
2. If zo ∈ (kerKvo)⊥ then Eulerian and Lagrangian stabilities and instabilities

are equivalent

C1 ∥J(t)∥R ≤ C2 · ∥zo∥R + ∥z(t)∥R ≤ 2C2 · ∥zo∥R + C3 ∥J(t)∥R .

for finite constants C1, C2, and C3; and
3. In general, Eulerian and Lagrangian stabilities and instabilities are equivalent

modulo a linear factor of t:

C1 ∥J(t)∥R ≤ C2 · ∥zo∥R +t · C3 ·
∥∥∥zkero

∥∥∥
R

+ ∥z(t)∥R

≤ 2C2 · ∥zo∥R + t · C3 ·
∥∥∥zkero

∥∥∥
R

+ C4 ∥J(t)∥R

for finite constants C1, C2, C3, and C4.

Proof. Suppose G is compact. Then, as is well known, G admits a bi-invariant
metric ⟨·, ·⟩B for which Adg is unitary for any g ∈ G; in particular, its spectrum
lies on the unit circle and its operator norm is 1:

∥Adg∥Op(B) = 1
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for any g ∈ G. Since Adg is an automorphism of g and the automorphism group
Aut (g) is finite dimensional all norms are equivalent:

c1 = c1 ∥Adg∥Op(B) ≤ ∥Adg∥Op(R) ≤ c2 ∥Adg∥Op(B) = c2 (41)

for positive constants c1 and c2. From the general properties of operator norms
the equality ∥Adg∥Op(R) =

∥∥Ad∗
g

∥∥
Op(R)

holds and we obtain

c1 ≤
∥∥Ad∗

g

∥∥
Op(R)

≤ c2 (42)

for any g ∈ G.
For part 1. of the Theorem, assume that zo ∈ kerKvo ; then y(t) = dRη(t)−1 ·

J(t) ∈ kerKvo for all t by part 2 of Theorem 2, and by Proposition 4 and (42) we
have

∥z(t)∥R ≤
∥∥Ad∗

η−1(t)zo
∥∥
R ≤ c2 ∥zo∥R .

The formula in part 2 of Theorem 2, along with right-invariance, (41) and (42)
gives

∥J(t)∥R =

∥∥∥∥Adη(t)

∫ t

0

Adη−1(s)Ad∗
η−1(s)zo ds

∥∥∥∥
R

≤
∥∥Adη(t)

∥∥
Op(R)

·
∫ t

0

∥∥Adη−1(t)

∥∥
Op(R)

·
∥∥Ad∗

η−1(t)

∥∥
Op(R)

· ∥zo∥R ds

≤ tc32 · ∥zo∥R .

For part (3) suppose kerKvo ⊊ g and let z(t) be the solution to the linearised
Euler equations (20) with initial condition zo and let J(t) = dRη(t)y(t) be the

Jacobi field with initial conditions J(0) = 0, d
dtJ(0) = zo. Let zkero denote the part

of zo which lies in kerKvo and Jker the corresponding part of J(t) which lies in
kerKvo ; similarly, let z⊥o denote the part of zo which lies in (kerKvo)⊥ and J⊥

the corresponding part of J(t) which lies in (kerKvo)⊥. Using Proposition 4, skew
self-adjointness of Kvo , and the bounds (42) we can estimate

∥z(t)∥R ≤
∥∥Ad∗

η−1(t)zo
∥∥
R + ∥Kvoy(t)∥R

≤
∥∥Ad∗

g

∥∥
Op(R)

∥zo∥R + max
λ∈σ(Kvo)

|λ| ∥J(t)∥R

≤ c2 ∥zo∥R + max
λ∈σ(Kvo)

|λ| ∥J(t)∥R (43)

Now estimate in the other direction: Proposition 4, right-invariance and (42)
immediately give

min
λ∈σ(Kvo)/{0}

|λ|
∥∥∥J⊥(t)

∥∥∥
R

≤ ∥Kvoy(t)∥R ≤ c2 · ∥zo∥R + ∥z(t)∥R

Adding minλ∈σ(Kvo/{0}) |λ|
∥∥Jker(t)

∥∥
R to both sides of the inequality gives

min
λ∈σ(Kvo/){0}

|λ| ∥J(t)∥R ≤ c2 · ∥zo∥R + ∥z(t)∥R + min
λ∈σ(Kvo/){0}

|λ|
∥∥∥Jker(t)

∥∥∥
R
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Using part (2) of Theorem 2, right-invariance of the metric, and the bounds (41)
and (42) we can bound the last term of the inequality:

∥∥∥Jker(t)
∥∥∥
R

=

∥∥∥∥Adη(t)

∫ t

0

Adη−1(s)Ad∗
η−1(s)z

ker
o ds

∥∥∥∥
R

≤
∥∥Adη(t)

∥∥
Op(R)

·
∫ t

0

∥∥Adη−1(t)

∥∥
Op(R)

·
∥∥Ad∗

η−1(t)

∥∥
Op(R)

·
∥∥∥zkero

∥∥∥
R
ds

≤ tc32 ·
∥∥∥zkero

∥∥∥
R

(44)

and arrive at

min
λ∈σ(Kvo/{0})

|λ| ∥J(t)∥R ≤ c2 · ∥zo∥R +∥z(t)∥R + t · c32 · min
λ∈σ(Kvo/{0})

|λ| ·
∥∥∥zkero

∥∥∥
R
.

