
HAL Id: hal-04360638
https://hal.science/hal-04360638

Submitted on 21 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

DiffMaSIF: Surface-based Protein-Protein Docking with
Diffusion Models

Freyr Sverrisson, Mehmet Akdel, Dylan Abramson, Jean Feydy, Alexander
Goncearenco, Yusuf Adeshina, Daniel Kovtun, Céline Marquet, Xuejin Zhang,

David Baugher, et al.

To cite this version:
Freyr Sverrisson, Mehmet Akdel, Dylan Abramson, Jean Feydy, Alexander Goncearenco, et al.. Diff-
MaSIF: Surface-based Protein-Protein Docking with Diffusion Models. Machine Learning in Structural
Biology workshop at NeurIPS 2023, Dec 2023, New Orleans, United States. �hal-04360638�

https://hal.science/hal-04360638
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


DIFFMASIF: Surface-based Protein-Protein Docking
with Diffusion Models

Freyr Sverrisson*1 Mehmet Akdel*2 Dylan Abramson2 Jean Feydy3

Alexander Goncearenco2 Yusuf Adeshina2 Daniel Kovtun2 Céline Marquet2

Xuejin Zhang2 David Baugher2 Zachary Carpenter2 Luca Naef2

Michael M. Bronstein2 Bruno Correia1

1École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
firstname.surname@epfl.ch

2VantAI, New York, NY 10003, United States
firstname@vant.ai

3Équipe Inria HeKA, PariSanté Campus, 2 - 10 Rue d’Oradour-sur-Glane, 75015 Paris, France
jean.feydy@inria.fr

* These authors contribted equally to this work.

Abstract

Predicting protein-protein complexes is a central challenge of computational struc-
tural biology. Existing state-of-the-art methods rely on co-evolution learned on
large amino acid sequence datasets and thus often fall short on both transient and
engineered interfaces (which are of particular interest in therapeutic applications)
where co-evolutionary signals are absent or minimal. To address this, we introduce
DIFFMASIF, a novel score-based diffusion model for rigid protein-protein docking.
Instead of sequence-based features, DIFFMASIF uses a protein molecular surface-
based encoder-decoder architecture to effectively learn physical complementarity.
The encoder uses learned geometric features extracted from protein surface point
clouds. It directly learns binding site complementary through prediction of contact
sites as an auxiliary loss, and also allows for specification of known binding sites
during inference. It is followed by a decoder predicting rotation and translation
via SO(3) diffusion. We show that DIFFMASIF achieves state-of-the-art among
deep Llearning methods for rigid body docking, in particular on structurally novel
interfaces and low sequence conservation. This provides a significant advance
towards accurate modelling of low co-evolution protein interactions and their many
practical applications.

1 Introduction

Proteins orchestrate most cellular functions, many of which are derived from the way in which they
mutually interact. A protein’s three-dimensional structure directly defines its function and interactions
with other molecules. Recent groundbreaking work (Jumper et al., 2021) showed that deep learning
methods could be used to predict a significant fraction of protein structures to near-experimental
accuracy using the protein sequence and information about its evolutionary history. The accurate
prediction of protein-protein interactions, however, still remains an open challenge (Ozden et al.,
2023).

Traditionally, protein-protein complexes are structurally modelled through docking, where one
attempts to predict the conformations of proteins in the complex from the individual unbound
structures of the interacting proteins. Protein-protein docking methods typically involve constructing
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a pseudo-energy function derived from physical principles fitted on known protein-protein complexes,
potentially combined with known templates and heuristics (Vajda & Kozakov, 2009). Black-box
stochastic optimization techniques are then used to search for minima within the energy functions.
However, the search space of all possible conformations including backbone and side chain torsions
is infeasible to explore exhaustively (Harmalkar & Gray, 2021), therefore sampling techniques such
as Monte Carlo simulations are applied (Marze et al., 2018). As an initial approximation, rigid-body
docking (where the relative pose of one protein with respect to the other is determined) is often
performed, sometimes followed by an iterative refinement allowing backbones and side chains to
relax in presence of its interacting partner (Desta et al., 2020).

