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Entropic approximation of ∞-optimal
transport problems

Camilla Brizzi ∗ Guillaume Carlier† Luigi De Pascale ‡
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Abstract

We propose an entropic approximation approach for optimal trans-
portation problems with a supremal cost. We establish Γ-convergence
for suitably chosen parameters for the entropic penalization and that
this procedure selects ∞-cyclically monotone plans at the limit. We
also present some numerical illustrations performed with Sinkhorn’s
algorithm.

Keywords: ∞-optimal transport, ∞-cyclical monotonicity, entropic ap-
proximation.

MS Classification: 49Q22, 65K10.

1 Introduction

The usual Monge-Kantorovich optimal transport problem consists, given a
transportation cost and distribution of sources and targets, in finding a trans-
port plan making the average transport cost minimal. It has attracted a con-
siderable amount of attention in the last three decades, as can be seen from
the textbooks of Villani [17], [18] and Santambrogio [15]. In optimal trans-
port probems with a supremal cost (also called L∞ optimal transport), one
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rather looks for transport plans which minimize the essential supremum of
the cost. Whereas the usual Monge-Kantorovich problem is linear program-
ming, L∞ optimal transport leads to non-convex optimization (eventhough
the supremal cost has convex sublevel sets), which to a large extent, explains
why there are less theoretical results and numerical methods (with the no-
table exception of the recent combinatorial approach of Bansil and Kitagawa
[1]) to address them. As in the Calculus of Variations with a supremal
functional, L∞ optimal transport may admit many minimizers and selecting
special ones which satisfy tractable optimality conditions is an important is-
sue, which was studied first by Champion, De Pascale and Juutinen in [6]. In
contrast with the classical Monge-Kantorovich problem, where restrictions of
optimal plans remain optimal between their marginals, this might be false
for L∞ optimal transport. This is why the authors of [6] have introduced the
notion of restrictable optimal and shown that such restrictable solutions are
characterized by a remarkable property of ∞-cyclical monotonicity of their
support. This was the starting point for the existence of optimal maps for L∞

optimal transport under various conditions on the cost and the marginals,
see [6], [10], [3].

Among numerical methods for optimal transport (see Cuturi and Peyré
[14], Benamou [2], Mérigot and Thibert [12]), the entropic penalization ap-
proach and the Sinkhorn algorithm have gained a lot of popularity since
Cuturi’s paper [7]. Entropic optimal transport, which has connections with
large deviations and the so-called Schrödinger bridge problem, see Léonard
[11] has also stimulated an intensive stream of recent theoretical research,
see the lecture notes of Nutz [13] and the references therein. A recent break-
through in the field is the work of Bernton, Ghosal and Nutz [8] where a
large deviations principle, related to cyclical monotonicity is established for
entropic optimal plans.

The goal of the present paper is to investigate, theoretically and nu-
merically, whether the entropic approximation strategy can be used for L∞

optimal transport as well. We will in particular see how the results of [8] can
be used to show that this approximation selects at the limit the distinguished
restrictable ∞-cyclically monotone minimizers introduced in [6].

The article is organized as follows. The setting is introduced in Section 2.
Section 3 is devoted to Γ-convergence towards the supremal cost functional.
In Section 4, we study how the entropic penalization selects ∞-cyclically
monotone plans in the limit. In Section 5, we give some quantitative con-
vergence estimates and a large deviations upper bound in the spirit of [8].
Finally, we present some numerical illustrations in Section 6.
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2 Assumptions and notations

In the sequel, we will always assume that the transportation cost is contin-
uous and nonnegative, c ∈ C(Rd × Rd,R+), and that the fixed marginals of
the problem, µ, ν are two Borel probability measures on Rd, µ, ν ∈ P(Rd),
with compact support. Let Π(µ, ν) be the set of transport plans between µ
and ν i.e. the set of Borel probability measures on Rd × Rd having µ and
ν as marginals. More precisely, a Borel probability measure γ on Rd × Rd

belongs to Π(µ, ν) when

γ(A× Rd) = µ(A) and γ(Rd × A) = ν(A),

for every Borel subset A of Rd. Note that every γ in Π(µ, ν) has its support
in spt(µ)× spt(ν) and that c is uniformly continuous on spt(µ)× spt(ν). We
are interested in the following ∞-optimal transport problem (see [6]):

inf
γ∈Π(µ,ν)

γ − ess sup c = ‖c‖L∞(γ). (∞-OT)

In contrast with classical optimal transport where one minimizes an integral
cost,

inf
γ∈Π(µ,ν)

∫
Rd×Rd

c(x, y)dγ, (OT)

(∞-OT) is a non-convex and presumably harder problem.
Due to the success of entropic approximation of optimal transport with reg-
ularization parameter ε > 0

inf
γ∈Π(µ,ν)

∫
Rd×Rd

c(x, y)dγ + εH(γ|µ⊗ ν), (ε-EOT)

recalled in the introduction, it seems natural to introduce, for ε > 0 and
exponent p ≥ 1 the following functional Jp,ε : P(Rd × Rd)→ R ∪ {+∞}

Jp,ε(γ) :=


(∫

Rd×Rd c(x, y)pdγ(x, y) + εH(γ|µ⊗ ν)
) 1
p

if γ ∈ Π(µ, ν),

+∞ otherwise,

where H stands for relative entropy:

H(γ|µ⊗ ν) =

{∫
Rd×Rd log

(
dγ

dµ⊗ν

)
dγ if γ � µ⊗ ν,

+∞ otherwise.
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Note that due to strict convexity of the entropy, for every ε > 0 and p ≥ 1, Jp,ε
admits a unique minimizer. We now denote by J∞ : P(Rd×Rd)→ R∪{+∞},
the supremal functional

J∞(γ) :=

{
γ − ess sup c if γ ∈ Π(µ, ν),

+∞ otherwise.

Finally, let us set
Jp := Jp,1.

