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Using deep learning models to accelerate the design
of soft robots with genetic algorithms
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ICube, Université de Strasbourg - CNRS - INSA Strasbourg, France
mosserl@unistra.fr

Abstract. The motion of soft robots is intrinsically linked to their shape. Design
of soft robots is then still a challenge, with a very large design space to explore in
terms of possible shapes. Generative methods can be of interest, but they require
intensive use of robots motion prediction. We assess the interest of using deep
learning models to accelerate the synthesis. The case of pneumatically-actuated
structures is considered. We show first that a Resnet model can accurately de-
scribe the structure motion after learning on a dataset based on finite element
simulations. Second, we show that the model accuracy can be maintained during
a synthesis, outside the initial dataset, using transfer learning.
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1 Introduction

Soft robots are structures made of flexible material, for which motion is obtained by
various means such as cable or pneumatic actuation [1]. The latter is largely considered
with so-called soft pneumatic actuators (SPA) [2], the elementary components of a soft
robot. Pneumatic chambers are then distributed in the SPA body and they allow defor-
mation of the structure. Design methods for these actuators still need to be developed
[3, 4]. With the freedom of shape allowed by additive manufacturing techniques [5], the
design space is in particular growing dramatically and efficient design methods are yet
to be proposed.

The gold standard to assess a SPA motion is to use finite element analysis (FEA)
[6, 7]. Designing SPA using FEA and evolutionary algorithms such as genetic algorithms
could be interesting to get a generic design method [8], but the computational cost of
FEA limits the feasibility. In the literature, deep learning (DL) models have been proven
to be relevant for the prediction of soft structure deformation under various loadings [9–
11]. During a SPA design, the problem of prediction using DL is however quite different:
the model has to estimate the displacements of a structure, while the latter is modified
by the design process. At the same time, the loading is also modified as it is related to
the pressurization of the SPA.

In this paper, we thus assess the adequacy for such use of a CNN model. First, we
describe the SPAs to be modeled. A simplified design problem is considered to study
the limitations of a CNN model when the training dataset is of limited size compared
to the full design space. We then study the impact of bias in the training dataset in
a situation where the design space can be exhaustively explored. Finally, we assess the
model capacity to remain accurate while being used in other areas of the large design
space, using transfer learning (TL).



2 SPA definitions and CNN construction

2.1 SPA under consideration

Our assessment is based on the design of SPAs defined by a discrete distribution of soft
material through a 25x25x75 matrix of 0.4 mm voxels, to be compatible with experimen-
tal assessment in the future. The prismatic outer shape is considered fixed, considering
it is imposed by size requirements. The air supply is fixed at the center of the bottom
surface. A functional SPA is composed of a hollow structure connected to the air sup-
ply within the prismatic outer shape. Examples of three-dimensional SPAs generated
randomly accordingly are given in Fig. 1-a.
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Fig. 1: In (a), examples of SPA randomly generated for the learning dataset (blue : void, red :
filled), in (b) the points of interest used to define the SPA behavior with, from left to right, 1,
4, 12 and 20 points.

Our goal is to estimate the 3D displacements at n points of interest, located on the
external border of the SPA. The output of the CNN model is thus a vector of size 3n. In
the following, we estimate the prediction accuracy in 4 situations, i.e. with n=1, 4, 12,
20 as represented in Fig. 1-b. As a reference and for CNN training, FEA is performed
using Comsol. The SPA body is considered as composed of a soft linear elastic material
(E = 2 MPa, ν = 0.3).
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Fig. 2: Schematic representation of the reduced problem with the point whose displacement
is being tracked (red point), the outer edge (crossed-out voxels), the pneumatic input (violet
point), the fixed surface at the bottom of the design (blue surface) and the pneumatic chamber
(yellow) with full (grey) and empty (white) voxels.

2.2 Simplified design of SPA

Implementing a deep learning model for a large design problem makes it difficult to
identify the influence of biases during learning. Here, with a structure composed of 25×
25 × 75 voxels, there are 1014096 possible designs of SPA. Thus, a simplified problem of
SPA design is considered for initial evaluation of CNN behavior. The design is 2D, and
described by 5× 5 matrix. SPA material is the same. There are then 1,338,341 possible
SPAs, all of which can be simulated using FEA: the whole design space can therefore be
explored. One example is depicted in Fig. 2.

2.3 CNN model construction

In [12], a Resnet model was successfully used to estimate the behavior of composite
structures under static loading. The composite structure is then defined as an array, with
2 possible materials for each cell. The model is then employed to predict the structure
mechanical behavior, e.g. displacement at a specific point. This is closely related to our
problem, so we decided to assess a similar approach. The implementation and training
of the Resnet is carried out using Tensorflow and Keras on the same computer.

To determine the number of parameters required to predict the mechanical behavior
of SPA, the number of residual convolution layers (RCL) is increased gradually, until an
RMSE of the order of 10−2 mm is reached. RCL are defined using full pre-activation
(Fig. 5) as it has shown great generalization performances. The Resnet takes as input
the matter distribution matrix defined as a matrix boolean values and outputs the 3n
vector representing the displacements of n points defined in Fig. 1-b and expressed in
millimeters.

