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SPARSE MOMENTS OF UNIVARIATE STEP FUNCTIONS
AND ALLELE FREQUENCY SPECTRA

ZVI ROSEN, GEORGY SCHOLTEN, AND CYNTHIA VINZANT

Abstract. We study the univariate moment problem of piecewise-constant density func-
tions on the interval [0, 1] and its consequences for an inference problem in population
genetics. We show that, up to closure, any collection of n moments is achieved by a step
function with at most n− 1 breakpoints and that this bound is tight. We use this to show
that any point in the nth coalescence manifold in population genetics can be attained by a
piecewise constant population history with at most n− 2 changes. Both the moment cones
and the coalescence manifold are projected spectrahedra and we describe the problem of
finding a nearest point on them as a semidefinite program.

Given a finite collection A ⊂ N, we consider the convex cone M(A) of all moments (ma)a∈A
of the form ma =

∫
xadµ where µ is a nonnegative Borel measure on the unit interval [0, 1].

For consecutive moments A = {0, 1, 2 . . . , d}, this is a classical object in analysis and real
algebraic geometry. The problem of determining membership in the cone M(A) is known as
the truncated Haussdorff moment problem. See, for example, [2, 4, 5, 8].

In this paper we study moments coming from piecewise-constant density functions with
the idea of minimizing the number of pieces needed. Formally, we consider the set Mk(A) as

the closure of the set of moments (ma)a∈A where ma =
∫ 1

0
xaf(x)dx and f is a nonnegative

step function with at most k discontinuities. Our main theorem is the following:

Main Theorem 1. Mk(A) = M(A) if and only if k ≥ |A|−1.

This is the content of Theorem 1.5 and Corollary 1.12. The proof involves studying the
convex algebraic boundary of these cones and in particular showing that they are simplicial
(Corollary 1.9). When restricting to the moments of monotone density functions, only half
as many break points are needed (see Propositions 2.4 and 2.5).

Main Theorem 2. Every A-moment vector of a monotone density function is the limit of
A-moments of monotone step functions with ≤ k breakpoints if and only if k ≥ b|A|/2c.

One of our motivations for studying this problem came from its relation to the coalescence
manifold studied by [7]. The coalescence manifold Cn,k, formally defined in Section 3, is a
set of summary statistics in population genetics, derived from observing n genomes with a
population history consisting of k + 1 different population sizes. Our last main theorem,
appearing as Theorem 3.5, is that the coalescence manifold Cn,k coincides with an affine
section of the moments Mk(A) for A = {0, 2, . . . ,

(
n
2

)
− 1}.

Main Theorem 3. The coalescence manifold Cn,k is the intersection of Mk(A) with the
affine hyperplane of points with coordinate sum equal to one for A = {0, 2, . . . ,

(
n
2

)
− 1}.

That is, Cn,k =
{

(ma)a∈A ∈Mk(A) :
∑

a∈Ama = 1
}

.

The authors in [7] show that the manifold Cn,k stabilizes at k = 2n− 2, i.e. Cn,2n−2 = Cn,k
for all k ≥ 2n − 2. Together, the main theorems above improve this bound by a factor of
two, showing that the coalescence manifolds stabilize at k = n− 2 and this bound is tight.
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The connection with the moment problem also provides a description of Cn,n−2 as the
projection of a spectrahedron. The problem of finding the nearest point in Cn,n−2 to a given
point in Rn−1 can then be formulated as a semidefinite program.

This paper is organized as follows. In Section 1, we introduce formal definitions of the
moment sets Mk(A), study their convex and algebraic structure, and prove Theorem 1. In
Section 2, we analyze analogous questions for moment problems coming from monotone step
functions. The definitions and connections with the coalescence manifold Cn,k are given in
Section 3. Semidefinite descriptions of these sets are discussed in Section 4. Finally we end
with a discussion of open problems surrounding these interesting sets in Section 5.

Acknowledgements. Author Rosen thanks Dr. Yun S. Song for introducing him to this
topic. Authors Scholten and Vinzant were partially supported by NSF-DMS grants #1620014
and #1943363. This material is based upon work directly supported by the National Sci-
ence Foundation Grant No. DMS-1926686, and indirectly supported by the National Science
Foundation Grant No. CCF-1900460.

1. Moments of step functions

For k ∈ N, let Sk denote the set of nonnegative step functions on [0, 1] of the form

(1) f = y11[0,s1] +
k+1∑
i=2

yi1(si−1,si],

where 0 = s0 < s1 < . . . < sk < sk+1 = 1 and y1, . . . , yk+1 ∈ R≥0. Note that:

(1) Sk is invariant under nonnegative scaling,
(2) Sk ⊆ S` when k ≤ `, and
(3) Sk + S`, defined as {f + g | f ∈ Sk, g ∈ S`}, is a subset of Sk+`.

Elements of Sk define nonnegative measures on [0, 1]. We will be interested in the possible
moments of these measures. Given a finite collection A ⊂ N, we define to be the Euclidean
closure of the set moments given by density functions in Sk:

Mk(A) =

{(∫ 1

0

xaf(x)dx

)
a∈A

: f ∈ Sk
}
.

One important case is that of consecutive moments A = {0, 1, . . . , d}. For any finite
collection A ⊂ N, the moment cone Mk(A) can be expressed, up to closure, as the image
of Mk({0, 1, . . . ,max(A)}) under the coordinate projection πA : Rmax(A)+1 → RA given by
πA(m0, . . . ,mmax(A)) = (ma)a∈A.

Remark 1.1. By linearity of the integral, we see that Mk(A) inherits many properties of
Sk. That is, Mk(A) is invariant under nonnegative scaling, Mk(A) ⊆M`(A) when k ≤ ` and
Mk(A) +M`(A) ⊆Mk+`(A) (here, in the sense of the Minkowski sum), as desired.

We will be interested in comparing this to the full moment cone:

M(A) =

{(∫ 1

0

xadµ

)
a∈A

: µ is a nonnegative Borel measure on [0, 1]

}
.

The cone M(A) is dual to the convex cone of univariate polynomials supported on A that
are nonnegative on [0, 1], as will be discussed below in Proposition 1.6.
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vB(t)

vA(t)

Figure 1. The cone M(A) along with the curve segments vA([0, 1]) and
vB([0, 1]) for A = {1, 2} and B = {0, 1}.

When 0 ∈ A, the closure in the definition of M(A) is not necessary, and the extreme rays
of M(A) are come from point evaluations. That is, we can write M(A) as the conical hull
of the image of [0, 1] under the corresponding moment map:

M(A) = conicalHull {vA(t) : t ∈ [0, 1]} where vA(t) = (ta)a∈A.

See, for example, [8, Prop. 10.5].
When 0 /∈ A, this equality only holds up to closure, as the curve parametrized by vA(t)

includes the origin. In this case, M(A) = conicalHull {vA(t) : t ∈ [0, 1]}. As we will see
below, then we can still write M(A) as the conical hull of a curve segment. Specifically,
M(A) = conicalHull {vB(t) : t ∈ [0, 1]} where B = {a−min(A) : a ∈ A}.
Lemma 1.2. If A ⊂ N is finite and B = {a−min(A) : a ∈ A}, then M(A) = M(B).