Since H(γ|µ ⊗ ν) ≥ 0 with an equality exactly when γ = µ ⊗ ν, Jp,ε(γ) ≥
‖c‖Lp(γ) but also ‖c‖Lp(γ) ≤ J∞(γ). So, roughly speaking both approxima-
tions play in opposite directions: adding the entropic term is an approxima-
tion from above but approximating ‖c‖L∞(γ) by ‖c‖Lp(γ) is an approximation
from below.
We also observe that letting p→∞ and ε→ 0 is not enough to ensure that
minimizers of Jp,ε converge to a minimizer of J∞ (i.e. a solution of ∞-OT).
Indeed, if ‖c‖∞ ≤ 1

2
and ε = 1

p
the minimizer γp of Jp, 1

p
satisfies

H(γp|µ⊗ ν) ≤ p2−p

hence γp converges (actually strongly by Pinsker’s inequality, see e.g. Lemma
2.5 in [16]) to µ ⊗ ν which in general is not a minimizer of J∞. On the one
hand, this suggests that Γ-convergence of the regularizations above to J∞ re-
quire conditions relating ε to p. On the other hand, in the previous example,
we see that the range of cp compared to the size of the entropic penalization
ε is crucial. But the solutions of the ∞-optimal transport problem are in-
variant when one replaces c by an increasing function of c, in particular one
can replace c by c + 2 (say) so that cp will typically dominate the entropic
term and one can expect Γ-convergence as p→∞ for a fixed (or even large)
value of ε (see the next section for more details).

3 Γ-convergence

Our first result concerns the Γ-convergence of Jp,ε to J∞:

Theorem 3.1. Under the general assumptions of Section 2 we have:

1. Jp,εp Γ-converges (for the weak star topology of P(spt(µ) × spt(ν)) to

J∞ as p→∞ provided ε
1
p
p → 0 as p→∞,
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2. if, in addition, c ≥ 1 + λ with λ ≥ 0, then Jp,εp Γ-converges to J∞ as
p→∞ provided

lim
p→∞

1

p
log
(

1 + εp
log(p)

(1 + λ)p

)
= 0. (3.1)

In particular, in this case, Jp,1 and Jp,p Γ-converge to J∞ as p→∞.

Proof. 1. Let γp ∈ Π(µ, ν) converge weakly star to γ. By nonnegativity of
H(γp|µ⊗ ν), we have

lim inf
p

Jp,εp(γp) ≥ lim inf
p
‖c‖Lp(γp).

Hence, for fixed q, since ‖c‖Lp(γp) ≥ ‖c‖Lq(γp) for p ≥ q, we have

lim inf
p

Jp,εp(γp) ≥ lim inf
p
‖c‖Lq(γp) = ‖c‖Lq(γ)

taking the supremum with respect to q thus yields the desired Γ-liminf in-
equality

lim inf
p

Jp,εp(γp) ≥ ‖c‖L∞(γ) = J∞(γ).

Let us now prove the Γ-limsup inequality. For any γ ∈ Π(µ, ν) we consider
γδ, the block approximation of γ at scale δ ∈ (0, 1) defined by (3.3) below,
whose convergence to γ is guaranteed by the first inequality in (3.4). By
concavity, we first have for p ≥ 1,

Jp,εp(γ
δ) ≤ ‖c‖Lp(γδ) + ε

1
p
pH(γδ|µ⊗ ν)

1
p

≤ ‖c‖L∞(γδ) + ε
1
p
pH(γδ|µ⊗ ν)

1
p
.

Denoting by ω a modulus of continuity of c on spt(µ)× spt(ν), thanks to the
first inequality in (3.4), we have

‖c‖L∞(γδ) ≤ ‖c‖L∞(γ) + ω(
√

2dδ),

being
√

2dδ the diameter of the cubes of the approximation. Moreover, by
the second inequality in (3.4), we have

H(γδ|µ⊗ ν)
1
p ≤ d

1
p log(L/δ)

1
p

so if we define γp as the block approximation of γ at scale δ = 1
p

(say), we
obtain

lim sup
p

Jp,εp(γp) ≤ J∞(γ) + lim sup
p

(
ω
(√2d

p

)
+ d

1
p ε

1
p
p log(Lp)

1
p

)
= J∞(γ),
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since we have assumed that ε
1
p
p → 0 as p→ +∞.

2. Let us now assume that c ≥ 1 + λ, the proof of the Γ-liminf inequality
for Jp,εp is exactly as above. For γ ∈ Π(µ, ν) and γp the block approximation
of γ at scale 1

p
, we have

Jp,εp(γp) ≤ ‖c‖L∞(γp)

(
1 +

dεp log(Lp)

(1 + λ)p

) 1
p

≤
(
J∞(γ) + ω

(√2d

p

))(
1 +

dεp log(Lp)

(1 + λ)p

) 1
p

(3.2)

so that, as soon as (3.1) holds, one has

lim sup
p

Jp,εp(γp) ≤ J∞(γ).

Remark 3.2. Notice that in case c ≥ 1 + λ for some λ > 0, Γ-convergence of
Jp,εp to J∞ is guaranteed even for fastly increasing εp like εp = pm(1+λ)p with

m ≥ 0. On the contrary, in the general case, the condition ε
1
p
p → 0 requires

to choose values of ε way too small to be used in practice for numerical
computations. This suggests in practice to rescale the cost so that it is
bounded from below by 1.

Remark 3.3. We observe that in (3.2) it is sufficient that ||c||L∞(γp) ≥ 1 + λ,
therefore the conclusion of case 2. in Theorem 3.1 remains valid under the
weaker assumption that v∞ = minΠ(µ,ν) J∞ ≥ 1 + λ.

