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Resultants over Commutative Idempotent Semirings

The resultant plays a crucial role in (computational) algebra and algebraic geometry. One of the most important and well known properties of the resultant is that it is equal to the determinant of the Sylvester matrix. In 2008, Odagiri proved that a similar property holds over the tropical semiring if one replaces subtraction with addition. The tropical semiring belongs to a large family of algebraic structures called commutative idempotent semiring. In this paper, we prove that the same property (with subtraction replaced with addition) holds over an arbitrary commutative idempotent semiring.

Introduction

The main contribution of this paper is adapting a certain important property of resultant (over commutative rings) to commutative idempotent semirings. The work was inspired by Odagiri's work [START_REF] Odagiri | The tropical resultant[END_REF] where the property of resultant is adapted to a particular commutative idempotent semiring, namely tropical semiring. Below we elaborate on the above statements.

The resultant plays a crucial role in (computational) algebra and algebraic geometry [START_REF] Joseph | On a theory of the syzygetic relations of two rational integral functions, comprising an application to the theory of sturm's functions, and that of the greatest algebraical common measure[END_REF][START_REF] Salmon | Lessons introductory to the modern higher algebra[END_REF][START_REF] Loos | Generalized polynomial remainder sequences[END_REF][START_REF] Cox | Ideals, varieties, and algorithms[END_REF]. Let

f = (x -α 1 ) • • • (x -α m ) g = (x -β 1 ) • • • (x -β n )
be two polynomials over a commutative ring. The resultant R of f and g is defined as

R = 1≤i≤m 1≤j≤n (α i -β j )
and the Sylvester expression of f and g is defined as

S = det M
where M is a certain matrix whose entries are from the coefficients of the two polynomials. One of the most important and well known properties of the resultant [START_REF] Joseph | On a theory of the syzygetic relations of two rational integral functions, comprising an application to the theory of sturm's functions, and that of the greatest algebraical common measure[END_REF][START_REF] Carlos D'andrea | Sylvester's double sums: the general case[END_REF] is that

R = S.
The tropical semiring is a variant of a commutative ring where it is equipped with a total order and that the addition operation is defined as maximum. As the result, it does not allow substraction (due to lack of additive inverse; hence the name semiring). It has been intensively investigated due to numerous interesting applications [START_REF] Simon | Recognizable sets with multiplicities in the tropical semiring[END_REF][START_REF] Pin | Tropical semirings. Idempotency[END_REF][START_REF] Pachter | Tropical geometry of statistical models[END_REF][START_REF] Heidergott | Max plus at work[END_REF][START_REF] Bogart | Computing tropical varieties[END_REF][START_REF] Gondran | Graphs, dioids and semirings[END_REF][START_REF] Speyer | Tropical mathematics[END_REF][START_REF] Itenberg | Tropical algebraic geometry[END_REF][START_REF] Butkovič | Max-linear systems: theory and algorithms[END_REF][START_REF] Sturmfels | Combinatorial types of tropical eigenvectors[END_REF][START_REF] Litvinov | Tropical and idempotent mathematics and applications[END_REF][START_REF] Brugallé | A bit of tropical geometry[END_REF][START_REF] Maclagan | Introduction to Tropical Geometry[END_REF].

1
There have been several adaptations of the properties of the resultant (over commutative rings) to the tropical semiring [START_REF] Mikhalkin | Tropical geometry and its applications[END_REF][START_REF] Dickenstein | Tropical discriminants[END_REF][START_REF] Bogart | Computing tropical varieties[END_REF][START_REF] Felipe | Tropical resultants for curves and stable intersection[END_REF][START_REF] Odagiri | The tropical resultant[END_REF][START_REF] Jensen | Computing tropical resultants[END_REF]. In particular, Odagiri [START_REF] Odagiri | The tropical resultant[END_REF] proved that the property of the resultant still holds if one simply replaces subtraction with addition, that is, if we let

f = (x + α 1 ) • • • (x + α m ) g = (x + β 1 ) • • • (x + β n )
and redefine the resultant as R = 1≤i≤m 1≤j≤n

(α i + β j ) ,
and redefine the Sylvester expression as

S = per M then R = S.
The tropical semiring belongs to a large family of algebraic structures called commutative idempotent semiring (CIS) [START_REF] Ôhashi | On definition for commutative idempotent semirings[END_REF][START_REF] Kolokoltsov | Idempotent analysis and its applications[END_REF][START_REF] Gunawardena | Idempotency[END_REF][START_REF] Golan | Semirings and their applications[END_REF][START_REF] Kazimierz | A guide to the literature on semirings and their applications in mathematics and information sciences[END_REF]. As the name indicates, a commutative idempotent semiring is similar to a commutative ring, except that we do not require substraction (additive inverse) but we instead require additive idempotency. There are many interesting algebraic structures that are CIS (see Section 1).

Hence one naturally wonders whether we can extend Odagiri's result on tropical semiring to the whole family of CIS. The main contribution of this paper is to answer affirmatively, proving that Odagiri's result indeed holds for arbitrary CIS, not just for the tropical semiring.

For proving the property, we, at the beginning, naturally attempted to generalize/relax the proof technique of Odagiri. However we found it practically impossible mainly because Odagiri's proof crucially exploits the fact that the tropical semiring has a total order. Since CIS, in general, does not require a total order, we had to develop a different proof technique. The new technique consists of the following four parts:

1. Represent each term in R as a certain boolean matrix, which we call a res-representation. 2. Represent each term in S as a certain pair of boolean matrices, which we call a syl-representation. 3. Show that if a term has a res-representation then it has a syl-representation. 4. Show that if a term has a syl-representation then it has a res-representation.

The representation of terms as boolean matrices are not essential from logical point of view, but they are extremely helpful in discovering, explaining and understanding the steps of the proof. The proof is constructive, that is, it provides an algorithm that takes a res-representation and produces a syl-representation, and vice versa. The implementation of the algorithms in Maple [START_REF] Maplesoft | a division of Waterloo Maple Inc[END_REF][START_REF] Bernardin | Maple Programming Guide[END_REF] can be downloaded from http://www.math.ncsu.edu/~hong/rcis/ Note that all the above discussion is approached and stated algebraically in the sense that we consider the equality between two algebraic objects R and S. Over the commutative ring case (in particular integral domain), the algebraic equality has an obvious geometric interpretation, namely two polynomials have common root iff S = 0. Over the tropical semiring case, the algebraic equality can also be given a similar geometric interpretation, using a modified notion of root [START_REF] Odagiri | The tropical resultant[END_REF][START_REF] Itenberg | Tropical algebraic geometry[END_REF][START_REF] Brugallé | A bit of tropical geometry[END_REF][START_REF] Maclagan | Introduction to Tropical Geometry[END_REF]. Thus one wonders whether the algebraic equality over CIS can be also given a similar geometric interpretation. One way for this would be extending the notion of root further. We leave it as a challenge for future work.

The paper is structured as follows. In Section 2, we recall the axiomatic definition of CIS and list several algebraic structures that satisfy the axioms. In Section 3, we give a precise statement of the main result of this paper. In Section 4, we illustrate the main result on the algebraic structures listed in Section 2. In Section 5, we informally sketch the overall structure/underlying ideas of the proof by using a small case. In Section 6, we finally provide a detailed and general proof of the main result.

Review of Commutative Idempotent Semiring

In this section, we review the definition of commutative idempotent semiring, and list a few examples. For more details, see [START_REF] Kolokoltsov | Idempotent analysis and its applications[END_REF][START_REF] Gunawardena | An introduction to idempotency[END_REF][START_REF] Kazimierz | A guide to the literature on semirings and their applications in mathematics and information sciences[END_REF][START_REF] Golan | Semirings and affine equations over them: theory and applications[END_REF].

Definition 1 (Commutative Idempotent Semiring).