(45)
Putting the inequalities (43) and (45) together we get

min
λ∈σ(Kvo/{0})

|λ| ∥J(t)∥R ≤c2 · ∥zo∥R + t · c32 · min
λ∈σ(Kvo/{0})

|λ| ·
∥∥∥zkero

∥∥∥
R

+ ∥z(t)∥R

≤2c2 · ∥zo∥R + t · c32 · min
λ∈σ(Kvo/{0})

|λ| ·
∥∥∥zkero

∥∥∥
R

+ max
λ∈σ(Kvo)

|λ| ∥J(t)∥R ,

which completes part (3).

If zo ∈ (kerKvo)⊥ then zkero = 0 and y(t) = dRη(t)−1 · J(t) ∈ (kerKvo)⊥ for all
t by part 1 of Theorem 2 so that part (2) follows from part (3).

Theorem 6 Suppose G is a nilpotent Lie group with nilpotent Lie algebra g of
step k. Then

1. If zo ∈ kerKvo then the norm of z(t) grows at most polynomially of order k−1
while the norm of the corresponding Jacobi field grows at most polynomially of
order 3k − 2

∥z(t)∥R ≤
k∑

i=1

tk−i
∥∥∥(ad∗

vo

)k−i
zo

∥∥∥
R

∥J(t)∥R ≤
k∑

i,j,l=1

t3k+1−i−j−l
∥∥∥(advo)2k−i−j (ad∗

vo

)k−l
zo

∥∥∥
R

2. If zo ∈ (kerKvo)⊥ then Eulerian and Lagrangian stabilities and instabilities
are equivalent modulo a polynomial of order k − 1:

C1 ∥J(t)∥R ≤
k∑

i=1

tk−i
∥∥∥(ad∗

v

)k−i
zo

∥∥∥
R

+∥z(t)∥R ≤ 2
k∑

i=1

tk−i
∥∥∥(ad∗

v

)k−i
zo

∥∥∥
R

+C2·∥J(t)∥R

for finite constants C1 and C2; and
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3. In general, Eulerian and Lagrangian stabilities and instabilities are equivalent
modulo a polynomial of order 3k − 2:

C1 ∥J(t)∥R ≤
k∑

i=1

tk−i
∥∥∥(ad∗

v

)k−i
zo

∥∥∥
R

+ ∥z(t)∥R

+ C1 ·
k∑

i=1

k∑
j=1

k∑
l=1

t3k+1−i−j−l
∥∥∥(advo)2k−i−j (ad∗

vo

)k−l
zkero

∥∥∥
R

≤2
k∑

i=1

tk−i
∥∥∥(ad∗

v

)k−i
zo

∥∥∥
R

+ C2 · ∥J(t)∥R

+ C1 ·
k∑

i=1

k∑
j=1

k∑
l=1

t3k+1−i−j−l
∥∥∥(advo)2k−i−j (ad∗

vo

)k−l
zkero

∥∥∥
R
.

for finite constants C1 and C2.

Proof. If G is nilpotent of step k then (adv)k zo = 0, where “to the power of k”
means we have applied the adjoint operator k times. This also means (ad∗

v)k zo = 0.
Using the definition of the algebra adjoint and coadjoint operators we find that

dk

dtk
Adη(t)zo = 0,

dk

dtk
Adη−1(t)zo = 0,

dk

dtk
Ad∗

η−1(t)zo = 0

which give

Adη(t)zo = tk−1 · (advo)k−1 zo + · · · + t · advozo + zo

Adη−1(t)zo = (−1)k−1tk−1 · (advo)k−1 zo + · · · + (−1)t · advozo + zo

Ad∗
η−1(t)zo = (−1)k−1tk−1 ·

(
ad∗

vo

)k−1
zo + · · · + (−1)t · ad∗

vo
zo + zo

and consequently

∥∥Adη(t)zo
∥∥
R ≤

k∑
i=1

tk−i
∥∥∥(adv)k−i zo

∥∥∥
R

∥∥Adη−1(t)zo
∥∥
R ≤

k∑
i=1

tk−i
∥∥∥(advo)k−i zo

∥∥∥
R

∥∥Ad∗
η−1(t)zo

∥∥
R ≤

k∑
i=1

tk−i
∥∥∥(ad∗

vo

)k−i
zo

∥∥∥
R∥∥∥∥Adη(t)

∫ t

0

Adη−1(s)Ad∗
η−1(s)zo ds

∥∥∥∥
R

≤
k∑

i=1

k∑
j=1

k∑
l=1

t3k+1−i−j−l
∥∥∥(advo)2k−i−j (ad∗

vo

)k−l
zo

∥∥∥
R
.

(46)

Using these formulas the proof follows that of Theorem 5, exactly.
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Diffeomorphism Groups

The question is: “what additional properties of the adjoint and coadjoint operators
are required for Theorem 3 and its proof to lift to diffeomorphism groups?” There
are two characteristics of the operators that track throughout the proof of Lemmas
1 - 3, and their amalgamation in the final proof of Theorem 3; these are

1. Boundedness and invertibility of the group adjoint and coadjoint operators,
aswell as their product and the integral of their product on g;

2. the admission of a complete orthonormal basis of eigenvectors by Kv which
span the Lie algebra g.

The operator Kv, regardless of the dimension of G, is always a skew self-adjoint
operator. In an infinite dimensional Hilbert space H the Spectral Theorem tells us
that compact (skew) self-adjoint operators admit an orthonormal basis of eigen-
vectors spanning H and whose eigenvalues accumulate on zero only. So we can
replace (1) and (2) by

(A) Boundedness and invertibility of the group adjoint and coadjoint operators,
aswell as their product and the integral of their product on g;

(B) Kv is a compact operator on g.