For the Γ-limsup inequality, we have used the block approximation intro-
duced in [4], which is defined as follows:

Definition 3.4. Let γ ∈ Π(µ, ν). For δ > 0 and k ∈ Zd, we denote by Qδ
k

the cube δ(k + [0, 1)d). The block approximation of γ at scale δ ∈ (0, 1) is
then defined by

γδ :=
∑

k,l∈Zd : µ(Qδk)>0, ν(Qδl )>0

γ(Qδ
k ×Qδ

l )µ
δ
k ⊗ νδl (3.3)

where µδk and νδl are defined by

µδk(A) =
µ(Qδ

k ∩ A)

µ(Qδ
k)

, νδl (A) =
ν(Qδ

l ∩ A)

ν(Qδ
l )

for every Borel subset A of Rd.
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For the sake of completeness, we give a short proof of the properties of
the block approximation that we have used in the proof of Theorem 3.1 (see
[4] and [5] for related results):

Lemma 3.5. Let γ ∈ Π(µ, ν) and γδ be the block approximation of γ at scale
δ ∈ (0, 1), then γδ ∈ Π(µ, ν) and

W∞(γδ, γ) ≤
√

2dδ, H(γδ|µ⊗ ν) ≤ d log
(L
δ

)
, (3.4)

where L is a constant depending only on spt(µ) (actually on its diameter).

Proof. The fact that γδ ∈ Π(µ, ν) is easy to check by construction (see [4]).
Now observe that by (3.3) the density of γδ with respect to µ⊗ ν is

dγδ

dµ⊗ ν
(x, y) =

{
γ(Qδk×Q

δ
l )

µ(Qδk)ν(Qδl )
if (x, y) ∈ Qδ

k ×Qδ
l , and µ(Qδ

k), ν(Qδ
j) > 0,

0 otherwise.

Therefore

H(γδ|µ⊗ ν) =
∑

k,l∈Zd : µ(Qδk)>0, ν(Qδl )>0

∫
Qδk×Q

δ
l

log

(
γ(Qδ

k ×Qδ
l )

µ(Qδ
k)ν(Qδ

l )

)
dγδ

≤
∑

k,l∈Zd : µ(Qδk)>0, ν(Qδl )>0

∫
Qδk×Q

δ
l

log

(
1

µ(Qδ
k)

)
dγδ

=
∑

k∈Zd : µ(Qδk)>0

µ(Qδ
k) log

(
1

µ(Qδ
k)

)
,

where the inequality is due to the fact that
γ(Qδk×Q

δ
l )

ν(Qδl )
≤ 1, while the last

equality is obtained summing over l. If L ≥ 1 is such that sptµ is contained
in a cube of side L − 1, the number of cubes Qδ

k with positive µ-measure is

not greater than Nδ :=
(
L
δ

)d
. Therefore, applying Jensen’s inequality to the

concave function f(z) = z log(1
z
), we have

H(γδ|µ⊗ ν) ≤
Nδ∑
k=1

µ(Qδ
k) log

(
1

µ(Qδ
k)

)

≤ Nδ

(
1

Nδ

Nδ∑
k=1

µ(Qδ
k) log

(
1∑Nδ

k=1
1
Nδ
µ(Qδ

k)

))
= log(Nδ) = d log(L)− d log(δ),
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which proves the second inequality in (3.4).

By construction γ(Qδ
k×Qδ

l ) = γδ(Qδ
k×Qδ

l ), for any k, l. Let J be the set
of pairs of indices (k, l) such that γδ(Qδ

k × Qδ
l ) > 0 and set Qj = Qδ

k × Qδ
l ,

for any j = (k, l) ∈ J . We define

ηδ :=
∑

j : γ(Qj)>0

γ(Qj)γj ⊗ γδj ,

where γj(A) :=
γ(A∩Qj)
γ(Qj)

and γδj (A) :=
γδ(A∩Qj)
γδ(Qj)

. By construction ηδ ∈
Π(γ, γδ), thus

W∞(γ, γδ) ≤ ||x− y||L∞(ηδ) ≤ diam(Qj) =
√

2dδ.

4 Selection of plans with ∞-cyclically mono-

tone support

As shown in [6] and [10], restrictable minimizers of J∞ are supported on
∞-cyclically monotone sets, such sets are defined as follows:

Definition 4.1. A set Γ ⊂ Rd × Rd is said to be ∞-cyclically monotone if
we have that

max
i=1,...,k

{c(xi, yi)} ≤ max
i=1,...,k

{c(xi, yi+1)} ,

for all k ∈ N∗ and {(xi, yi)}ki=1 ⊂ Γ, where yk+1 = y1. A transport plan γ is
said to be ∞-cyclically monotone if spt γ is an ∞-cyclically monotone set.

Since every permutation can be obtained as composition of cycles on
disjoint sets and trivial cycles on fixed points, one can see that ∞-cyclical
monotonicity of a set Γ ⊂ Rd × Rd is equivalent to the fact that for every
k ∈ N∗, every {(xi, yi)}ki=1 ⊂ Γ and every σ ∈ Σ(k) (where Σ(k) is the
permutation group of {1, . . . , k}), one has

max
i=1,...,k

{c(xi, yi)} ≤ max
i=1,...,k

{
c(xi, yσ(i))

}
.

Usually, in the literature, the previous definition is called ∞-c-cylical mono-
tonicity, to keep notations simple, we have omitted the dependence on the
cost c; let us remark that ∞-cyclical monotonicity is invariant by replacing
c by a strictly increasing transformations of c (like cp with p > 0), contrarily
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to the usual notion of c-cyclical monotonicity. We recall that a nonempty
subset Γ of Rd × Rd is called c-cyclically monotone when for every k ∈ N∗,
every (xi, yi)

k
i=1 ⊂ Γ and every permutation σ ∈ Σ(k), one has

k∑
i=1

c(xi, yi) ≤
k∑
i=1

c(xi, yσ(i)). (4.1)

Our goal in this section is to investigate the convergence of the entropic
approximation to ∞-cyclically monotone plans. We shall make use of the
analysis of the landmark recent article [8]. Let us first recall the notion of
(c, ε)-cyclically invariance introduced in [8]:

Definition 4.2. Let c : Rd × Rd → (0,∞) be a measurable function. A
coupling γ ∈ Π(µ, ν) is called (c, ε)-cyclically invariant if γ � µ⊗ ν and its
density admits a representative dγ

dµ⊗ν : Rd × Rd → (0,∞) such that

k∏
i=1

dγ

dµ⊗ ν
(xi, yi) =

exp

(
−1

ε

[
k∑
i=k

(c(xi, yi)− c(xi, yi+1))

])
k∏
i=1

dγ

dµ⊗ ν
(xi, yi+1),

for all k ∈ N∗ and {(xi, yi)}ki=1 ⊂ Rd × Rd, where yk+1 = y1.

