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Abstract

We tackle the problem of finite-time regret minimization in linear quadratic adaptive control. Regret minimization is a scientific
field in both adaptive control and reinforcement learning research communities which studies the so-called trade-off between
exploration and exploitation. Even though a large focus has been on linear quadratic adaptive control with theoretical finite-
time bound guarantees on the expected regret growth rate, most of the proposed optimal exploration strategies do not take
into account the scaling constant associated to the growth rate. Moreover, the exploration strategies are limited to white
noise excitation. Using the tools from experiment design, we propose a computational tractable solution for the design of the
external excitation chosen as a white noise filtered by a finite impulse response filter which is adapted on-line. The numerical
example shows a reduced regret than available strategies in the literature.

Key words: Regret minimization, adaptive control, linear quadratic regulator, experiment design, linear systems,
reinforcement learning

1 Introduction
Linear quadratic (LQ) control is a control strategy for

linear state systems minimizing a quadratic cost on the
states and inputs of the system [4]. However, the con-
troller design requires perfect knowledge of the state ma-
trices in order to yield efficient control cost minimiza-
tion which is never possible to get as real-life systems
are affected by disturbances. A remedy to this problem
is to implement a model-based adaptive control policy
where the controller is updated online based on the re-
cursive identification of the state matrices using input-
state data. Because of the disturbance presence, the
model comes with uncertainties which in turn causes
control performance degradation.

⋆ This work was supported by VINNOVA Competence
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Swedish Research Council through the research environment
NewLEADS (New Directions in Learning Dynamical Sys-
tems), contract [2016-06079].
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In many adaptive control problems, it is crucial to ex-
cite the system with an additional external excitation
in order to guarantee an efficient decrease of the uncer-
tainties. However, the use of an external excitation also
causes control performance degradation as it disturbs
the signals of the closed-loop. Therefore, a trade-off must
be chosen between the control performances degradation
due to the uncertainties of the model and the one due to
the use of the external excitation. This problem has been
formalized in both reinforcement learning and adaptive
controller research communities as regret minimization.
The regret is a function of both the exploration and ex-
ploitation costs and the external excitation is designed
in such a way that it minimizes the regret over an infi-
nite or finite-time horizon. Early works on regret mini-
mization can be found in [27] for the multi-armed bandit
problem and in [29,28] for minimum variance adaptive
control.
Much effort on obtaining bounds for the growth rate

of the regret has been done in the literature for linear
quadratic adaptive control. In the LQ setting, it was
shown that one can achieve at best O(log(t)) or O(

√
t)

growth rates, depending on the prior knowledge of the
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state matrices [22,24,45,2,36,41,35,44]. When both state
matrices are unknown, the optimal rate for the regret
is O(

√
t) [22,24] and it is equal to O(log(t)) when one

state matrix is known and under some mild assumptions
on the optimal controller matrix. Adaptive control algo-
rithms dealing with this problem can be classified as be-
longing to two families: optimism in face of uncertainty 1

(OFU) and certainty equivalence (CE) principle based
strategies.
The OFU approach designs the adaptive control policy

by selecting the one which minimizes the expected re-
gret. The work in [2] gives a regret asymptotically scaling
asO(

√
t) in the LQ problem but the approach is compu-

tationally intractable as it requires to solve non-convex
problems at each time instant. In pursuit of develop-
ing algorithms requiring less computational power, the
Thompson sampling strategy was considered in [3] guar-
anteeing the regret to asymptotically grow as O(t2/3).
In that case, the controller is updated at specific time in-
stants based on an element of the uncertainty ellipsoid.
The rate O(t2/3) is also attained with the robust algo-
rithm of [13]. The Thompson sampling scheme of [3] was
later improved in [36,25] providing a rate ofO(

√
t). This

asymptotic rate can also be obtained with the computa-
tionally tractable OFU based algorithm of [10].
The CE strategy assumes that the identified model

is error-free and designs the controller accordingly.
It inspired several works in LQ regret minimiza-
tion [41,35,44,38,14,24,22]. In [41], the authors devel-
oped an episodic algorithm guaranteeing an upper
bound for the regret scaling as O(

√
t) for finite-time

horizon. An external excitation is added to the control
effort and the properties of this excitation is designed
epochs by epochs and the parameter vector is only
identified at the end of these epochs when a sufficient
number of data have been obtained. In [35,44,22], it is
proven that perturbing the input with a white Gaus-
sian noise excitation whose variance decays as O(1/

√
t)

guarantees an asymptotic regret with a growth rate of
O(
√
t) which has been proven to be the the optimal

asymptotic rate for LQ problem in [42]. As we argued
in [11], this 1/

√
t-decaying excitation may not be opti-

mal as it is in essence an open-loop strategy with respect
to the external excitation, not accounting for how un-
measured disturbances may excite the system providing
useful system information. A closed-loop approach is
proposed in [11] referred to as Inverse Fisher Feedback
Exploration (IF2E) where the amount of excitation is
determined from an estimate of the Fisher information
matrix. It is shown that this approach gives the optimal
regret rate but with the additional benefit of better fi-
nite sample behavior. The IF2E scheme has also been
recently extended to the LQ Gaussian setting in [6], a
topic which is also treated in [45] for the case where not
all the states are measured.
While achieving the optimal growth rate O(

√
t) is of

1 It is also referred as bet on the best.

course very important, in practice, minimizing the scal-
ing constant is also crucial. However, this scaling con-
stant has never been taken into account in the aforemen-
tioned works. In experiment design in system identifi-
cation [7,20,19], this scaling constant is the design ob-
jective and the excitation is the decision variable. For
linear time invariant (LTI) experiment design problems,
the decision variable is often the power spectrum density
(PSD) of the excitation. This is to be contrasted with
the proposed methods in the aforementioned references
where the excitation signal is taken to be white while we
know from experiment design works how important it is
to optimize the frequency content of the excitation.
Regarding regret minimization, an experiment design

approach was considered in [15] for adaptive H2 con-
trol of LTI systems for which the decision variable is an
external excitation added to the control effort. In ad-
dition to the optimization of the scaling of the regret
growth rate, the other advantage of considering a time-
invariant experiment design approach as in [15] is the
fact that the variance of the external excitation is not
enforced to be decaying as O(1/

√
t) as in, e.g., [44,23]

which opens up more degrees of freedom for effective re-
gret minimization. The adaptive control strategy is di-
vided into several intervals of sufficient duration during
which the controller is kept constant and only adapted
at the end of each epoch using the CE principle. By do-
ing so, the tools from LTI experiment design can be used
and the decision variables are the PSDs of the external
excitation on each interval. As classically done in exper-
iment design [19], a Taylor expansion up to the second
order is performed of the design objective and the ob-
tained expression affinely depends on both the inverse
of the Fisher information matrix and the PSDs of the
external excitations. Moreover, the Fisher information
matrix is also an affine expression of the PSD of the ex-
ternal excitation. Using a linear parametrization of the
PSD [21,7], the experiment design problem can be refor-
mulated as a convex semidefinite programming (SDP).
This SDP depends on the unknown true system. To solve
this problem, the true system will be replaced by the
current estimate. To reduce the error induced by this
approximation, a receding horizon approach, similar to
model predictive control, has also been adopted in [15]
for the design of the PSDs. Experiment design is also
performed in a receding horizon fashion in [32,31] for
model predictive control where it is integrated into the
receding horizon control algorithm. Finally, we mention
that adaptive input design has been used to address that
optimal input design problems typically depend on the
to-be-identified, and it has been shown that with such
designs the same asymptotic accuracy can be obtained
as if the true system was used initially in the design [16].
Consequently, in Section 4 of this paper, we draw on [15]

and first propose an extension of their interval-based ap-
proach combined with the receding horizon principle to
the LQ regret minimization problem, referred here as
Adaptive Finite impulse response Fisher Feedback ex-
ploration (AF3E). Namely, we will show that, at the be-

2



ginning of each interval, we can approximate the regret
minimization problem as a SDP. However, the computa-
tional power required by AF3E can be very large which
prevents its real-life implementation. Hence, we develop
two theoretical results which allow to considerably re-
duce the computation time required for AF3E in Sec-
tion 5. The first result (Theorem 1) allows us to simplify
the objective function of the SDP. It is a direct conse-
quence of the CE strategy and comes from a frequency
domain property of the closed-loop transfer functions
of the infinite horizon discrete-time LQ control which
hitherto seems to have gone unnoticed. The second re-
sult, constituting the primary contribution of this paper,
shows that, if an excitation signal has to be applied to
minimize the regret over a certain amount of intervals,
this excitation signal must only be applied in the first
of the remaining intervals. This allows a strong simpli-
fication of the SDP as all the variables and linear ma-
trix constraints (LMI) constraints related to the external
excitation of the future intervals can be removed from
the optimization problem. Furthermore, in certain in-
stances, the current interval may not necessitate excita-
tion, provided a specific inequality, verifiable prior to the
SDP resolution, is satisfied. This novel result strongly
resonates with the observations made in the numerical
example of [15] and our recent theoretical results for the
LQ regret minimization problem [12] where we show,
under some strong approximations, that the optimal ex-
ploration strategy focuses all the exploration effort dur-
ing the first time instant, i.e., future time instants are
not excited. The main difference of the proposed scheme
is the relaxation of the strong assumptions made in [12]
which prevents its real-life implementation.
Despite the approximations made in this paper in or-

der to reformulate the regret minimization as a SDP, we
show in a numerical example in Section 7 that the pro-
posed scheme can perform better than 1/

√
t-decaying

exploration [44], the Thompson sampling strategy [36]
and IF2E [11]. Future perspectives are provided in Sec-
tion 8.