If one could find a suitable functional analytic topology for the Diffeomorphism
group so that it becomes a smooth manifold in which left and right translation are
at least continuous, and the above two characteristics hold then one immediately
obtains Theorem 3 with the same proof, aswell as the corollaries on conjugate
points, and Eulerian/Lagrangian stability.

The purpose of this section is to show that such a topology in which (A) and
(B) hold exists and has been comprehensively analyzed by Misio lek and Preston in
their study of Fredholm properties of exponential maps on diffeomorphism groups
[34]. Properties (A) and (B) are precisely what makes an exponential map a non-
linear Fredholm map of index zero, and these properties are not satisfied in just
any topology or for any metric defining the exponential map - there are conditions
under which these holds. That Fredholm exponential maps do admit a formula
like that in Theorem 3 is in keeping with topological nature of the problem and
of a possible BCH formula in this setting.

We will not give an account of Fredholm maps here and instead refer the
reader to [34] for details and applications. We will also not recreate the analysis
and results given in [34] but supply the reader with the parts of the theory that
are relevant for Theorem 3 in this setting.

Background and Preparation

The main reference for this section is [33] and in the sections that follow we will
quote their fundamental results which are relevent for lifting Theorem 3 to this
setting. Additional references on Sobolev topologies and the manifold structure
for the diffeomorphism groups are Ebin and Marsden [7], and the monographs of
Hebey [15] and Inci, Kappeler, and Topalov [17].

For a closed n-dimensional smooth manifold M , the class Hs(M,M) is the set
of maps f : M →M whose first s derivatives are square-integrable in every coordi-
nate chart of M . It is a classical theorem of Sobolev that if s has sufficiently many
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square integrable derivatives then it is also classically differentiable: if s > n
2 + 1

then every map f is also C1 and we can define the set of Sobolev diffeomorphisms
of M by

Ds(M) = {η ∈ Hs(M,M) : η−1 exists and η−1 ∈ Hs(M,M)}.

The set Ds(M) is open, inherits a manifold structure from Hs(M,M), and is a
topological group under composition whose tangent space at the identity (its Lie
algebra) is the set of Sobolev Hs vector fields on M .

The operation of right translation is smooth but left translation is not even
continuous

Rη : G→ G Lη : G→ G

Rηξ = ξ ◦ η Lηξ = η ◦ ξ.

To see this let ξ(t) be a curve in Ds(M) with ξ(0) = e and ξ′(0) = v ∈ TeDs(M);
the differential of right translation is again right translation while the chain rule
shows that the differential of left translation is multiplication by the Jacobian
matrix of η:

dRη · v =
d

dt
|t=0Rηξ(t) =

d

dt
|t=0ξ(t) ◦ η = v ◦ η

dLη · v =
d

dt
|t=0Lηξ(t) =

d

dt
|t=0η ◦ ξ(t) = Dη · v.

As a consequence, any operation involving the derivative of left translation doesn’t
make sense on TeDs(M) and is only defined on a space of lower order regularity
- TeDr(M) for r < s. In the rest of this section we will make use of two Sobolev
indices: s for the strong Sobolev topology which defines the manifold topology on
Ds(M), and r for the weaker Sobolev topology on which dLη is a bounded linear
operator. In actuality, the weaker Hr topology will be the completion of the space
TeDs(M) in an Hr norm introduced in the next section.

Just as in the finite dimensional case we can define the group adjoint operator
which can be written explicitly using the latter calculations as

Adη : TeDr(M) → TeDr(M)

Adηv = dLηdRη−1 · v = Dη · v ◦ η−1 = η∗v. (47)

for any η ∈ Ds (M) and r < s. That is, the group adjoint operator on the diffeo-
morphism group is the usual action of diffeomorphisms on vector fields via push-
forward. As mentioned above, the reason that Adη only makes sense on TeDr (M)
with r < s is that if η is of class Hs then the calculation for the derivative of left
translation above shows that dLη is only defined on TeDr (M) for r < s.

The algebra coadjoint operator can also be defined as in finite dimensions by

adv : TeDr(M) → TeDr(M), r < s

advw =
d

dt
|t=0Adη(t)w (48)
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where η(t) is a curve in Ds(M) with η(0) = e, η′(0) = v ∈ TeDs(M). To calculate
the algebra adjoint operator explicitly let η(t) be the curve in Ds(M) correspond-
ing to the flow of v on M (i.e. η(0) = e, η′(0) = v ∈ TeDs(M)). Then using the
definition of the Lie derivative and the explicit form of the group adjoint operator

[v, w] =
d

dt
|t=0η(t)−1

∗ w =
d

dt
|t=0Adη(t)−1w = −advw

where the last equality follows from differentiating the expression Adη(t)−1Adη(t) =
I. In particular, the minus sign is a consequence of the fact that the Lie derivative is
associated with Adη(t)−1 . So in some sense the group structure on Ds(M) forces the
sign in the algebra adjoint operator through the explicit form of the group adjoint
operator as pushforward - compare with Proposition 1 in the finite dimensional
setting.

As for the case of the group adjoint operator, if u ∈ TeDs(M) then adu is only
defined on TeDr(M) for r < s due to u’s derivative loss within ad.