In [8] (Proposition 2.2), it is shown that whenever (ε-EOT) is finite, the
(unique) solution γε of (ε-EOT) is characterized by being (c, ε)-cyclically
invariant. The next lemma, which is a part of Lemma 3.1 in [8], provides an
estimate for (c, ε)-cyclically invariant couplings, which will be useful for our
purpose. For the reader’s convenience we provide also here the proof.

Lemma 4.3. Let ε > 0 and γε ∈ Π(µ, ν) be (c, ε)-cyclical invariant. For
every fixed k ≥ 2, k ∈ N, and δ ≥ 0, let Ak,c(δ) be the set defined by

Ak,c(δ) :=

{
(xi, yi)

k
i=1 ∈

(
Rd × Rd

)k
:

k∑
i=1

c(xi, yi)−
k∑
i=1

c(xi, yi+1) ≥ δ

}
(4.2)

where yk+1 = y1. Let A ⊂ Ak,c(δ) be Borel. Then γkε :=
∏k

i=1(γε)(dxi, dyi)
satisfies

γkε (A) ≤ e
−δ
ε .

9



Proof. By Definition 4.2 of (c, ε)-cyclical invariance, for γkε a.e. (xi, yi)
k
i=1 ∈ A

we have that

k∏
i=1

dγε
µ⊗ ν

(xi, yi) ≤ e−
δ
ε

k∏
i=1

dγε
µ⊗ ν

(xi, yi+1).

In one defines the set A := {(xi, yi+1) : (xi, yi) ∈ A}, by integrating over A
with respect to γkε =

∏
γε(xi, yi) =

∏
γε(xi, yi+1) we obtain

γkε (A) ≤ e−
δ
εγkε (A) ≤ e−

δ
ε .

The fact that the entropic approximation procedure selects ∞-cyclically
monotone plans is then ensured by the following:

Theorem 4.4. Under the general assumptions of Section 2, further assume
that c > 0 everywhere, and let γp,εp be the minimizer of Jp,εp. Then, any
weak star cluster point γ∞ as p→∞ of the family {γp,εp}p≥1 is ∞-cyclically
monotone, provided

1. ε
1
p
p → 0 as p→∞,

2. εp = o(p(1 + λ)p) if, in addition, c ≥ 1 + λ with λ ≥ 0.

Proof. Up to extracting a subsequence, let us assume that γp,εp weakly star
converges to γ∞. We proceed by contradiction assuming that there exist
δ > 0 and a finite sequence of points (xi, yi)

k
i=1 contained in spt γ∞, such

that
max
i=1,...,k

{c(xi, yi)} > max
i=1,...,k

{c(xi, yi+1)}+ δ.

By the continuity of the cost function c and by the uniform convergence

of
(∑k

i=1 c(x
′
i, y
′
i)
p
) 1
p

to maxi=1,...,k{c(x′i, y′i)}, as p → +∞, we deduce that

for every i = 1, . . . , k there exists an open neighborhood Ui of (xi, yi) and
p(δ) > 0, such that(

k∑
i=1

c(x′i, y
′
i)
p

) 1
p

>

(
k∑
i=1

c(x′i, y
′
i+1)p

) 1
p

+ δ,
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for every (x′i, y
′
i) ∈ Ui (again with the convention that y′k+1 = y′1) and p ≥

p(δ). We now observe that

k∑
i=1

c(x′i, y
′
i)
p >

( k∑
i=1

c(x′i, y
′
i+1)p

) 1
p

+ δ

p

≥
k∑
i=1

c(x′i, y
′
i+1)p + p

(
k∑
i=1

c(x′i, y
′
i+1)p

) p−1
p

δ, (4.3)

where the last inequality follows from the convexity of t 7→ tp, with p > 1.
Since c > 0 there exists some b > 0 such that c ≥ b on each Ui, i = 1, . . . , k,
hence, for every (x′i, y

′
i) ∈ Ui and p ≥ p(δ)

k∑
i=1

c(x′i, y
′
i)
p >

k∑
i=1

c(x′i, y
′
i+1)p + pδbp−1. (4.4)

We thus have U1 × · · · × Uk ⊂ Ak,cp(pδb
p−1), where Ak,cp(pδb

p−1) is defined
as in (4.2) with c replaced by cp. Applying Lemma 4.3, we thus get:

γk∞(U1 × · · · × Uk) :=
k∏
i=1

γ∞(Ui)

≤ lim inf
p

γkp,εp(U1 × · · · × Uk) :=
k∏
i=1

γp,εp(Ui)

≤ lim inf
p

e
− pδb

p−1

εp (4.5)

so that if ε
1
p
p → 0 as p→∞, for large enough p one has εp ≤ bp, which yields

lim inf
p

e
− pδb

p−1

εp = 0.

On the other hand, since the points (xi, yi) belong to spt γ∞, we have that
γk∞(U1 × · · · × Uk) > 0, which yields the desired contradiction. This shows
the first assertion. Now, if c ≥ (1+λ) with λ ≥ 0, we can replace b by (1+λ)
in (4.5) and the same conclusion will be reached as soon as εp = o(p(1+λ)p),
proving the second assertion.