A Commutative Idempotent Semiring (CIS) is a tuple (I, +, ×, 0, 1) where I is a set, + and × are binary operations over I and 0, 1 are elements of I such that the following properties hold for all a, b, c ∈ I: For the sequences, component-wise

+ × + and × a + b = b + a a × b = b × a (a + b) × c = a × c + b × c (a + b) + c = a + (b + c) (a × b) × c = a × (b × c) a + 0 = a a × 1 = a a + a = a a × 0 = 0 Remark 1.
: ∀ i ≥ 0 (u + v) i = u i + A v i convolution : ∀ i ≥ 0 (u × v) i = A, j,k≥0,j+k=i u j × A v k

Main Result

In this section, we give a precise statement of the main result of this paper and, in the next section, we illustrate it on a few examples. Let I be a commutative idempotent semiring (CIS). Let α 1 , . . . , α m , β 1 , . . . , β n ∈ I. Let

f = m i=1 (x + α i ) ∈ I[x] g = n j=1 (x + β j ) ∈ I[x]
Definition 2 (Resultant). The resultant R of f and g is defined as

R = 1≤i≤m 1≤j≤n (α i + β j ) ∈ I. Example 2. Let m = 3 and n = 2. Then R = (α 1 + β 1 ) (α 1 + β 2 ) (α 2 + β 1 ) (α 2 + β 2 ) (α 3 + β 1 ) (α 3 + β 2 )
Definition 3 (Sylvester Matrix). Let a 0 , . . . , a m ∈ I and b 0 , . . . , b n ∈ I be such that

f = m i=0 a m-i x i g = n j=0 b n-j x j
Then the Sylvester matrix of f and g is defined as

M =              a 0 • • • • • • • • • a m . . . . . . a 0 • • • • • • • • • a m b 0 • • • • • • b n . . . . . . . . . . . . b 0 • • • • • • b n              m + n        n            m Example 3. Let m = 3 and n = 2. Then f = (x + α 1 ) (x + α 2 ) (x + α 3 ) = a 0 x 3 + a 1 x 2 + a 2 x 1 + a 3 x 0 g = (x + β 1 ) (x + β 2 ) = b 0 x 2 + b 1 x 1 + b 2 x 0
where a 0 = 1

a 1 = α 1 + α 2 + α 3 a 2 = α 1 α 2 + α 1 α 3 + α 2 α 3 a 3 = α 1 α 2 α 3 b 0 = 1 b 1 = β 1 + β 2 b 2 = β 1 β 2
Thus the Sylvester matrix M of f and g is given by

M =       1 α 1 + α 2 + α 3 α 1 α 2 + α 1 α 3 + α 2 α 3 α 1 α 2 α 3 1 α 1 + α 2 + α 3 α 1 α 2 + α 1 α 3 + α 2 α 3 α 1 α 2 α 3 1 β 1 + β 2 β 1 β 2 1 β 1 + β 2 β 1 β 2 1 β 1 + β 2 β 1 β 2      
Definition 4 (Sylvester expression). The Sylvester expression S of f and g is defined as the permanent of the Sylvester matrix of f and g, that is, 

S = per (M ) ∈ I.
      1 α 1 + α 2 + α 3 α 1 α 2 + α 1 α 3 + α 2 α 3 α 1 α 2 α 3 1 α 1 + α 2 + α 3 α 1 α 2 + α 1 α 3 + α 2 α 3 α 1 α 2 α 3 1 β 1 + β 2 β 1 β 2 1 β 1 + β 2 β 1 β 2 1 β 1 + β 2 β 1 β 2       Theorem 1 (Main Result). R = S.
Example 5. We illustrate the "meaning" of the main result (Theorem 1) by verifying it on small degrees: m = 3 and n = 2 where R and S are described in Example 2 and 4. When we expand R and S, we obtain

Examples

In this section, we will show computational examples on particular CIS structures given in Example 1 of Section 2 to confirm the validity of the main result (Theorem 1) before its general proof (given in Section 6). We will use structure-specific languages whenever possible, in the hope that it would demonstrate the applicability of the main result in apparently very different contexts. We will confirm the main result via direct structure-specific computations. For easy computation, we consider only degree two polynomials.

Example 6 (Tropical). Let I be the CIS of tropical semiring. Consider f = max (x, 1) + max (x, 3) , g = max (x, 2) + max (x, 4)

We show that R = S for the above f and g, via direct computations. Note [START_REF] Carlos D'andrea | Sylvester's double sums: the general case[END_REF][START_REF] Dickenstein | Tropical discriminants[END_REF][START_REF] Golan | Semirings and their applications[END_REF][START_REF] Butkovič | Max-linear systems: theory and algorithms[END_REF][START_REF] Kazimierz | A guide to the literature on semirings and their applications in mathematics and information sciences[END_REF][START_REF] Kazimierz | A guide to the literature on semirings and their applications in mathematics and information sciences[END_REF][START_REF] Kazimierz | A guide to the literature on semirings and their applications in mathematics and information sciences[END_REF] = 13

R = max (1, 2) + max (1, 4) + max (3, 2) + max (3, 4) = 2 + 4 + 3 + 4 = 13 S = per      0 max (1, 3) 1 + 3 -∞ -∞ 0 max (1, 3) max (1, 3) 0 max (2, 4) 2 + 4 -∞ -∞ 0 max (2, 4) 2 + 4      = per      0 3 4 -∞ -∞ 0 3 4 0 4 6 -∞ -∞ 0 4 6      = max (4 + 6, 3 + 4 + 4, 3 + 4 + 6, 2 • 4, 2 • 6, 4 + 2 • 4, 2 • 3 + 6) = max
Thus we have R = S.

Example 7 (Power set). Let I be the CIS of the power set of R. Consider

f = (x ∪ [1, 2]) ∩ (x ∪ [3, 4]), g = (x ∪ [2, 3]) ∩ (x ∪ [4, 5])
We show that R = S for the above f and g, via direct computations. Note

R = ([1, 2] ∪ [2, 3]) ∩ ([1, 2] ∪ [4, 5]) ∩ ([3, 4] ∪ [2, 3]) ∩ ([3, 4] ∪ [4, 5]) = [1, 3] ∩ ([1, 2] ∪ [4, 5]) ∩ [2, 4] ∩ [3, 5] = [1, 3] ∩ ([1, 2] ∪ [4, 5]) ∩ [3, 4] = [3, 3] ∩ ([1, 2] ∪ [4, 5]) = ∅ S = per      R [1, 2] ∪ [3, 4] [1, 2] ∩ [3, 4] ∅ ∅ R [1, 2] ∪ [3, 4] [1, 2] ∩ [3, 4] R [2, 3] ∪ [4, 5] [2, 3] ∩ [4, 5] ∅ ∅ R [2, 3] ∪ [4, 5] [2, 3] ∩ [4, 5]      = per      R [1, 2] ∪ [3, 4] ∅ ∅ ∅ R [1, 2] ∪ [3, 4] ∅ R [2, 3] ∪ [4, 5] ∅ ∅ ∅ R [2, 3] ∪ [4, 5] ∅      = ∅ Thus we have R = S.
Example 8 (Topology). Let I be a CIS of topology. In particular, we consider the cofinite topology on R;

that is, open subsets are the empty set and the complementary of finite subsets of R. This CIS is, of course, a sub-CIS of the power set CIS of R in the previous example. But it is still interesting to consider, due to its importance. Consider

f = x ∪ (R \ {0, 1}) ∩ x ∪ (R \ {0, 2}) , g = x ∪ (R \ {0, -1}) ∩ x ∪ (R \ {0, -2}) R = ((R \ {0, 1}) ∪ (R \ {0, -1})) ∩ ((R \ {0, 1}) ∪ (R \ {0, -2})) ∩ ((R \ {0, 2}) ∪ (R \ {0, -1})) ∩ ((R \ {0, 2}) ∪ (R \ {0, -2})) = R \ {0} S = per       R (R \ {0, 1}) ∪ (R \ {0, 2}) (R \ {0, 1}) ∩ (R \ {0, 2}) ∅ ∅ R (R \ {0, 1}) ∪ (R \ {0, 2}) (R \ {0, 1}) ∩ (R \ {0, 2}) R (R \ {0, -1}) ∪ (R \ {0, -2}) (R \ {0, -1}) ∩ (R \ {0, -2}) ∅ ∅ R (R \ {0, -1}) ∪ (R \ {0, -2}) (R \ {0, -1}) ∩ (R \ {0, -2})       = per       R R \ {0} R \ {0, 1, 2} ∅ ∅ R R \ {0} R \ {0, 1, 2} R R \ {0} R \ {0, -1, -2} ∅ ∅ R R \ {0} R \ {0, -1, -2}       = (R \ {0}) 2 ∪ ((R \ {0}) 2 ∩ (R \ {0, -1, -2}) ∪ ((R \ {0}) 2 ∩ (R \ {0, 1, 2}))∪ (R \ {0, -1, -2}) 2 ∪ ((R \ {0, -1, -2}) 2 ) ∩ (R \ {0, 1, 2})) ∪ (R \ {0, 1, 2}) 2 = (R \ {0}) ∪ (R \ {0, -1, -2}) ∪ (R \ {0, 1, 2}) ∪ (R \ {0, -1, -2}) ∪ ((R \ {0, -1, -2, 1, 2}) ∪ (R \ {0, 1, 2}) = R \ {0}
Thus we have R = S.