Proof. For t ∈ (0, 1], the point vA(t) can be rewritten as tmin(A)vB(t), a scalar multiple of
vB(t). It follows that the conical hulls of {vA(t) : t ∈ (0, 1]} and {vB(t) : t ∈ (0, 1]} are equal.
We observe that the extreme ray vB(0) of M(B) can be attained in the closure of M(A) as
the limit of the moment of the step function f = ε−(min(A)+1)1[0,ε] as ε goes to zero:

lim
ε→0

∫ 1

0

xaf(x)dx = lim
ε→0

ε−(min(A)+1)

∫ ε

0

xadx = lim
ε→0

εa−min(A)

a+ 1
=

{
1

a+1
if a = min(A)

0 otherwise.

It follows that vB(0) belongs to M(A). Since M(B) can be written as the union of the cone
over vA(t) for t ∈ (0, 1] and the ray over vB(0), the equality between the two cones ensues:

M(A) = conicalHull {vA(t) : t ∈ [0, 1]} = M(B). �

Example 1.3. Consider A = {1, 2} and B = {0, 1}. Then

M(B) = conicalHull{(1, t) : t ∈ [0, 1]} = conicalHull{(t, t2) : t ∈ [0, 1]} = M(A).

Here we see the need for taking closures when 0 6∈ A. The point (1, 0) = vB(0) is not
contained in the the conical hull of the curve segment {(t, t2) : t ∈ [0, 1]} but is contained
in its closure. See Figure 1. In this case, the boundary of M(A) = M(B) consists of scalar
multiples of vB(0) and vB(1), both of which belong to M1(A), by Proposition 1.4 below.
Arguments below will then show that M(A) = M1(A).
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Proposition 1.4. Let A ⊂ N be finite and let B = {a − min(A) : a ∈ A}. The points
vB(0)and vB(1) belong to M1(A) and for every t ∈ (0, 1), vB(t) belongs to M2(A).

Proof. For 0 < t < 1, and 0 < ε < 1− t consider the step function f = ε−1t−min(A)1(t,t+ε] in

S2. By continuity, the integral
∫ 1

0
xaf(x)dx limits to ta−min(A) as ε→ 0, thus M2(A) contains

the limit point vB(t) = (tb)b∈B. Similarly, the limit as ε → 0 of the A-moment vectors of
step functions f = (min(A) + 1)ε−1−min(A)1[0,ε] and f = ε−11(1−ε,1] in S1 are vB(0) and vB(1),
respectively. Therefore these vectors belong to M1(A). �

A corollary of this statement is that Mk(A) = M(A) for k = 2|A|. By Carathéodory’s
Theorem, any point in M(A) is in the conical hull of at most |A| points of the form (ta)a∈A
where t ∈ [0, 1], each of which belongs to M2(A) by Proposition 1.4. By Remark 1.1, the
sum of |A| elements from M2(A) belongs to M2|A|(A), giving M(A) ⊆ M2|A|(A). In fact,
Mk(A) fills out the whole moment cone much sooner:

Theorem 1.5. If k ≥ |A|−1, Mk(A) = M(A).

The proof of this theorem relies on understanding the points on the boundary of M(A).

Proposition 1.6. Let A ⊂ N be finite with 0 ∈ A. If m = (ma)a∈A belongs to the Euclidean
boundary of M(A), then any representing measure µ on [0, 1] with ma =

∫
xadµ has finite

support. Specifically, the support of µ is a subset of the roots contained in [0, 1] of a polynomial
nonnegative on [0, 1] and of the form p(x) =

∑
a∈A pax

a. The vector m is a conic combination
of the vectors vA(r) where r ranges over the roots of p.

Proof. Let ` : RA → R be a linear function `(v) =
∑

a∈A pava defining a supporting hy-
perplane of M(A) at m. That is, `(v) ≥ 0 for all v ∈ M(A) and `(m) = 0. Consider
the polynomial p(x) = `(vA(x)) =

∑
a∈A pax

a. Since vA(t) ∈ M(A) for all t ∈ [0, 1], p is
nonnegative on [0, 1]. Furthermore, for any measure µ with moments m,∫

p(x)dµ =
∑
a∈A

pama = `(m) = 0.

The measure µ is nonnegative and the polynomial p is nonnegative on [0, 1]. From this we
see that the support of the measure µ must be contained in the (finite) set of roots R of
p(x). Specifically, µ =

∑
r∈R wrδr for some wr ∈ R≥0; therefore, m =

∑
r∈R wrvA(r). �

Proof of Theorem 1.5. First, consider a point m in the boundary of M(A). By Lemma 1.2,
M(A) = M(B) where B = {a −min(A) : a ∈ A}, and so m also belongs to the boundary
of M(B). By Proposition 1.6, m is the vector of B-moments of a measure µ supported on
the roots of a nonnegative polynomial on [0, 1] of the form p(x) =

∑
a∈B pax

a. Let b be the
number of distinct roots of p in the set {0, 1} and i be the number of distinct roots in of p
in the open interval (0, 1). Then m is in the conical hull of the b + i points given by vB(r)
where r ranges over these roots. By Proposition 1.4, m belongs to Mk(A) for k = b+ 2i.

By Descartes’ rule of signs, the number of positive roots of p, counting multiplicity, is
at most the number of sign changes in the list of coefficients {pa}a∈B. If p0 6= 0, then p
has at most |B|−1 roots in R>0. If p0 = 0, then p is the sum of at most |B|−1 nonzero
terms and its number of roots in R>0 must be smaller or equal to |B|−2. Note that every
root of p in (0, 1) must have even multiplicity greater or equal to 2. All together this gives
b+ 2i ≤ |B|−1 = |A|−1.
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Now consider m in the interior of M(A). Let c = (1/(a + 1))a∈A ∈ M0(A) denote the
vector obtained by integrating against the constant step function of height one. Let λ∗ be
the maximum value of λ ∈ R for which m− λc belongs to M(A). From m ∈M(A), we see
that λ∗ ≥ 0. Moreover, since M(A) is pointed, −c does not belong to M(A), meaning that
for sufficiently large λ, m − λc does not belong to M(A). Since M(A) is closed, it follows
that such a maximum λ∗ must exist.

The point m− λ∗c belongs to the boundary of M(A). By the arguments above, m− λ∗c
belongs to Mk(A) for k ≥ |A|−1. Since c ∈M0(A) and

m = (m− λ∗c) + λ∗c,

the point m also belongs to Mk(A) for k ≥ |A|−1. �

Remark 1.7. It follows from the proof of Theorem 1.5 that for all k ≥ 0, Mk(A) is star
convex with respect to the point c = (1/(a+1))a∈A, the A-moment of the constant function.
Indeed, since c belongs to M0(A), λc +Mk(A) ⊆Mk(A) for all λ ≥ 0.

We can go further in characterizing the facial structure of the boundary of M(A). Through
a connection to Schur polynomials, we can deduce linear independence among sets of points
from the curve of the correct size.

Proposition 1.8. For a collection A of integers 0 = a1 < a2 < . . . < an and any real values
0 ≤ r1 < r2 < . . . < rn ≤ 1, the determinant of the matrix SA is strictly positive, where

SA(r) =


1 1 . . . 1
ra21 ra22 . . . ra2n
...

...
...

ran1 ran2 . . . rann

 .

