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Generalization of Whittle’s formula to
compound-Gaussian processes

Jean-Pierre Delmas and Habti Abeida

Abstract—This letter extends the well-known Whittle’s for-
mula for the asymptotic Fisher information matrix (FIM) on
the power spectrum parameters of zero-mean stationary Gaus-
sian processes to compound Gaussian processes (CGP). This
new formula involves the usual Gaussian term plus a corrective
factor that depends on the considered CG distribution.

Index Terms—Whittle’s formula, Slepian-Bangs’s formula,
Cramér-Rao bound, compound-Gaussian process, Elliptical
symmetric distributions, Student’s ¢ processes.

I. INTRODUCTION

Parametric discrete-time CGP, also called spherically
invariant random processes (SIRP), are very commonly
used in many statistical and engineering applications [1],
and the problem attracting considerable interest is that of
estimating its dependent parameters from a set of n consec-
utive measurements. The Cramér-Rao bound (CRB) usually
computed as the inverse of the FIM, allows us to assess
the performance of many parameter estimation algorithms.
Recall that closed-form expressions of the FIM, called
Slepian-Bangs (SB) formulas have been derived for the real,
circular and noncircular complex Gaussian distributions in
[2] [3], [4] and [5], respectively, then recently extended
to circular and noncircular complex elliptically symmetric
(ES) distributions in [6], [7] and [8], respectively. These
latter formulas have been later extended when the density
generator is considered as an infinite-dimensional nuisance
parameter [9] or parameterized by a nuisance parameter
[10].

However, in terms of complexity, direct computation of
these SB formulas require a number of operations propor-
tional to n3. Furthermore, these formulas only allow numer-
ical values to be given without providing any engineering in-
sight into the role of the different parameters. Alternatively,
the FIM was approximated by Whittle’s asymptotic formula
[11] for zero-mean non-deterministic stationary Gaussian
processes. This approximation has a reduced computational
complexity and can be interpreted thanks to its spectral
expression. However, to the best of our knowledge, there
is no work so far addressing Whittle’s asymptotic formula
for zero-mean stationary CGPs. In this letter, we profitably
use the Toeplitz structure of the covariance matrix of the
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measurement for zero-mean stationary CGPs to derive an
alternative approximate expression of the FIM and a limit of
the FIM rate, which is a generalization of Whittle’s formula
[11].

The remainder of this letter is organized as follows.
In Section II, some preliminaries on stationary CGPs are
given. In Section III, Bangs’s formula for ES distributed
r.v.s. is briefly recalled and new results are brought for CG
distributed r.v.s. After proving the EVD of the covariance
matrix under different assumptions on the sequence of
correlation in Section IV, an approximation and a limit of
the FIM rate, which is a generalization of Whittle’s formula,
are given for zero-mean stationary CGPs. Finally, this letter
is concluded in Section VI.

II. PRELIMINARIES ON STATIONARY CGPs

Let us first recall that a discrete-time random process

(zk)kez is said to be Gaussian if every finite collection

. def
of {zg,,...,x, } forms a Gaussian random vector x =

(Thys oy Tk, )T, denoted x ~ N, (p, ), with p.d.f.
—n _ 1 -
p(x) = (2m) "B 72 exp(—5 (x — P =7 (x - p). (D

It is also natural to consider more general families of ES
processes [1] by replacing the exponential function in (1)
by an arbitrary function g,(.) : RT +— RT such that
Jot/2 g (t)dt < oo (called density generator) to form
the p.d.f. of an n-dimensional ES distributed r.v.

p(x) =22 lx — )= (x — ). @

In (2), the first and second-order moments are assumed
to exist, with E(x) = p and Cov(x) = X to avoid
scale ambiguity in (2). Then, discrete ES random processes
can be defined similarly. But far from all ES distributed
r.v.s allow to define discrete ES processes in this way. In
fact, the sequence of density generators g,(.) cannot be
arbitrary because it must satisfy the Kolmogorov consistency
condition that ensures that the ES distribution is closed
under marginalization. This condition boils down to whether
(2) is the p.d.f. of x,, the p.d.f. of any marginal x,, of x,,
(with m > n) is always given by (2). A necessary and
sufficient condition is given in [12, Th. 2.2] for which this
property holds, which is the existence of a positive r.v. 7 of
cumulative distribution function F7(.) such that:

gn(t) = (2m)7 /2 /O - 772 exp(—t/27)dF (7). (3)



Another equivalent condition [13] is given by the stochastic
representation of the ES distribution:

x =4+ 1/ 0nE"u, 4)

where Q,, is a positive r.v. whose distribution depends on
n which is independent of the r.v. u uniformly distributed
on the unit n-sphere, which takes the particular form [14]:

X =q p + /7= ?n,, (5)

where the r.v 7 is independent of the r.v. ng ~ N, (0,I).
This is equivalent to state that the r.v.s Q,, and 7 in (4)-(5)
are related by Q,, = 7x2 where 7 and X2 are independent.
This stochastic representation (5) characterizes the subclass
of CG distributions, whose associated discrete random pro-
cesses are called SIRP in the engineering literature. Other
equivalent conditions on g, (t) in (3) are given in [14]-[16].