2 Notations
Scalars, vectors and matrices: For any two integers p ≤
m, the notation Jp,mK refers to the set of consecutive
integers between p and m. The notation j will refer to
the complex number satisfying j2 = −1. The set of real-
valued matrices of dimension n × m will be denoted
Rn×m. We will often use the notation nx for the dimen-
sion of any vector x. The trace of any square matrix A
will be denoted tr(A). When A is positive definite (re-
spectively positive semi-definite), we will write A ≻ 0
(respectively A ⪰ 0). The identity matrix of dimension
n × n will be denoted by In and A⊤ (respectively A∗)
denotes the transpose (respectively the conjugate trans-
pose) of any matrix A. The minimal and maximal eigen-
value of any matrix A is denoted by λ(A) and λ(A) re-
spectively. For a set of m scalars xk (k = 1, · · · ,m), the
notation T (x1, · · · , xm) refers to the Toeplitz symmet-
ric such that the first row is given by (x1, · · · , xm).

Probability : The notation x ∼ N (µ,Σ) refers to the vec-
tor x of random variables which are jointly normally dis-
tributed with mean vector µ and covariance matrix Σ.
The expectation operator will be denoted by E.
System variables: The discrete-time forward operator
and the Z−transform variable will be abusively referred
by the same notation z and the discrete time variable
will be denoted by t. Finally, when dealing with the fre-
quency response of any discrete-time linear time invari-
ant system, we will denote by ω the angular frequency.
Signal : For L2 summable discrete-time vector-valued
signals x, ||x||Q is the weighted L2 norm with weighting
matrix Q ⪰ 0 defined by

||x||2Q = lim
T→+∞

1

T

T∑
t=1

E[x(t)⊤Qx(t)]

3 Context and literature
Consider a LTI discrete-time state system S with a

vector x of nx states and one input u given by

x(t+ 1) = A0x(t) +B0u(t) + e(t) (1)

where e is the process noise vector and A0 ∈ Rnx×nx

and B0 ∈ Rnx×1 are the state matrices. All the states
are assumed to be measured without error 2 . The pro-
cess noise vector e is assumed to be zero-mean, white and
normally distributed with a covariance matrix Σe ≻ 0.
Finally, the pair of matrices {A0,B0} is assumed con-
trollable.
We want to control S with a linear quadratic controller

minimizing the infinite-time horizon quadratic control
cost J∞(u) = lim

T→+∞

∑T
t=1 E[Jt(u)]/T , where the in-

stantaneous control cost Jt(u) is defined by

Jt(u) = x(t)⊤Qx(t) +Ru(t)2

where Q ∈ Rnx×nx and R ∈ R are user-defined matrices
such that Q ≻ 0 and R > 0. With the controllability as-
sumption, there is an optimal gain vector K0 ∈ R1×nx

such that the control policy u(t) = −K0x(t) stabilizes
the system while minimizing the cost J∞(u). The opti-
mal gain is given by

K0 =
(
R+B⊤

0 PB0

)−1
B⊤

0 PA0 (2)

where P ∈ Rnx×nx is the unique positive definite so-
lution to the following discrete-time algebraic Riccati
equation (DARE)

2 This is of course an ideal situation which was considered
in many of the prior works such as [44,22,2,9,30]. In practice
a measurement equation with added noise is present. The
proposed scheme can be extended to that case. The same
holds for the multiple inputs case. This will be reported
elsewhere.
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P−A⊤
0 PA0 = Q+A⊤

0 PB0(R+B⊤
0 PB0)

−1B⊤
0 PA0 (3)

Optimal control requires knowledge of the true state
matrices A0 and B0 since the optimal gain is a function
of these two quantities. Model based adaptive control
addresses lack of this information by estimating these
matrices from input and state data on-line. The process
noise e(t) precludes exact identification and we will refer
to the estimates at time t by A(t) and B(t) for A0 and
B0, respectively. In model-based adaptive control, the
controller is updated on-line using new observed data.
This update is done by following the following steps at
each time instant t: (i) a new input/output data sample
is acquired, (ii) the model is updated (often recursively),
and in some cases also its uncertainty is updated, (iii)
the controller, say K(t), is computed based on the newly
identified model and (iv) the following control policy

u(t) = −K(t)x(t) + v(t)

is applied and the process is re-started. The signal v(t) ∈
R is an user-defined external excitation for identification
purposes. As mentioned in the introduction, there are
two classes of approaches for the design of the adaptive
controller K(t). In CE, the identified state matrices are
considered to be the truth and the controller K(t) is
designed accordingly from (2) and (3), with A(t) and
B(t) replacing A0 and B0, respectively. In OFU, the
controller K(t) is chosen among the controllers that can
be designed based on the elements of the uncertainty
region for {A0,B0} as the one minimizing the expected
control cost.
3.1 Regret minimization and literature
As explained in the introduction, the choice of the adap-

tive strategy (OFU or CE) and the external excitation
v is important as it affects the trade-off between ex-
ploration (related to the control performance degrada-
tion caused by using the external excitation v) and ex-
ploitation (related to the control performance degrada-
tion caused by the model errors). The regret is a measure
of this trade-off and the optimal trade-off is obtained by
minimizing the cumulative regret. As in many works of
the literature [44,22,43], we will consider the following
cumulative expected regret r(T )

r(T ) =

T∑
t=1

E[Jt(u)]− E[Jt(ũ)] (4)

where the expectation E is taken with respect to e and
ũ is the ideal control effort obtained with K(t) = K0 ∀t
and without external excitation v.
Both in the asymptotic regime (T becoming large)

and for the finite time horizon case the regret r(T ) is
upper-bounded by O(log(T )) if A0 is known or if B0 is
known [22,45]. If both A0 and B0 are unknown, then
the regret is upper-bounded by O(

√
T ) [22,45,44].

In the literature, several adaptive control strategies
have been proposed in order to reach the optimal growth
rate of the regret. In this paragraph, we review three of
them in some detail as they will be used later in a nu-
merical example.
1/
√
t-decaying exploration. The work in [44,22,45]

showed that an excitation of the form

v(t) ∼ N
(
0,

a√
t

)
a ≥ 0 (5)

combined with the CE strategy guarantees an asymp-
totic cumulative regret growing as O(

√
T ).

The 1/
√
t-decaying excitation can be seen as an open-

loop strategy concerning the choice of external excita-
tion. In [11,3,36] it is argued that it may be beneficial
to use the Fisher information matrix to determine the
magnitude of the excitation. There are two schemes in
the literature that are based on this idea:
Inverse Fisher feedback exploration (IF2E). We
proposed in [11] a zero-mean white noise Gaussian ex-
citation for which the variance is adapted based on a
feedback of the minimal eigenvalue of the inverse of the
estimated covariance matrix P(t) of the identified state
matrices A(t) and B(t) (see [11] for the expression), i.e.,

v(t) ∼ N
(
0,

b

λ(P(t)−1)

)
b ≥ 0 (6)

The main drawback of 1/
√
t-decaying excitation and

IF2E is that they employ white noise excitation which
from an optimal experiment design perspective may not
be the optimal excitation because there is no correlation.
Thus, even if the optimal regret rate and the optimal
value for a and b can be determined 3 , the regret may still
be further reduced with a correlated excitation signal.
Thompson sampling exploration. Several Thomp-
son sampling strategies have been developed in [3,36,25]
for LQ regret minimization. At specific time instants, a
parameter vector is sampled from the uncertainty ellip-
soid and the LQ controller is designed based on this sam-
ple. This scheme does not add an additional external v.
The schemes in [36,25] provide a regret r(T ) asymptot-
ically scaling as O(

√
T ) and [36] has the nice advantage

to not depend on some hyperparameters.
As mentioned in [39], the approach with Thompson

sampling is not suited for reinforcement learning prob-
lems which do not require an active exploration, i.e.,
an exploration which never stops. However, as was ob-
served for finite-time LQ regret minimization in [12] or
in [15] for finite-time H2 based adaptive control, the op-
timal exploration strategy only excites the system at the
beginning of the experiment. Thus, active exploration
strategies may not be optimal for the considered prob-
lem and so Thompson sampling approaches may not be
adequate in that case.

3 Notice that the optimal value for a and b depends on the
true parameter vector θ0.
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In this contribution, we propose an approach which
uses the system information, as measured by the Fisher
information matrix, to determine the excitation. Thus
we build on IF2E but with the following important im-
provement which consists in adding correlation in the
external excitation. We will call this strategy AF3E for
Adaptive FIR Fisher Feedback Exploration.

4 Adaptive FIR Fisher Feedback Exploration
(AF3E)

4.1 Pre-requirements
In this paragraph, we mention what is required in order

to use the proposed scheme.
First, we assume that we know a model structureM =
{{A(θ),B(θ)} | θ ∈ Rnθ} parametrized by a vector θ
containing nθ parameters. Moreover, we assume M to
be full-order, i.e., there exists a true parameter vector
θ0 ∈ Rnθ such that A(θ0) = A0 and B(θ0) = B0.
Remark 1. If the user does not know a suitable model
structure, both matrices A(θ) and B(θ) can be cho-
sen such that each of their entries is independently
parametrized. In that case, θ contains nθ = nx(nx + 1)
parameters. □
From this model structure, we introduce the notation
K(θ) which is the LQ controller row vector obtained
by (2) and (3) replacing A0, B0 and P0 by A(θ), B(θ)
and P(θ) respectively.
Finally, we will assume that we have an initial estimate
θinit which is normally distributed around θ0 with a co-
variance matrix Pinit which is also assumed known.
Remark 2. If the user does not know an initial esti-
mate θ̂init and/or its corresponding covariance matrix
Pinit, an initial identification experiment of long dura-
tion 4 can be performed in order to compute them so that
the approximation θ̂init ∼ N(θ0,P

−1
init) holds. □

4.2 Design by intervals
Under the certainty equivalence strategy, the regret

minimization of the adaptive LQ control problem be-
comes a time-varying experiment design problem where
the aim is to compute the optimal sequence {v(t)}Tt=1
such that the regret r(T ) is minimized. This optimiza-
tion problem is non-convex which makes it computation-
ally intractable to be solved.
Inspired from the work in [15], we are going to ap-

proximate the regret minimization problem as a con-
vex experiment design optimization problem. The idea
in [15] is to divide the experiment interval J1, T K into L
epochs of equal duration N so that T = LN . During
each epoch time-invariance and stationarity is ensured
by keeping the controller constant and using a realiza-
tion of a stationary stochastic process as external excita-
tion. We respectively denote by ek, vk, uk, xk, ũk and x̃k
the noise, the external excitation, the input, the state,
the ideal input and the ideal state of the k-th interval.