Current deep learning methods for protein-protein docking typically build on the same principles
as structure prediction, leveraging sequence representations trained via masked-language modelling
on large evolutionary sequence databases(Ketata et al., 2023; Jumper et al., 2021). While these tend
to perform well in case of co-evolved stable interfaces, they fail to capture the many structurally
diverse, transient and flexible interactions many proteins participate in. In addition, de-novo designed
interfaces as well as heavily recombined sequences such as antibody hypervariable regions, which
are very commonly used for therapeutic applications, lack co-evolution data. This leads to subpar
performance of existing deep learning approaches (Ozden et al., 2023).

It is known, however, that all protein interactions are mediated and understandable through steric
and electrostatic complementarity of the interface (Lawrence & Colman, 1993; Jones & Thornton,
1996). Early rigid-body docking approaches (Katchalski-Katzir et al., 1992) in fact relied on implicit
representations of protein surfaces and by using fast Fourier transform of a correlation function to
assess the degree of shape complementarity. Later, in a deep learning context, learned protein surface
representations (molecular surface interaction fingerprinting, or MaSIF), which can capture this
steric and electrostatic complementarity have proven to be powerful in predicting protein interactions
Gainza et al. (2020); Sverrisson et al. (2021); Gainza et al. (2023). In this paper, as a way to address
the limitations of co-evolution based approaches, we propose DIFFMASIF, the first score-based
diffusion model for rigid-body docking using a versatile surface representation of proteins.

Main contributions. DIFFMASIF is the first protein surface-based diffusion model, addressing the
limitations of current co-evolution reliant models. Second, we propose a novel joint-training strategy
for simultaneous binding site and protein-protein pose prediction. This enables site prediction at
inference time as well, as an easy way to add conditioning for site-specific docking. Third, we
use a novel encoder-decoder architecture that combines a surface-based vector-neuron (DGCNN)
encoder with E(3)-equivariant graph convolution decoder, trained to learn binding site structural
complementarity and rigid body docking via SO(3) diffusion, respectively. Finally, we show state-of-
the-art rigid body docking results, surpassing current machine learning methods on structurally novel
interfaces, as well as on docking of predicted AlphaFold monomers.

2 Methods

2.1 Data

To address the limitations of the typically used sequence-centric and small benchmark set, Dataset
of Interacting ProteinS (DIPS) (Townshend et al., 2019), with a test split comprised of Docking
Benchark 5 (DB5) (Vreven et al., 2015), we make use of a recently introduced dataset, PINDER with
a novel splitting strategy based on structural interfaces specifically designed to assess the protein-
protein docking task (Akdel et al., 2023). We detail the methods and splits produced by PINDER
in Appendix section 3. The large test set PINDER-xl consists of 1,756 dimers representing novel
structural interfaces, and the PINDER-af2 set of 72 dimers representing novel structural interfaces
released after the AlphaFold-Multimer (AF2MM) training date. To further test our method on the
more realistic use-case of using predicted structures for docking, for 90% of the complexes in the
PINDER-xl test set we use pairs of corresponding AlphaFold monomer predicted structures as input
for docking.
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Figure 1: Overview of the DIFFMASIF method. Protein surface point clouds are generated and fed
into a encoder-decoder network. The model learns both binding site prediction via an encoder, and
denoising a reverse diffusion process over rotations and translations via a decoder.

2.2 Model Architecture

The architecture of DIFFMASIF has two main components: an encoder and a decoder. Our study
adopts a diffusion process approach akin to the methodologies presented in Corso et al. (2022); Ketata
et al. (2023), described in Appendix section 1.2.

Encoder The encoder takes atom level features as input for both proteins, containing one hot
encoding of atom types and coordinates, which are passed to a dMaSIF layer to generate (1) surface
normals, (2) surface point coordinates, and (3) scalar embeddings from dMaSIF’s geodesic convolu-
tion layer, which are further scaled using MLP layers. k nearest neighbor graphs (k = 12) connecting
these surface nodes are constructed for the receptor (stationery chain) and ligand (movable chain)
separately and no cross information is communicated at this stage.