Proof. By the bialternant formula for Schur polynomials, the determinant of the matrix
SA(r) can be expressed as

(2) det(SA) =

( ∏
1≤i<j≤n

(rj − ri)
)
sλ(r1, . . . , rn) for λ = (an−(n−1), an−1−(n−2), . . . , a1),

where sλ(x1, . . . , xn) denotes the Schur polynomial associated to the partition λ. By defini-
tion, the Schur polynomial sλ(x1, . . . , xn) is the sum of monomials xT over all semistandard
Young tableaux T of shape λ. One can observe, either from expanding the determinant
of SA(r) along the first column, or by filling out a semistandard Young Tableau of shape λ
without using the number 1, that x1 does not appear in all the monomials of the determinant
of SA. It follows that det(SA) is strictly positive for any 0 ≤ r1 < r2 < . . . < rn ≤ 1. �

Corollary 1.9. All proper faces of M(A) are simplicial.

Proof. By Lemma 1.2, we can assume that 0 ∈ A. Recall that M(A) is the conical hull over
the curve segment {vA(t) : t ∈ [0, 1]} and any proper face F of this cone can be expressed
as the conical hull of some points vA(r1), . . . , vA(rk) where 0 ≤ r1 < r2 < . . . < rk ≤ 1. If
k > dim(F ), then there is a subset of these points of size dim(F ) + 1 ≤ n, which necessarily
lie in F and are therefore linearly dependent, contradicting Proposition 1.8. Therefore
k = dim(F ) and F is simplicial. �
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This lemma lets us assign an index to points on the boundary of M(A), following [8, Ch.
10.2]. Let m be a point on the boundary of M(A). By Corollary 1.9, there is a unique

representation of m as
∑k

j=1wjvA(rj) where 0 ≤ r1 < . . . < rk ≤ 1 and w1, . . . , wk ∈ R>0.

We define the index of m, denoted ind(m), to be b + 2i where b = #{j : rj ∈ {0, 1}} and
i = #{j : rj ∈ (0, 1)}. By Proposition 1.4, any point m on the boundary of M(A) belongs
to Mind(m)(A).

To prove the converse, we must rule out the possibility that m ∈ Mk(A) for k < ind(m).
In other words, it is impossible to approach a point m on the boundary of M(A) with
moment vectors of step functions with fewer breakpoints than expected.

Lemma 1.10. Let m be a point on the boundary of M(A). For k < ind(m), m 6∈ Mk(A).
That is, if m ∈Mk(A), then ind(m) ≤ k.

Proof. Note that for any non-zero point m in M(A), m0 > 0 and so we can rescale m to
have m0 = 1. We will write Mk(A) ∩ {m0 = 1} as the image of a compact polytope under a
polynomial map and check that any point m in the image of this map and the boundary of
M(A) has index ≤ k.

Any function f ∈ Sk can be written as f = y11[0,s1] +
∑k+1

i=2 yi1(si−1,si] for some values
0 = s0 < s1 < . . . < sk < sk+1 = 1 and yi ≥ 0 for all i. We now introduce transformed
w-coordinates by letting wi = yi(si − si−1) denote the area

∫ si
si−1

f(x)dx. The corresponding

moment in Mk(A) is given by the image of the point (s,w) = (s1, . . . , sk, w1, . . . , wk+1) under
the polynomial map

(3) µA(s,w) =

(
k+1∑
i=1

yi
sa+1
i − sa+1

i−1

a+ 1

)
a∈A

=

(
k+1∑
i=1

wi
(sai + sa−1i si−1 + · · ·+ sai−1)

a+ 1

)
a∈A

.

Note that the constraint that m0 = 1 translates into
∑

iwi = 1. Consider the polytope

(4) P =

{
(s,w) ∈ Rk × Rk+1 such that 0 ≤ s1 ≤ . . . ≤ sk ≤ 1, wi ≥ 0,

k+1∑
i=1

wi = 1

}
,

which is a product of two simplices of dimension k. The moments of step functions f ∈ Sk
with

∫
f(x)dx = 1 is the image under µA of the set of points (s,w) ∈ P with distinct

0 < s1 < . . . < sk < 1. Its closure is Mk(A) ∩ {m0 = 1}, which necessarily coincides with
the image of P under µA, as the image of a compact set under a continuous map is closed.

If wi > 0 and si−1 < si for some i, then µA(s,w) has a representing measure whose support
includes the interval (si−1, si] and is therefore not finite. Then by Proposition 1.6, m belongs
to the interior of M(A).

Suppose the point m belongs to Mk(A). Then m = µA(s,w) for some (s,w) ∈ P . Let I
denote the collection of indices 1 ≤ i ≤ k for which wi > 0. If m belongs to the boundary of
M(A), si−1 = si for all i ∈ I. Then

m = µA(s,w) =
∑
i∈I

wivA(si).

We can bound ind(m) by bounding the number of distinct values of si that appear. For each
i ∈ I with si ∈ (0, 1), si equals si−1, hence there are at least two indices j in {1, . . . , k} for
which sj = si. Trivially, if si ∈ {0, 1}, there is at least one j ∈ {1, . . . , k} such that sj = si.
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Together, these show that

ind(m) = #{si ∈ {0, 1} : i ∈ I}+ 2 · (#{si ∈ (0, 1) : i ∈ I}) ≤ k. �

Lemma 1.11. The intersection of Mk(A) with the Euclidean boundary of M(A) is a semi-
algebraic set of dimension ≤ k.

Proof. By Lemma 1.10, the intersection of Mk(A) with the Euclidean boundary of M(A)
is the set of boundary points of index ≤ k. We can parametrize this as the union of the
semialgebraic sets:⋃

σ∈{0,1}2

{∑̀
j=1

wjvA(rj) + w`+σ1vA(0) + w`+σ1+σ2vA(1) : r ∈ (0, 1)`,w ∈ (R>0)
`+σ1+σ2

}
,

where in each set, ` is chosen so that 2` + σ1 + σ2 ≤ k. Here we use r to denote the vector
(rj)j and w for the vector (wj)j. Note that each set is the image of (0, 1)n × (R>0)

m under
a polynomial map where n+m ≤ k and therefore has dimension ≤ k. �

Corollary 1.12. If k < |A|−1, Mk(A) 6= M(A).

Proof. The cone M(A) is full-dimensional in R|A|, in consequence, the cone’s boundary is
a hypersurface of dimension |A|−1. By Lemma 1.11, the dimension of the intersection of
Mk(A) with the boundary of M(A) has dimension ≤ k, so for k < |A|−1, this cannot be the
entire boundary of M(A). �

Example 1.13. For A = {0, 2, 5}, Theorem 1.5 and Corollary 1.12 imply that Mk(A) =
M2(A) for all k ≥ 2 but not for k = 1. Affine transformations of their intersections with the
affine hyperplane {m0 = 1} are shown in Figure 2. See also [7, Figure 6]. The intersection
of M1(A) with the boundary of M2(A) consists of just two rays, which appear as points in
the hyperplane {m0 = 1}. The set M1(A) consists of moments of functions with just one
breakpoint. Step functions with one breakpoint and total mass one can be parametrized
by f = w

s
1[0,s] + 1−w

1−s 1(s,1] for s ∈ (0, 1) and w ∈ [0, 1]. Note that fixing w and taking the
limit as s → 0 gives a weighted sum of a point mass at zero and the constant function
wδ0 + (1− w)1(0,1]. Similarly s→ 1 gives w1[0,1) + (1− w)δ1.

For s = w ∈ [0, 1], the corresponding step function is constant, i.e. f = 1[0,1] and the
moment map sends this line segment to a single point. However, away from this line, the
moment map is a homeomorphism to its image in M1({0, 2, 5}).