Example 9 (Compact-convex). Let I be the CIS of the set of all compact convex subsets of R 2 . Let x 1 , . . . , x r denote the convex hull of the points x 1 , . . . , x r ∈ R 2 . Consider

f = x + (0, 0) • x + (0, 0), (1, 0) , g = x + (0, 0) • x + (0, 0), (0, 1) .
We show that R = S for the above f and g, via direct computations. Note R = (0, 0) + (0, 0) • (0, 0) + (0, 0), (0, 1) • (0, 0), (1, 0) + (0, 0) • (0, 0), (1, 0) + (0, 0), (0, 1) = (0, 0) • (0, 0), (0, 1) • (0, 0), (1, 0) • (0, 0), (0, 1), (1, 0) = (0, 0), (0, 2), (1, 2), (2, 0), (2, 1)

S = per       (0, 0) (0, 0) + (0, 0), (1, 0) (0, 0) • (0, 0), (1, 0) ∅ ∅ (0, 0) (0, 0) + (0, 0), (1, 0) (0, 0) • (0, 0), (1, 0) (0, 0) (0, 0) + (0, 0), (0, 1) (0, 0) • (0, 0), (0, 1) ∅ ∅ (0, 0) (0, 0) + (0, 0), (0, 1) (0, 0) • (0, 0), (0, 1)       = per       (0, 0) (0, 0), (1, 0) (0, 0), (1, 0) ∅ ∅ (0, 0) (0, 0), (1, 0) (0, 0), (1, 0) (0, 0) (0, 0), (0, 1) (0, 0), (0, 1) ∅ ∅ (0, 0) (0, 0), (0, 1) (0, 0), (0, 1)       = (0, 0), (1, 0) • (0, 0), (0, 1) + (0, 0), (1, 0) 2 + (0, 0), (0, 1) 2 + (0, 0), (1, 0) • (0, 0), (0, 1) 2 + (0, 0), (1, 0) 2 • (0, 0), (0, 1)
= (0, 0), (0, 1), (1, 0), (1, 1) + (0, 0), (2, 0) + (0, 0), (0, 1), (0, 2) + (0, 0), (0, 2), (1, 0), (1, 2) + (0, 0), (0, 1), (2, 0), (

= (0, 0), (0, 2), (1, 2), (2, 0), (2, 1)

Thus we have R = S.
Example 10 (Sequences). Let I be the CIS of the set of all sequences over the boolean algebra {T,F}. Consider f = x + (T, T, F, . . .) x + (T, T, T, F, . . .) , g = x + (T, T, T, T, F, . . .) x + (T, T, T, T, T, F, . . .)

In order to simplify the presentation, we will use the following short-hands. Let s i denote the sequence (T, . . . , T, F, . . .) where T appears i + 1 times. Then we can write f and g succinctly as

f = (x + s 1 )(x + s 2 ), g = (x + s 3 )(x + s 4 ).
Note that s -1 is the additive identity and s 0 is the multiplicative identity. Note also that s i + s j = s max{i,j} and s i s j = s i+j for i, j ≥ 0.

We show that R = S for the above f and g, via direct computations. Note

R = (s 1 + s 3 )(s 1 + s 4 )(s 2 + s 3 )(s 2 + s 4 ) = s 3 s 4 s 3 s 4 = s 14 = (T, . . . T, F, . . .)
where T is repeated 15 times 

S = per       s 0 s 1 + s 2 s 1 s 2 s -1 s -1 s 0 s 1 + s 2 s 1 s 2 s 0 s 3 + s 4 s 3 s 4 s -1 s -1 s 0 s 3 + s 4 s 3 s 4       = per       s 0 s 2 s 3 s -1 s -1 s 0 s 2 s 3 s 0 s 4 s 7 s -1 s -1 s 0 s 4 s 7       = s 2 2 s 7 + s 2 s 3 s 4 + s 2 s 4 s 7 + s 3 s 2 4 + s 2 3 + s 3 s 7 +
[v 1 , v 2 ]. Consider f = x + v 2 1 + v 2 2 -1 2 x + v 2 1 + v 2 2 -2 2 , g = x + v 2 1 -v 2 2 -1 2 x + v 2 1 -v 2 2 -2 2
In order to simplify the presentation, we will use the following short-hands.

I i = v 2 1 + v 2 2 -i 2 , J j = v 2 1 -v 2 2 -j 2
Then we can write f and g succinctly as

f = (x + I 1 )(x + I 2 ), g = (x + J 1 )(x + J 2 )
We show that R = S for the particular f and g, via direct computations. Note

R = (I 1 + J 1 ) (I 1 + J 2 ) (I 2 + J 1 ) (I 2 + J 2 ) S = per      1 I 1 + I 2 I 1 I 2 {0} {0} 1 I 1 + I 2 I 1 I 2 1 J 1 + J 2 J 1 J 2 {0} {0} 1 J 1 + J 2 J 1 J 2      = per      1 1 I 1 I 2 {0} {0} 1 1 I 1 I 2 1 1 J 1 J 2 {0} {0} 1 1 J 1 J 2      = (I 1 I 2 ) 2 + (J 1 J 2 ) 2 + (I 1 I 2 )(J 1 J 2 ) + I 1 I 2 + J 1 J 2
After carrying out ideal additions and multiplications in a straightforward manner [START_REF] Atiyah | Introduction to commutative algebra[END_REF][START_REF] Cox | Ideals, varieties, and algorithms[END_REF][START_REF] Kunz | Introduction to commutative algebra and algebraic geometry[END_REF], we obtain

Note that R = (α 1 + β 1 ) (α 1 + β 2 ) (α 1 + β 3 ) (α 1 + β 4 ) (α 2 + β 1 ) (α 2 + β 2 ) (α 2 + β 3 ) (α 2 + β 4 ) (α 3 + β 1 ) (α 3 + β 2 ) (α 3 + β 3 ) (α 3 + β 4 ) (α 4 + β 1 ) (α 4 + β 2 ) (α 4 + β 3 ) (α 4 + β 4 ) (α 5 + β 1 ) (α 5 + β 2 ) (α 5 + β 3 ) (α 5 + β 4 ) S = per               a 0 a 1 a 2 a 3 a 4 a 5 a 0 a 1 a 2 a 3 a 4 a 5 a 0 a 1 a 2 a 3 a 4 a 5 a 0 a 1 a 2 a 3 a 4 a 5 b 0 b 1 b 2 b 3 b 4 b 0 b 1 b 2 b 3 b 4 b 0 b 1 b 2 b 3 b 4 b 0 b 1 b 2 b 3 b 4 b 0 b 1 b 2 b 3 b 4              
Recall that the main theorem (Theorem 1) states that R = S, that is, a term appears in R if and only if it appears in S. The overall strategy for the proof is to divide the task into showing the following four claims:

1. A term occurs in R iff it has a representation in terms of a certain boolean matrix, which we call "res"-representation.

2. A term occurs in S iff it has a representation in terms of a certain pair of boolean matrices, which we call "syl"-representation.

3. If a term has a res-representation then it has a syl-representation.

4. If a term has a syl-representation then it has a res-representation.

The main result (Theorem 1) immediately follows from the above four claims. In the following four subsections, we informally explain/justify the claims one by one.

A term occurs in R iff it has a res-representation.