If we assume that M is a Riemannian manifold with metric g and Riemannian
volume form µ then the Sobolev Hs volumorphism group Ds

µ(M) consists of those
diffeomorphisms η ∈ Ds(M) such that η∗µ = µ. Continuing with the assumption
s > n

2 + 1 it is possible to show that Ds
µ(M) is a smooth submanifold of Ds(M)

whose tangent space at the identity consists of Hs divergence-free vector fields
[7]. The group and algebra adjoint operators defined above restrict in the normal
way and the vector space of divergence-free vector fields is closed under the Lie
bracket, thereby forming a sub-algebra of the full algebra of vector fields.

In the next section we will put a right invariant metric on the full diffeomor-
phism group Ds(M) and the volume preserving diffeomorphism group Ds

µ(M)
and give conditions under which the metric admits a smooth right-invariant Levi-
Civita connection and smooth exponential map which is a local diffeomorphism in
a neighbourhood of the identity element.

Right-Invariant Sobolev Metrics

On Ds(M) we put a right-invariant Hr metric defined at the identity by

(v, w)Hr =

∫
M

g(v,Arw) dµ (49)

for any v, w ∈ TeDs
µ, where Ar is a self-adjoint, elliptic, invertible differential

operator of order 2r. Right-invariance comes from translating the metric around
the group in the same we did for an inner product on a finite dimensional Lie
algebra g with Lie group G. Typical examples of Ar include I + ∆r, (I + ∆)r,
or for r an integer

∑r
k=0 ∆k. Here ∆ is the Laplace-Beltrami operator of the

Riemannian metric g on M . For this metric to actually be usable it is often required
that s > n

2 + 1 + 2r so that Arw is at least C1.

Theorem 7 [34]

1. Suppose Ds(M) is the diffeomorphism group equipped with the right-invariant
Hr metric (49). If r ≥ 1 is an integer and s > n

2 + 2r then the metric and
its Levi-Civita connection are both C∞. Therefore the Riemannian exponential
map is C∞ and gives a local diffeomorphism at the identity.
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2. Suppose that Ds
µ(M) is the volumorphism group equipped with the right-invariant

Hr metric (49). If r ≥ 0 is an integer and s > n
2 + 1 + 2r then the metric and

its Levi-Civita connection are both C∞. Therefore the Riemannian exponential
map is C∞ and gives a local diffeomorphism at the identity.

3. Suppose G is either Ds(M) or Ds
µ(M) and r and s satisfy the conditions of

either (1) or (2), respectively. Then for any vo ∈ TeG the map

D expe(tvo) : TtvoTeG→ Texpe(tvo)G

is a bounded linear operator satisfying D expe(0) = I.

Consequently the metrics (49) admit smooth right-invariant Levi-civita con-
nections ∇r, right-invariant curvature tensors Rr, and carry geodesics defined for
at least a short time interval. So as in the first half of this study we can use fi-
nite dimensional techniques to analyze the geodesic equation, the derivative of the
exponential map, and study conjugate points in terms of the Jacobi equation.

Let Gs be either Ds(M) or Ds
µ(M), gs their tangent spaces at the identity,

and assume from now on that r and s satisfy the conditions of either (1) or (2) in
Theorem 7. A superscript r will denote the completion of gs in the norm induced
by (49). The group coadjoint operator Ad∗

g : gr → gr is the metric adjoint of the
group adjoint operator(

Ad∗
gv, w

)
Hr = (v,Adgw)Hr , ∀ v, w ∈ g (50)

while the algebra coadjoint operator ad∗
u : gr → gr is the metric adjoint of the

algebra adjoint operator(
ad∗

uv, w
)
Hr = (v, aduw)Hr , ∀ v, w ∈ g. (51)

In complete parallel with Theorem 1, Corollary 1, and Corollary 2, without
change in the proofs, we obtain

Theorem 8 If Gs is the full diffeomorphism group Ds(M) or the volumorphism
group Ds(M) with a right-invariant metric Sobolev metric (49) such that r and s
satisfy the conditions of either (1) or (2), respectively, in Theorem 6 then a curve
η(t) ∈ Gs is a geodesic if and only if the curve v(t) in gs, defined by the flow
equation

η̇(t) = dRη(t)v(t) (52)

satisfies the Euler equations

v̇(t) = −ad∗
v(t)v(t). (53)

Corollary 3 If η(t) is a curve in Gs with velocity field v(t) ∈ gs defined through
(52) and satisfying (53) with initial conditions η(0) = e and v(0) = vo then we
have the conservation law

v(t) = Ad∗
η−1(t)vo. (54)

As before, define Kv : gr → gr by

Kv(w) = ad∗
wv. (55)

Corollary 4 If η(t) is a curve in Gs with velocity field v(t) ∈ gs defined through
(52) and satisfying (53) with initial conditions η(0) = e and v(0) = vo then

Kv(t) = Ad∗
η−1(t)KvoAdη−1(t). (56)
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Hr Compactness of Kv and Hr Boundedness of the Adjoint Operators

Properties (A) and (B) are not automatic in infinite dimensions and require proof
on a case-by-case basis. We now summarise the results of [34] which demonstrate
boundedness and invertibility of the adjoint and coadjoint operators, aswell as
their product on diffeomorphism groups, and which demonstrate the compactness
of the operator Kv(t) on diffeomorphism groups and their Lie algebras.