Figure 2. The parameter space of M1(A) and M1(A), M2(A) for A = {0, 2, 5}.
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Example 1.14. Consider A = {0, 2, 5, 9}. To visualize the moment sets Mk(A), we consider
their intersections with the affine hyperplane {m0 = 1}. Affine transformations of these
intersections are shown in Figure 3. Note that the step functions with at most one breakpoint
and total mass one can be written as λ1[0,1] + (1− λ)1

s
1[0,s] or λ1[0,1] + (1− λ) 1

1−s1(s,1] where
λ ∈ [0, 1]. The result is a two-dimensional surface in the plane {m0 = 1}. The set M2(A)
is full-dimensional, but does not fill up all of M(A). As promised by Lemma 1.11, the
intersection M2(A) with the boundary of M(A) has dimension ≤ 2, so its image in {m0 = 1}
has dimension ≤ 1. Indeed, we see this intersection is given by the curve parametrized by
(t2, t5, t9) for t ∈ [0, 1] and the line segment between its end points (0, 0, 0) and (1, 1, 1).
Finally, by Theorem 1.5, M3(A) is the full cone M(A). Points on the boundary of M(A)
have index ≤ 3, and so have one of the two forms w0vA(0) + wrvA(r) or w1vA(1) + wrvA(r)
where r ∈ [0, 1], w0, w1, wr ∈ R≥0.

Figure 3. The sets M1(A), M2(A), M3(A) in {m0 = 1} for A = {0, 2, 5, 9}.

We will now take a closer look at this example, paying close attention to the boundary
of the domain and its image in M2(A). The domain is the set of step functions with two
breakpoints, so it lives in the product of two 2-simplices

P = {(s1, s2) : 0 ≤ s1 ≤ s2 ≤ 1} × {(w1, w2, w3) ∈ R3
≥0 : w1 + w2 + w3 = 1}.

Here the s variables parametrize the two breakpoints and the w variables parametrize the
proportion of mass in each piece. So the domain is four-dimensional while the image has
dimension three. Therefore the generic fiber of the moment map has dimension one.

We can however obtain a generically finite-to-one map by restricting to facets of the
polytope P . The boundary is composed of six triangular prisms given by s1 = 0, s2 = 1,
s1 = s2, w1 = 0, w2 = 0, and w3 = 0. We can visualize this by way of a Schlegel diagram
via one of its facets, seen in Figure 4.

In observing the moment map restricted to the boundary, we make a number of observa-
tions. There are four 2-faces that the moment map collapses to a curve, namely the faces
given by 0 = s1 = s2, s1 = s2 = 1, w1 = w2 = 0, and w2 = w3 = 0. In addition to
these 2-faces, the intersections of the facets of P with the hypersurfaces given by y1 = y2
and y2 = y3 sometimes drop dimension under the moment map µA. In the (s,w) variables,
these correspond to surfaces (s2 − s1)w1 = s1w2 and (1 − s2)w2 = s2w3, respectively. For
example, in each of the facets s1 = 0 and w1 = 0, the equation (1 − s2)w2 = s2w3 cuts
out a surface whose image under µA is a curve. For the face s1 = 0, the moments of this
surface collapse to the line segment connecting the constant population and the point mass
at 0 and for w1 = 0, the image of this surface collapses to the curve segment of moments
of step functions of a single step with w1 = 0. Similarly, the faces s2 = 1 and w3 = 0 each
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(s1, s2) = (0, 0)
(0, 1)

(1, 1)

(w1, w2, w3) =
(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

s1 = 0 w3 = 0 s2 = 1

w2 = 0 s1 = s2w1 = 0

Figure 4. Schlegel diagram for the boundary of P , together with the image
of each facet under the moment map.

contain a two-dimensional surface cut out by s1w2 = (1− s1)w1 whose moments collapse to
a line segment–from the constant population to the point mass at 1 for s2 = 1 and a curve
segment of moments of a single step with w3 = 0.

Aside from these subsurfaces, the map on the boundary ∂P is locally nondegenerate.
Interestingly, the images of these facets can overlap in full-dimensional sets. One consequence
is that the fibers of the moment map can be disconnected.

Figure 5. A disconnected fiber of µA for A = {0, 2, 5, 9}.

For example, the point (m0,m2,m5,m9) = (1, 0.164, 0.054, 0.031) belongs to M2(A) for
A = {0, 2, 5, 9}. Its fiber under µA is a curve in the four-dimensional polytope P from (4).
Figure 5 shows the (s1, s2)-coordinates of this curve. In particular, this fiber has at least
two connected components. In a lighter shade is the two-dimensional fiber of the point
(m0,m2,m5) = (1, 0.164, 0.054) under the corresponding map for {0, 2, 5}.
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2. Increasing and decreasing step functions

In this section, we study the moment cones of non-negative monotone functions on the
unit interval [0, 1]. We define the increasing and decreasing moment cones

M↑(A) =

{(∫ 1

0

xaf(x)dx

)
a∈A

: f is nonnegative and increasing on [0, 1]

}
and

M↓(A) =

{(∫ 1

0

xaf(x)dx

)
a∈A

: f is nonnegative and decreasing on [0, 1]

}
.

Recall that if a function f : [0, 1]→ R is monotone, then it is automatically Borel-measurable.
As in the non-monotone case, all of these moment vectors can be achieved as a limit of
moments of step functions with a bounded number of steps. For k ∈ N, let S↑k denote the set
of nonnegative, increasing step functions on [0, 1] with at most k discontinuities. Similarly,

let S↓k denote the analogous set of decreasing step functions. This corresponds to requiring
y1 ≤ y2 ≤ . . . ≤ yk+1 or y1 ≥ y2 ≤ . . . ≥ yk+1 in (1).

Similarly, for finite A ⊂ N, we consider the A-moments of these step functions,

M�
k (A) =

{(∫ 1

0

xaf(x)dx

)
a∈A

: f ∈ S�
k

}
for � ∈ {↑, ↓} .

Just as with Mk(A), we see that the set M�
k (A) is invariant under nonnegative scaling,

M�
k (A) ⊆M�

` (A) when k ≤ ` and M�
k (A) +M�

` (A) ⊆M�
k+`(A).

As in the non-monotone case, we can understand the cones M�(A) as the conical hull of
curve segments.

Definition 2.1. We define maps γ↑A and γ↓A from [0, 1] to RA where, for t ∈ [0, 1], γ↑A(t) and

γ↓A(t) are the A-moment vectors of the step functions (1/(1− t))1(t,1] and (1/tmin(A)+1)1[0,t],
respectively. For every a ∈ A, the ath coordinate of these maps are given by(

γ↑A(t)
)
a

=
1

1− t

∫ 1

t

xadx =
1

a+ 1

a∑
i=0

ti

and
(
γ↓A(t)

)
a

=
1

tmin(A)+1

∫ t

0

xadx =
1

a+ 1
t a−min(A).

We observe that γ↑A(0) = γ↓A(1) = (1/(a+ 1))a∈A corresponds to the moment vector of
constant function 1[0,1]. The other end points correspond to point masses. Specifically,

γ↑A(1) = vA(1) is the moment vector of a point mass at t = 1 and γ↓A(0) = 1
min(A)+1

vB(0) for

B = {a−min(A) : a ∈ A} corresponds to a point mass at t = 0.

Remark 2.2. The conical hull over {γ�A(t) : t ∈ [0, 1]} is closed because this curve is compact

and does not contain the origin. Indeed, for � =↑, the ath coordinate of γ↑A(t) is ≥ (1/a+1)

for all t. For � =↓, the min(A)-th coordinate of γ↓A(t) is identically 1/(min(A) + 1).