Remark 4.5. Despite what we observed in Remark 3.3 regarding Theorem
3.1, in the proof of the second assertion of Theorem 4.4, it does not seem
that the condition c(x, y) ≥ 1 for every (x, y) can be weakened to J∞ ≥ 1.
Note also that the condition εp = o(p(1 + λ)p) is stronger than condition
(3.1) that guarantees Γ-convergence when c ≥ 1 + λ.
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5 Some estimates on the speed of conver-

gence

Our aim in this Section is to give some error estimates for vp − v∞ where

vp := min
γ∈Π(µ,ν)

Jp and v∞ := min
γ∈Π(µ,ν)

J∞, (5.1)

where Jp := Jp,1 (i.e. for the sake of simplicity we take εp = 1 as entropic
penalization parameter).

5.1 Upper bounds

Proposition 5.1 (Upper bounds on the speed of convergence). Let c ∈
C0,α(Rd × Rd), with α ∈ (0, 1] and let us assume that v∞ ≥ 1 + λ for some
λ ≥ 0. Then we have

vp − v∞ ≤

{
O(e−βp), with β = min{α, log(1 + λ)} if λ > 0

O
(

log(log p))
p

)
if λ = 0.

Proof. Let γ∞ be a minimizer of J∞ and γδ be the block approximation of
γ∞ at scale δ ∈ (0, 1), as defined in (3.3). We observe that, by construction
and by the Hölder condition on c, denoting by A the C0,α semi-norm of c,
we first have

||c||L∞(γδ) ≤ ||c||L∞(γ∞) + Aδα.

Then

vp ≤
(∫

cpdγδ +H(γδ|µ⊗ ν)

) 1
p

≤
(
||c||p

L∞(γδ)
+H(γδ|µ⊗ ν)

) 1
p

≤
(
||c||L∞(γ∞) + Aδα

)(
1 +

H(γδ|µ⊗ ν)

(1 + λ)p

) 1
p

≤ (v∞ + Aδα)

(
1 +

d log(L/δ)

(1 + λ)p

) 1
p

, (5.2)

where the last inequality follows from Lemma 3.5. For λ > 0, choosing
δ := e−p, (5.2) becomes (setting C = d log(L))

vp ≤
(
v∞ + Ae−αp

)(
1 +

C + dp

(1 + λ)p

) 1
p

,

12



then, we observe that for large p, one has(
1 +

C + dp

(1 + λ)p

) 1
p

= 1 +
d

(1 + λ)p
+ o
( 1

(1 + λ)p

)
.

Therefore, for p large enough,

vp ≤ v∞ +Be−βp,

for some B > 0 and β = min{α, log(1 + λ)}.
Now if λ = 0, we choose δ = p−1/α in (5.2) which gives

vp ≤
(
v∞ +

A

p

)
exp

(1

p
log(1 + d log(Lp1/α))

)
= v∞ +

1

α

v∞
p

log(log(p)) + o
( log(log(p)

p

)
which ends the proof.

5.2 Upper and lower bounds in the discrete case

Let us now consider the discrete case where there exist x1, . . . , xN and y1, . . . , yM
points in Rd such that

µ =
N∑
i=1

µiδxi and ν =
M∑
j=1

νjδyj (5.3)

with (strictly, without loss of generality) positive weights µi and νj summing
to 1. To shorten notations let us set cij = c(xi, yj) ≥ 0. In this setting,
transport plans γ will simply be denoted as N ×M matrices with entries γij.
We also recall that in the discrete setting Π(µ, ν) is a convex polytope and
the constraint γ ∈ Π(µ, ν) is equivalent to

γ1M =

(
M∑
j=1

γij

)
i

= (µi)i and γᵀ1N =

(
N∑
i=1

γij

)
i

= (νj)j.

In the discrete setting transport plans have a finite entropy with respect
to µ⊗ ν, with the (crude) bound

H(γ|µ⊗ ν) ≤M := −
N∑
i=1

µi log(µi)−
N∑
j=1

νj log(νj)

13



for every γ ∈ Π(µ, ν). So if v∞ ≥ 1 + λ with λ ≥ 0, taking γ∞ a minimizer
of J∞, we obtain

vp ≤ Jp(γ∞) ≤ v∞

(
1 +

M

(1 + λ)p

) 1
p

≤ v∞

(
1 +

M

p(1 + λ)p
+ o
( M

p(1 + λ)p

))
which gives (in a straightforward way, i.e. without using block approxima-
tion) an exponentially decaying upper bound for vp − v∞ for λ > 0 and an
algebraic upper bound vp − v∞ ≤ O(1/p) if λ = 0. The fact that v∞ ≥ 1
therefore ensures that p(vp − v∞) is bounded from above. It turns out, that
in the discrete setting, this condition also guarantees that we also have an
algebraically decaying lower bound for the error. To see this, we first need
the following:

Lemma 5.2. Let µ and ν be discrete measures i.e. of the form (5.3) and
define

F∞ := {γ ∈ Π(µ, ν) : J∞(γ) = v∞}

and for every γ ∈ F∞,

m(γ) := max{γij : γij > 0, cij = v∞}

then there is some θ > 0 such that m(γ) ≥ θ, for every γ ∈ F∞.

Proof. Since v∞ is the minimum of J∞ over Π(µ, ν), one can write F∞ as the
set of transport plans for which

γij > 0⇒ cij − v∞ ≤ 0

or equivalently

l(γ) :=
∑
ij

γij(cij − v∞)+ = 0.

In other words, F∞ is the facet of Π(µ, ν) where the linear form l (which is
nonnegative on Π(µ, ν)) achieves its minimum and it is therefore a convex
polytope, whose extreme points belong to the (finite) set of extreme points
of Π(µ, ν). Let us then denote by {γa, a ∈ A} with A a finite index set the
set of extreme points of F∞. Thanks to Minkowski’s theorem, we can write
any γ ∈ F∞ as

γ :=
∑
a∈A

αaγa,
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for some weights αa ≥ 0 summing to 1. In particular we may pick a0 ∈ A
with αa0 ≥ 1

|A| (with |A| denoting the cardinality of A). Then we have

m(γ) ≥ m(γa0)

|A|
≥ θ := min

a∈A

m(γa)

|A|
> 0,

where the strict positivity of θ then follows from the fact that A is finite and
m(γa) > 0 for every a ∈ A.