Proposition 5 (Lemma 6.3 and Remark 6.4 [34]) For each of the groups con-
sidered in Theorem 6 there is a critical value ro such that when r > ro and s is
sufficiently large the operator Kv : gr → gr is compact for any v ∈ gs. The critical
values ro and required values of r and s so that Theorem 6 is also satisfied are:

1. For Ds(M), ro = 1
2 , r ≥ 1 and s > 3r + n

2 ;

2. For Ds
µ(M2), ro = −1

2 , r ≥ 0 and s > 3r + 3
3. For Ds

µ(Mn), n ≥ 3, ro = 0, r ≥ 1 and s > 3r + 1 + n
2

Remark 4 Proposition 5 holds independently of the well-posedness results given
in Theorem 6 and is valid for even smaller values of r and s. But the application
of these results in our situation require the well-posdness results of Theorem 6 to
hold which is why we have stated Proposition in this way. This is explained in
[34].

For boundedness and invertibility of the adjoint and coadjoint operators, and
their product, we have

Proposition 6 (Proposition [34] Assume that r > ro and s > n
2 + |r| + 1 for

Gs = Ds(M) or Gs = Ds
µ(M). Then for any η in either of the considered groups

the maps Adη, Ad∗
η, and Λη = Ad∗

ηAdη are bounded invertible linear operators on
gr.

Finally,

Proposition 7 (Theorem 6.5 [34]) Assume that r and s satisfy the conditions of
Proposition 6. Then for a geodesic η(t) of an Hr metric on one of the groups Gs,
the operator

Ω(t) : gr → gr (57)

Ω(t)w =

∫ t

0

Adη−1(s)Ad∗
η−1(s)w ds

is invertible on gr.

Proof. The proof of this statement is the first half of the proof of Theorem 6.5 in
[34].

Jacobi Fields

From now on we will assume that the Sobolev indices s and r, relative to the group
Gs we are talking about are chosen so that the conclusions of Propositions 5 and
6 hold. Consider a geodesic η(t) = expe(tvo) in Gs starting from the identity e in
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the direction vo ∈ gs and let szo be a perturbation of vo for some small parameter
s ∈ (−ϵ, ϵ) so that η(s, t) = expe(t(vo + szo) is a variation of geodesics; the Jacobi
field J(t) along η(t) satisfying J(0) = 0 and J̇(0) = zo is defined by

J(t) = ∂s|s=0η(s, t) = D expe(tvo)tzo.

Denote the solution operator to the Jacobi equation (??) by Φ(t)

Φ(t)zo := J(t) (58)

which is a bounded linear operator from TeG
s to Tη(t)G

s by Theorem 6.

Proposition 8 Suppose Gs is one of the groups given in Theorem 6 with right-
invariant Hr metric. Let η(t) be an Hs geodesic with η(0) = e and η̇(0) = vo ∈
TeG

s. Then every Jacobi field J(t) along η(t), with initial conditions J(0) = 0 and
J̇(0) = zo, satisfies the following system of equations on gs

∂ty − advy = z (59)

∂tz + ad∗
vz +Kvz = 0 (60)

where J(t) = dRη(t)y(t) and η̇(t) = dRη(t)v(t) as in (53).

When the exponential map is C1 the Jacobi system (59) and (60) is well-posed
on gs - this is part (3) of Theorem 6 - despite the fact that the adjoint and coadjoint
operators involve derivative loss. The derivation of this system is formally the same
as the one given in the proof of Proposition 3.

Equation (20) is the linearised Euler equation and we denote its solution op-
erator by

S(t)zo = z(t). (61)

Following the remarks above, S(t) is a bounded linear operator between gr and
gr. Denote the solution operator to the Jacobi system (59) and (60) by Φ(t)

Φ(t)zo := J(t) (62)

which is a bounded linear operator from TeG
s to Tη(t)G

s by Theorem 7.

Proposition 9 Let Gs, η(t), and v(t) be as in Proposition 8 with s and r chosen
so that the conclusions of Propositions 5 and 6 hold. Then the solution operator
(61) to the linearised Euler equation (60) is related to the solution operator (62)
to the Jacobi equation (??) by

Ad∗
η−1(t) = S(t) +Kv(t) ◦ dRη−1(t) ◦ Φ(t) (63)

which is defined on gr

Proof. Identical to the proof of Proposition 4.

Analogous to Theorem 2 we see that the Euler-Arnold equations can be written
as a feedback system and the geodesic evolution is the time average of the linearised
geodesic evolution with the same initial conditions.

Theorem 9 The Euler-Arnold equations of Theorem 8 can be re-written as a
feedback system

∂tṽ(t) = −ad∗
v(t)ṽ(t) −Kv(t)ṽ(t)

v(t) =
1

t

∫ t

0

ṽ(s) ds

v(0) = ṽ(0) = vo



Right-Invariant Geometry 33

The Exponential Map

Before stating the infinite dimensional analogue of Theorem 3, let us summarise
what has been done so far. Given a geodesic η(t) of a right-invariant Hr metric,
belonging to one of the groups Gs, with Hs velocity vector dRη(t)−1 · η̇(t) =
v(t) ∈ gs, the solution operator to the linearized Euler equations is related to the
coadjoint operator and the solution operator to the Jacobi equation via

Ad∗
η−1(t) = S(t) +Kv(t) ◦ dRη−1(t) ◦ Φ(t)

which is valid on gr for r < s. If, in addition, r and s satisfy the hypotheses of
Propositions 5 and 6 then the operator Kv : gr → gr is compact for all v ∈ gs and
the operators Adη, Ad∗

η, Ad∗
ηAdη, and Ω(t) are invertible bounded linear operators

on gr.