By expanding R, we obtain

R = • • • + α 3 1 α 3 2 α 3 3 α 2 4 α 2 5 β 2 1 β 2 2 β 2 3 β 1 4 + • • •
The particular term above can be obtained by making the underlined choice while expanding R.

α 1 + β 1 α 1 + β 2 α 1 + β 3 α 1 + β 4 α 2 + β 1 α 2 + β 2 α 2 + β 3 α 2 + β 4 α 3 + β 1 α 3 + β 2 α 3 + β 3 α 3 + β 4 α 4 + β 1 α 4 + β 2 α 4 + β 3 α 4 + β 4 α 5 + β 1 α 5 + β 2 α 5 + β 3 α 5 + β 4
It is convenient to represent the choice with the following boolean matrix

R =       1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0      
where 1 in the i-th row means that α i is chosen and 0 in the j-th column means that β j is chosen. Then obviously the particular term above can be written as

α 3 1 α 3 2 α 3 3 α 2 4 α 2 5 β 2 1 β 2 2 β 2 3 β 1 4 = α rs(R) β cs( R)
where R stands for boolean complement of R, rs for row sum and cs for column sum. Considering all other terms in the same manner, we have

R = R∈{0,1} 5×4 α rs(R) β cs( R)
Let us call the matrix R a "res"-representation of the corresponding term. In summary, we observe that a term occurs in R iff it has a res-representation.

5.2 A term occurs in S iff it has a syl-representation.

By expanding S, we obtain

S = • • • + α 3 1 α 3 2 α 3 3 α 2 4 α 2 5 β 2 1 β 2 2 β 2 3 β 1 4 + • • •
The particular term above can be obtained by making the following choice (permutation path) while expanding S.

α 3 α 1 α 2 α 3 α 5 α 1 α 2 α 3 α 4 α 5 α 1 α 2 α 4 1 β 2 β 1 β 3 1 β 1 β 2 β 3 β 4 (*)
It is convenient to represent the choice with the following boolean matrices

S 1 =       0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0       , S 2 =       0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1      
where the j-th column of S 1 encodes the α term in the j-th row of the top 4 × 9 submatrix of the above matrix (*) and the i-th row of S 2 encodes the β term in the i-th row of the bottom 5 × 9 submatrix of the above matrix (*). Then the particular term above can be written as

α 3 1 α 3 2 α 3 3 α 2 4 α 2 5 β 2 1 β 2 2 β 2 3 β 1 4 = α rs(S1) β cs(S2)
Let c = cs (S 1 ) and r = rs (S 2 ) . Then c = (1, 4, 5, 3) and r = (0, 1, 2, 0, 4) . Observe

c 1 + 1, c 2 + 2, c 3 + 3, c 4 + 4, r 1 + 1, r 2 + 2, r 3 + 3, r 4 + 4, r 5 + 5 = 2, 6, 8, 7, 1, 3, 5, 4, 9
which is exactly the permutation path (the choice of columns) yielding the particular term. This motivates the following short-hand notations:

acs(S 1 ) = (c 1 + 1, c 2 + 2, c 3 + 3, c 4 + 4) ars(S 2 ) = (r 1 + 1, r 2 + 2, r 3 + 3, r 4 + 4, r 5 + 5)
Using these notations, we can restate the above observation (property) as

{c ′ 1 , . . . , c ′ 4 , r ′ 1 , . . . , r ′ 5 } = {1, . . . , 4 + 5}
where c ′ = acs(S 1 ) and r ′ = arc(S 2 ). We will denote this property by P C (S 1 , S 2 ). Considering all other terms in the same manner, we have

R = S1,S2∈{0,1} 5×4 P C(S1,S2) α rs(S1) β cs(S2)
Let us call the pair of the matrices (S 1 , S 2 ) a "syl"-representation of the corresponding term. In summary, we observe that a term occurs in S iff it has a syl-representation.

5.3

If a term has a res-representation then it has a syl-representation.

Consider the term t = α 3 1 α 3 2 α 3 3 α 2 4 α 2 5 β 2 1 β 2 2 β 2 3 β 1 4
in R obtained by the following choice

α 1 + β 1 α 1 + β 2 α 1 + β 3 α 1 + β 4 α 2 + β 1 α 2 + β 2 α 2 + β 3 α 2 + β 4 α 3 + β 1 α 3 + β 2 α 3 + β 3 α 3 + β 4 α 4 + β 1 α 4 + β 2 α 4 + β 3 α 4 + β 4 α 5 + β 1 α 5 + β 2 α 5 + β 3 α 5 + β 4
which is represented by the following res-presentation

R =       1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0      
We construct the following two boolean matrices

S 1 =       1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0       , S 2 =       0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1      
where S 1 = R, cs (S 2 ) = cs R and 1's in S 2 are "flushed" to the bottom along columns. Observe that (S 1 , S 2 ) represents the following choice yielding the above term t, that is, it is a syl-representation of the term t.

α 1 α 2 α 3 α 2 α 3 α 5 α 1 α 4 α 5 α 1 α 2 α 3 α 4 1 1 1 β 1 β 2 β 3 β 1 β 2 β 3 β 4
In summary, if a term has a res-representation then it has a syl-representation.

5.4

If a term has a syl-representation then it has a res-representation.

Consider the term t = α 3 1 α 3 2 α 3 3 α 2 4 α 2 5 β 2 1 β 2 2 β 2 3 β 1 4
in S obtained by the following choice

α 3 α 1 α 2 α 3 α 5 α 1 α 2 α 3 α 4 α 5 α 1 α 2 α 4 1 β 2 β 1 β 3 1 β 1 β 2 β 3 β 4
which is represented by the following syl-representation

S 1 =       0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0       , S 2 =       0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1      
We repeatedly transform the syl-representations of the term t as follows.

1. We make acs(S 1 ) and ars(S 2 ) increasing.

By swapping

• S 1,3,3 and S 1,3,4

• S 2,3,1 and S 2,4,1

of the above syl-representation, we obtain another syl-representation

S 1 =       0 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0       , S 2 =       0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1      
where S k,i,j denotes the (i, j) entry of the matrix S k . It represents the following choice.

α 3 α 1 α 2 α 3 α 5 α 1 α 2 α 4 α 5 α 1 α 2 α 3 α 4 1 β 2 β 3 β 1 β 1 β 2 β 3 β 4
Note that the column index of the top/bottom part of the matrix is increasing as the row index is increasing.

2. We make 1's in S 2 "flushed to bottom".

By swapping

• S 2,2,2 and S 2,3,2

• S 2,3,2 and S 2,4,2

• S 1,1,1 and S 1,1,2

• S 2,3,3 and S 2,4,3

• S 1,2,1 and S 1,2,3

we obtain still another syl-representation

S 1 =       1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0       , S 2 =       0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1      
It represents the following choice.

α 1 α 2 α 3 α 2 α 3 α 5 α 1 α 4 α 5 α 1 α 2 α 3 α 4 1 1 1 β 1 β 2 β 3 β 1 β 2 β 3 β 4
Note that the entries in the bottom part of the matrix are products of the form β 1 • • • β k (product of consecutive β's starting from β 1 ).

Let R = S 1 . Observe that R represents the following choice yielding the given term t, that is, it is a resrepresentation of the term t.

α 1 + β 1 α 1 + β 2 α 1 + β 3 α 1 + β 4 α 2 + β 1 α 2 + β 2 α 2 + β 3 α 2 + β 4 α 3 + β 1 α 3 + β 2 α 3 + β 3 α 3 + β 4 α 4 + β 1 α 4 + β 2 α 4 + β 3 α 4 + β 4 α 5 + β 1 α 5 + β 2 α 5 + β 3 α 5 + β 4
In summary, if a term has a syl-representation then it has a res-representation.

Detailed Proof of Main Result

In this section, we provide a detailed proof for the main result. We strongly recommend that the reader first go over the previous section (Section 5) where we provided an informal/intuitive sketch of the overall structure/underlying ideas of the proof. It will greatly aid the reader in following the detailed and technical proof given below.

Recall that the main theorem (Theorem 1) claims that R = S, that is, a term appears in R if and only if it appears in S. It follows immediately from the following four lemmas. Lemma 2: A term occurs in R iff it has a res-representation (a certain boolean matrix). Lemma 3: A term occurs in S iff it has a syl-representation (a certain pair of boolean matrices).