Binding-Site Auxiliary Task Building off the insights from DockGPT (McPartlon & Xu), where
including contact points improved complex prediction, we sought to construct a loss that differentiates
interaction site prediction from pose prediction. This auxiliary loss passes the result of the dMaSIF
MLP from both the ligand and the receptor through a cross-attention mechanism to predict whether a
surface node is part of the binding site or not. True binding site nodes are defined as those < 3Å from
the other surface. For both the ligand and receptor, only the top 512 predicted binding site nodes
each are used for the decoder, reducing the high compute and memory required by the decoders’
tensor-product convolution layers.

Decoder The decoder works on the joint PPI graph consisting of the top 512 predicted binding site
nodes of both the ligand and the receptor. The first component of the decoder is a DCGNN (with
vector neuron layers) (Wang et al., 2019; Deng et al., 2021) which takes coordinates and normal
vectors as input and outputs higher-dimensional vector embeddings. The vector features, surface
coordinates, and surface scalar features are then provided, to an E(3)-equivariant graph convolution
layer constructed using the E3nn library (Geiger & Smidt, 2022). The final output of the decoder is
the prediction of the translation and rotation required for the ligand coordinates.

Losses The combined denoising score loss and auxiliary binding loss is:

L = λBCELoss(ĉ, c) + S(sθ(x(t), argkmax512(ĉ), ϕ, ψ),
where ĉ and c are the predicted contact probabilities and ground truth contacts respectively, S is the
denoising score loss used in DiffDock-PP, sθ is the decoder model and ϕ and ψ are the true rotation
and translation scores sampled at time step t from p(xϕ(t)|xϕ(0)) and p(xψ(t)|xψ(0). Instead of
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DockQ CAPRI classification

Apo Holo Predicted

Method Acceptable Medium High Acceptable Medium High Acceptable Medium High

FRODOCK 35.41 20.7 8.48 96.58 95.56 91.12 38.22 31.81 11.68
HDOCK 25.94 14.96 8.23 98.01 97.72 97.04 36.25 30.41 13.4
PatchDock 15.21 7.73 2.74 80.75 77.9 62.98 26.41 20.83 5.46
GeoDock 2.99 0.0 0.0 12.76 1.37 0.0 5.84 0.76 0.0
DockGPT 14.46 6.48 1.25 42.2 33.54 21.3 31.24 20.83 4.19
EquiDock 1.25 0.75 0.75 0.17 0.0 0.0 1.59 1.21 0.76
DiffDock-PP 21.45 4.24 0.5 52.39 30.81 10.31 25.52 12.7 1.71
DIFFMASIF 22.94 7.48 2.49 58.83 40.72 16.69 47.11 25.84 3.11

Table 1: Table shows the complex prediction metrics for traditional physics docking tools FRODOCK,
HDOCK and PatchDock, and machine learning tools EquiDock, DiffDock-PP, DockGPT and DIFF-
MASIF on the PINDER (PINDER-xl) benchmark set. We report the percentage of systems covered by
DockQ CAPRI hit categories as "Acceptable" (or higher), "Medium" (or higher) and "High" solutions.
We report the metrics as oracles for the generative machine learning tools, such as DiffDock-PP and
DIFFMASIF and the traditional docking tools after generating 40 samples for each system.

the full noise-perturbed coordinates, the decoder model receives perturbed coordinates masked to
only include the 512 most likely contacts at time step x(t) . We balance these two losses with λ, a
weighting term.

Training We trained DIFFMASIF using the holo protein-protein pairs obtained from the PINDER
training set (236,128 systems), after subjecting them to various PINDER dataloader filters in order to
remove outliers. Specifically, we removed systems with elongated structures, chains with over 800
residues, and less than 4 atom types (all available filters are detailed in Appendix section 3). This
resulted in 134,278 total holo pairs. We adapt the dynamic noise sampling from DiffDock-PP, where
we sample noise for each system once per epoch. In addition, we also compute the auxiliary loss on
the binding site predictions, detailed in Appendix Algorithm 1.