Throughout this paper, we only consider zero-mean sta-
tionary CG processes (2 )rez € R. Similarly to Gaussian
processes, this property is ensured i.f.f. these processes are
zero-mean wide-sense stationary. Their distribution is thus
characterized by the distribution of the v.a. 7 and by the
covariance matrix of the r.v. X, = (Tg41, Tht2, o, Thotn):

Cov(x,) = 3x,, which is a symmetric Toeplitz posi-
tive definite matrix with (Zx, )¢ = 75(|k — ¢|) where
def

the sequence r,(k) = E(zpxesr) is supposed abso-
lutely summable. We assume that the spectrum S, (f) =
Sy rx(k)e ™R is parameterized by 6 = (61,..,0,)T €
RY, which is omitted by simplicity.

III. BANGS’S FORMULAS

We give here a brief reminder of the Slepian-Bangs
formula for zero-mean ES distributed data x,, € R™ which
reduces here to the Bang’s formula, where the density
generator ¢, (t) is known or unknown [10]. This Bang’s
formula is given by the elementwise FIM under usual
regularity conditions on g, (t):

(L, (0), = aLaTr(E S, 1375, )
+ a,Tr(ELE, OTH(ELIS, ) (6)

def 93,

’
with Exmk = S5 The weights a; , and as,, are free

from scalar ambiguity and given by

ai,n igl,n (7)
for both classic and semiparametric Bangs’s formulas, and
1 1
a2.n = aQCIfLLS == 7(51,11 - 1)7 az n = age:;a == 7751,11
' 4 ’ 2n
®)

for classic and semiparametric Bangs’s formulas, respec-

tively where
_ ElQ363(2)]

S1n n(n +2)

; (€))

. lef
with 6a(t) < 535 (0

Using Q,, =4 72 for CG distributions, one can alterna-
tively express &1, (9) as:

1 o0 00 5 9
n = — u“v
&, n<n+2>/o/o

2
Jo T2 exp(—uv/27)dF, ()
( T exp(—w /2 () ) 7 (0)pyz (u)du,(10)

depending on n and the distribution of the r.v. 7, under
the constraint E(7) = 1 to assure that Cov(x,) = Xx, .
Note that a direct calculation of the FIM was carried
out in the case of complex circular CG distributions [17,
Egs. (19b), (20), (21b), (21c)] which leads to a much
less compact expression. The asymptotic behavior of the
sequence &, is generally difficult to analyze except for
the following three distributions. For Gaussian distributions
T = 1 gives §1Cjn = 1, and for Student’s ¢-distributions
7! ~ Gam(v/2,2/v) for which &, has been derived
in the circular complex case in [6], and in the real case in
[10] using the real-to-complex representation, yielding

st . ntv

bn v 42
where v > 2 is the degree of freedom parameter. For
the generalized Gaussian (GG) distributions, it was proved
in [18] that if the exponent s satisfies s € (0,1], these
distributions belong to the subset of the CG distributions,
whose p.d.f. of /7 is given by [18, Th. 1]. The correspond-
ing flGS has been derived in the circular complex case in
[7], and in the real case in [10] using the real-to-complex
representation, giving

(1)

g n+2s

bn ™y 497

It follows from [19, Appendix A] for complex circular
case that for real-valued ES distributions

E[Q2¢2(Q.)] E[Q2¢,(Qx)]

n(n +2) =1-2 n(n +2) (13)

(12)

with ¢, (t) def d‘%(t). We get for CG distributions, using
¢, (t) > 0 proved in the Appendix, that 0 < & < 1,
and £, = 1 is equivalent to E[Q2¢,(Q,)] = 0 &
Q%6 (Q,) = 0 as. & ¢,(Q,) = 0 because Q,, > 0
a.s., i.e. x is Gaussian distributed. This allows us to state
the new result:

Result 1: For CG distributions, the parameters of the FIM
satisfy the relations: 0 < a7, < 1/2 and ag,, <0, and x
is Gaussian distributed i.f.f. (a1, a2,,) = (1/2,0).

This property proves that the Gaussian distribution always
leads to the smallest stochastic CRB for CG distributions,
but not in the larger family of the ES distributions as shown
by the GG distributions associated with s > 1 (12). This
contrasts with the case of parameterized mean, for which the
Gaussian distribution always leads to the largest stochastic
CRB for all second-order distributions [20].