Lemma 2.3. For � ∈ {↑, ↓}, the cone M�(A) equals the conical hull of {γ�A(t) : t ∈ [0, 1]}.
Proof. Since M�(A) is a convex cone containing the point γ�A(t) for all t, it automatically
contains the conical hull of this curve.

For the other direction, consider a monotone function f : [0, 1]→ R. We can construct a
sequence of step functions fn converging uniformly to f on [0, 1]. For example, we may take
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fn =
∑n

i=1
M
n

1Ti where M ∈ {f(0), f(1)} is the maximal value of f on [0, 1] and 1Ti is the

indicator function of Ti = {x ∈ [0, 1] : f(x) ≥ iM/n}. That is fn(x) = M
n
· b n

M
f(x)c. Note

that |fn − f |≤ M/n and so fn converges uniformly to f on [0, 1]. It follows that for any a,

xafn converges uniformly to xaf and so the integral
∫ 1

0
xafn(x)dx converges to

∫ 1

0
xaf(x)dx.

Note that the set Ti defined above has the form (si, 1] or [si, 1] if f is increasing and [0, si]
or [0, si) if f is decreasing for some si ∈ [0, 1]. The moment vector of fn therefore is a conic
combination of the points γ�A(si) for the appropriate � ∈ {↑, ↓}. Taking n→∞ shows that
the moment vector of f belongs to the closure of the conical hull of {γ�A(t) : t ∈ [0, 1]}.

Therefore the moment cone {(
∫ 1

0
xaf(x)dx)a∈A : f nonnegative and increasing on [0, 1]}

belongs to the closure of the conical hull of {γ↑A(t) : t ∈ [0, 1]}. By definition, M↑(A) is the
closure of this set and so also belongs to the closure of this conical hull. Similarly M↓(A)

belongs to the closure of the conical hull of {γ↓A(t) : t ∈ [0, 1]}. By Remark 2.2, both of these
conical hulls are already closed. �

Proposition 2.4. If k ≥
⌊
|A|
2

⌋
, then we have M↑

k (A) = M↑(A) and M↓
k (A) = M↓(A).

Proof. Our proof proceeds similarly to that of Theorem 1.5. Let m be a point of the bound-
ary of M�(A). We want to express m as the A-moment of an increasing step function of the
fewest steps possible. Let ` : RA → R define a supporting hyperplane of M�(A) at m, so
that ` ≥ 0 on M�(A) and `(m) = 0. By Lemma 2.3, M�(A) is the conical hull of a curve,
hence m will lie in the conical hull of points on this curve with ` = 0. We use this to show

that m belongs to M�
k (A) for k ≥

⌊
|A|
2

⌋
.

(↓) Let p(x) = `
(
γ↓A(x)

)
=
∑
a∈A

pa
a+ 1

xa−min(A). The polynomial p is nonnegative on [0, 1].

By Descartes’ rule of signs, p has at most |A|−1 positive roots, counting multiplicity, and if
pmin(A) = 0, then it has at most |A|−2. Let i denote the number of distinct roots of p in (0, 1)
and b = 1 if p(0) = 0 and 0 otherwise. Since each interior root of p must have multiplicity

≥ 2, this gives 2i + b ≤ |A|−1. Note that γ↓A(t) ∈ M↓
1 (A) for all t ∈ [0, 1) and belongs to

M↓
0 (A) for t = 1. Therefore m belongs to M↓

k (A) for k = i + b ≤ 1
2
(|A|−1 + b). The bound

follows from the integrality of i+ b and b ∈ {0, 1}.

(↑) Let p(x) = `
(
γ↑A(x)

)
=
∑
a∈A

pa
a+ 1

a∑
i=0

xi, which is a polynomial nonnegative on [0, 1].

Again, by Descartes’ rule of signs, p has at most |A|−1 positive roots, counting multiplicity.
If i is the number of distinct roots of p in (0, 1) and b = 0 if p(1) = 0 and 0 otherwise, this

gives that 2i+ b ≤ |A|−1. As before, γ↑A(t) ∈M↑
1 (A) for all t ∈ (0, 1] and belongs to M↑

0 (A)

for t = 0. Therefore m belongs to M↓
k (A) for k = i+ b ≤ 1

2
(|A|−1 + b) ≤ 1

2
|A|.

Now consider m in the interior of M�(A) and let c be the moment vector of the constant
function 1[0,1]. Let λ∗ be the maximum value of λ ∈ R for which m− λc belongs to M�(A).
Since m ∈ M�(A), we know that λ∗ ≥ 0, and for sufficiently large λ, m − λc /∈ M�(A).
Thus m−λ∗c belongs to the boundary of M�(A), which is equal to the boundary of M�

k (A)
by the argument above. Hence, m also belongs to M�

k (A). �

Proposition 2.5. For all k <
⌊
|A|
2

⌋
, the cone M�

k (A) is a proper subset of M�(A).
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Proof. The cone M�
k (A) ⊂ R|A| is a conic combination of k points on the boundary curve γ�A ,

each contributing two degrees of freedom, and the point corresponding to the image of the
constant step function γ↑A(0) = γ↓A(1), contributing a single degree of freedom. Therefore,
the semialgebraic set M�

k (A) has dimension at most min {2k + 1, |A|}. The cone M�(A) is
full-dimensional in R|A|. Let n = b|A|/2c so that |A| is 2n or 2n + 1. In either case, we
observe that for k ≤ n− 1, the dimension of M�

k (A) is less than or equal to 2n− 1, hence it
cannot fill up all of M�(A). �

Example 2.6. For A = {0, 2, 5, 9}, M1(A) is a union of M↑
1 (A) and M↓

1 (A), shown on the
left in Figure 3. Since 1 < 2 = b|A|/2c, these sets are not full dimensional and so cannot fill

up M↑(A) or M↓(A). For k = 2 = b|A|/2c, M↑
2 (A) = M↑(A) and M↓

2 (A) = M↓(A). These
form parts of the full dimensional set M2(A) shown in the middle of Figure 3.

3. Connection with coalescence manifold

The motivation for studying moments of step functions comes from the field of population
genetics. A central problem in this area is:

Question 3.1. Given a sample of n genomes from a present-day population, what inferences
can be drawn regarding the history of that population?

Our approach to the problem is to fix a function p(t) describing effective population size
at time t before the present. We then compute, as a function of p, a vector of invariants c
associated to the genome sample. Understanding the relationship between p and c will allow
us to infer likely values of p based on measured data.

Following [1], we model the natural process of the production of a sample of n genomes
as follows:

• The genealogical tree connecting n individuals will be formed by taking coalescence
of each pair of lineages as a Poisson point process with rate parameter 1/p(t), where
p(t) is the effective population size at time t before present. (Heuristically, looking
at the previous generation and picking parents at random, there is a 1/p(t) chance
that two lineages will pick the same parent.)
• After the tree is specified, mutations are distributed on the tree as a Poisson point

process with constant rate relative to branch length. The infinite-sites model is used,
so that repeated mutation at a given site is disallowed, which is a good model for
large genomes.

Definition 3.2. Fixing a population history, and defining the random process as above, we
define random variables:

• The sample frequency spectrum (also known as the site or allele frequency spectrum),
abbreviated SFS, is the vector of random variables (Xn,b)b=1,...,n−1 where Xn,b denotes
the number of mutations that are shared by exactly b out of the n individuals.
• The coalescence vector is the vector (Ti,i)i=2,...,n−1 of the time at which a sample of

size i has exactly i distinct lineages, i.e. the time until the first coalescence.