Inference We performed denoising diffusion and generated 40 poses for each PINDER-xl and
PINDER-af2 system. Prior to this, we optimized the magnitude of translation and rotation perturbations
at each step by maximizing the DockQ scores of 10 PINDER validation systems. This optimization
resulted in scaling the perturbations by a factor of 6 for translation and 3 for rotation.

3 Results

We benchmarked DIFFMASIF against popular physics-based and deep learning-based methods using
the PINDER-xl test set (Appendix section 3.). The deep learning-based methods used were retrained
on the PINDER training set, as described in Akdel et al. (2023). As it is difficult to retrain the AF2MM
co-folding method with our data splits, we compare to this method using the PINDER-af2 hold-out
set (Appendix Table 2.). Each pose generated by a particular docking method was superposed to
the reference pose and evaluated using the CAPRI classification of DockQ scores, based on the
composite score that also encompasses Fnat – the fraction of native contacts, interface RMSD and
ligand RMSD (Basu & Wallner, 2016). For DIFFMASIF, we generated 40 poses per complex with a
reverse ODE using 40 steps. For all comparisons of DIFFMASIF, EquiDock, and DiffDock-PP, we
used the pose with the best DockQ out of the top 40 poses (defined as the oracle approach). These
results are shown in 1. A confidence model trained to rank these poses is an important future direction
to better enable DIFFMASIF application.

3.1 DIFFMASIF outperforms co-evolution based docking methods

Similar to DIFFMASIF, we generated 40 poses per test complex with DiffDock-PP with a reverse
SDE using 40 steps, and low temperature sampling with default parameters. As seen in Table
1, DIFFMASIF shows consistently better scores than DiffDock-PP and returns more acceptable
complexes (see Figure 3A for an example).
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In addition, Figure 2 demonstrates the percentage of acceptable poses returned by DiffDock-PP
and DIFFMASIF as a function of the average number of effective sequences (Neff , as calculated
by HHSuite (Steinegger et al., 2019)) available per complex. This can be seen as a measure of
co-evolution, as complexes with a high detectable co-evolutionary signal would be expected to
have deep MSAs. Both DiffDock-PP and AF2MM leverage this information implicitly or explicitly.
DiffDock-PP leverages ESM2-pretrained embeddings which learn co-evolution implicitly by learning
on large sequence databases, while AF2MM directly learns to predict complexes given paired MSAs.
From Figure 2, it is clear that DiffDock-PP performance drops when the average Neff goes below 5,
while DIFFMASIF is not affected. Thus, DIFFMASIF is a highly complementary approach to rigid
protein docking without reliance on co-evolutionary signals.

DiffMaSIF DockQ
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Figure 2: Percentage of acceptable DiffDock-PP and
DIFFMASIF complexes across different Neff .

Unlike the rigid body docking methods de-
scribed here, AlphaFold2-Multimer (Evans
et al., 2021) takes the sequences of both
proteins as input and co-folds them into a
complex structure, with a heavy reliance on
co-evolutionary signals between the inter-
faces involved. We ran the default AF2MM
pipeline (with the latest template date set
to September 2022) for the PINDER-af2
benchmark set of 72 complexes (Appendix
Table 1.). This resulted in 5 models per
complex from which we took the model
with the highest DockQ score, i.e an oracle
approach. AF2MM returned unacceptable
models for 23 of these complexes. DIFF-
MASIF predictions were acceptable or bet-
ter for 8 of these, again demonstrating the
complementarity of our approach for difficult interfaces (see Figure 3B for an example, and additional
PINDER-af2 benchmark in Appendix Table 2..

A.

B.