Theorem 10 Suppose Gs is any one of the above Lie groups with right-invariant
Hr metric (·, ·)Hr and that r and s satisfy the hypotheses of Propositions 5 and
6. Let η(t) be a geodesic with η(0) = e and η̇(0) = vo ∈ gs, let J(t) = dRη(t)y(t)

be the Jacobi field along η(t) with initial conditions J(0) = 0, J̇(0) = zo ∈ gr, and
let z(t) be the solution to (60) with initial condition z(0) = zo ∈ gr. Then

1. If zo ∈ (kerKvo)⊥ ⊂ TeG
r then y(t) ∈

(
kerKv(t)

)⊥ ⊂ gr for all t and the
derivative of the exponential map can be represented on gr by

D expe(tvo)tzo = dRη(t)K̃
−1
v(t)

(
Ad∗

η−1(t) − S(t)
)
zo, (64)

where K̃v(t) denotes the restriction of Kv(t) to
(
kerKv(t)

)⊥
on which it is an

isomorphism.
2. If zo ∈ kerKvo ⊂ gr then y(t) ∈ kerKv(t) ⊂ gr for all t and is never zero for

t > 0. The derivative of the exponential map is given by

D expe(tvo)tzo = dLη(t)

∫ t

0

Adη−1(t)Ad∗
η−1(t)zo ds. (65)

Proof. We’ll step through the four Lemmas proved in the finite dimensional case
and point out where the results on Kv, Adη, Ad∗

η, Ad∗
ηAdη, and Ω(t) should be

used.
Lemma 1: follows just as in the finite dimensional case using Corollary 4, and

boundedness and invertibility of Adη and Ad∗
η.

Lemma 2: follows the finite dimensional proof substituting invertibility of Ω(t)
in the Hr topology (Proposition 7); invertibility and boundedness of Adη−1Ad∗

η−1

in the Hr topology (Proposition 6); and the orthonormal basis of eigenvectors
spanning Hr which is guaranteed by the spectral theorem for compact (skew)
self-adjoint operators (Proposition 5).

Lemma 3: follows the finite dimensional proof substituting corollary 4; and the
orthonormal basis of eigenvectors spanning Hr which is guaranteed by the spectral
theorem for compact (skew) self-adjoint operators.

The remainder of the proof follows exactly the final part of the proof of The-
orem 3 substituting the orthonormal basis of eigenvectors spanning Hr which
is guaranteed by the spectral theorem for compact (skew) self-adjoint operators;
boundedness and invertibility of Adη and Ad∗

η, boundedness of the solution oper-
ator S(t) on Hr; and the analogous applications of Lemmas 1 - 3.
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Remark 5 If the geodesic η(t) and it’s velocity field v(t) are C∞ smooth then the
formula for the derivative of the exponential map is valid on gs in the strong Hs

topology.

Conjugate Points

In contrast to finite dimensions, a linear operator can be injective while failing to
be surjective (for example, the shift map in l2) and, consequently, two types of
conjugacies can occur in infinite dimensions. A point at which the derivative of the
exponential map is not injective will be called a monoconjugate point, while a point
at which the derivative is not surjective will be called an epiconjugate point. On an
infinite dimensional ellipsoid in l2 with the induced metric, Grossman [13] showed
that there exist finite geodesic segments which contain both types of conjugate
points, while on an infinite dimensional sphere in l2 there exist conjugate points of
infinite order. In finite dimensional geometry this phenomenon cannot occur, but
Smale [43] introduced a class of maps in infinite dimensions for which this sort of
behaviour is excluded.

A bounded linear operator between Banach spaces is said to be Fredholm if it
has closed range and its kernel and co-kernel are finite dimensional; the index is
defined as the difference between the dimension of the kernel and the dimension
of the co-kernel. A smooth map f is said to be a Fredholm map if its Frechet
derivative df(p) is a Fredholm operator at each p.

Ebin, Misio lek, and Preston [8] proved that the L2 (H0) exponential map expe

on Ds
µ(M2) is a non-linear Fredholm map of index zero, which directly implies that

monoconjugate and epiconjugate points coincide, and are isolated and of finite
multiplicity along isolated geodesic segments. By the Sard-Smale Theorem the set
of singularities form a set of first Baire category; thus the structure of conjugate
points of expe looks like that of a finite dimensional manifold. However, they
also showed that the L2 exponential map on Ds

µ(M3) for a closed 3-dimensional
manifold is not Fredholm by constructing a geodesic along which a sequence of
monoconjugate points accumulate on a strictly epiconjugate point. These results
were extended by Misio lek and Preston [34] to the more general setting of Sobolev
Hs diffeomorphism groups with a weak right-invariant Sobolev Hr metric, which
is also the setting of this section. The same properties of the adjoint operators
and Kv which are used to prove the Fredholm property are those which allow
Theorem 3 in the finite dimensional setting to lift to the infinite dimensional
setting of Theorem 9. In parallel with Theorem 4 we have

Theorem 11 Let Gs, gs, (·, ·)Hr with s and r as in Theorem 9, and suppose the
geodesic η(t) and its velocity field v(t) are C∞ smooth. Then η(t∗) is conjugate to

η(0) = e if and only if there exists a zo ∈
(
kerKv(0)

)⊥
such that

Ad∗
η−1(t)zo = S(t∗)zo

The smoothness assumption is not restrictive: almost all known examples of
conjugate points in Ds

µ(M2) and Ds
µ(M3) occur along smooth stationary geodesics

(geodesics whose velocity vector is independent of time) - see for example, [31],
[32],[42], [27], [5] - the other examples are constructed along smooth non-stationary
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geodesics [4]. We are unaware of any examples of conjugate points along non-
smooth geodesics.