4 Under some mild assumptions [33], the estimate θ̂init is
asymptotically normally distributed around θ0 with covari-
ance Pinit. Hence, an identification experiment with a large
number of data can approximate well the normal assumption
θ̂init ∼ N(θ0,P

−1
init) of the estimate.

The variable τ ∈ J1, NK will be used to index the time in-
stants of each interval. With this notation, we have, e.g.,
x((k− 1)N + τ) = xk(τ). We can also split the cumula-
tive regret r(T ) into the sum of sub-regrets rk obtained
during the k-th interval

r(T ) =
L∑

k=1

rk

rk =
N∑

τ=1

E[x⊤k (τ)Qxk(τ) +Ru2k(τ)− x̃⊤k (τ)Qx̃k(τ)−Rũ2k(τ)]

Denote by K(θ̂k) the constant controller used in the
feedback of the system (1) during interval k, i.e.,

uk(τ) = −K(θ̂k)xk(τ) + vk(τ)

At the beginning of each interval k ≥ 2, the controller
is computed using the CE strategy, based on the least-
squares estimate θ̂k of θ0 computed at the beginning of
the interval k by using all the past input-state data of
the previous intervals. Each θ̂k with k ≥ 2 is given by

θ̂k = arg min
θ ∈ Rnθ

k−1∑
l=1

N∑
τ=1

εl(τ, θ)
⊤Σ−1

e εl(τ, θ) (7)

with εl(τ, θ) = xl(τ + 1)−A(θ)xl(τ)−B(θ)ul(τ), θ̂1 =

θ̂init. The initial state x1(1) = x(1) and noise covariance
matrix Σe will be assumed to be known for simplicity 5 .
For each vk, we consider a white noise excitation with
unit variance, independent from ek and which is filtered
by an arbitrary finite impulse response (FIR) filter Fk(z)
of order m allowing us to introduce some correlation in
the external excitation vk. Hence, the decision variables
for regret minimization are the filters {Fk(z)}Lk=1.
Two important assumptions will be considered in order

to rewrite the regret minimization problem as a convex
experiment design problem.
Assumption 1. For the design of the FIR filters
{Fk(z)}Lk=1, we will make the assumption that all
the identified pairs of matrices {A(θ̂k),B(θ̂k)}Lk=1 are
controllable and all the corresponding CE controllers
{K(θ̂k)}Lk=1 stabilize the loop. We will explain later in
Section 6 how to deal in practice with this assumption.
Assumption 2. The lengthN of the epochs is assumed
to be sufficiently large that transients can be neglected
and that the asymptotic theory for parameter estima-
tion in linear dynamical systems (as given in Chapter 9
in [33]) is applicable.
Remark 3. While Assumption 2 may seem restrictive
at this point, as we will see in the numerical example in
Section 7, the performance of the resulting algorithm is
competitive with state-of-the-art methods and this also
for small epoch lengths.

5 The initial state x1(1) = x(1) and the covariance matrix
Σe can also be estimated together with θ̂k [33].
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Under Assumption 2 and the filtered white noise choice
for vk, we have that θ̂k is asymptotically normally dis-
tributed around θ0 with a covariance matrix equal to
the inverse of Ik where Ik is the Fisher information
matrix satisfying the following additive property Ik =
Ik−1 + Lk−1 with I1 = P−1

init. The matrix Lk corre-
sponds to the additional Fisher information obtained
during interval k. Under the assumption of white zero-
mean Gaussian noise e with covariance matrix Σe ≻ 0,
Lk is given by [33]

Lk = NE

[
∂εk(τ, θ)

∂θ
Σ−1

e

(
∂εk(τ, θ)

∂θ

)⊤
]
|θ=θ0

4.3 Power spectrum parametrization
Recall that the considered decision variables for re-

gret minimization are the filters {Fk(z)}Lk=1 of order m.
Then, the PSD ϕvk of the excitation signals vk have the
following form [21]

ϕvk (ω) = c0(k) + 2

m∑
q=1

cq(k) cos(qω) (8)

where cq(k) (q = 0, · · · ,m, k = 1, · · · , L) are the scalar
parameters to be tuned. Spectral factorization tech-
niques compute the FIR filter Fk(z) from ϕvk(ω) [40].
Since ϕvk is affine with respect to cq(k), we will show
that we can approximate the regret minimization prob-
lem as a SDP with cq(k) (q = 0, · · · ,m, k = 1, · · · , L)
as decision variables.
Nevertheless, in order to guarantee the existence of a

proper Fk(z) from ϕvk(ω), we need to guarantee the non-
negativity of the PSD, i.e., ϕvk(ω) ≥ 0 ∀ω ∈] − π, π].
With the parametrization (8), a necessary and sufficient
condition for ϕvk(ω) ≥ 0 ∀ω ∈] − π, π] when m > 0 is
the existence of a symmetric matrix X(k) of dimension
m ×m such that the following linear matrix inequality
(LMI) is guaranteed [21]

 X(k)−Y⊤X(k)Y c1:m(k)−Y⊤X(k)Z

c⊤1:m(k)− Z⊤X(k)Y c0(k)− Z⊤X(k)Z

 ⪰ 0 (9)

where c⊤1:m(t) = (c1(k), · · · , cm(k)) and

Y =

01×(m−1) 0

Im−1 0(m−1)×1

 Z =

 1

0(m−1)×1


This comes from an application of the positive real
lemma [1], a particular case of the KYP lemma [37].
When m = 0, this condition simply becomes c0(k) ≥ 0.
In the next paragraph, we show how to reformulate each

sub-regret rk as an explicit expression of the parameters
cq(k) under Assumption 2. For this purpose, we intro-
duce additional notations. For any θ and controller row
vector K stabilizing {A(θ),B(θ)}, we introduce the fol-
lowing closed loop transfer function notation where sub-
script zw denote the transfer function from w to z:

Txe(z, θ,K) = (zInx − (A(θ)−B(θ)K))−1

Tue(z, θ,K) = −KTxe(z, θ,K)

Txv(z, θ,K) = Txe(z, θ,K)B(θ)

Tuv(z, θ,K) = 1−KTxv(z, θ,K)

Consequently, the ideal state x̃ and input ũ are given by
x̃(t) = Txe(z, θ0,K0)e(t) and ũ(t) = Tue(z, θ0,K0)e(t).
4.4 Asymptotic approximation
Under Assumption 2, the stability of the closed-loop on

each interval k (Assumption 1) and the stationary as-
sumption of both ek and vk, each sub-regret rk can be
approximated by rk ≈ NE[||xk||2Q + ||uk||2R − ||x̃k||2Q −
||ũk||2R]. Moreover, the contribution of the transient time
dynamics on the above L2 norm terms is negligible.
Hence, we have ||xk||2Q ≈ ||x̄k||2Q and ||uk||2R ≈ ||ūk||2R
where x̄k and ūk are the state and input obtained from
the following transfer function representation with zero
initial conditions

x̄k(τ) = Txv(z, θ0,K(θ̂k))vk(τ) +Txe(z, θ0,K(θ̂k))ek(τ)

ūk(τ) = Tuv(z, θ0,K(θ̂k))vk(τ) +Tue(z, θ0,K(θ̂k))ek(τ)

Recalling that the ideal state x̃ and input ũ are
given by x̃k(t) = Txe(z, θ0,K0)ek(t) and ũk(t) =
Tue(z, θ0,K0)ek(t) and both ek and vk are independent,
we can rewrite rk as follows

rk ≈ N
(
rek(θ0,K(θ̂k)) + rvk(θ0,K(θ̂k))

)
rek(θ0,K(θ̂k)) = E[||Txe(z, θ0,K(θ̂k))ek||2Q]

+ E[||Tue(z, θ0,K(θ̂k))ek||2R]

− E[||Txe(z, θ0,K(θ0))ek||2Q]

− E[||Tue(z, θ0,K(θ0))ek||2R] (10)

rvk(θ0,K(θ̂k)) = E[||Txv(z, θ0,K(θ̂k))vk||2Q]

+ E[||Tuv(z, θ0,K(θ̂k))vk||2R] (11)

Here, each sub-regret rk is split into two terms. The term
rvk(θ0,K(θ̂k)) is an increasing function with respect to
the power c0(k) of the external excitation vk, i.e., it is
the control performance degradation due to the use of an
external excitation. It will be referred as the exploration
sub-regret. The term rek(θ0,K(θ̂k)), called exploitation
sub-regret, is the difference between the LQ cost for the
rejection of the disturbance e using the controller K(θ̂k)
and the optimal controller K0 = K(θ0), i.e., it is the
control degradation performances due to the uncertainty
of θ̂k. Let us now rewrite both sub-regrets rvk(θ0,K(θ̂k))

and rek(θ0,K(θ̂k)) so that they depend explicitly on the
decision variables cq(k) of the PSD parametrization (8).
4.5 Rewriting of the exploitation sub-regret
Firstly, observe that the function θ̂k → rek(θ0,K(θ̂k))

takes its minimum 0 at θ0 (LQ control property). Hence,
its gradient evaluated at θ0 is 0 and its Hessian matrix
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evaluated at θ0, denoted by W(θ0), is positive semi-
definite. By performing a Taylor approximation up to
the second order of θ̂k → rek(θ0,K(θ̂k)) evaluated at θ0,
we get rek(θ0,K(θ̂k)) ≈ E[(θ̂k − θ0)⊤W(θ0)(θ̂k − θ0)]/2.
The computation of the Hessian matrix W(θ0) can be
done using finite differentiation. Since θ̂k ∼ N(θ0,I−1

k ),
we get

rek(θ0,K(θ̂k)) ≈
1

2
tr(W(θ0)I−1

k ) (12)

where Ik is the Fisher information matrix. From
our assumptions of stationarity and stability during
one epoch, the per-epoch Fisher information matrix
Lkin (13) is given by (9.54) in [33]. Combined with the
PSD parametrization (8), it follows that the per-epoch
Fisher information matrices Lk can be rewritten as