For a fixed population function p, taking expectations gives the population invariants ξn,b =
E[Xn,b] and ci = E[Ti,i].

In practice, the SFS is more frequently discussed as a summary statistic, but the coalescence
vector is simpler to use in computations. Fortunately, Polanski and Kimmel [6] proved that
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they are related by a linear transformation An, a matrix entirely determined by sample size
n. Therefore, we focus on the coalescence vectors (ci).

Fact 3.3. We make the reasonable assumption that p(t) is bounded below by 0 and bounded
above by a fixed P . Applying integration by parts and change of variables to the expected
value of an exponential distribution yields the following expression for ci in terms of p(t):

(5) ci(p) =

∫ ∞
0

p̃(τ) exp

[
−
(
i

2

)
τ

]
dτ,

where p̃(τ) = p(R−1p (τ)) and Rp(t) =
∫ t
0

1
p(x)

dx. Because 0 < p(t) < P , the function Rp is

strictly increasing and unbounded; thus, it is a bijection from R≥0 → R≥0, so the inverse is
well-defined. We call p̃(τ) the transformed population history.

The coalescence vector can thus be considered a function from the space of (bounded)
population history functions to Rn−1. Since the former space is infinite-dimensional and
the latter is finite-dimensional, it is natural to restrict our attention to a finite-dimensional
space of population history functions. A common choice for this, motivated by injectivity
considerations in [1], is

S̃k = {nonnegative step functions on R≥0 with at most k breakpoints}.
Definition 3.4. Let n, k be integers with n ≥ 2 and k ≥ 0. The coalescence manifold Cn,k
is the Euclidean closure of the set of vectors c̃(p) = c(p)/||c(p)||1 for all p ∈ S̃k. Here,
c(p) = (c2(p), . . . , cn(p)) where ci(p) is defined as in Equation 5.

Because the vectors are normalized to have sum one, the coalescence manifold lives in the
simplex ∆n−1. Note that this definition deviates slightly from the definition in [7] by allowing
k breakpoints instead of k epochs (i.e. constant intervals). This shifts the index down by
one. We now connect back to the moment cones studied above.

Theorem 3.5. Let A = {
(
i
2

)
− 1 : i = 2, . . . , n}. The coalescence manifold Cn,k equals the

intersection of the cone Mk(A) with the affine hyperplane of points with coordinate sum equal
to one:

Cn,k =

{
m ∈Mk(A) :

∑
a∈A

ma = 1

}
.

Before we prove the theorem, we demonstrate two lemmas that will simplify the proof.

Lemma 3.6. Define p̃(τ) as in Equation 5. Then p(t) ∈ S̃k if and only if if p̃(τ) ∈ S̃k.

Proof. Let 0 = s0 < · · · < sk−1 < sk be the sequence of breakpoints of p(t). The function
Rp(t) is a monotone increasing function, so the conditions below are equivalent:

sj < t ≤ sj+1 ⇐⇒ Rp(sj) < Rp(t) ≤ Rp(sj+1).

Since p is constant on (sj, sj+1], the transformed history p̃(τ) = p(R−1p (τ)) is constant on
(Rp(sj), Rp(sj+1)]. This implies that there are still at most k breakpoints.

For the reverse direction, repeat the argument with R−1p in place of Rp. �

Lemma 3.7. Let q be a strictly positive step function in S̃k. Then, there exists p in S̃k such
that q(τ) = p(R−1p (τ)) where Rp(t) =

∫ t
0

1
p(x)

dx as above.
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Proof. Let Q(t) =
∫ t
0
q(x)dx. We claim the desired function is p(t) = q(Q−1(t)). First, note

that because q is strictly positive and takes only finitely many values, it is bounded away
from zero. Therefore Q is strictly increasing and takes all values in [0,∞). Its inverse Q−1

therefore exists and is also increasing with range [0,∞). It follows that p takes the same
values in the same order as q. In particular, p ∈ S̃k.

To check that q(t) = p(R−1p (t)), we first show that Rp(Q(t)) = t for all t ≥ 0. By definition,

Rp(Q(t)) =

∫ Q(t)

0

1

p(x)
dx =

∫ Q(t)

0

1

q(Q−1(x))
dx =

∫ t

0

1

q(w)
q(w)dw = t,

where the penultimate equation comes from substituting x = Q(w) and dx = q(w)dw. Since
both Q and Rp are invertible, we see that t = Q−1(R−1p (t)) for all t. Applying q to both
sides then gives the claim. �

Proof of Theorem 3.5. We show that the set of coalescence vectors coming from population
histories in S̃k is equal to the set of moments in Mk(A) summing to 1. The equality of the
two closures is then automatic.

Assume p ∈ S̃k. From Lemma 3.6, p̃ is also in S̃k. Starting with Equation 5, we substitute
u = e−τ to obtain:

ci(p) =

∫ 1

0

p̃∗(u)u(i
2)−1du, where p̃∗(u) = p(R−1p (− ln(u))).

The function p̃∗ is piecewise-constant on [0, 1] with at most k breakpoints, so is in Sk;
therefore, the quantity ci is the (

(
i
2

)
− 1)-th moment of p̃∗. This implies that c is in Mk(A)

where A = {
(
i
2

)
− 1 : i = 2, . . . , n}. Normalizing c is equivalent to scaling p̃∗ so we may

assume its sum is already equal to 1.
Conversely, up to closure, any moment vector in Mk(A) summing to 1 comes from some

f ∈ Sk. Changing our domain to R≥0 gives q(τ) = f(e−τ ) in S̃k. By Lemma 3.7, we can

produce p ∈ S̃k that gives transformed population history q. �0 e�2 e�1 1

1

2

3

u

p̃⇤(u)

025
t
1

1

2
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p(t)

1
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Figure 6. The functions p, p̃∗, and Rp from Example 3.8.

Example 3.8. Consider the population function p(t) = p1 · 1[0,b1) + p2 · 1[b1,b2) + p3 · 1[b2,∞)

where p1, p2, p3, b1, b2 ∈ R>0 with b1 < b2. The function Rp(t) is piecewise linear, given by

Rp(t) =

∫ t

0

1

p(x)
dx =

t

p1
1[0,b1) +

(
t− b1
p2

+
b1
p1

)
1[b1,b2) +

(
t− b2
p3

+
b2 − b1
p2

+
b1
p1

)
1[b2,∞).

This function is unbounded and strictly increasing with Rp(0) = 0, so it has an inverse
R−1p that is also increasing and unbounded on R≥0. The function p̃(τ) = p(R−1p (τ)) is still
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piecewise constant with two break points Rp(b1) = b1/p1 and Rp(b2) = (b2 − b1)/p2 + b1/p1,
obtained by solving R−1p (τ) = bi. The ith entry of the coalescence vector is then

ci =

∫ ∞
0

p̃(τ)e(
i
2)τdτ =

∫ 1

0

p̃∗(u)u(i
2)−1du where p̃∗(u) = p̃(− ln(u)).

The second equality comes from the change of coordinates u = e−τ . Note that p̃∗ is the step
function given by

p̃∗ = p3 · 1(0,s1] + p2 · 1(s1,s2] + p1 · 1(s2,1] where s1 = e−Rp(b2) and s2 = e−Rp(b1).

The graphs of p and p̃∗ for the values (p1, p2, p3) = (2, 3, 1) and (b1, b2) = (2, 5) are shown in
Figure 6. In this case, the break points of p̃∗ are e−Rp(b2) = e−2 and e−Rp(b1) = e−1.

