$p$-adic algorithm for bivariate Gr\"obner bases - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

$p$-adic algorithm for bivariate Gr\"obner bases

Résumé

We present a $p$-adic algorithm to recover the lexicographic Gr\"obner basis $\mathcal G$ of an ideal in $\mathbb Q[x,y]$ with a generating set in $\mathbb Z[x,y]$, with a complexity that is less than cubic in terms of the dimension of $\mathbb Q[x,y]/\langle \mathcal G \rangle$ and softly linear in the height of its coefficients. We observe that previous results of Lazard's that use Hermite normal forms to compute Gr\"obner bases for ideals with two generators can be generalized to a set of $t\in \mathbb N^+$ generators. We use this result to obtain a bound on the height of the coefficients of $\mathcal G$, and to control the probability of choosing a \textit{good} prime $p$ to build the $p$-adic expansion of $\mathcal G$.
Fichier principal
Vignette du fichier
p-adic-GB.pdf (399.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04360580 , version 1 (21-12-2023)

Licence

Identifiants

Citer

Éric Schost, Catherine St-Pierre. $p$-adic algorithm for bivariate Gr\"obner bases. ISSAC 2023 - International Symposium on Symbolic and Algebraic Computation, Jul 2023, Tromsø, Norway. pp.508-516, ⟨10.1145/3597066.3597086⟩. ⟨hal-04360580⟩
27 Consultations
38 Téléchargements

Altmetric

Partager

More