Figure 3: Docking of PDB ID: 6K3B (A) and 8FZZ (B). The two leftmost columns show DIFF-
MASIF’s ability to identify binding sites, with correctly identified interface points in green, and
the rest in red. The third and fourth columns show the DIFFMASIF predicted docking pose and
the ground truth pose, while the fifth column shows the DiffDock-PP predicted pose for A and the
AF2MM predicted complex for B.
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3.2 DIFFMASIF outperforms other tools in docking of predicted monomers

As seen in Table 1, the traditional physics-based docking tools (FRODOCK and HDOCK and
PatchDock) perform very well on docking holo structures, showcasing their ability to accurately
predict the rigid complex when the proteins already in bound conformation. However, these methods
show a sharp decrease in performance when predicted AlphaFold monomers are used as input for
docking, a more relevant use-case, falling behind DIFFMASIF. DIFFMASIF is able to generalise
also to predicted structures better than other machine learning based methods.

3.3 DIFFMASIF learns relevant protein-protein complex characteristics

Binding site prediction Using the dMaSIF contact probabilities, the DIFFMASIF encoder selects
the 512 most probable contacts for both the receptor and the ligand to use in further steps for pose
prediction. This ranking is based on the binding site auxiliary loss and thus is trained to cover the
interfaces of both proteins. From the 512 top ranked DIFFMASIF surface points of holo systems
in the PINDER-xl test set, 53% lie directly at the correct interface, a significant improvement over
randomly sampling 512 surface points, which would result in merely 12% of interface sites. Note that
sampling 100% of the 512 points from the binding site is unlikely to be desirable as the model might
want to leverage reference points not directly at the binding site to avoid clashing of two proteins
at peripheral sites. Figure 4A shows how the DockQ score of the predicted pose improves with
increasing binding site accuracy. In addition, systems with > 50% accurate binding site predictions
(n=873) resulted in considerably higher DockQ CAPRI hit rate with 81.01% ("Acceptable" or better)
using holo as monomers and 64.16% using predicted monomers, compared to the base performance of
58.83% and 46.11% respectively (Table 1). Thus, DIFFMASIF learns to recognize binding surfaces
thanks to the cross-attention between learned surface embeddings. This two-step scheme also has
the added benefit that known binding site information from either or both proteins can be utilized at
inference time to further improve interface specificity.

Neither Receptor or Ligand Receptor and Ligand

Binding site >50% B. C.A.

Figure 4: A DockQ distributions of complexes with accurate binding site prediction, i.e >50% of the
predicted surface points lie in the interface, for neither ligand nor receptor, either one of ligand or
receptor, and both. B) and C) Binding site precision and DockQ distributions for complexes with
PRODIGY (Vangone & Bonvin) contact probability > 90% and ≤ 90%.

Performance on physiological interfaces. As deep learning methods are often seen to be biased
due to the inherent biases in their training data, we wanted a complementary approach to verify
that DIFFMASIF learns biologically relevant surface and structural complementarity signals. We
demonstrate this in Figure 4 comparing the binding site precision (B.) and DockQ (C.) distributions
of interfaces with high and low contact probabilities predicted by PRODIGY (Vangone & Bonvin).
The differing distributions clearly favour dimers with higher probability physiological interfaces,
and confirms that DIFFMASIF learns structural complementarity without overfitting, despite the
unavoidable levels of noise present in protein complex experimental structure data used in training.
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4 Conclusion

We present the first purely structure- and surface-based diffusion deep learning model for protein-
protein docking. Our results demonstrate that ML models can achieve comparable results without the
use of co-evolutionary information, and out-perform in situations where such information is scarce
or not expected. In addition, DIFFMASIF is able to perform better than traditional physics based
algorithms on rigid docking of predicted monomers, which is a more realistic scenario. This effort
expands our toolbox for leveraging physico-electrochemical surface characteristics of proteins and
lends well to future efforts where the right combination of co-evolution and structural complementarity
can be learned across protein-protein space. In addition, we demonstrate the power of learning joint
interface prediction and pose generation, also enabling the use of knowledge-based priors to improve
prediction specificity. Overall, DIFFMASIF represents a step forward for protein representation
learning especially in the context of generative modeling.
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