There is also a growing interest in the exact relationship between conjugate
points and the qualitative behaviour of hydrodynamical systems (see the aforemen-
tioned references, or Hoffman and Manning [16] and Manning [28] for conjugate
points in a different physical setting).

Eulerian and Lagrangian Stability on Diffeomorphism Groups

For k ≥ 0, a geodesic η ∈ Ds
µ is said to be Lagrangian Hk (linearly) stable, if every

solution of the Jacobi Equation (??) along η remains bounded in the Sobolev Hk

norm.

A solution to the Euler-Arnold equations (53) is Eulerian Hk stable if every
solution of the linearised Euler equations (60) remains bounded in the Sobolev
Hk norm. Intuitively, a solution is Eulerian stable if nearby velocity fields remain
nearby.

Here we give a small application to the L2 Lagrangian and Eulerian stabil-
ity of geodesics of the L2 metric on the volume-preserving diffeomorphism group
Ds

µ(M2) of a closed surface with trivial cohomology. A similar study was first given
by Preston [41] which related Lagrangian and Eulerian stability assuming some
topological restrictions on the solutions considered.

Any Hs divergence-free vector field on M2 can be written as the rotated gra-
dient vF = ∇⊥F of an Hs+1 function F : M2 → R. In this case the group adjoint
operator can be written on functions using the chain rule as

AdηvF = vF◦η−1 .

Define a metric on TeDs
µ by

⟨vF , vG⟩ =

∫
M

F ·Gdµ

which is related to the standard L2 metric on vector fields

(vF , vG)L2 =

∫
M

g(vF , vG) dµ

by

(vF , vG)L2 = −⟨v∆F , vG⟩

where ∆ is the Laplace operator. A short calculation then shows that the group
coadjoint operator is

Ad∗
ηvF = v∆−1(∆F◦η).

Theorem 12 Let Ds
µ(M2) be the volume preserving diffeomorphism group of a

closed surface M2 with trivial cohomology and suppose that the conditions of The-
orem 6, and Propositions 5, 6, and 7, are met. Suppose η(t) is a stationary geodesic
of the L2 metric with velocity vo.
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1. If zo ∈ kerKvo then the norm of z(t) is uniformly bounded in t while the
corresponding Jacobi field grows at most linearly in t

∥z(t)∥L2 ≤ C1 ∥zo∥L2 , ∥J(t)∥L2 ≤ C2t ∥zo∥L2

for finite constants C1 and C2;
2. If zo ∈ (kerKvo)⊥ then

∥z(t)∥L2 ≤ C2 · ∥zo∥L2 + C3 ∥J(t)∥L2 .

for finite constants C2, and C3; and

∥J(t)∥L2 ≈ O
(
∥z(t)∥L2

)
as t→ ∞

Proof. We’ll begin with an observation: for any η ∈ Ds
µ(M2) and any vF ∈

TeDs(M2) ∥∥Ad∗
ηvF

∥∥
L2 ≤ C ∥vF ∥Hs

for some finite constant C. To see this, let vF ∈ TeDs
µ(M2) and use the expression

for the coadjoint operator and the relationship between the two metrics:∥∥Ad∗
ηvF

∥∥
L2 =

(
v∆−1(∆F◦η−1), v∆−1(∆F◦η−1)

)
L2 = −⟨v(∆F◦η−1), v∆−1(∆F◦η−1)⟩

≤
(∫

M

(∆F ◦ η) · (∆F ◦ η) dµ

) 1
2

·
(∫

M

(∆−1 (∆F ◦ η)) ·
(

∆−1 (∆F ◦ η)
)
dµ

) 1
2

≤ C

(∫
M

(∆F ◦ η) · (∆F ◦ η) dµ

)
since ∆−1 is a bounded linear operator

= C

(∫
M

(∆F ) · (∆F ) dµ

)
since η is volume preserving

= C · ∥F∥H2

≤ C̃ · ∥vF ∥H2 by the Poincaré inequality

≤ C̃ · ∥vF ∥Hs since s > 2.

With this observation in hand the remainder of the proof is almost identical to
the proof of Theorem 5. Part 1. follows in exactly the same way as part 1 of
Theorem 5. Part 2. follows exactly that of the first half of part 3. in Theorem 5
because Kvo has bounded spectrum. But the second half of the proof of part 3. in
Theorem 5 breaks down in this setting because Kvo is compact and it’s spectrum
accumulates on 0 - therefore there is no way to bound Kvoy(t) from below by
the smallest eigenvalue. We can, however, assert some long time behaviour: by
Proposition 9 and the above observation we have

∥Kvoy(t)∥L2 ≤
∥∥Ad∗

η(t)−1zo
∥∥
L2 + ∥z(t)∥L2 ≤ C · ∥zo∥L2 + ∥z(t)∥L2 .

If we expand y(t) in the orthonormal basis of eigenvectors {ψi} of Kvo as

y(t) =
∑
i

hi(t) · ψi

and calculate the L2 norm of Kvoy(t) we get

∥Kvoy(t)∥2L2 =
∑
i

|λi|2 hi(t)2.
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So the L2 norm of Kvoy(t) is a re-weighting of the L2 norm of y(t) by positive
constants and for very large t ∥y(t)∥L2 ∼ ∥Kvoy(t)∥L2 ; therefore the long time
growth is

∥J(t)∥L2 = ∥y(t)∥L2 ≈ O
(
∥z(t)∥L2

)
as t→ ∞.