Lk = NLe(θ0,K(θ̂k)) +Nc0(k)Lv
0(θ0,K(θ̂k)) (13)

+N

m∑
q=0

cq(k)
(
Lv

q(θ0,K(θ̂k)) +Lv
q(θ0,K(θ̂k))

⊤
)

for some matrix Le(θ0,K(θ̂k)) and some matrices
{Lv

q(θ0,K(θ̂k))}mq=0. Indeed, as shown in [7], the matrix
Lk defined at the end of Section 4.2 is the sum of a
contribution of the noise e (i.e., NLe(θ0,K(θ̂k))) and a
term of the form

N

2π

∫ π

−π

Γ(ejω)ϕvk(ω)dω (14)

for some matrix Γ(ejω) which is positive semi-
definite at all ω ∈] − π, π] (see [7]). The matrices
{Lv

q(θ0,K(θ̂k))}mq=0 are thus the first m+ 1 elements of
the Markov expansion of Γ(ejω, θ0,K(θ̂k)). The expres-
sion (13) thus provides a linear parametrization of the
Fisher information matrix Ik.
Next, we will reformulate the minimization of
rek(θ0,K(θ̂k)) given by (12) into an SDP following
the standard procedure in optimal experiment de-
sign [21]. Denote by W̃(θ0) the square root matrix of
W(θ0)/2. By introducing the matrices H(k) such that
H(k) ⪰ W̃(θ0)I−1

k W̃(θ0) and using Schur comple-
ment, minimizing rek(θ0,K(θ̂k)) ≈ tr(W(θ0)I−1

k )/2 =

tr(W̃(θ0)I−1
k W̃(θ0)) is equivalent to minimizing

tr(H(k)) such that the following positive semidefinite
inequality holds H(k) W̃(θ0)

W̃(θ0) I1 +
∑k−1

i=1 Li

 ⪰ 0 (15)

Injecting the linear parametrization (13) of the per-
epoch Fisher information matrices Lk in (18) yields
a LMI with respect to H(k) and cq(k). Consequently,
we get a SDP reformulation of the minimization of the
regret caused by the model uncertainties.

4.6 Rewriting of the exploration sub-regret
Let us now consider the exploration sub-regret
rvk(θ0,K(θ̂k)) in (11). Using Parseval’s theorem,
rvk(θ0,K(θ̂k)) can be rewritten as follows rvk(θ0,K(θ̂k)) =

1/2π
∫ π

−π
E[D(ejω, θ0,K(θ̂k))]ϕvk

(ω)dω where the inte-
grand D(ejω, θ,K(θ̂k)) is defined by

D(ejω, θ,K(θ̂k)) = T∗
xv(e

jω, θ,K(θ̂k))QTxv(e
jω, θ,K(θ̂k))

+T∗
uv(e

jω, θ,K(θ̂k))RTuv(e
jω, θ,K(θ̂k))

(16)

With the parametrization (8) of the PSDs ϕvk , each
rvk(θ0,K(θ̂k)) becomes

rvk(θ0,K(θ̂k)) = β0(θ0,K(θ̂k))c0(k) + 2

m∑
q=1

βq(θ0,K(θ̂k))cq(k)

βq(θ0,K(θ̂k)) =
1

2π

∫ π

−π
E[D(ejω , θ0,K(θ̂k))] cos(qω)dω

i.e., we obtain a linear parametrization in terms of
{cq(k)} of the regret caused by the exploration. How-
ever, we still have the expectation operator in the above
expression. As was done in the previous paragraph
for the exploitation sub-regret, we could perform an-
other Taylor expansion up to the second order of each
θ̂k → βq(θ0,K(θ̂k)) and evaluated at θ0 in order to have
an approximation of the expected value which depends
on Ik. However, as pointed out in [15], we obtain an
expression which is not convex in the decision vari-
ables. Hence, we will do the following approximation by
removing the expectation operator

βq(θ0,K(θ̂k)) ≈
1

2π

∫ π

−π

D(ejω, θ0,K(θ̂k)) cos(qω)dω (17)

Notice that the less uncertain the estimate θ̂k, the more
accurate the above approximation.
4.7 A SDP formulation of regret minimization
Using the above reformulation of both exploitation and

exploration sub-regrets minimization, we show in this
paragraph that we can rewrite the regret minimization
problem as a SDP which is a convex optimization prob-
lem. Before that, we have two observations to make.
Firstly, the exploitation sub-regret re1 of the first inter-
val does not depend on any ϕvk , so the LMI (18) for
k = 1 can be removed from the optimization problem.
Secondly, we can also pose vL = 0 (and thus rvL = 0)
since an excitation signal in the last interval will only
increase the regret while having no effect on the model
accuracy (the model will indeed not be updated at the
end of the L-th interval in the chosen setting). Conse-
quently, we can set cq(L) = 0. Hence, combining both
regret reformulations and re-indexing the variablesH(k)
such that H(k)← H(k+1), the final optimization prob-
lem of minimizing the cumulative regret r(T ) can be ap-
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proximately rewritten as

min
cq(k),X(k)

H(k)

∑L−1
k=1

(
tr(H(k)) + rvk

)
Subject to, for all k ∈ J1, L− 1K,

rvk = β0(θ0,K(θ̂k))c0(k) + 2
∑m

q=1 βq(θ0,K(θ̂k))cq(k) H(k) W̃(θ0)

W̃(θ0) P−1
init +

∑k
i=1 Li

 ⪰ 0

Li = NLe(θ0,K(θ̂i)) +Nc0(i)Lv
0(θ0,K(θ̂i))

+N
∑m

q=1 cq(i)N
v
q (θ0,K(θ̂i)) X(l)−Y⊤X(l)Y c1:m(l)−Y⊤X(l)Z

c⊤1:m(l)− Z⊤X(l)Y c0(l)− Z⊤X(l)Z

 ⪰ 0

(18)

whereN v
q((θ0,K(θ̂i)) = Lv

q((θ0,K(θ̂i))+(Lv
q((θ0,K(θ̂i)))

⊤.
This problem is a SDP for which efficient solvers ex-
ist such as MOSEK [5]. However, it cannot be solved
in its current form since several terms depend on the
unknown true parameter vector θ0 and the future es-
timates {θ̂k}Lk=2. We could replace them by the initial
(known) estimate θ̂1 = θ̂init. As a consequence, the
optimal PSDs obtained after solving the corresponding
SDP may not be appropriate if θ̂1 is highly uncertain
since all the aforementioned approximations of the re-
gret minimization problem may not hold.
Fortunately, the future estimates θ̂k are expected to be

less and less uncertain throughout the epochs since they
are computed with more and more data. This suggest
to consider a receding horizon strategy for the design of
the PSDs as proposed in [15]. At the beginning of any
interval p, we optimize the PSDs ϕvp , . . . , ϕvL−1

mini-
mizing the remaining regret

∑L
k=p rk reformulated as a

SDP following the steps done in the previous paragraphs.
We replace θ0 and the future estimates {θ̂k}Lk=p+1 by
the estimate θ̂p computed at the beginning of interval
p. In order to reduce the notation complexity, we will
drop the arguments and abusively write βq, W, Le and
Lv

q instead of βq(θ̂p,K(θ̂p)), W̃(θ̂p), Le(θ̂p,K(θ̂p)) and
Lv

q(θ̂p,K(θ̂p)). Then, the SDP to be solved at the begin-
ning of interval p is given by

min
cq(k),X(k)

H(k)

∑L−1
k=p

(
tr(H(k)) + β0c0(k) + 2

∑m
q=1 βqcq(k)

)
Subject to, for all k ∈ Jp, L− 1K,H(k) W̃

W̃ Mk +N
∑k

i=p

(
c0(i)Lv

0 +
∑m

q=1 cq(i)N
v
q

) ⪰ 0 X(k)−Y⊤X(k)Y c1:m(k)−Y⊤X(k)Z

c⊤1:m(k)− Z⊤X(k)Y c0(k)− Z⊤X(k)Z

 ⪰ 0

(19)
where, for any k ≥ p, Mk = Ip + N(k − p + 1)Le

and, for any q ≥ 1, N v
q = Lv

q + (Lv
q)

⊤. For Ip, we will
consider the inverse of the estimated covariance matrix
of θ̂p computed as described in [33]. Once the SDP is
solved, we excite the system with a realization of the

external excitation vp obtained from the optimized PSD
ϕvp until the beginning of the next interval p + 1. We
then re-iterate the design process.
Even though it is now theoretically possible to imple-

ment AF3E, we can be highly concerned about its re-
quired computation time. Indeed, at the beginning of
each interval p, we need to have sufficient computational
power in order to realize several tasks which should last
less than the sampling time: the computation of W̃, Le,
Lv

q and βq, the solving of the SDP (19) and the spectral
factorization of the optimal ϕvp . Analyzing the complex-
ity of the SDP, we observe that there are 2(L− p) con-
straints and, for the decision variables, there are L − p
symmetric matrices H(k) of dimension nθ × nθ, L − p
symmetric matrices X(k) of dimension (m+1)×(m+1)
and (m+1)(L−p) scalars decision variable cq(k). Conse-
quently, the complexity of the SDP is the largest for the
first intervals and it might exceed the available proces-
sor sampling time. In the next section, we show that we
can reduce the complexity of AF3E from two theoretical
results which are the main contributions of this paper.