We are now ready to prove the announced lower bound.

Proposition 5.3 (Lower bound on the speed of convergence, discrete case).
Assume that µ and ν are discrete measures i.e. of the form (5.3) and that
v∞ ≥ 1, then p(vp − v∞) is bounded from below. Hence

vp − v∞ = O
(1

p

)
.

Proof. Let us argue by contradiction and assume that p(vp − v∞) is un-
bounded from below, then there is a sequence pn → ∞ as n → ∞ such
that

lim
n
pn(vpn − v∞) = −∞. (5.4)

Letting γn be the minimizer of Jpn , passing to a subsequence if necessary, we
may assume that γn converges to some γ∞ which belongs to F∞ (as defined
in Lemma 5.2) since v∞ ≥ 1. In particular, there exists i0, j0 such that

ci0j0 = v∞ and γi0j0∞ ≥ θ > 0,

where θ is the lower bound from Lemma 5.2. Since γi0j0n converges to γi0j0∞
we have, for large enough n, γi0j0n ≥ θ

2
, hence, using the fact that ci0j0 = v∞

and again the nonnegativity of the entropy

vpn ≥ v∞

(θ
2

) 1
pn

= v∞ exp
( 1

pn
log

θ

2

)
≥ v∞

(
1 +

1

pn
log

θ

2

)
which is the desired contradiction to (5.4).
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5.3 A large deviations upper bound

In this (somehow independent) paragraph, our goal is to discuss a (partial)
extension of the large deviations results of [8] to the L∞-optimal transport
framework. Considering the Monge-Kantorovich problem (OT) it is well-
known (see [9], [15]) that the optimality for (OT) of a plan γ ∈ Π(µ, ν) is
characterized by a property of c-cyclical monotonicity of its support Γ :=
spt(γ), where c-cyclical monotonicity is defined by (4.1). To analyze fine
convergence properties of the entropic approximation of (OT), defined by
(ε-EOT), assuming convergence (taking a subsequence if necessary) as ε →
0+, of the minimizer γε of (ε-EOT) to some γ and denoting by Γ the c-
cyclically monotone set spt(γ), the authors of [8] introduced

I(x, y) := sup
k≥2

sup
(xi,yi)ki=2⊂Γ

sup
σ∈Σ(k)

{ k∑
i=1

c(xi, yi)−
k∑
i=1

c(xi, yσ(i))
}
, (x, y) ∈ Rd×Rd

with (x1, y1) = (x, y). They proved that I is a good rate function for the
family of optimal entropic plans, {γε}ε>0 in the sense that it obeys, under
very general conditions, the large deviations principle

lim sup
ε→0

ε log(γε(C)) ≤ − inf
(x,y)∈C

I(x, y) and

lim inf
ε→0

ε log(γε(U)) ≥ − inf
(x,y)∈U

I(x, y),

for every compact C and every open U included in spt(µ)× spt(ν). Denoting
by γp,ε the minimizer of Jp,ε, the results of [8] (using cp instead of c) of course
apply to the convergence of γp,ε as ε → 0+ for a fixed exponent p. For L∞

optimal transport, it makes more sense to rather consider the situation where
ε > 0 is fixed and p tends to ∞. More precisely, we know from Theorem
4.4, that if c ≥ 1, ε > 0 is fixed, the family {γp,ε}p≥1 weakly star converges
(again possibly after an extraction) to some γ∞ as p → ∞, Γ∞ := spt(γ∞)
is ∞-cyclically monotone. In addition to the general assumptions of Section

2, we shall further assume throughout this paragraph that

• c ≥ 1,

• ε > 0 being fixed, the sequence of minimizers {γp,ε}p≥1 weakly star
converges as p→∞ to some γ∞, with (∞-cyclically monotone) support
Γ∞.

Let us define for every (x, y) ∈ Rd × Rd

I∞(x, y) := sup
k≥2

sup
(xi,yi)ki=2⊂Γ∞

sup
σ∈Σ(k)

{
max
1≤i≤k

{c(xi, yi)} − max
1≤i≤k

{c(xi, yσ(i))}
}
,
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where (x1, y1) = (x, y). Also define

Ĩ∞(x, y) := sup
k≥2

sup
(xi,yi)ki=2⊂Γ∞

{
max
1≤i≤k

{c(xi, yi)} − max
1≤i≤k

{c(xi, yi+1)}
}
,

where (x1, y1) = (x, y) and yk+1 = y1. In our supremal optimal transport
setting, we cannot really expect that I∞ is a good rate function for {γp,ε}p≥1;
indeed, argminΠ(µ,ν) J∞ is unchanged when replacing c with a strictly increas-
ing function of c, while the same does not hold for the function I∞. However
it can be interesting to have a better understanding of the function I∞, which
still provides an upper bound for the family {γp,ε} (see Proposition 5.6).

Lemma 5.4. Let I∞ and Ĩ∞ be defined as above, then

• I∞ and Ĩ∞ are related by I∞ = max(0, Ĩ∞),

• I∞ and Ĩ∞ are lower semicontinuous, I∞ ≥ 0, I∞ = 0 on Γ∞,

• I∞ and Ĩ∞ coincide on (spt(µ)× Rd) ∪ (Rd × spt(ν)).

Proof. The fact that I∞ ≥ max(0, Ĩ∞) is obvious as well as the fact that

Ĩ∞ = 0 on Γ∞.
We now prove the converse inequality. Fix now (x, y) = (x1, y1) ∈ Rd × Rd,
k ≥ 2, (x2, y2), . . . (xk, yk) in Γ∞ and σ ∈ Σ(k). We can then partition
{1, . . . , k} into I0 the (possibly empty) set of fixed-points of σ and disjoint
(empty if σ is the identity) orbits I1, . . . , Il on each of which σ is a cycle, this
means that for j = 1, . . . , l, we may denote (xi, yi)i∈Ij as (x̃jr, ỹ

j
r)r=1,...,|Ij | and

(xi, yσ(i))i∈Ij as (x̃jr, ỹ
j
r+1)r=1,...,|Ij | with the convention ỹj|Ij |+1 = ỹj1. We now

observe that

max
1≤i≤k

{c(xi, yi)}− max
1≤i≤k

{c(xi, yσ(i))} ≤ max
j

{
max
i∈Ij

c(xi, yi)−max
i∈Ij

c(xi, yσ(i))
}
.

where the max with respect to j is taken on indices for which Ij is nonempty.
To shorten notations, for such a j let us set

βj := max
i∈Ij

c(xi, yi)−max
i∈Ij

c(xi, yσ(i)).