Remark 3.9. Note that because p(t) denote the population size at time t before the present,
a population increasing over time corresponds to the function p(t) decreasing as a function of
t, i.e. p1 > p2 > p3 in the example above. Note that p(t) is decreasing in t if and only if p̃(τ)
is decreasing in τ . The parametrization u = e−τ reverses direction and so the function p̃∗(u)
is then increasing as a function of u. In these coordinates, u = 0 corresponds “infinitely long
ago” (t = ∞) and u = 1 corresponds to the present (t = 0). Therefore coalescence vectors
of populations growing over time are moments of increasing step functions on [0, 1].

Theorem 3.5 allows us to apply our results from Mk(A) to Cn,k.
Corollary 3.10. Cn,n−2 = Cn,k for all k ≥ n− 2 and Cn,n−3 ( Cn,n−2.
Proof. For A =

{(
i
2

)
: i = 2, . . . , n

}
, |A| equals n− 1. By Theorem 1.5, Mk(A) = M(A) for

all k ≥ n − 2. In particular, Mn−2(A) = Mk(A) for all k ≥ n − 2. Intersecting with the
hyperplane {m :

∑
a∈Ama = 1} gives that Cn,n−2 = Cn,k for all k ≥ n−2. By Corollary 1.12,

Mk(A) 6= M(A) for k < |A|−1 = n− 2. Hence Mn−3(A) 6= M(A). Since M(A) = Mn−2(A),
intersecting with the hyperplane {m :

∑
a∈Ama = 1} gives that Cn,n−2 6= Cn,n−3. �

Affine transformations the sets C5,1, C5,2 and C5,3 are show in Figure 3. As promised, C5,3
is convex and C5,k is a strict subset for k < 3.

4. Connections with semidefinite programming

In this section, we describe how to write the moment cone M(A) and coalescence mani-
fold Cn,n−2 as projections of spectrahedra. This gives rise to natural algorithms for testing
membership and finding nearest points in these sets based on semidefinite programming. For-
mally, a spectrahedron is a set of the form {x ∈ Rn : A0 +

∑n
i=1 xiAi � 0} where A0, . . . , An

are real symmetric matrices and X � 0 denotes that the matrix X is positive semidefinite.
These are the feasible sets of semidefinite programs. See e.g. [2, Ch. 5 and 6]. Python
code for computing the nearest point in Cn,n−2 to an arbitrary point in Rn−1 is available at:

https://github.com/gescholt/DistanceToCoalescenceManifold

Theorem 4.1 (Theorems 10.1 and 10.2 [8]). For any d ∈ Z+, the cone M({0, 1, . . . , d}) is
a spectrahedron. If d = 2e is even, then

M({0, 1, . . . , d}) =
{

m ∈ Rd+1 : (mi+j)0≤i,j≤e � 0 and (mi+j+1 −mi+j+2)0≤i,j≤e−1 � 0
}
,

and if d = 2e+ 1 is odd, then

M({0, 1, . . . , d}) =
{
m ∈ Rd+1 : (mi+j+1)0≤i,j≤e � 0 and (mi+j −mi+j+1)0≤i,j≤e � 0

}
.
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Corollary 4.2. For any finite set of integers A ⊂ N, the convex cones M(A), M↑(A) and
M↓(A) are projections of the spectrahedron M({0, 1, . . . ,max(A)}).

Proof. Let d = max(A). Note that by definition, M(A) equals the closure of the projection
of M({0, 1, . . . , d}) under the map (m0,m1, . . . ,md) 7→ (ma)a∈A. For 0 ∈ A, this projection
is closed and otherwise, we replace A with B = {a−min(A) : a ∈ A} as in Lemma 1.2. By
Theorem 4.1, M({0, 1, . . . , d}) is a spectrahedron.

More generally, consider any finite collection of polynomials p1, . . . , pn ∈ R[x]≤d. We claim
that the conical hull of the curve parameterized by p(t) = (p1(t), . . . , pn(t)) for t ∈ [0, 1] is
the image of M({0, 1, . . . , d}) under a linear map. Specifically, consider the linear map

π : Rd+1 → Rn taking (m0,m1, . . . ,md) to (
∑d

j=0 pijmj)i∈[n] where pi(x) =
∑d

j=0 pijx
j. For

any t ∈ [0, 1], p(t) equals π(vd(t)) where vd(t) = (1, t, t2, . . . , td). Since M({0, 1, . . . , d}) is
the conical hull of {vd(t) : t ∈ [0, 1]}, the conical hull of {p(t) : t ∈ [0, 1]} is the image of
M({0, 1, . . . , d}) under π.

Note that the coordinates of both γ↑A(t) and γ↓A(t) are given by polynomials in t of degree
≤ d. Then by Lemma 2.3 and the arguments above, both M↑(A) and M↓(A) can be written
as the image of M({0, 1, . . . , d}) under a linear map. �

Example 4.3. For A = {0, 2, 5, 9}, we write M(A), M↑(A) and M↓(A) are projections of the
spectrahedronM({0, 1, . . . , 9}). By Theorem 4.1, this is given by the set of m = (m0, . . . ,m9)
in R10 for which the matrices

m1 m2 m3 m4 m5

m2 m3 m4 m5 m6

m3 m4 m5 m6 m7

m4 m5 m6 m7 m8

m5 m6 m7 m8 m9

 and


m0 −m1 m1 −m2 m2 −m3 m3 −m4 m4 −m5

m1 −m2 m2 −m3 m3 −m4 m4 −m5 m5 −m6

m2 −m3 m3 −m4 m4 −m5 m5 −m6 m6 −m7

m3 −m4 m4 −m5 m5 −m6 m6 −m7 m7 −m8

m4 −m5 m5 −m6 m6 −m7 m7 −m8 m8 −m9


are positive semidefinite. We obtain M(A) as the image of this cone under the linear
map m 7→ (m0,m2,m5,m9). Similarly, the cones M↑(A) and M↓(A) are the images of
M({0, 1, . . . , 9}) under the (respective) maps

m 7→
(
m0,

m0 +m1 +m2

3
,

1

6

5∑
i=0

mi,
1

10

9∑
i=0

mi

)
and m 7→

(
m0,

m2

3
,
m5

6
,
m9

10

)
.

Corollary 4.4. Testing membership any of the cones M(A), M↑(A) or M↓(A) is equivalent
to testing the feasibility of a semidefinite program in ≤ d + 1 variables with two matrix
constraints, each of size ≤ d/2 + 1, where d = max(A).

Corollary 4.5. For k ≥ n− 2, the coalescence manifold Cn,k is the projection of a spectra-
hedron. Testing membership in Cn,k is equivalent to testing the feasibility of a semidefinite
program in ≤ n2/2 variables with two matrix constraints, each of size ≤ n2/4.

Proof. By Theorem 3.5 and Corollary 3.10, for all k ≥ n − 2, coalescence manifold Cn,k
equals in the intersection of M(A) with the affine hyperplane given by

∑
a∈Ama = 1 where

A = {
(
i
2

)
− 1 : i = 2, . . . , n}. By Corollary 4.2, M(A) is the projection of M({0, 1, . . . , d})

where d =
(
n
2

)
− 1. It follows that Cn,k is the projection of the points in M({0, 1, . . . , d})

satisfying the affine linear equation
∑

a∈Ama = 1. The intersection of a spectrahedron with
an affine linear space is again a spectrahedron and so Cn,k is the projection of a spectrahedron.
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The spectrahedron M({0, 1, . . . , d}) is defined by two linear matrix inequalities of size
≤ d/2 + 1 ≤ n2/4. There are at most d+ 1 =

(
n
2

)
≤ n2/2 variables. �

Similarly, given a point p ∈ Rn−1, we can use a semidefinite program to find the nearest
point in Cn,k for sufficiently large k. This comes from the description of Cn,k above and
the fact that distance minimization can be phrased as a semidefinite program (see, e.g.