3 Initial assessment of CNN model prediction accuracy

3.1 Creation of the dataset

For this initial assessment, the simplified design is being used. There is one point of
interest (n = 1) on the outer edge of the SPA (Fig. 2, red point). The SPA structure is
defined (Fig. 2) by a 5×5 matrix. The dataset is generated by considering 3 rules: 1) the



outer strip of material needs to remain present to keep the SPA sealed ;2) the pneumatic
input is set at the center of the lower surface of the design (Fig. 2, violet point) ; 3) the
lower surface is attached to the base, so it has no displacement. During the generation
of designs, all voxels composing the inner structure of the SPA, that is submitted to the
internal pressure, must be connected to the pneumatic supply, as shown in Fig 2. Designs
that do not follow this rule are not considered.

With a reduced problem formulated in this way, we use a greedy algorithm to deter-
mine the set of possible SPAs. The dataset contains about 1.4 × 106 SPAs. From this
dataset, we analyze the training results of a Resnet network. The dataset is first ranked
using the value of displacement at the point of interest. This creates on purpose a bias
in the training data, which impact is analysed in the following.

3.2 CNN model construction

The constructed Resnet architecture is composed of an input convolution layer (CL), 11
residual convolution layers, a last CL followed by 2 dense layers of 128 neurons each.
Each CL have 64 3× 3 kernels. RCL are defined using full pre-activation as it has shown
great generalization performances. The Resnet takes as input the matter distribution
matrix defined as a matrix of 5× 5 boolean values and outputs the displacement of the
monitored displacement along y⃗. In order to facilitate the representation of results, we
limit ourselves to the study of vertical displacement coordinates.

An intial training of the Resnet is done using 100,000 SPA that randomly picked in the
dataset. 90 % are used as a training set and 10 % as a validation set. RMSProp is being
used for the training as it here provides better performances than Adam. The remaining
individuals are used to test the model performance. The training is done through 300
epochs with a learning rate of 10−4 and early-stopping. The performance of this initial
training, evaluated on the test set, is shown in Fig. 3. The results show that the Resnet
is able to give an estimate of displacement with an accuracy of less than 10 µm for the
entire dataset. The R2 coefficient is then of 0.99.
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Fig. 3: Learning results on the whole dataset without the introduction of bias with training
data (yellow) and test data (black).



3.3 CNN behavior

We seek to quantify the loss of performance of the network’s estimation when its learning
is conducted on a non-representative set of all SPAs. To this end, the complete dataset
obtained after the initial sorting operation is segmented in 2 domains, using a threshold
on the achievable displacement at the point of interest. The domain with the smallest
displacements is used to build the training dataset and the test dataset. The other domain
is used as the bias control dataset. 4 situations are considered, with 20%, 40%, 60% or
80% of designs with smallest displacements. The training dataset contains 100,000 SPAs
for each assessment.

The training results are available on Fig. 4 and on Table 1.

considered training training Test Test bias control bias control
displacement RMSE R2 RMSE R2 RMSE R2

80% selection 9.0 · 10−3 0.999 9.0 · 10−3 0.999 1.14 · 10−1 0.350

60% selection 8.0 · 10−3 0.999 8.0 · 10−3 0.999 2.54 · 10−1 -1.745

40% selection 7.0 · 10−3 0.999 7.0 · 10−3 0.999 3.54 · 10−1 -3.687

20% selection 6.0 · 10−3 0.998 6.0 · 10−3 0.998 8.43 · 10−1 -38.752

Table 1: Presentation of training results on 100,000 data points taken from a set of chambers
with displacement associated with the best 80, 60, 40 and 20 percent of the data in the dataset.

When we evaluate the network’s performance on the training domain, we find that it
does not differ from the initial training, for both training (Fig. 4, yellow) and test (Fig. 4,
black) datasets. The CNN is then able to provide a satisfactory estimate of vertical
displacement at the monitored point. The CNN performance is, however, insufficient on
the bias control dataset (Fig. 4, blue). We note that this estimator loses precision when
the maximum displacement of SPAs considered in the training is diminished.

The bias introduced in this learning process allows us to understand the possible issues
during the design of SPAs. During the initial generation of SPAs, it is difficult to propose a
dataset that offers an exhaustive representation of all possible displacements. If the initial
SPA generation process is based on unguided random generation, we can anticipate that
a bias will be introduced, that will impact the model built by learning. We can also
anticipate that other biases, such as a bias linked to the size of the pneumatic chambers,
will impact our initial dataset. So, rather than focusing on the initial generation method,
in the following we investigate the efficiency of correcting this bias through learning
transfer steps.