Towards a BCH Formula on the Diffeomorphism Group with a Right-
Invariant Metric

Poincaré’s derivation of the BCH series for the Lie group exponential map begins
with his formula for the derivative of the exponential map

DeX · Y = dReX

eadX − I

adX

where
eadX − I

adX
= f(adX) =

∑
k=0

1

(k + 1)!
adk

X

is expressed using the functional calculus for the analytic function

f(x) =
ex − 1

x
.

In a sufficently small neighbourhood U of 0 in g this function is invertible

f−1(x) =
x

ex − 1
,

and using standard properties of the functional calculus

f(adX)−1 = f−1(adX) =
adX

I − eadX

which gives an analytic mapping: g ⊃ U ∋ X 7→ f−1(adX) ∈ L(g, g). Setting

eZ(t) = etX · eY

we can derive a differential equation for Z(t) and compute the value of Z(1), which
will express group multiplication using Lie algebraic data. Two good references for
the details are [6] and [14]. Continuing formally and ignoring all analytic details
of convergence, the time derivative of the left hand side can be computed with
Poincaré’s formula and gives

dReZ(t)f(adZ(t)) · Z′(t) = dRetX ·eY f(adZ(t)) · Z′(t)

while on the right hand side we have, using properties of flows discussed in the
Algebra and Geometry section,

d

dt
etX · eY = dRetX ·eY ·X.
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Together, these give

Z′(t) = f−1(adZ(t)) ·X =
adZ(t)

I − eadZ(t)
·X.

We need to rewrite adZ(t) in terms of X and Y and the identity to use is

AdeV = eadV .

This is not hard to prove and can be deduced from the definition of the group
and algebra adjoint operators and the fact that they are representations, but the
reader may like to consult the suggested references. Then

eadZ(t) = AdeZ(t) = AdetX ·eY = AdetX · AdeY = etadX · eadY .

Now for any V we can write

V = log
(
I +

(
eV − I

))
=

∞∑
k=0

(−1)k

(k + 1)!

(
eV − I

)k+1

using the Taylor series for the log, which gives

V

eV − I
=

∞∑
k=0

(−1)k

(k + 1)!

(
eV − I

)k
.

Substituting this back into the ODE for Z with V = adZ(t) and integrating
gives

Z(1) = X +

∫ 1

0

∞∑
k=0

(−1)k

(k + 1)!

(
etadX · eadY − I

)k
dt ·X.

Inserting the series expansions for the exponentials, expanding, collecting terms,and
integrating leads to Dynkin’s formula which expresses Z(1) as a series of iterated
Lie brackets of X and Y .

We would like to mirror this kind of derivation to obtain an analogous formula
a right-invariant exponential map and we now outline a program of future work
for doing this. The starting point should be a relation of the form

expe (sZ(t) + Y ) = expe(stX) ⋆ expe(Y ) (66)

with Z(0) = 0. Because our formula was derived in terms of Jacobi fields which
are zero at time t = 0 we need to consider 2-parameter variations of geodesics -
a “shooting” parameter s and a variation parameter t. Letting ηt(s) = η(s, t) =
expe (sZ(t) + Y ) we consider the formula for the derivative of the exponential
map given in Theorem 3 to be along the geodesic ηt(s). The time derivative of the
opening expression (66) gives

D expe(sZ(t) + Y ) · sZ′(t) = sdRexpe(stX)⋆expe(Y ) ·X(t)

and at s = 1 we have

D expe(Z(t) + Y ) · Z′(t) = dRexpe(tX)⋆expe(Y ) ·X(t).
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Here we hit our first road block: the formulas (64) and (65) for the derivative of the
exponential map differ depending on whether or not Z′(t) belongs to kerKsZ(t)+Y

or kerKsZ(t)+Y
⊥. By Lemma 1 each of these subspaces is closed under the Lie

bracket but we either need to know that their images under the exponential map
are closed subgroups of G or if we can place some reasonable assumptions on X
and Y so that Z(t) remains in one of the subspaces for all t:

Problem 1 Determine if expe (kerKV ) and expe (kerKV )⊥ are closed subgroups.
Or determine conditions on X and Y so that a pre-image of the group product
belongs to one subspace.

Assuming we solve Problem 1 and know which formula for D expe should be
applied and inverted, the next problem is the following: although the original
BCH problem was to solve an equation in two non-commuting indeterminants,
only one operator and its infinitesimal generator appears in Poincaré’s formula -
the group adjoint operator and the algebra adjoint operator, which do commute,
and are self-adjoint so that a good functional calculus exists for the remaining
analysis. There are four operators appearing in our formulas for the derivative of
the exponential map, and although they are nicely related it seems like they will
never commute; thus our problem involves dealing with a functional calculus of
several non-commuting operators. Several approaches to this problem exist: for
example, the functional calculus developed via Clifford analysis by Jeffries [18];
functions of non-commuting operators developed by V. P. Maslov and company
[29], [35]; the non-commuting variable approach of Taylor [45], [46]; or Feynman’s
operational calculus for systems of non-commuting operators [9]. It’s not obvious
which calculus is right for this setting and may even depend on the algebraic or
topological structure of G, and seems like a difficult problem:

Problem 2 Determine a good spectral representation for differences and products
of the non-commuting operators Ad, Ad∗, S, and K.

In view of Theorems 5 and 6 a good starting place for understanding problems
1 and 2 would be compact Lie groups or the Heisenberg groups.
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