5 Theoretical results on AF3E
The first simplification relates to the exploration penal-

ization coefficients βq in (17). It comes from a property
of the LQ control problem which seems to have gone un-
noticed until now.
Theorem 1 (LQ frequency domain identity). Consider
any pair of controllable states matrices {A,B} with
nx states and one input and any LQ matrix Q ≻ 0
of dimension nx × nx and scalar R > 0. Denote by
P the positive semidefinite solution of the correspond-
ing DARE and by K the corresponding infinite horizon
discrete-time LQ controller involved in the control pol-
icy u(t) = −Kx(t) + v(t) where v is an additional ex-
ternal excitation. Then, the closed-loop transfer func-
tion matrices Txv(z) = (zInx

− (A − BK))−1B and
Tuv(z) = 1−KTxv(z) satisfies the following frequency
domain property for any ω

T∗
xv(e

jω)QTxv(ejω) +T∗
uv(e

jω)RTuv(ejω) = R+B⊤PB

PROOF. See Appendix A. ■

From Theorem 1, we conclude that the integrand
D(ejω, θ̂p,K(θ̂p)) in (16), involved in the computation of
the coefficients βq in (17) with both θ0 and θ̂k replaced
by θ̂p, is constant and equal to R+B(θ̂p)

⊤P(θ̂p)B(θ̂p).
Hence, we have β0 = R+B(θ̂p)

⊤P(θ̂p)B(θ̂p) and βq = 0
for every q ≥ 1. This simplifies the objective function of
the SDP (19). The next theorem, which is a significant
contribution of this paper, provides the largest simpli-
fication of the computational complexity of AF3E. It
shows that the solution of the SDP (19) has a strong
sparsity.
Theorem 2 (The lazy/immediate excitation theorem).
Consider the SDP (19) at any interval p with β1 = · · · =
βm = 0 (consequence of Theorem 1). The optimal values
of the decision variables cq(k) (q = 0, · · · ,m) and X(k)
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are equal to 0 for k = p + 1, · · · , L − 1. This implies
vp+1 = · · · = vL−1 = 0, i.e., the future intervals are not
excited. The excitation vp (i.e., the excitation for the
current interval) is the only one that can be non-zero.
This excitation vp is nevertheless also equal to 0 if

β0 > Nλ

L−1∑
k=p

T (ζ0(k), · · · , ζm(k))

 (20)

where T (.) is defined as in Section 2 and ζq(k) =

tr(WM−1
k Lv

qM
−1
k )/2 ∀q ∈ J0,mK with Mk =

Ip +N(k − p+ 1)Le.

PROOF. See Appendix B. ■

Theorem 2 implies that we can set all the decision vari-
ables related to vp+1, · · · , vL (i.e., cq(k) and X(k) for all
k ∈ Jp+ 1, L− 1K) equal to 0. Hence, the SDP is equiv-
alent to the following reduced SDP

min
cq(p),X(p)

H(k)

∑L−1
k=p tr(H(k)) + β0c0(p)

Subject to, ∀k ∈ Jp, L− 1K,H(k) W̃

W̃ Mk +N(c0(p)Lv
0 +

∑m
q=1 cq(p)N

v
q )

 ⪰ 0

and X(p)−Y⊤X(p)Y c1:m(p)−Y⊤X(p)Z

c⊤1:m(p)− Z⊤X(p)Y c0(p)− Z⊤X(p)Z

 ⪰ 0

(21)

Hence, only the current interval p might require an exci-
tation (immediate exploration) depending on the valid-
ity of the constraint (20). If it it is satisfied, there is no
need to explore during interval p (lazy exploration), i.e.,
vp = 0. Since all the terms in this constraint can be com-
puted, we can check a priori if we have to solve SDP (21)
or if we can set vp equal to 0. It is obviously faster to
check this constraint than to solve the SDP. By analyz-
ing (20), we conclude that it is not worth exploring if (i)
the exploration coefficient β0 is large, (ii) the number of
remaining time instants N(L− p) is small and (iii) Mk

is large and/or its main eigenvectors are perpendicular
to the ones of the Hessian matrix W.
Theorem 2 has some connections with some results in

the literature. In the numerical example of [15], it was
observed that the the exploration effort is only done dur-
ing the first intervals. Moreover, by considering stronger
assumptions than here, we recently showed in [12] that
the optimal exploration strategy must be either focused
during the first time instant (immediate exploration) or
it must be set to 0 (lazy exploration).

6 Dealing with controllability and stability
Before evaluating the performances of AF3E with a nu-

merical example, we need to come back to the stability
and controllability assumption we made for the develop-
ment of the results (Assumption 1).

Thanks to the receding horizon principle and our ap-
proach to deal with the chicken-an-egg issue, we only
have to verify the controllability of {A(θ̂p),B(θ̂p)} and
the stability of the closed-loop with the CE controller
K(θ̂p) of the current interval p since the next ones are
not present in the final SDP (21) we solve.
For the controllability test, we just have to check that

the controllability matrix computed with {A(θ̂p),B(θ̂p)}
is full rank [4]. For the stability, we can analyze the
robustness of the controller K(θ̂p) with respect to an un-
certain region containing the true system and that can
be built using the fact that θ̂p ∼ N(θ0,I−1

p ) (see [8,15]).
If it happens that, for any interval p, the CE controller

K(θ̂p) fails the stability test or the controllability ma-
trix obtained from {A(θ̂p),B(θ̂p)} is not full rank, then
the idea is to do the design of the PSDs using the esti-
mate of the previous interval p− 1. In other words, the
controller used during interval p is K(θ̂p−1) and θ0 and
the future estimates {θ̂k}Lk=p+1 are replaced by θ̂p−1 in
the SDP. The motivation for this choice is that the re-
sults of Theorems 1 and 2 remain valid which keeps the
scheme simple. Other alternatives will be investigated
in the future such that robust stabilizing design of the
controllers in the case when the CE controller fails the
stability test.
Note that the aforementioned choice for dealing with

controllability and stability requires that the initial esti-
mate θ̂init is such that the initial CE controller K(θ̂init)
stabilizes the loop and the controllability matrix ob-
tained from {A(θ̂init),B(θ̂init)} is full rank. If it is not
the case for the stability, an additional identification ex-
periment must be done and experiment design tools such
as [7] can be exploited in order to design the excitation
such that the stability is achieved.
Remark 4. Because the initial controller stabilizes the
loop, it will be rare that the CE controllers of the next in-
tervals can destabilize the loop. For the controllability, if
{A0,B0} is controllable and the chosen model structure
is full-order and linearly parametrized, then the control-
lability matrix will be most of the times full rank.
By considering both aforementioned tests in our

scheme, we can finally construct the algorithm of AF3E.
It is given in Algorithm 1.
7 Numerical example
7.1 System and control variables
For the system S in (1), we consider nx = 3 states with

the following state matrices

A0 =


−0.390 0.370 −0.570

−0.250 −0.780 −0.080

1.320 0.250 −0.130

 B0 =


0.210

0

0


This system has one real pole at −0.790 and two com-
plex conjugate poles which describe a resonance with
resonance frequency equal to 1.883 rad/s (the sampling
time is equal to 1s) and a damping ratio of 0.027. The
two half power points are 1.831 rad/s and 1.933 rad/s.
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Algorithm 1 AF3E

Require: LQ weighting matrix Q ≻ 0 and scalar R > 0, FIR order m, initial estimate θ̂init and corresponding
covariance matrix Pinit ≻ 0 such that the pair of matrices {A(θ̂init),B(θ̂init)} and the CE controller K(θ̂init)
passes the controllability and stability tests of Section 6 and initial state value x(1).
Set θ̄ = θ̂init and Ī = P−1

init.
for p = 1, . . . , L do

At the beginning of the interval p (i.e., at t = (p− 1)N + 1),
• Step 1: if p > 1, identify θ̂p as in (7), estimate its covariance matrix (see [33]) and set Ip equal to its inverse.
• Step 2: compute the CE controller K(θ̂p) obtained from (2) and (3) for which A0, B0 and P0 are replaced by
A(θ̂p), B(θ̂p) and P(θ̂p) respectively.
• Step 3: if p > 1, realize the stability test and controllability test mentioned in Section 6. If both test are

successful, set θ̄ = θ̂p and Ī = Ip. Otherwise, set θ̄ = θ̂p−1 and Ī = Ip−1

• Step 3: if p = L, set vp = 0. Otherwise, do the following tasks
· Step 3.a: compute the Hessian matrix W(θ̄) evaluated at θ̄ of the function θ → rek(θ̄,K(θ)) defined in (10),

the square root matrix W̃ of W(θ̄)/2, the Fisher matrices Le = Le(θ̄,K(θ̄)) and Lv
q = Lv

q(θ̄,K(θ̄))

(see [7]), the exploration coefficient β0 = R+B(θ̄)⊤P(θ̄)B(θ̄) and Mk = Ī +N(k − p+ 1)Le.
· Step 3.b: check if (20) holds. If it is true, set vp = 0. Otherwise, solve the SDP (21), use spectral factorization

on the optimized PSD ϕvp(ω) and generate a realization of duration N from it for vp.
• Step 4: apply the control effort up(τ) = −K(θ̄)xp(τ) + vp(τ) to S until the beginning of the next interval.

end for

The noise covariance will be taken as Σe = I3.
For the LQ weighting matrices, we choose Q = I3
and R = 10. Consequently, the ideal controller is
K0 = (−0.081, 0.045,−0.161). For the model structure,
we consider all the entries of A(θ) and B(θ) to be inde-
pendently parametrized, i.e., there are nθ = 12 parame-
ters to be identified in total. To compute (7), we here use
a recursive least-squares algorithm as described in [33].
Such a recursive algorithm is of course not necessary
for AF3E, but it is chosen since it is the algorithm used
in the methods described in Section 3. We will consider
T = 100000 for the horizon of regret minimization. The
division in intervals will be such that N = 1000 and so
there are in total L = T/N = 100 intervals.