IV. WHITTLE’S FORMULA FOR CG PROCESSES

A. Approximation formula

The following approximate eigenvalue decomposition
(EVD) of the Toeplitz structured matrix 3 has been
derived and used for large n compared to the correlation
length of z;, without rigorous theoretical support (see e.g.,
[21, eq. (9)], [22, eq. (5)] [23, p.186]):

1 -1
WTII_,IEonn ~Diag(S:(0), Sx(=), -, Sz(L))a (14)
n n
where W, is the discrete Fourier transform (DFT) unitary
matrix defined by W, ' (wo, .., W, .., w1 ) with wj, 2
%(1, eiQTrk/n’ . ei27rk(n—1)/n)T.
n

But this approximation (14) can be justified by the fol-
lowing limits for a (k, £)-th element fixed of WX, W,
which are proved in the Appendix under the following
conditions: For r,(k) absolutely summable, we get

k—1
lim [W Y, Wil — Su(——) =0, (15)
n—o00 n
and additionally for banded Toeplitz matrices X,
k—1
lim [W Y, Wolke — 0k,0S:(——) =0, (16)
n—oo n
where is J,, the Kronecker notation. Likewise for

the strongest condition kr,(k) absolutely summable,
(16) also remains valid. Using W Y kW, =
Diag(S;’k(O) S;k:(l . S;k( —1)) deduced from (14)

)
with S;k(f) o 8%9(” we get

Tr(Z,) E;( ,kz;,} Ex” o) =
Te[(W, S W) (W, 2, W)W, 5 W)

(WHEX KW
n

n—1
~n Y S8, (D)8, >f (17)
p=0

We obtain for n sufficiency large, by replacing the Riemann
sum (17) with an integral, the approximation

)= /0 S:2(1)S,u(f)

Similarly, we have the following approximation

/s

Inserting (18) and (19) in (6), we immediately deduce the
following result:

Result 2: The entries of the FIM for zero-mean stationary
CG processes are given for large n by the approximation:

L1, (0),,

n

1
+nasz / S;
0

1 / / ’
7Tr(2;52xn kz;lzx Sx Z(f)df
n b n n k)

(18)

*TY( K (19)

xn x‘n.

1 7 ’
~ ai, / ST S,k ()Sh o (f)df

Sl df/

«(f)df ,(20)

where aq, and ao, are respectively given by (7) and (8)
which are expressed in terms of &; ,, in (9).

B. Asymptotic formula

We consider here asymptotic properties of Toeplitz matri-
ces depending on specific conditions on the spectra of x.

For Gaussian ARMA processes, whose spectra S;(f) =
2

02’% is such that A(z) = Y7_,axz" and
B(z) = >_1_,biz" are both bounded away for zero for

|z| <1, it is proved in [24, Th. 1] that

]_ ’ !’
7Tr(2;12x kg;lzx Z)
n n n, n n,

- / S:2(1)S,u(f)

/ S (S, u(H)df + 0.

But the proof requires only second-order properties of g,
so (21) and (22) are also valid for CG ARMA processes.

For long range dependent Gaussian processes, whose
spectrum S (f) and (S ;.(f))k=1,.,q satisfy some condi-
tions [25, A2-AT7], it is proved in [25, Th. 5.1], the following
properties weaker than (21) and (22) which also apply for
CG processes for the same reasons as previously.

SLf)df +0(1) @D
and

1
—Tr(E_

Xp “Xp,k

(22)

1
lim ~Tr(S5'%, 208, )

n—oo 1
- / S:2()S, ().,

/s

Finally let us point out that thanks to the notion of
asymptotically equivalence of sequences of Toeplitz and
circulant structured matrices with absolutely summable ele-
ments [26], [27], it is straightforward to prove (23) and (24)
under the additional condition of existence of m such that
Sz (f) > m > 0, using [27, Th.5.2] and [27, Th.5.3] relative
to inverses and products of Toeplitz matrices, respectively.

Furthermore since the limit of the FIM rate, i.c., + I, (6),
exists for stationary processes with finite Markov order [28,
rel. 30], the limits of aq, and nas, (from (6) using the
limits (18) (19)) when n tends to co), exist for a large class
of stationary processes. For these processes, we deduce from
na$?s = 2(&,, — 1) (8) that limp o0 §1,, = 1 which
implies from (7) that lim,_,o a1,, = 1/2, and from (8)
that lim,,_, o namas = ¢ < 0and limy,_ nascpa =-1/2.
And furthermore since more knowledge about the density
generator results in a larger FIM, we get ¢ > —1/2. This
allows us to state the following result which is an extension
of Whittle’s formula [11], [29, Th. 5.3]:

Result 3: For stationary CG processes with finite Markov
order, the limit of the FIM rate which is a generalization

(f)df (23)

1 ,
lim —Tr(E.'S, )

n—o00 N,

k(f)df (24)



of Whittle’s formula for purely non-deterministic stationary
Gaussian processes has the following expression:

’ ’

lim l(Ixn(e))M = 1/ S22 ()8, 1 (£) S, (F)df

n—oo N
1
ve [ s unar [ s
0

where ¢ = —1/2 when g,,(.) is unknown, and —1/2 < ¢ <
0, depending of the CG distribution when g, (.) is known.