Lemma 7: If a term has a res-representation then it has a syl-representation.

Lemma 10: If a term has a syl-representation then it has a res-representation.

We will devote one subsection for each lemma. Each subsection ends with the proof of each of the above lemmas. Lemmas 7 and 10 are proved constructively, by providing algorithms (Algorithms 1 and 4) that produce one representation from the other. These algorithms are based on a key lemma (Lemma 6) that establishes a crucial relationship between the two representations (syl and res). Before stating and proving the above lemmas, we introduce notations that will be used throughout this section.

Notation 5. Let M ∈ {0, 1} m×n .
1. The complement of M, written as M , is the m × n matrix defined by

Mij = 1 -M ij 2.
The row sum of M, written as rs (M ), is the m-dimensional vector defined by 6.1 A term occurs in R iff it has a res-representation.

rs (M ) =   n j=1 M ij   i=1,...,m 3 
Definition 6 (Res-representation). Let t = α µ β ν be a term, where µ ∈ Z m ≥0 and ν ∈ Z n ≥0 . Let R ∈ {0, 1} m×n . We say that R is a res-representation of t if

• rs (R) = µ. • cs R = ν. Equivalently cs (R) = ν where νj = m -ν j . Example 13. Let m = 3 and n = 2. Let t = α 2 1 α 1 2 α 1 3 β 1 1 β 1 2 = α (2,1,1) β (1,1) . Let R =   1 1 1 0 0 1  
We would like to know whether R is a res-representation of t. Note

R =         1 1 2 1 0 1 0 1 1 µ i 2 2 νj 1 1 ν j        
Hence R is a res-representation of t. Likewise, the following matrix is also a res-representation of t. 

A term occurs in S iff it has a syl-representation.

Definition 7 (Properly coupled). Let S 1 , S 2 ∈ {0, 1} m×n . We say that S 1 and S 2 are properly coupled and write as P C (S 1 , S 2 ) iff {c ′ 1 , . . . , c ′ n , r ′ 1 , . . . , r ′ m } = {1, . . . , m + n} where c ′ = acs (S 1 ) and r ′ = ars (S 2 ) .

Example 14.

Let

S 1 =   1 1 0 1 0 1   S 2 =   0 0 1 0 0 1   Since c ′ = acs (S 1 ) = (2, 5) r ′ = ars (S 2 ) = (1, 3, 4)
we have {2, 5, 1, 3, 4} = {1, 2, 3, 4, 5}

Hence we have P C(S 1 , S 2 ).

Definition 8 (Syl-representation). Let t = α µ β ν be a term. Let S 1 , S 2 ∈ {0, 1} m×n . We say that (S 1 , S 2 ) is a syl-representation of t if 1) . Let

• rs (S 1 ) = µ • cs (S 2 ) = ν • P C (S 1 , S 2 ) Example 15. Let m = 3 and n = 2. Let t = α 2 1 α 1 2 α 1 3 β 1 1 β 1 2 = α (2,1,1) β (1,
S 1 =   1 1 0 1 0 1   S 2 =   0 0 1 0 0 1  
We would like to know whether (S 1 , S 2 ) is a syl-representation of t. Note

S 1 =           1 1 2 0 1 1 0 1 1 µ i 1 3 c j 1 2 j 2 5 c j + j           S 2 =           0 0 0 1 1 1 0 1 2 3 0 1 1 3 4 r i i r i + i 1 1 ν j           Hence (S 1 , S 2
) is a syl-representation of t. Likewise, the following pairs of matrices are also syl-representations of t. The claim follows immediately.

S 1 =   1 1 0 1 0 1   S 2 =   0 0 0 1 1 0   S 1 =   1 1 0 1 0 1   S 2 =   0 0 1 1 0 0   S 1 =   1 1 1 0 0 1   S 2 =   0 0 0 0 1 1   S 1 =   1 1 0 1 1 0   S 2 =   0 0 0 0 1 1   S 1 =   1 1 1 0 1 0   S 2 =   0 0 0 0 1 1   Lemma 3. A term

If a term has a res-representation then it has a syl-representation.

The proof is constructive, that is, it provides an algorithm that takes a res-representation and produces a syl-representation (Algorithm 1). The algorithm is immediate from a key lemma (Lemma 6) that establishes a crucial relationship between the two representations (syl and res). Thus most of this subsection will be devoted in stating and proving the key lemma. Note that R is a symmetric expression in α 1 , . . . , α m and in β 1 , . . . , β n . Thus for any term in R, every term obtained by permuting α 1 , . . . , α m and permuting β 1 , . . . , β n is also in R. The same holds for S too. Hence, without loss of generality, we may restrict the proof to the terms

α µ1 1 • • • α µm m β ν1 1 • • • β νn n where µ 1 ≥ µ 2 ≥ • • • ≥ µ m and ν 1 ≥ ν 2 ≥ • • • ≥ ν n .
Therefore, from now on, we will assume that µ and ν are in non-increasing order. where we have all 0's above the "stairs" (jagged sold lines) and all 1's below the stairs.

M =         0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0         Then M is flushed. Note also that M = F (4,2,2,1,0) .
Case M mn = 0. Since M is bottom-left flushed, the last column of M is all zero like the above left figure. Let M * be the m × (n -1) matrix obtained from M by deleting the last column of M . Note that M * is also bottom-left bottom-left flushed. Let c * = cs(M * ) and r * = rs(M * ). Then r = r * and c = c * 1 , . . . , c * n-1 , m . (In the above, c and c * are the column sum vectors of M and M * , respectively, and hence they count the number of 0 on the columns of M and M * ). Thus Thus

{c 1 + 1, . . . , c n + n, r 1 + 1, . . . , r m + m} = c * 1 + 1, . . . , c * n-1 + n -1, m + n, r * 1 + 1, . . . , r * m + m = c * 1 + 1, . . . , c * n-1 + n -1, r * 1 + 1, . . . , r * m + m ∪ {m + n} = {1, . . . , m + n -1} ∪ {m + n}
{c 1 + 1, . . . , c n + n, r 1 + 1, . . . , r m + m} = c * 1 + 1, . . . , c * n + n, r * 1 + 1, . . . , r * m-1 + m -1, n + m = c * 1 + 1, . . . , c * n + n, r * 1 + 1, . . . , r * m-1 + m -1 ∪ {n + m} = {1, . . . , m -1 + n} ∪ {n + m} from the induction hypothesis = {1, . . . , m + n} .
Therefore, in both cases, P C( M , M ) holds.

Definition 10 (Sorted/Flushed). Let A, B ∈ {0, 1}

m×n . We say that (A, B) is sorted iff acs(A) and ars(B) are sorted in increasing order. We say that (A, B) is flushed iff B is bottom-left flushed. We say that (A, B) is sorted-flushed iff it is both sorted and flushed. Example 18. We trace the algorithm SylF romRes on the following input.

Example 17. Let (A, B) =         1 0 1 0 1 1 0 1 1 1 0 0 2 2 3 c j 3 4 6 c j + j         ,         0 0 0 0 1 0 0 0 0 2 1 1 0 2 5 1 1 1 3 7 r i r i + i         Note that acs(A) = (3,
In:

R =       1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0       , which is a res-representation of the term t = α 3 1 α 3 2 α 3 3 α 2 4 α 2 5 β 2 1 β 2 2 β 2 3 β 1 4 . c = [3, 3 , 3, 4] 
F c =       0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1       Out: (S 1 , S 2 ) =       1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0       ,       0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1      
, which is a syl-representation of the term t.

Lemma 7. The algorithm 1 (SylF romRes) is correct. Thus if a term has a res-representation then it has a syl-representation.

Proof. Let R be an input, a res-representation of a term t = α µ β ν . Then c = ν and thus c = ν. From Lemma 6, (R, F c) is a (sorted-flushed) syl-representation of the term t.