7.2 Initial identification and computation details
For the initial estimate θ̂init and its corresponding co-

variance matrix Pinit, we perform an initial open-loop
identification with 200 data and we consider a zero-mean
white Gaussian noise of variance 0.1 for the input u(t).
The data informativity property, ensuring the unique-
ness of the minimizer of the least square identification
cost [33,17], is therefore guaranteed which implies that
the initial covariance matrix Pinit is invertible.
The simulation is performed with MATLAB R2021b

on a computer equipped with the processor Intel(R)
Core(TM) i5-8365U CPU, 1.60GHz, 4 cores and with
16.0GB of RAM. For AF3E, we solve the SDP in (19)
using the interface YALMIP 4.0 [34] combined with the
SDP solver of MOSEK 9.3 [5].

7.3 Complexity reduction with Theorems 1 and 2
Before analyzing the regret performances, we illustrate

in this paragraph the computational complexity reduc-
tion brought by Theorems 1 and 2. For this purpose, we
consider one noise realization from t = 1 till t = T and

we run the simplified AF3E scheme described in Algo-
rithm 1 and the scheme for which we do not take into
consideration the results from Theorems 1 and 2, i.e.,
at the beginning of each interval p, we also compute β1,
· · · , βq (which we know are equal to 0) and we solve the
original SDP (19) with all the decision variables present.
The obtained computation times are given in Table 1.
Comparing the two columns in the table we see that the
computational time is reduced up to a factor of 40 for
the most demanding case where m = 3.

m
Computation time

without Theorems 1 and
2

Computation time
with Theorems 1

and 2

0 72.3s 4.1s

1 126.2s 5.7s

2 163.5s 5.6s

3 236.8s 5.9s
Table 1
Computation times obtained for one noise realization from
t = 1 till t = T with AF3E and different FIR orders m.

7.4 Monte Carlo simulation details
In this section, we compare AF3E with other explo-

ration strategies mentioned in Section 3: Thompson sam-
pling, IF2E and 1/

√
t-decaying excitation. For the com-

parison, we perform 100 Monte-Carlo simulations with
different realization for e, the initial zero-mean white
noise input sequence as described in Section 7.2 and the
white Gaussian noise used to generate the external exci-
tation v for 1/

√
t-decaying excitation, IF2E and AF3E.

With these 100 simulations, we approximate the expec-
tation operator E in the expression (4) of the cumulative
regret r(t) by computing the average of the 100 simu-
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Method r(T ) AF3E with θ0

1/
√
t-decaying exploration 30393 -

IF2E 30224 -

Thompson sampling 28823 -

AF3E with m = 0 26490 24479

AF3E with m = 1 26333 24249

AF3E with m = 2 26290 23588

AF3E with m = 3 24973 22977

Table 2
Cumulative regret r(T ) obtained with N = 1000 and the
different methods listed in descending order of r(T ) (first
column) and for AF3E without replacing θ0 in the SDP (21)
(second column).

lated control cost degradation
∑T

t=1(Jt(u)−Jt(ũ)). For
comparison purposes, the hyperparameters a of 1/

√
t-

decaying excitation (5) and b of IF2E (6) are tuned by
choosing the value minimizing the Monte Carlo estimate
of the expected cumulative regret r(T ) among a log-
regularly grid of 500 points between 10−3 and 10. This
gives the smallest regret that one can get for the consid-
ered numerical example with these exploration strate-
gies. For AF3E, we will consider m = 0, 1, 2 and 3 for
the FIR order of the external excitation v.
7.5 Results and discussion
In Figure 1, we compare the time evolution of the Monte

Carlo estimate of the expected cumulative regret ob-
tained with the four explorations strategies. Because
some exploration strategies give almost similar regret
evolution, we give in the first column of Table 2 the final
cumulative regret r(T ) for the different methods, listed
in descending order of r(T ). We observe that the pro-
posed scheme performs better than the optimal 1/

√
t-

decaying exploration, IF2E and Thompson sampling for
the cumulative regret minimization at t = T and for the
considered FIR orders m. Increasing the FIR order m
seems to improve the regret minimization.
Because we compared AF3E with the optimal IF2E

and 1/
√
t-decaying excitation, we also give in the sec-

ond column of Table 2 the regret obtained with AF3E
when, for each interval p = 1, · · · , L, we do not replace
θ0 by θ̂p in the terms of the SDP. In that case (which is
of course unrealistic since θ0 would be unknown in prac-
tice), the design of the PSDs should be more adequate
for regret minimization. Note that Theorem 1 does not
hold anymore, i.e., the coefficients β1, · · · , βm are non-
zero. Fortunately, it is easy to show that the sparsity
of the solution still holds as in Theorem 2 with non-
zero β1, · · · , βm by following the proof as we did in Ap-
pendix B. Comparing the first and second column of Ta-
ble 2, we can observe a relative error of around 10% be-
tween the obtained regret and the best regret that AF3E
can achieve. This error is reasonable showing that the
simple approach of replacing θ0 by θ̂p is a good practice
for this numerical example.

0 1 2 3 4 5 6 7 8 9 10

10
4

0

0.5

1

1.5

2

2.5

3

10
4

Figure 1. Cumulative regret obtained with 1/
√
t-decaying

exploration (blue solid line with markers |), IF2E (red dotted
line), Thompson sampling (dashed-dotted black line) and
AF3E with θ0 replaced in the SDP by θ̂p (solid lines) and
AF3E with θ0 not replaced (dashed lines).

As shown in Figure 1 where we depict the evolution of
the average cumulative regret obtained with the different
methods, AF3E gives the worst regret performances dur-
ing the first half of the experiment. Particularly, we can
notice a steep increase at the beginning. This jumping
phenomenon is also observed when we apply AF3E as-
suming the knowledge of θ0. This sharp increase could be
explained from the theoretical result in Theorem 2. In-
deed, all the exploration effort is focused during the first
interval since Theorem 2 implies v2 = · · · = vL−1 = 0.
Moreover, the excitation power during the first interval
is kept constant during N = 1000 time instants while
IF2E and 1/

√
t-decaying exploration continuously de-

crease their excitation power. Hence, AF3E proposes an
aggressive exploration strategy at the beginning.
In Figure 2, we depict the average of the power of each

external excitation vk applied to the system (i.e., average
of the obtained c0(k) with k = 1, · · · , 100) with AF3E
when m is chosen equal to 0. This is done for the case
where θ0 is assumed known and for the case where we
do not make this assumption. In the former case, the
excitation profile is in line with Theorem 2 since only
the first interval is largely excited, the second interval is
almost not excited (negligible power) and the remaining
intervals are not excited at all. For the realistic scheme,
we observe that more intervals are excited. This is due to
the fact that θ0 is replaced by the first estimates θ̂k which
are the most uncertain. No excitation was applied to the
system for t ≥ 9000 with the realistic AF3E scheme,
i.e., the inequality (20) was always satisfy for the last 91
intervals.
Finally, in Figure 3, we depict the average of the magni-

tude of the PSD of the external during the first interval
(i.e., ϕv1). By increasing m, we allow the external ex-
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Figure 2. Average of the power of each vk applied to the
system with AF3E and m = 0 (solid line) and AF3E with
θ0 not replaced in the SDP (solid line).
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Figure 3. Average of the PSD of v1 with AF3E andm = 0, 1, 2

and 3 and with θ0 replaced by θ̂p. The dotted black vertical
lines correspond to the half power points of the system.

citation to be more correlated which optimally shaped
the excitation frequency content at the resonance with
m = 3. This is an illustration of the advantage of adding
correlation in the external excitation which is something
missing in the other exploration strategies.

7.6 Effect of the epoch lengths N
In this paragraph, we study the effect of the epoch

length N for AF3E. In Table 3, we give the Monte Carlo
estimate of the expected cumulative regret with N =
500, 1000 and 2000. It seems that decreasing the epoch
length N can improve the regret.

FIR order m N = 500 N = 1000 N = 2000

0 24822 26490 29154

1 24494 26333 28791

2 24566 26290 28682

3 23052 24973 28010

Table 3
Cumulative regret r(T ) obtained with AF3E for different
FIR orders m and different epoch lengths N .

8 Conclusion and future directions
Using the tools/approaches developed in the system

identification community and the receding horizon prin-
ciple, we developed a new exploration strategy for regret
minimization in linear quadratic problems which (i) does
not require the tuning of hyperparameters depending on
the true dynamics as is the case in most available meth-
ods in the literature and (ii) adds correlation for the ex-
ternal excitation. Moreover, our approach considers the
scaling constant of the regret growth rate in the design.
Even though the design of the exploration is a semidef-
inite programming to be solved, we had to develop two
theoretical results (Theorems 1 and 2) in order to re-
duce the computation time. The simulation results show
a great reduction of the required computational power
and a reduced regret in finite-time compared to the op-
timal 1/

√
t-decaying and IF2E explorations as well as

the Thompson sampling approach.
Several perspectives are under investigation in order to

improve AF3E. Indeed, as we have seen in the numerical
example, it tends to make the regret explode at the be-
ginning and we might be able to get better regret results
if we could reduce that effect. The approach we want to
follow in the future is the worst-case design approach as
done in [15] by using the uncertainties of the identified
models. The corresponding SDP to be solved can how-
ever become computationally expensive since the num-
ber of LMI constraints is higher than in the approach
presented in this paper. In the numerical example of [15],
it was shown that the optimal external excitation, whose
design is divided in several epochs, only excites the sys-
tem during the first epochs. This could suggest that the
SDP for the approach presented in [15] could be simpli-
fied in a similar manner as the SDP in this paper (see
Theorem 2). We will investigate if using a similar proof
approach as we did in Appendix B for Theorem 2 for
the robustified approach. Another drawback of the pro-
posed approach is that power constraints, which exist
in real-life, are not taken into account. Such constraints
can be implemented as LMI constraint which is advanta-
geous [20,15]. Adding this type of constraint might help
in reducing the jumping effect of the regret at the begin-
ning of the experiment with the current form of AF3E.
Finally, we would like to get more insights on the choice
of the epoch length with an theoretical study of AF3E.
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A Proof of Theorem 1
First, let us observe that the DARE P − A⊤PA =
Q+A⊤PB(R+B⊤PB)−1B⊤PA can be recast into