Of course if I0 is nonempty, β0 = 0, now if j ≥ 1 and Ij is nonempty

βj = max
r=1,...,|Ij |

c(x̃jr, ỹ
j
r)− max

r=1,...,|Ij |
c(x̃jr, ỹ

j
r+1) ≤ Ĩ∞(x̃j1, ỹ

j
1).

So, if (x̃j1, ỹ
j
1) = (x1, y1), βj ≤ Ĩ∞(x, y) and if (x̃j1, ỹ

j
1) 6= (x1, y1), then

(x̃j1, ỹ
j
1) ∈ Γ∞, hence Ĩ∞(x̃j1, ỹ

j
1) = 0 by the definition of Ĩ∞ and the fact that
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Γ∞ is∞-cyclically monotone. In other words, we can bound from above each
βj by max(0, Ĩ∞(x, y)). Taking suprema with respect to k, (x2, y2), . . . (xk, yk)

in Γ∞ and σ ∈ Σ(k), we thus get I∞ ≤ max(0, Ĩ∞). Moreover, since Ĩ∞ ≤ 0

on Γ∞, I∞ = max(0, Ĩ∞) = 0 on Γ∞

Lower semi continuity of I∞ and Ĩ∞ follows from the continuity of c. Fi-
nally assume that x ∈ spt(µ) and y ∈ Rd, since Γ∞ = spt(γ∞) is compact
and γ∞ ∈ Π(µ, ν), there exists y′ ∈ Rd such that (x, y′) ∈ Γ∞. Taking

(x1, y1) = (x, y), (x2, y2) = (x, y′) as a competitor in the definition of Ĩ∞(x, y)

we see that Ĩ∞(x, y) ≥ 0 hence I∞(x, y) = Ĩ∞(x, y). The same argument

shows that I∞ and Ĩ∞ coincide on Rd × spt(ν).

Lemma 5.5. Let us fix (x, y) ∈ Rd × Rd. Suppose that for some δ ∈ R,
k ∈ N, k ≥ 2 and (xi, yi)

k
i=2 ⊂ spt γ∞, we have

max
1≤i≤k

{c(xi, yi)} − max
1≤i≤k

{c(xi, yi+1)} > δ, where (x1, y1) := (x, y).

Then there exist α > 0, r > 0 and p0 ≥ 1 such that

γp,ε(Br(x, y)) ≤ αe
−pδ
ε , ∀p ≥ p0,

where γp,ε is the minimizer of Jp,ε.

Proof. Of course if δ ≤ 0, one can just take α = 1 so we may assume that
δ > 0. Reasoning as in the proof of Theorem 4.4 (recall that we have assumed
c ≥ 1), we know that there exist p0 and r > 0 such that

k∑
i=1

cp(x′i, y
′
i)−

k∑
i=1

cp(x′i, y
′
i+1) > pδ,

for every p ≥ p0 and (x′i, y
′
i)
k
i=1 ⊂ Br(x1, y1) × · · · × Br(xk, yk). Then

Br(x1, y1)× · · · ×Br(xk, yk) ⊂ Ak,cp(pδ) so, thanks to Lemma 4.3,

γkp,ε(Br(x1, y1)× · · · ×Br(xk, yk)) ≤ e−
pδ
ε .

Moreover lim infp→∞ γp,ε(Br(xi, yi)) ≥ γ∞(Br(xi, yi)) > β, for all 2 ≤ i ≤ k,
for some β > 0 since (xi, yi)

k
i=2 ⊂ spt γ∞, then

γp,ε(Br(x, y)) ≤
(
β

2

)1−k

e−
pδ
ε ,

for all p ≥ p0 (possibly replacing p0 with a larger one).

18



Proposition 5.6. Under the assumptions of this paragraph, for any compact
set C ⊂ Rd × Rd, one has

lim sup
p→∞

ε

p
log γp,ε(C) ≤ − inf

C∩(spt(µ)×spt(ν))
Ĩ∞ ≤ − inf

C
I∞.

Proof. First note that since γp,ε is supported on spt(µ)× spt(ν),

γp,ε(C) = γp,ε(C ∩ (spt(µ)× spt(ν)))

and there is noting to prove if C is disjoint from spt(µ)× spt(ν). Therefore
we can assume that C ∩ (spt(µ)× spt(ν)) 6= ∅. It then follows from Lemma
5.4 that

inf
C∩(spt(µ)×spt(ν))

Ĩ∞ = inf
C∩(spt(µ)×spt(ν))

I∞ ≥ inf
C
I∞.

Now let η > 0 and (x, y) ∈ C ∩ (spt(µ) × spt(ν)). By definition of Ĩ∞(x, y)
there exist k ≥ 2 and (xi, yi)

k
i=2 ⊂ Γ∞, such that (setting as usual (x1, y1) =

(x, y) and yk+1 = y)

max
1≤i≤k

{c(xi, yi)} − max
1≤i≤k

{c(xi, yi+1)} > min(η−1, Ĩ∞(x, y))− η.

Note that the truncation is used to handle the case where Ĩ∞(x, y) = +∞.
By Lemma 5.5 we know that there exist α, r > 0 such that

γp,ε(Br(x, y)) ≤ α exp

(
−p(min(η−1, Ĩ∞(x, y))− η)

ε

)
.