6.4 If a term has a syl-representation then it has a res-representation.

The proof is constructive, that is, it provides an algorithm that takes a syl-representation and produces a res-representation (Algorithm 4). We will again use the key lemma (Lemma 6 from the previous subsection) that establishes a crucial relationship between the two representations (syl and res). In order to use the key lemma, we need to find an algorithm that transforms a given syl-representation into a sorted-flushed syl-representation. We will describe such an algorithm in this subsection. We will divide, naturally, the algorithm into two subalgorithms.

• Algorithm 2 (Sort):

It transforms a syl-representation of a term into a sorted syl-representation of the term. It essentially carries out bubble sort.

• Algorithm 3 (F lush):

It transforms a sorted syl-representation of a term into a sorted-flushed syl-representation of the term. It essentially carries out repeated swapping of entries of the syl-representation to make it flushed while remaining sorted syl-representation.

Most of this subsection will devoted in describing and proving the correctness of the two subalgorithms. Now we plunge into details.

Algorithm 2 (Sort).

In:

(S 1 , S 2 ), a syl-representation of a term t Out: (S ′ 1 , S ′ 2 ), a sorted syl-representation of the term t

1. (S ′ 1 , S ′ 2 ) ← (S 1 , S 2 ) 2. Repeat (a) C ← acs (S ′ 1 ) (b) If C is in increasing order then exit the Repeat loop (c) Find j ∈ {1, . . . , n -1} such that C j > C j+1 (d) h ← C j -C j+1 (e) Repeat h times i. Find i ∈ {1, . . . , m} such that S ′ 1,i,j = 1 and S ′ 1,i,j+1 = 0 ii. Swap S ′ 1,i,j and S ′ 1,i,j+1 3. Repeat (a) R ← ars (S ′ 2 ) (b) If R is in increasing order then exit the Repeat loop (c) Find i ∈ {1, . . . , m -1} such that R i > R i+1 (d) h ← R i -R i+1
(e) Repeat h times i. Find j ∈ {1, . . . , n} such that S ′ 2,i,j = 1 and S ′ 2, i+1, j = ii. Swap S 2,i,j and S 2,i+1, j 4. Return (S ′ 1 , S ′ 2 )

Example 19. We trace the algorithm Sort on the following input.

In:

(S 1 , S 2 ) =       0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0       ,       0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1       , which is a syl-representation of the term t = α 3 1 α 3 2 α 3 3 α 2 4 α 2 5 β 2 1 β 2 2 β β 1 4 . 1. (S ′ 1 , S ′ 2 ) = (S 1 , S 2 ) 2. Iteration 1 (a) C = [2, 6, 8, 7] (b) C is not sorted (c) j = 3 (d) h = 1 i. i = 3
ii. Swap S ′ 1,3,3 and S ′ 1,3,4 Out:

S ′ 1 =       0 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0       Iteration 2 (a) C = [2, 6, 7, 8] (b) C is sorted in increasing order 3. Iteration 1 (a) R = [1, 3, 5, 4, 9] (b) R is not sorted (c) i = 3 (d) h = 1 i. j = 1 ii. Swap S ′ 2,3,1 and S ′ 2,4,1 S ′ 2 =       0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1       Iteration 
(S ′ 1 , S ′ 2 ) =       0 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0       ,       0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1      
, which is a sorted syl-representation of the term t.

Lemma 8. The algorithm 2 (Sort) is correct.

Proof. Let (S 1 , S 2 ) be an input, that is, a syl-representation of a term t = α µ β ν . The correctness of the algorithm is immediate from the following claims.

C1: Right after Step 2, (S ′ 1 , S ′ 2 ) is a syl-representation of the term t and acs(S ′ 1 ) is sorted in increasing order. The proof of the claim is immediate from the following sub-claims.

1. Right before Step 2a, (S ′ 1 , S ′ 2 ) is a syl-representation of the term t. We prove it by induction on the number of iterations. At the first iteration, it is trivially true since (S ′ 1 , S ′ 2 ) = (S 1 , S 2 ) . We assume that it is true after some number of iterations. We need to show that it is still true after one more iteration. It is immediate from the following observations. It is a bubble sort algorithm executed on a finite list C. Therefore it terminates.

C j+1 ← C j+1 + h C j ← C j -h Hence C j = B and C j+1 = A,
3. In Step 2c, there exists j ∈ {1, . . . , n -1} such that C j > C j+1 . The claim is immediate from the following observations.

• Since we are at Step 2c, the 'if' condition in Step 2b is not satisfied. Hence C is not in increasing order. Thus there exists j ∈ {1, . . . , n -1} such that

C j ≥ C j+1 . • Since (S ′ 1 , S ′ 2 
) is a syl-representation, we have C j = C j+1 . 4. In Step 2e(i), there exists i ∈ {1, . . . , m} such that S ′ 1,i,j = 1 and S ′ 1,i,j+1 = 0. From Step 2d we know h = C j -C j+1 . Hence there must exist h different i ∈ {1, . . . , m} such that S ′ 1,i,j = 1 and S ′ 1,i,j+1 = 0.

C2: Right after Step 3, (S ′ 1 , S ′ 2 ) is a syl-representation of the term t and acs((S ′ 1 ) and ars(S ′ 2 ) are sorted in increasing order. The proof of the claim is symmetric to the proof of C1. One only needs to switch the roles of S ′ 1 and S ′ 2 and the roles of columns and rows.

Algorithm 3 (F lush).

In:

(S 1 , S 2 ), a sorted syl-representation of a term t Out: (S ′ 1 , S ′ 2 ), a sorted-flushed syl-representation of the term t 1. (S ′ 1 , S ′ 2 ) ← (S 1 , S 2 ) 2. Repeat (a) If (S ′ 1 , S ′ 2 ) is flushed then return (S ′ 1 , S ′ 2 ) (b) c ← cs(S ′ 1 ) r ← rs(S ′ 2 ) C ← acs (S ′ 1 ) R ← ars (S ′ 2 ) (c) Find (i, j) ∈ {1, . . . , m -1} × {1, . . . , n} such that S ′ 2,i,j = 1 and S ′ 2,i+1,j = 0 Swap S ′ 2,i,j and S ′ 2,i+1,j (d) i ℓ ← min { k | r k = r i , k ≤ i} (e) If i ℓ < i then Find j ∈ {1, . . . , n} such that S ′ 2,i ℓ ,j = 1 and S ′ 2,i,j = 0 Swap S ′ 2,i ℓ ,j and S ′ 2,i,j (f ) i u ← max { k | r k = r i+1 , k ≥ i + 1} (g) If i + 1 < i u then
Find j ∈ {1, . . . , n} such that S ′ 2,i+1,j = 1 and S ′ 2,iu,j = 0. Swap S ′ 2,i+1,j and S ′ 2,iu,j (h) Find i ∈ {1, . . . , m} and j ℓ < j u ∈ {1, . . . , n} such that S ′ 1,i,j ℓ = 0 and S ′ 1,i,ju = 1 and

C j ℓ = R i ℓ -1 and C ju = R iu + 1 Swap S ′ 1,i,j ℓ and S ′ 1,i,ju
Example 20. We trace the algorithm F lush on the following input.

In:

(S 1 , S 2 ) =       0 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0       ,       0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1       , which is a sorted syl-representation of the term t = α 3 1 α 3 2 α 3 3 α 2 4 α 2 5 β 2 1 β 2 2 β 2 3 β 1 4 . 1. (S ′ 1 , S ′ 2 ) = (S 1 , S 2 ) 2. Iteration 1 (a) (S ′ 1 , S ′ 2 ) is not flushed (b) c = [1, 4, 4, 4] r = [0, 1, 1, 1, 4] C = [2, 6, 7, 8] R = [1, 3, 4, 5, 9] (c) i = 2, j = 2 Swap S ′ 2,2,2 and S ′ 2,3,2 (S ′ 1 , S ′ 2 ) =       0 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0       ,       0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1       (d) i ℓ = 2 (e) i ℓ < i (f ) i u = 4 (g) i + 1 < i u j = 2 Swap S ′ 2,3,2 and S ′ 2,4,2 (S ′ 1 , S ′ 2 ) =       0 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0       ,       0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1       (h) i = 1 and j ℓ = 1, j u = 2 Swap S ′ 1,1,1 and S ′ 1,1,2 (S ′ 1 , S ′ 2 ) =       1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0       ,       0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1       Iteration 2 (a) (S ′ 1 , S ′ 2 ) is not flushed (b) c = [2, 3, 4, 4] r = [0, 0, 1, 2, 4] C = [3, 5, 7, 8] R = [1, 2, 4, 6, 9] (c) i = 3, j = 3 Swap S ′ 2,3,3 and S ′ 2,4,3 (S ′ 1 , S ′ 2 ) =       1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0       ,       0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1       (d) i ℓ = 3 (e) i ℓ < i (f ) i u = 4 (g) i + 1 < i u (h) i = 2 and j ℓ = 1, j u = 3 Swap S ′ 1,2,1 and S ′ 1,2,3 (S ′ 1 , S ′ 2 ) =       1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0       ,       0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1       Iteration 3 (a) (S ′ 1 , S ′ 2 ) is flushed Out: (S ′ 1 , S ′ 2 ) =       1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0       ,       0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1      
, which is a sorted-flushed syl-representation of the term t.