P− L⊤PL = Q+K⊤RK (A.1)

with L = A − BK by using the fact that K =
(R + B⊤PB)−1B⊤PA. Based on this rewriting of
the DARE, we are going to show that D(ejω) =
T∗

xv(e
jω)QT∗

xv(e
jω) + T∗

uv(e
jω)RT∗

uv(e
jω) is equal to

R+B⊤PB. WithTuv(z) = 1−KTxv(z),D(ω) becomes

D(ejω) = R+T∗
xv(e

jω)(Q+K⊤RK)Txv(e
jω)

−T∗
xv(e

jω)K⊤R−RKTxv(e
jω)

Using (A.1), we get D(ejω) = R + T∗
xv(e

jω)(P −
L⊤PL)Txv(e

jω)−T∗
xv(e

jω)K⊤R−RKTxv(e
jω) Since

K = (R + B⊤PB)−1B⊤PA, then RK = B⊤PL.
Hence, D(ejω) becomes

D(ejω) = R+T∗
xv(e

jω)(P− L⊤PL)Txv(e
jω) (A.2)

−T∗
xv(e

jω)L⊤PB−B⊤PLTxv(e
jω)

From Txv(z) = (zInx
− L)−1B, we have B =

(zInx
− L)Txv(z) which, injected in D(ejω) in (A.2)

and by factorizing by (ejωInx
− L), leads to D(ejω) =

R+T∗
xv(e

jω)H(ejω)Txv(e
jω) with H(ejω) = (ejωInx

−
L)∗P(ejωInx

− L). Since Txv(z) = (zInx
− L)−1B, we

obtain D(ejω) = R+B⊤PB, concluding the proof. ■

B Proof of Theorem 2
B.1 Preliminaries
For the proof of Theorem 2, we require one preliminary

result on positive semidefinite symmetric Toeplitz ma-
trices [18,26]. It comes from the theory of Tchebycheff
trigonometric moments.
Lemma 1 ([18,26]). Consider m+1 real-valued scalars
xq (q = 0, · · · ,m). The symmetric Toeplitz matrix
T (x0, x1, · · · , xm) is positive semidefinite if and only if
it exists an infinite number of scalars xm+1, xm+2, · · ·
such that x0 + 2

∑+∞
q=1 xq cos(qω) ≥ 0 ∀ω ∈ R. □

B.2 Proof of Theorem 2
The outline of the proof is as follows
• Part 1 : we define the dual optimization problem

of (19) and simplifies it.
• Part 2 : we show that we can remove many con-

straints, simplifying the dual problem.
• Part 3 : by assuming that the optimal solution of

the simplified dual problem is unconstrained, we
prove that the dual optimum (equal to the primal
optimum since the primal problem is strictly fea-
sible according to Slater’s condition) is equal to
the primal objective function for which X(k) =
0 ∀k ∈ Jp, L − 1K, cq(k) = 0 ∀t ∈ Jk ∈ Jp, L − 1K
and ∀q ∈ J0,mK and this is true only if the con-
straint (20) in the theorem statement is satisfied.
• Part 4 : in the case the constraint (20) is not satis-

fied, we determine the dual problem of the simpli-
fied dual problem and we show that we recover the
original primal problem (19) for which all X(k) =
0 ∀k ∈ Jp+ 1, L− 1K, cq(k) = 0 ∀k ∈ Jp+ 1, L− 1K
and ∀q ∈ J0,mK.

Part 1 : Define L − p dual positive semidefinite matri-
ces {∆̄(k)}L−1

k=p of dimension 2nθ × 2nθ and L − p dual
positive semidefinite matrices {Ψ̄(k)}L−1

k=p of dimension
(m+ 1)× (m+ 1) structured as follows

∆̄(k) =

∆11(k) ∆12(k)

∆⊤
12(k) ∆22(k)

 Ψ̄(k) =

 Ψ(k) ψ1:m(k)

ψ⊤
1:m(k) ψ0(k)


(B.1)

where ∆11(k) ∈ Rnθ×nθ , ∆12(k) ∈ Rnθ×nθ , ∆22(k) ∈
Rnθ×nθ ,Ψ(k) ∈ Rm×m,ψ1:m(k) = (ψ1(k), · · · , ψm(k))⊤ ∈
Rm×1 and ψ0(k) ∈ R. Consider the Lagrangian function
of the SDP (19) with β1 = · · · = βm = 0 given by

L−1∑
k=p

{tr(H(k)) + β0c0(k)

− tr

∆̄(k)

H(k) W̃

W̃ Mk +N(c0(i)L0
q +

∑k
i=p

∑m
q=1 cq(i)N

v
q )


− tr

Ψ̄(k)

 X(k)−Y⊤X(k)Y c1:m(k)−Y⊤X(k)Z

c⊤1:m(k)− Z⊤X(k)Y c0(k)− Z⊤X(k)Z


Setting the gradient of the Lagrangian with respect to
each primal variable to 0, we get the following con-
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straints, for each k ∈ Jp, L− 1K,

∆11(k) = Inθ (B.2)

2ψq(k) = −N
k∑

i=p

tr
(
∆22(i)N v

q

)
∀q ∈ J1,mK

ψ0(k) = β0 −N

k∑
i=p

tr(∆22(i)Lv
0)

Ψ(k) = YΨ(k)Y⊤ + Zψ⊤
1:m(k)Y⊤ +Yψ1:m(k)Z⊤ + ψ0(k)ZZ

⊤

The corresponding dual objective function is given by
−
∑L−1

k=p tr(∆22(k)Mk) − 2
∑L−1

k=p tr(W̃∆12(k)). From
duality theory, the maximum of this objective function
constrained by the above equalities and the positive
semidefiniteness inequalities ∆̄(k) ⪰ 0 and Ψ̄(k) ⪰ 0 for
all k ∈ Jp, L− 1K is a lower bound to the objective func-
tion of the primal problem (19) with β1 = · · · = βm = 0.
Because the primal problem is a strictly feasible SDP,
Slater’s condition implies that the primal minimum co-
incides with the dual maximum.
Let us now analyze the effects of the constraints (B.2)

combined with ∆̄(k) ⪰ 0 on the dual problem. First,
both constraints lead to ∆22(k) ⪰ ∆⊤

12(k)∆12(k). Sec-
ondly, because the dual objective function is monoton-
ically decreasing with respect to ∆22(k) and ∆12(k)
is not involved in other constraints, the optimum of
the dual problem will satisfy ∆22(k) = ∆⊤

12(k)∆12(k).
Hence, we can replace all ∆22(k) by ∆⊤

12(k)∆12(k). By
dropping the index 12 in ∆12(k) for ease of notation, we
get the following dual problem

max
∆(k),Ψ̄(k)

−
L−1∑
k=p

tr
(
∆(k)Mk∆

⊤(k) + 2W̃∆(k)
)

Subject to, for all k ∈ Jp, L− 1K,

2ψq(k) = −N
k∑

i=p

tr(∆(i)N v
q∆

⊤(i)) ∀q ∈ J1,mK (B.3)

ψ0(k) = β0 −N

k∑
i=p

tr(∆(i)Lv
0∆

⊤(i)) (B.4)

Ψ̄(k) =

 Ψ(k) ψ1:m(k)

ψ⊤
1:m(k) ψ0(k)

 ⪰ 0 (B.5)

Ψ(k) = YΨ(k)Y⊤ + Zψ⊤
1:m(k)Y⊤ +Yψ1:m(k)Z⊤ + ψ0(k)ZZ

⊤

(B.6)

Part 2 : We will now prove that all the above constraints
are satisfied if and only the constraints (B.3)-(B.6) de-
fined at k = L− 1 are satisfied.
First, let us analyze the effect of (B.6) on Ψ(k). De-

note by Ψ1:(m−1)(k) its submatrix obtained by removing
its last column and its last row. The terms YΨ(k)Y⊤,
Zψ1:m(k)Y⊤ and ψ0(k)ZZ

⊤ are given by

YΨ(k)Y⊤ =

 0 01×(m−1)

0(m−1)×1 Ψ1:(m−1)(k)


YΨ1:m(k)Z⊤ =

 0 01×(m−1)

Ψ1:(m−1)(k) 0(m−1)×(m−1)


Ψ0(k)ZZ

⊤ =

 Ψ0(k) 01×(m−1)

0(m−1)×1 0(m−1)×(m−1)


where ψ1:(m−1)(k) = (ψ1(k), . . . , ψm−1(k))

⊤. Then, be-
cause of the constraint (B.6), the matrix Ψ(k) is equal to
the Toeplitz symmetric matrix T (ψ0(k), · · · , ψm−1(k)).
Injecting this into Ψ̄(k) whose structure is given
by (B.1), we get

Ψ̄(k) =

T (ψ0(k), · · · , ψm−1(k)) ψ1:m(k)

ψ⊤
1:m(k) ψ0(k)


Using a particular similarity transformation consisting
of rows and columns permutations, this matrix can
be recast into T (ψ0(k), · · · , ψm(k)). Hence, Ψ̄(k) ⪰ 0
if and only if T (ψ0(k), · · · , ψm(k)) ⪰ 0. Recall that
N v

q = Lv
q + (Lv

q)
⊤ for each q ≥ 1 and so we have

tr(∆(i)N v
q∆

⊤(i)) = 2 tr(∆(i)Lv
q∆

⊤(i)). Combined
with the constraints (B.3)-(B.4), T (ψ0(k), · · · , ψm(k)) ⪰
0 is equivalent to

β0Im+1 ⪰ N

k∑
i=p

T
(
tr(∆(i)Lv

0∆
⊤(i)), · · · , tr

(
∆(i)Lv

m∆⊤(i)
))

(B.7)

It must be guaranteed for each k = Jp, L − 1K. Let us
now prove that satisfying (B.7) for all k = Jp, L − 1K is
equivalent to only satisfy (B.7) for k = L − 1. In order
to obtain such a result, we will show that, for any square
matrix X of dimension nθ × nθ, we have

T (tr(XLv
0X

⊤), · · · , tr(XLv
mX⊤)) ⪰ 0 (B.8)