4 CNN for SPA design with transfer learning

4.1 CNN model learning

We now focus on the SPA under consideration initially, as described in 2.1. The con-
structed Resnet architecture (Fig. 5) is composed of an input convolution layer (CL), 16
residual convolution layers, a last CL followed by an average pooling layer and 2 dense
layers of 128 neurons each. Each CL have 64 3×3×3 kernels. RCL are defined using full
pre-activation (Fig. 5) as it has shown great generalization performances. The Resnet
takes as input the matter distribution matrix defined as a matrix of 25×25×75 boolean
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Fig. 4: Plot of estimated displacements versus simulated displacements for the different drives
performed on the lowest 80% (top-left), 60% (top-right), 40% (bottom-left) and 20% (bottom-
right) displacements.

values and outputs the 3n vector representing the displacements of n points defined in
Fig. 1-b and expressed in millimeters.

For its training, an initial dataset of 100,000 designs is first randomly generated. The
simulation time is about 8 days using 1 PC (Intel i9-10900KF, 64 GB of RAM, NVIDIA
RTX-3090).

The training of the Resnet is done using 60,000 SPA randomly drawn in the initial
dataset (90 % as training set and 10 % as validation set) using RMSProp as it here
provides better performances than Adam. The remaining 40,000 SPA are used to test
the model performance. The training is done through 20 epochs with a learning rate of
10−4 and early-stopping. The performance of this initial training, evaluated on the test
set, is shown in the table 2. The results show that, with initial training, the Resnet is
able to give an estimate of displacement with an accuracy of less than 10 µm for the 4
situations under consideration. In addition, one estimation of SPA performance requires
a computational time of less than 1 ms, compared with 30 seconds for FEA.

4.2 CNN accuracy with transfer learning

During the SPA design, the design space is being explored to gradually tend to obtain
larger displacements, meaning better performances out of the initial dataset domain.



Flatten
Fully connected

64 neurons

Fully connected

64 neurons

Predicted

displacement

input

Convolution

64, (3,3,3)

Convolution

64, (3,3,3)

Convolution

64, (3,3,3)

Batch

Normalisation

Leaky

Relu

material

distribution

matrix
R
C
L

R
C
L

16 Residual

convolutionnal

Layer
Convolution

64, (3,3,3)
Average

pooling

Fig. 5: Resnet representation with its input as the material distribution matrix and its output
as a dense layer of 3n neurons.

When the Resnet is being used in a domain out of the initial dataset, prediction accuracy
may decrease significantly as we showed earlier on the simplified problem. To assess this,
a specific dataset of 830 SPA designs with greater displacements and far from the initial
dataset has been generated specifically (Fig. 6, blue and orange dots). We define our test
dataset with 800 SPA. The initial performance of the CNN is indicated in the second
column of Table 2. For example, precision is almost decreased by a factor 20 when 1
point of interest is considered, which means a strong loss of accuracy.

A transfer learning (TL) step is then considered. It is achieved through 10 epochs with
a learning rate of 10−5 with 3000 SPA. 1500 SPA are randomly drawn in the training
dataset of 60,000 SPA and the 30 extra SPA geometry are duplicated 50 times to have an
equal representation in the TL dataset. Performances of the test dataset are indicated in
the last column of Table 2. It highlights the relevance of TL in design space exploration
out of the initial domain. The loss of precision is then only by a factor 2, which could be
acceptable as it is only used to identify best design subspaces.

Considered Metrics Initial Before After
output training TL TL

1 R2 0.99 0.90 0.96
point RMSE 7.7 · 10−3 1.4 · 10−1 1.6 · 10−2

4 R2 0.99 0.92 0.94
points RMSE 9.0 · 10−3 1.8 · 10−1 1.8 · 10−2

12 R2 0.99 0.69 0.92
points RMSE 6.8 · 10−3 1.3 · 10−1 1.3 · 10−2

20 R2 0.98 0.81 0.89
points RMSE 7.3 · 10−3 6.5 · 10−2 1.1 · 10−2

Table 2: Resnet performance as a function of the number of points of interest, the use after
initial training, without and with transfer learning.
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Fig. 6: Displacement of 1 point of interest of the SPA. Black/Blue/Orange crosses represent the
initial dataset/the test dataset for TL/ the train dataset for TL

5 Conclusion

We investigated the use of a Resnet model to estimate the behavior of SPA during its
design. First, it reduces the computation time from 30 s to less than 1 ms in comparison
with FEA. The Resnet accuracy on a randomly generated population of designs is in the
order of 10 µm. This performance is obtained when focusing on 1 or multiple, here up to
20, points of interest. We have identified that learning the CNN on an initial population
of SPAs may be subject to certain biases. We then proposed to carry out a transfer
learning step on a reduced number of new data to correct the estimate proposed by the
CNN. The capacity to use transfer learning to improve the Resnet accuracy when it is
used during the synthesis, far from the initial dataset, was also evaluated. The loss of
precision can be reduced by a factor of 20 to 2 thanks to the TL.

The overall impact of computational time reduction obviously depends on the evolu-
tionary process, which is another aspect to investigate. A perspective will then to include
more advanced material models, to refine the design process, for instance including ma-
terial non-linearities that can be present with very soft materials.
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