[3]). Specifically, given x ∈ Rn−1, the matrix n × n matrix

(
λ x− p

(x− p)T Idn−1

)
is positive

semidefinite if and only if ||x− p||22≤ λ, where Idn−1 denotes the (n− 1)× (n− 1) identity
matrix. Given a set S ⊂ Rn−1, suppose that λ∗ and x∗ obtain the minimum

min
λ∈R,x∈S

λ such that

(
λ x− p

(x− p)T Idn−1

)
� 0.

Then x∗ is (one of) the nearest points in S to p and the distance ||x∗ − p||2 is
√
λ∗. In

particular, if the set S is the projection of a spectrahedron, then this minimization problem
is a semidefinite program.

Corollary 4.6. Given p ∈ Rn−1, the problem of finding the closest point to p in Cn,k for
sufficiently large k is equivalent to solving a semidefinite program in ≤ n2/2 variables with
three matrices of size ≤ n2/4.

Example 4.7. For n = 5 and k ≥ 3, C5,k equals the set of points in M({0, 2, 5, 9}) with
m0 +m2 +m5 +m9 = 1. Projecting from M({0, 1, . . . , 9}), we see that

C5,k =

{
(m0,m2,m5,m9) ∈ R4 : m0 +m2 +m5 +m9 = 1

and ∃(m1,m3,m4,m6,m7,m8) ∈ R6 such that (mj)j=0,...,9 ∈M({0, 1, . . . , 9})
}

Let A(m) and B(m) denote the two 5 × 5 matrices appearing in Example 4.3. Then
M({0, 1, . . . , 9}) is the set of points m ∈ R10 for which A(m) � 0 and B(m) � 0. Given
a point p = (a, b, c, d) ∈ R4, we can find the closest point in C5,k by solving the following
semidefinite program with 10 parameters and three 5× 5 linear matrix constraints:

min
λ,m0,...,m9

λ such that m0 +m2 +m5 +m9 = 1, A(m) � 0, B(m) � 0,

and


λ m0 − a m2 − b m5 − c m9 − d

m0 − a 1 0 0 0
m2 − b 0 1 0 0
m5 − c 0 0 1 0
m9 − d 0 0 0 1

 � 0.

If (λ∗,m∗) denotes the points achieving this minimum, then (m∗0,m
∗
2,m

∗
5,m

∗
9) is the closest

point in C5,k to p with distance
√
λ∗.

5. Discussion and open questions

One takeaway from Section 1 is that the points on the boundary of Cn,k for k ≥ n − 2
correspond to moment vectors of point evaluations on [0, 1]. However these do not correspond
to biologically meaningful population functions! Similarly, a point in the interior of Cn,k
can come from several different population functions, some of which are more biologically
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plausible than others. One natural question from this standpoint is how to pick the right
population history from the fiber of a coalescence vector.

Question 5.1. Given a point m in the interior of Mk(A), how can we find the “best” step
function f ∈ Sk with moment vector m?

Here there is some natural flexibility in the notion of “best”. Ideally it should be biolog-
ically plausible and also easy to compute. For plausibility, it might be reasonable to try to
bound or minimize the ratios yi+1/yi of consecutive population sizes. One step towards this
would be to understand the structure of the fibers of the moment map µA.

For k = 2 and A = {0, 2, 5}, the (s1, s2)-coordinates of the fibers of some points in M2(A)
are shown below.

Figure 7. The central image depicts M2(A) in yellow. The orange region is
M↑(A) and the green region M↓(A); their union is M1(A). The triangle above
each point depicts the fiber as a subset of the (s1, s2)-simplex.

To understand the fibers, it may also help to relate the combinatorial structure of the
polytope P (which is a product of two k-dimensional simplices) to the semi-algebraic and
combinatorial structure of Mk(A). For example, the boundary of M2({0, 2, 5, 9}), seen in
Figure 3, comes from some of the two-dimensional faces of the four-dimensional polytope P .

Question 5.2. How does the facial structure of P relate to the algebraic boundary of Mk(A)?

Finally, Section 4 gives an algorithm for testing membership in M(A), which coincides
with Mk(A) for k ≥ |A|−1. It would be desirable to be able to test membership for smaller
k as well.
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Question 5.3. Is there an effective method to test membership in Mk(A) for k < |A|−1?

These sets are not convex and may have complicated semialgebraic structure (Figure 3).
One possibility is the following connection to low rank matrix completion would be interesting
to explore further.

Consider a step function f = y11[0,s1]+
∑k+1

i=2 yi1(si−1,si] in Sk. In a slight abuse of notation,

we define its derivative to be f ′ =
∑k

i=1(yi+1−yi)δsi , which is a signed weighted sum of delta
functions. For j ∈ A, let m′j denote the jth moment of the signed measure given by f ′:

m′j =

∫ 1

0

xjf ′(x)dx =
k∑
i=1

(yi+1 − yi)(si)j.

One can check that for any j, m′j = f(1)− jmj−1. In particular, we can write differences of
consecutive moments of f ′ in terms of moments of f , namely m′j−m′j+1 = (j+1)mj−jmj−1.

In the case of full moments A = {0, 1, . . . , d}, this lets us bound the value of k by the
rank of the moment matrix corresponding to the moments of (x− x2)f ′(x). Specifically, for
m ∈ RA, define the matrix

(6) M(m) =

(
(j + `+ 2)mj+`+1 − (j + `+ 1)mj+`

)
0≤j,`≤b(d−1)/2c.

Proposition 5.4. If for some f ∈ Sk, mj =
∫ 1

0
xjf(x)dx for all j, then rank(M(m)) ≤ k.

Proof. As noted above, we can rewrite the (j, `)th entry of M(m) as

M(m)j,` = (j+`+2)mj+`+1−(j+`+1)mj+` = m′j+`+1−m′j+`+2 =
k∑
i=1

(yi+1−yi)(si−s2i )sj+`i .

This shows thatM(m) is a sum of k rank-one matrices
∑k

i=1(yi+1−yi)(si−s2i )ve(si)ve(si)T ,
where e = b(d− 1)/2c and ve(t) = (1, t, t2, . . . , te)T . Therefore M(m) has rank ≤ k. �

Note that if the values of yi are increasing then this is a sum of positive semidefinite rank
one matrices, in which case the rank of M(m) will equal k, but if the values yi+1 − yi have
different signs, this might not be the case. Regardless, this suggests the following approach.

Question 5.5. Given (ma)a∈A ∈M(A), when does the following low-rank matrix completion
find the minimum k for which (ma)a∈A belongs to Mk(A)?:

Minimize rank(M(m)) such that A(m) � 0, B(m) � 0.

Here A and B are the matrices introduced in Theorem 4.1 and the minimization is taken
over all m ∈ R{0,1,...,max(A)} for which ma = ma for all a ∈ A.

While it seems unlikely that this will always give the correct value, it would be interesting
to know how far off this value might be from the true minimal value of k.
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