Lemma 9. The algorithm 3 (F lush) is correct.

Proof. Let (S 1 , S 2 ) be an input, that is, a sorted syl-representation of a term t = α µ β ν . The correctness of the algorithm is immediate from the following claims.

C1: Right before Step 2a, (S ′ 1 , S ′ 2 ) is a sorted syl-representation of the term t. We prove it by induction on the number of iterations. At the first iteration, it is trivially true since (S ′ 1 , S ′ 2 ) = (S 1 , S 2 ) . We assume that it is true after some number of iterations. We need to show that it is still true after one more iteration. It is immediate from the following two sub-claims, where C ′ = acs (S ′ 1 ) and R ′ = ars (S ′ 2 ) at the end of Step 2h.

• C ′ and R ′ are sorted in increasing order. Note that Steps 2c-2g transform S ′ 2 by carrying out swaps along columns, as depicted by the following diagram. =⇒

i ℓ i ℓ i u i u i i i + 1 i + 1 1 0 0 1 0 1 1 0 1 0 0 1 Thus R ′ t =    R t -1 if t = i ℓ R t + 1 if t = i u R t else
From Step 2h, it is immediate that

C ′ t =    C t + 1 if t = j ℓ C t -1 if t = j u C t else
Next recall that R and C are sorted in increasing order. Thus we only need to show that R ′ i ℓ > R i ℓ -1 , R ′ iu < R iu+1 , C ′ j ℓ < C j ℓ +1 and C ′ ju > C ju-1 . We show them one by one. Proof. Let (S 1 , S 2 ) be an input, that is, a syl-representation of a term t. The correctness of the algorithm is immediate from the following claims. 

-R ′ i ℓ > R i ℓ -1 Recall that R ′ i ℓ = R i ℓ -1. Since r i ℓ > r i ℓ -1 we have R i ℓ -1 > R i ℓ -1 . Thus R ′ i ℓ > R i ℓ -1 . -R ′ iu < R iu+1 Recall that R ′ iu = R iu + 1. Since r iu < r iu +1 we have R iu + 1 < R iu+1 . Thus R ′ iu < R iu+1 . -C ′ j ℓ < C j ℓ +1 Recall that C ′ j ℓ = C j ℓ + 1. Since C j ℓ = R i ℓ -1 we have C ′ j ℓ = R i ℓ . Since R i ℓ appears in

Example 4 .

 4 Let m = 3 and n = 2. Then S = per

s 2 7 = 14 = s 14 =

 71414 s 11 + s 9 + s 13 + s 11 + s 6 + s 10 + s (T, . . . T, F, . . .) where T is repeated 15 times Thus we have R = S. Example 11 (Ideals). Let I be the CIS of the set of all the ideals of C

4 . 5 .

 45 . The column sum of M, written as cs (M ), is the n-dimensional vector defined by cs (The adjusted row sum of M, written as ars (M ), is the m-dimensional vector defined by ars (The adjusted column sum of M, written as acs (M ), is the n-dimensional vector defined by acs (M ) = j + ars (M ) = (4, 4, 5, 5) acs (M ) =[START_REF] Bogart | Computing tropical varieties[END_REF][START_REF] Brugallé | A bit of tropical geometry[END_REF][START_REF] Buchberger | An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal[END_REF] 

Lemma 2 .

 2 A term occurs in R iff it has a res-representation. m×n α µ β ν where µ = rs (R) and ν = cs R The claim follows immediately.

Mb=

  occurs in S iff it has a syl-representation. Proof. Let M be the Sylvester matrix of f and g (see Definition 3). Then S = per (M ) = {σ1,...,σn+m}={1,...,n+m} n+m i=1 M iσi = {σ1,...,σn,σn+1,...,σn+m}={1,...,n+m} (n+i)σn+i = {σ1,...,σn,σn+1,...,σn+m}={1,...,n+m} ..,cn+n,r1+1,...,rm+m}={1,...,n+m} ri , by reindexing with c j = σ jj and r j = σ n+ii = {c1+1,...,cn+n,r1+1,...,rm+m}={1,...,n+m} ..,cn+n,r1+1,...,rm+m}={1,...,n+m} {c1+1,...,cn+n,r1+1,...,rm+m}={1,...,n+m} S1,S2∈{0,1} m×n P C(S1,S2) α µ β ν where µ = rs (S 1 ) and ν = cs (S 2 )

Definition 9 (

 9 Bottom-left flushed). A matrix is called bottom-left flushed if all the non-zero entries are flushed to the bottom-left. Let c ∈ {0, . . . , m} n . Then the bottom-left flushed matrix of c, written as F c ∈ {0, 1} m×n , is the bottom-left flushed matrix such that cs(F c ) = c. Example 16. Let

Lemma 4 .

 4 Let M ∈ {0, 1} m×n be bottom-left flushed. Then we have P C M , M . Proof. We will prove by mathematical induction on m + n. If m + n = 0 (i.e. m = n = 0), then the implication holds vacuously. Now, let us assume that the implication holds for all bottom-left flushed m × n matrix such that m + n < k. Consider an arbitrary bottom-left flushed m × n matrix M such that m + n = k. Let c = cs( M ) and r = rs(M ). We consider two cases as in the following two figures,

  from the induction hypothesis = {1, . . . , m + n} . Case M mn = 1. Since M is bottom-left flushed, the last row of M is all one like the above right figure. Let M * be the (m -1) × n matrix obtained from M by deleting the last row of M . Note that M * is also bottom-left flushed. Let c * = cs(M * ) and r * = rs(M * ). Note that c = c * and r = r * 1 , . . . , r * m-1 , n .

4 , 6 )

 46 and ars(B) = (1, 2, 5, 7) are sorted in increasing order. Thus (A, B) is sorted. Note that B is bottom-left flushed. Thus (A, B) is flushed. Hence (A, B) is sorted-flushed. Lemma 5. Let A, B ∈ {0, 1} m×n . If (A, B) is sorted-flushed, then we have cs(A) = cs( B) ⇐⇒ P C (A, B)

2 (

 2 a) R = [1, 3, 4, 5, 9] (b) R is sorted in increasing order 4. Return (S ′ 1 , S ′ 2 )

• 2 •

 2 rs (S ′ 1 ) = µ. Obvious since the loop body does not change rs (S ′ 1 ) . • cs (S ′ 2 ) = ν. Obvious since the loop body does not change S ′ P C (S ′ 1 , S ′ 2 ) . Let A, B ∈ {1, . . . , m} such that A = C j and B = C j+1 . From Step 2d we know that C j = C j+1 + h. Inside Step 2e, we have increased C j+1 by h and decreased C j by h . Thus after Step 2e we have

Lemma 10 .