Indeed, if the latter holds, we would get

L−1∑
i=p

T (tr(∆(i)Lv
0∆

⊤(i)), · · · , tr(∆(i)Lv
m∆⊤(i)))

⪰
k∑

i=p

T (tr(∆(i)Lv
0∆

⊤(i)), · · · , tr(∆(i)Lv
m∆⊤(i)))

for any k = Jp, L − 1K and so satisfying (B.7) for all
k = Jp, L − 1K is equivalent to only satisfy (B.7) for
k = L−1. In order to prove (B.8), we will use Lemma 1.
First, let us note that the positive-semidefinite matrix
Γ(ejω) in (14) can be expanded as follows

Lv
0 +

+∞∑
q=1

(
Lv

qe
jqω + (Lv

q)
⊤e−jqω

)
⪰ 0 ∀ω
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Left- and right-multiplying the latter by any real-valued
square matrix X, taking the trace and using the fact
that tr(XLv

qX
⊤) = tr(X(Lv

q)
⊤X⊤), we get

tr(XLv
0X

⊤) + 2

+∞∑
q=1

tr(XLv
qX

⊤) cos(qω) ≥ 0 ∀ω

Using Lemma 1, we prove that (B.8) holds. Hence, it is
necessary and sufficient to guarantee the constraint (B.7)
at k = L − 1. Recall that this constraint comes from
the combination of the three constraints (B.3), (B.4)
and (B.5) evaluated at k = L − 1. Consequently, the
original dual problem is equivalent to the following sim-
plified optimization problem

max
{∆(k)}L−1

k=p
,Ψ̄(L−1)

−
∑L−1

k=p tr
(
∆(k)Mk∆

⊤(k) + 2W̃∆(k)
)

Subject to, ∀q ∈ J1,mK,

2ψq(L− 1) = −N
∑L−1

k=p tr(∆(k)N v
q∆

⊤(k))

and

ψ0(L− 1) = β0 −N
∑L−1

k=p tr(∆(k)Lv
0∆

⊤(k))

Ψ̄(L− 1) =

 Ψ(L− 1) ψ1:m(L− 1)

ψ⊤
1:m(L− 1) ψ0(L− 1)

 ⪰ 0

Ψ(L− 1)−YΨ(L− 1)Y⊤ − Zψ⊤
1:m(L− 1)Y⊤

−Yψ1:m(L− 1)Z⊤ − ψ0(L− 1)ZZ⊤ = 0

(B.9)
Part 3 : Let us consider the case where the optimal so-
lution of the simplified dual optimization problem does
not make the inequality constraint Ψ̄(L− 1) ⪰ 0 active,
i.e., Ψ̄(L−1) ≻ 0 at the optimal solution. Then, by using
the fact that each Mk is invertible for all k ∈ Jp, L−1K,
we can complete the square of the objective function as
follows

−
L−1∑
k=p

tr
(
(∆(k) + W̃M−1

k )Mk(∆(k) + W̃M−1
k )⊤

)

+

L−1∑
k=p

tr
(
W̃M−1

k W̃
)

The optimal unconstrained dual solution ∆opt(k) is
∆opt(k) = −W̃M−1

k and the corresponding maximum
of the dual objective function is

∑L−1
k=p tr(W̃M−1

k W̃).
Looking back at the primal problem (19) with β1 =
· · · = βm = 0, this optimum is reached by setting, for
each k ∈ Jp, L − 1K, H(k) = W̃M−1

k W̃ and c0(k) = 0
(recall that β1 = · · · = βm = 0). Since c0(k) is the
power of the excitation vk, this means vk = 0 for all
k ∈ Jp, L − 1K. Note that X(k) = 0 is the only solution
satisfying the PSD realizability LMI (9) when c0(k) = 0.
However, the inequality constraint Ψ̄(L− 1) ⪰ 0 should
not be active, i.e., Ψ̄(L − 1) ≻ 0. Recall that the four
constraints of the simplified dual problem are equiva-
lent to (B.7) evaluated at k = L − 1. Hence, replacing
∆(k) by the unconstrained solution, the following strict

inequality must be satisfied

β0Im+1 −N
L−1∑
k=p

T (ζ̄0(k), · · · , ζ̄m(k)) ≻ 0

with ζ̄q(k) = tr(W̃M−1
k Lv

qM
−1
k W̃) ∀q ∈ J0,mK. Since

W̃ is the square root matrix of W/2, we have ζ̄q(k) =
tr(WM−1

k Lv
qM

−1
k )/2 ∀q ∈ J0,mK. This inequality con-

straint is strict if and only if the condition (20) in the
theorem statement is guaranteed.
Part 4 : Let us now consider the case where the solution
of (B.9) is not equal to the unconstrained one, i.e., (20) is
not satisfied. The approach is to define the dual of (B.9)
and to show that it corresponds to the primal prob-
lem (19) with the particular solution structure as in the
theorem statement. In order to write the dual problem
of (B.9), we define m + 1 variables µq (q = 0 · · · ,m), a
m × m symmetric matrix U and a (m + 1) × (m + 1)
positive semidefinite symmetric matrix Ξ̄ structured as
follows

Ξ̄ =

(
Ξ ξ1:m

ξ⊤1:m ξ0

)
⪰ 0

where Ξ ∈ Rm×m, ξ1:m = (ξ1, · · · , ξm)⊤ ∈ Rm×1 and
ξ0 ∈ R. Define the Lagrangian G of the simplified opti-
mization problem (B.9) by

G =

L−1∑
k=p

tr
(
∆(k)Mk∆

⊤(k)
)
+ 2

L−1∑
k=p

tr
(
W̃∆(k)

)

+
m∑

q=1

2ψq(L− 1) +N

L−1∑
k=p

tr(∆(t)N v
q∆

⊤(t)))

µq

+

ψ0(L− 1)− β0 +N

L−1∑
k=p

tr(∆(t)Lv
0∆

⊤(t)))

µ0

− tr

Ξ̄

 Ψ(L− 1) ψ1:m(L− 1)

ψ⊤
1:m(L− 1) ψ0(L− 1)


+ tr(U(Ψ(L− 1)−YΨ(L− 1)Y⊤ − Zψ⊤

1:m(L− 1)Y⊤))

+ tr(U(−Yψ1:m(L− 1)Z⊤ − ψ0(L− 1)ZZ⊤))

Setting the gradient of the Lagrangian with respect to
the primal variables equal to 0, we get

Ξ = U−Y⊤UY ξ0 = µ0 − ZUZ⊤ (B.10)

ξ1:m = µ1:m −YUZ⊤ (B.11)

J k∆(k)⊤ = −W̃ ∀k ∈ Jp, L− 1K (B.12)

with µ⊤
1:m = (µ1, · · · , µm) and J k = Mk +N(µ0Lv

0 +∑m
q=1 µqN v

q). Combining the constraints (B.10)
and (B.11) with Ξ̄ ⪰ 0, then a symmetric matrix U
exists such that µ0 and µ1:m satisfies U−Y⊤UY µ1:m −Y⊤UZ

µ⊤
1:m − Z⊤UY µ0 − Z⊤UZ

 ⪰ 0 (B.13)
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which is the necessary and sufficient LMI condition for
the realizability of the truncated PSD ϕ(ω) = µ0 +
2
∑m

q=1 µq cos(qω) (see (9)).
Let us analyze now analyze the constraints (B.12).

Recall that Mk = Ip + (k − p + 1)NLe and so
J k = Ip+(k−p)NLe+N(Le+µ0Lv

0 +
∑m

q=1 µqN v
q).

For any µ0, · · · , µm satisfying the LMI (B.13), we have
that N(Le + µ0Lv

0 +
∑m

q=1 µqN v
q) ⪰ 0 since it corre-

sponds to the additional Fisher information matrix com-
ing from a filtered white noise external excitation of du-
ration N with the PSD ϕ(ω) = µ0 + 2

∑m
q=1 µq cos(qω).

Since Ip + (k − p)NLe ≻ 0, we conclude that J k ≻ 0
for all k ∈ Jp, L − 1K. Consequently, (B.12) is equiv-
alent to ∆(k) = −W̃J −1

k . Hence, with the equali-
ties (B.10)-(B.11) and injecting ∆(k) = −W̃J −1

k into
the Lagrangian G, we get the dual objective function
−
∑L−1

k=p tr
(
W̃J −1

k W̃
)
− β0µ0 for the optimization

problem (B.9) and it has to be maximized with re-
spect to µ0, · · · , µm under the constraint that it exists
a symmetric matrix U such that (B.13) holds.
Let us rewrite furthermore this dual maximization

problem. First, maximizing the dual objective func-
tion is equivalent on minimizing its negative coun-
terpart

∑L−1
k=p tr(W̃J −1

k W̃) + β0µ0. Now, by defin-
ing L − p symmetric matrices {V(k)}L−1

k=p such that
V(k) ⪰ W̃J −1

k W̃, we can use Schur complement in
order to get the following equivalent minimization prob-
lem for the dual of (B.9)

min
U,µq,V(k)

L−1∑
k=p

tr (V(k)) + β0µ0

Subject toV(k) W̃

W̃ Mk +N(µ0Lv
0 +

∑m
q=1 µqN

v
q )

 ⪰ 0 ∀k ∈ Jp, L− 1K

 U−Y⊤UY µ1:m −Y⊤UZ

µ⊤1:m − Z⊤UY µ0 − Z⊤UZ

 ⪰ 0

We recover the primal problem (19) with β1 = · · · =
βm = 0 and the following particular sparsity for the
primal decision variables
• U = X(p) and X(k) = 0 ∀k ∈ Jp+ 1, L− 1K,
• µq = cq(p) ∀q ∈ J0,mK and cq(k) = 0 ∀(k, q) ∈

Jp+ 1, L− 1K× J0,mK,
• V(k) = H(k) ∀k ∈ Jp, L− 1K,

implying vp+1 = · · · = vL−1 = 0 which concludes the
proof. ■
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