From the values of &; ,, given in Section ??, ¢ =0, ¢ =
—1/2, and ¢ = —(1—s)/2 for the Gaussian, Student’s ¢ and
GG distribution with s € (0, 1], respectively. We will see in
the next section that ¢ = 0 for the e-contaminated Gaussian
distribution.

£(f)df,(25)

V. NUMERICAL ILLUSTRATIONS

We consider in this section that xz; iS zero-mean e-
contaminated Gaussian distributed with P(71 =71) =1 — ¢
et P(7 = 719) = € under the constraint E(7) = (1 — €)1y +
eTo = 1, where (79, €) are parameters that control the heav-
iness of the tails as compared to the Gaussian distribution.

2
Sy (f) = %
associated with r,.(k) = o2a*! and |a| < 1, where a is the
only unknown parameter.

From numerical calculations, we can state that the ap-
proximations (18) and (19) are valid with a relative pre-
cision of 1% for arbitrary values of |a| < 1, and that
lim,, o naz, = 0 as shown e.g. in Fig.1 for ¢ = 0.1
and some values of 7y. The more 7 increases, the more the
distribution of x,, deviates from the Gaussian distribution
and the slower the convergence of nag n towards 0.

-1071®

We assume an AR(1) spectra, i.e.,

-0

1012

_ _10710 |

o~
o
<

Fig.1 Coefficients nagynnas a function of n.

VI. CONCLUSION

In this letter, complementary results are brought on
Bangs’s formula for CG distributed r.v.s. An approximation
and a limit of the FIM rate which is a generalization
of Whittle’s formula, are given for zero-mean stationary
CG distributed random processes. Research is underway
on extending Whittle’s formula to continuous-times and
multivariate stationary CG distributed random processes.

APPENDIX
A. Proof of ¢,,(t) >0
Using (3), the 1Ist and 2nd derivatives of
gn(t) are given by gi'(t) = (=2)7R(2m)7/2
Jo ST/ R exp(— t/ZT)dF( ),k =1,2. Thus, from the

definition of ¢, (1), ¢,,(t) > 0 & ¢ (H)gn(t) > (95" ()],
which holds thanks to Cauchy-Schwarz inequality. |

B. Proof of (15)
( _p|) Tw(p)e_wﬂ—p(k_l)/n.
n
[p|<n—1

We get straightforwardly
Consequently [WES, W, ]; 1 tends to S,.(0) = > Tz(p)
when n tends to co according to Cesaro summability prop-
erty [29, A10]. We then obtain for k£ > 1
k—1
— S (—=) =
(=)

Z |p| —i2mp(k-1)/ —i2mp(k—1)/
_ ry 14T n - 14T ’I'L7 26
n rz(p)e E : rz(p)e (26)

lp|<n—1

(WS Wolee = >

[vat{ZDX71 Wn]k,k

lp|Zn

and the modulus of the two terms of (26) are re-
spectively upper-bounded by %Z\pl <n—1P|lrz(p)| and
>_ip|>n [72(p)]. The first bound tends to zero as a conse-
quence of the Cesaro summability property [29, A10], and
the second term also tends to zeros as a reminder of the
convergent series > [, (p)|- [ |

C. Proof of (16)

Suppose that r,(p) = 0 for |p| > P. We get straightfor-
wardly for k # £ and n > P:

1 i2m (h—) /1 e~ —i2m(k—£)/m
(W Bt Walir = 10 (0)e 7870/ 3 e i2m (k=0 /nys

g=1
1 ) — n

+E Z ,r,x(p)(eﬂﬂ'p(l £)/ +
0<p<P

67i27rp(172)/n)

g=1

<nz:p[ei27r(ktz)/n]q1> ’ @7
ZZ:l[ —i27r(k—€)/n}q _ 0 and

where
| P [emizmk—/nja-1| = |SiTg?rEé€7:(i)£Z)7€z))/\n)l tends to
D when n tends to oo. u

Suppose now that pr.(p) is summable. This naturally
implies (15) and for k # ¢, the second sum of (27) must be
replaced by the unbounded sum ) <p<n Where

|7';1: (p)(ei%rp(l—f)/n +

n—p
<Z [e—z‘Qﬂ'(k—Z)/n]q—

q=1

e—i27rp(1—€)/n)
1) | < 2plra(p)|(1+€),(28)

for n > N(e), Ve > 0. |
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