 10 R and P C (C, R) , we see that R i ℓ does not appear in C.Hence R i ℓ < C j ℓ +1 . Thus C ′ j ℓ < C j ℓ +1 . -C ′ ju > C ju-1 Recall that C ′ ju = C ju -1. Since C ju = R iu + 1 we have C ′ ju = R iu . Since R iu appears in R and P C (C, R) , we see that R iu does not appear in C. Hence R iu > C ju-1 . Thus C ′ ju > C ju-1 . • (S ′ 1 , S ′ 2 ) is a syl-representationof the term t at the end of Step 2h. -rs (S ′ 1 ) = µ. Obvious since the loop body does not change rs (S ′ 1 ) . -cs (S ′ 2 ) = ν. Obvious since the loop body does not change cs (S ′ 2 ) .-P C (S ′ 1 , S ′ 2 ) holds. Note R ′ i ℓ = C j ℓ , R ′ iu = C ju and C ′ j ℓ = R i ℓ , C ′ ju = R iu .Note that the others do not change. In other words C ′ ∪ R ′ = C ∪ R as sets. Thus P C (S ′ 1 , S ′ 2 ) holds. res-representation of the term t. The algorithm 4 (ResF romSyl) is correct. Thus if a term has a syl-representation then it has a res-representation.

C1: After Step 1 ,

 1 (S ′ 1 , S ′2 ) is a sorted syl representation of the term t. Immediate from the specification of Algorithm 2 (Sort) and Lemma 8.C2: After Step 2, (S ′ 1 , S ′2 ) is a sorted-flushed syl-representation of the term t. Immediate from C1, the specification of Algorithm 3 (F lush) and Lemma 9.C3: After Step 3, R is a res representation of the term t Immediate from C2 and Lemma 6.

  Note that CIS does not require the existence of additive inverse, thus semiring. It instead requires idempotency, thus idempotent semiring.

	name	I	+	×	0	1
	tropical	R ∪ {-∞}	maximum	addition	-∞	0
	power set	power set of a set S	union	intersection	∅	S
	topology	topology on a set S	union	intersection	∅	S
	compact-convex compact convex subsets of R n	convex hull	Minkowski sum ∅	{0}
	sequences	sequences over a CIS A	component-wise convolution	(0	

Example 1. We list a few examples of commutative idempotent semirings (CIS). A , . . .) (1 A , 0 A , . . .) ideals ideals of a comm. ring R with unity ideal sum ideal product {0 R } 1 R

  that is, we have swapped C j and C j+1 . In other words, the loop body does not change C as a set. Thus P C (S ′ 1 , S ′ 2 ) still holds. 2. The repeat loop in Step 2 terminates.

α 2 α

β 1 β 2 appears two times in R and six times in S. However, since an commutative idempotent semiring ignores additive multiplicities, it does not matter. Hence we see that R = S.

* H. Hong was partially supported by US NSF 1319632. A part of this work was also developed while H. Hong was visiting J.R. Sendra at the Universidad de Alcalá, under the frame of the project Giner de los Rios. Y. Kim was financially supported by Chonnam National University in the program, 2012. J.R. Sendra belongs to the Research Group ASYNACS (Ref. CCEE2011/R34) and is partially supported by the Spanish Ministerio de Economía y Competitividad under the Project MTM2014-54141.

Note that the generators of the two ideals look very different. However, after computing the reduced Gröbner basis [START_REF] Buchberger | An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal[END_REF][START_REF] Buchberger | An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal[END_REF][START_REF] Cox | Ideals, varieties, and algorithms[END_REF] of the generators with respect to the total degree order (v 1 ≻ v 2 ), we obtain

Thus we have R = S.

Sketchy Proof of Main Result

The complete proof of the main result (Theorem 1) is long and technical. Hence, before we plunge into the complete proof (given in the next section), we informally sketch the overall structure/underlying ideas of the proof by using a small case m = 5, n = 4.

Proof. Assume that (A, B) is sorted-flushed. We need to show cs(A) = cs( B) ⇐⇒ P C (A, B). We will show direction of implication one by one. ⇒ Assume cs(A) = cs( B). Then we have acs(A) = acs( B). From Lemma 4, we have P C( B, B). Thus we have P C(A, B). ⇐ Assume P C(A, B). Then we have

From Lemma 4, we have P C( B, B). Thus we have

Thus acs(A) = acs( B) and in turn cs(A) = cs( B).

Lemma 6. Let t = α µ β ν be a term. Let R ∈ {0, 1} m×n . The following two are equivalent.

(1) R is a res-representation of t.

(

Proof. We show each direction of implication one by one.

(1) ⇒ (2). It follows immediately from the following claims:

From the definition of F ν , it is obvious that ars(F ν ) is sorted in increasing order and that F ν is bottom-left flushed. Thus it remains to show that acs(R) is sorted in increasing order. Since R is a res-representation of t, we have cs(R) = ν. Recall that at the very beginning of this section we assumed, without loss of generality, that ν is sorted in non-increasing order. So, cs(R) is sorted in non-decreasing order. Thus, acs(R) is sorted in increasing order.

Since R is a res-representation of t, we have rs(R) = µ. From the definitions of F ν , we have cs(F ν ) = ν.

Thus it remains to show that P C(R, F ν ). Note

Therefore, from C1 and Lemma 5, we have P C(R, F ν ).

(2) ⇒ (1). Since (R, F ν ) is a syl-representation of t, we have rs(R) = µ. Thus it remains to show that cs(R) = ν. Since (R, F ν ) is a sorted-flushed syl-representation of t, we have that (R, F ν ) is sorted-flushed and P C(R, F ν ). Thus, from Lemma 5, we have

Algorithm 1 (SylF romRes).

In: R, a res-representation of a term t Out: (S 1 , S 2 ), a syl-representation of the term t c ← cs(R)

C2: The main loop (Repeat) terminates.

For every iteration of the main loop, at least one "out of order" pair of (1, 0) in S 2 is swapped. Thus the algorithm terminates.

C3: In Step 2c, there exists (i,j) satisfying the conditions stated in the step.

Since we are at Step 2c, the 'if' condition in Step 2a is not satisfied. Hence (S ′ 1 , S ′ 2 ) is not flushed. Thus there exists (i, j) ∈ {1, . . . , m -1} × {1, . . . , n} such that S ′ 2,i,j = 1 and S ′ 2,i+1,j = 0.

C4: In Step 2e, there exists j satisfying the conditions stated in the step.

Let r ′ = rs(S ′ 2 ) right before entering the step. Note

Therefore there exist j ∈ {1, . . . , n} such that S ′ 2,i,j = 0 and S ′ 2,i ℓ ,j = 1.

C5: In Step 2g, there exists j satisfying the conditions stated in the step.

Let r ′ = rs(S ′ 2 ) right before entering the step. Note

Therefore there exist j ∈ {1, . . . , n} such that S ′ 2,i+1,j = 1 and S ′ 2,iu,j = 0.

C6: In Step 2h, there exist i, j ℓ , j u satisfying the conditions stated in the step.

From

Step 2d, we have

Thus R i ℓ -1 does not appear in R. Hence it must appear in C. Thus there exists j ℓ such that

From

Step 2f, we have

2,i+1,j = 0 and in turn r iu = r i+1 ≤ n -1).

Thus R iu + 1 does not appear in R. Hence it must appear in C. Thus there exists j u such that

Therefore there exist j ℓ , j u ∈ {1, . . . , n} such that

It remains to show that there exists i that satisfies the conditions of Step 2h.

Note that R i ℓ , R i ℓ +1 , . . . , R iu appear in R. Hence they do not appear in C. Note that

Note that R i ℓ , . . . , R i are consecutive integers. Likewise note that R i+1 , . . . , R iu are consecutive integers. We show that j uj ℓ = R i+1 -R i . Consider the following two cases:

Note that R i ℓ , . . . , R iu are consecutive and they do not appear in C. Since C is sorted in increasing order and C j ℓ = R i ℓ -1 and C ju = R iu + 1, there is nothing in between C j ℓ and

Case 2: R i + 1 < R i+1 Note that the consecutive list of numbers R i + 1, . . . , R i+1 -1 do not appear in R. Hence they appear in C. Since C is sorted in increasing order and C j ℓ = R i ℓ -1 and C ju = R iu + 1, we conclude that exactly R i + 1, . . . , R i+1 -1 appear in between C j ℓ and C ju . Hence

In both cases, we have shown that j u -

Hence there exists i ∈ {1, . . . , m} such that S ′ 1,i,j ℓ = 0 and S ′ 1,i,ju = 1.

Algorithm 4 (ResF romSyl).

In:

(S 1 , S 2 ), a syl-representation of a term t Out: R, a res-representation of the term t