Then
lim sup
p→∞

ε

p
log γp,ε(Br(x, y)) ≤ −min(η−1, Ĩ∞(x, y)) + η

and, by compactness of C,

lim sup
p→∞

ε

p
log γp,ε(C) ≤ − inf

C∩(spt(µ)×spt(ν))
min(η−1, Ĩ∞) + η

which, letting η → 0+, yields the desired upper bound.

6 Numerical results

In this section, we present several numerical examples, with the aim of illus-
trating the discussions and theoretical analysis of the previous sections. We
shall consider discrete marginals; let N,M ∈ N, with a slight abuse of nota-
tion, we will denote by µ and ν both the measures and the vectors of weights
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(µi)
N
i=1 and (νj)

M
j=1 and γ will denote both the transport plan and the N×M

matrix (γij). For fixed p, ε > 0, in this discrete setting, the minimization of
Jp,ε reads

min
Π(µ,ν)

(∑
i,j

γijcpij + ε
∑
ij

γij log
( γij
µiνj

)) 1
p

. (6.1)

Raising the above cost to the power p, which does not change the minimizer,
leads to a standard entropic transport problem. For such problems, we used
in all our examples Sinkhorn’s algorithm (see for instance Chapter 4 in [14])
to find a good approximation (with error smaller than 10−5) of the solution.

If v∞ ≥ 1, in light of Theorem 3.1, we expect the output γ of the Sinkhorn
algorithm to be, for suitable p and ε, also a good approximation of an optimal
plan for the discretized L∞- optimal transport problem

v∞ := min
γ∈Π(µ,ν)

max
i,j

{
ci,j : γij 6= 0

}
.

Furthermore, if c ≥ 1, thanks to Theorem 4.4, we expect to find a plan close
to an ∞-cyclically monotone one.

Remark 6.1. As the set of transport plans Π(µ, ν) is a convex polytope,
for any γ ∈ Π(µ, ν) there exists a finite set of indices S, such that γ =∑

s∈S asγs, with as > 0,
∑
as = 1 and γs an extreme point of Π(µ, ν). If

N = M and µi = νj = 1
N

, the set Π(µ, ν) is the set of the so-called bi-
stochastic matrices, whose extreme points, by Birkhoff’s theorem, form the
set of pemutation matrices. We observe that, by definition of γ − ess sup,
J∞(γ) = maxs∈S J∞(γs) and thus the minimum of J∞ is attained at some
permutation matrix. Therefore, if N = M and µi = νj = 1

N

v∞ = min
σ∈Σ(N)

max
i
ci,σ(i).

This can be in principle used to compute v∞ exactly. However this is not
particularly useful in practice; regarding for instance the example on bottom
of Figure 4, even if the size of µ and ν is the same, in order to calculate the
exact value of v∞ we should be able to perform 100! evaluations, which is
infeasible in practice!

All the examples in this section, will be in dimension d = 2, µ will be
represented by blue points, ν by red points and the plan will be represented
by arrows: the black ones indicate that a blue point is sent to a red point
with high probability, while the gray ones indicate that a blue point is sent
to a red point with lower probability (but still not negligible).

20



Figure 1: Example of convergence of the plan to the ∞-cm plan: c(x, y) =
|x− y|p, p ∈ {2, 3, 4, 5}, ε = 1 and µ and ν having orthogonal supports.

In the first example, as shown by Figure 1, we consider cp = |x − y|p, for
p ∈ {2, 3, 4, 5}, µ which is uniformly concentrated on the blue points

{(−2, 0), (−1.5, 0), (−1, 0), (−0.5, 0), (0.5, 0), (1, 0), (1.5, 0), (2, 0)}

and ν on the red points

{(0,−1.367), (0,−0.867), (0, 867), (0, 1.367)}.

Note that with this choice of sptµ and spt ν, c ≥ 1 everywhere and therefore,
thanks to Theorem 3.1 and Theorem 4.4, Γ-convergence and convergence of
the outputs towards ∞-cm plans still hold choosing ε = 1. We observe that
for p = 2, every transport plan γ is optimal. Indeed, by the orthogonality of
the two supports, any plan is concentrated on a cyclically monotone set (see
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(4.1)) and, as recalled in Section 5.3 (see for instance [9, 15]), this is a suf-
ficient optimality condition. Here, since we look for a plan which minimizes
the regularized problem which involves the entropy, the Sinkhorn algorithm
selects the most diffuse one, as evidenced by the picture on the upper left of
Figure 1. The other three pictures in Figure 1 show that convergence towards
an ∞-cm plan is really fast and it occurs already for p = 5.

Figure 2: Error on the marginals: the first image shows the error |γ14 − µ|
of the output γ on the first marginal and the second one the error |γᵀ18− ν|
on the second marginal.

Regarding the accuracy, Figure 2 shows that for p = 5 and ε = 1 the dis-
tance |γ14 − µ| between the first marginal of the output γ and the distance
|γᵀ18 − ν| between the second marginal of γ and ν is of the order of 10−5

after only 350 iterations.
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Figure 3: Example of convergence of the plan to the∞-cm plan for c(x, y) =
(max{|x1 − y1|, |x2 − y2|})p, for p ∈ {2, 3, 4, 5}, ε = 1 and µ and ν having
orthogonal supports.

We have also considered the same example (see Figure 3) with the cost func-
tion cp(x, y) := (max{|x1 − y1|, |x2 − y2|})p. In this case the convergence is
still fast and the error is small after few iterations (of order 10−5 after about
180 iterations).

Remark 6.2. When c > 1, on the one hand, we don’t need ε to be small and
we can even take it large as p grows (by case 2. in Theorem 3.1 we can even
choose for instance εp = (1 + λ)p). On the other hand, we can encounter

some difficulties when computing the Gibbs kernel Kij = e−
c
p
ij
ε : if p is large

it can happen that, for some i, j, Ki,j = 0 making impossible to perform the
division in the iterations of the primal version of the Sinkhorn algorithm.
Fortunately, this problem can be overcome using the Log-Domain version
(see for instance Section 4.4 in [14]), as we did in the following example,
represented by Figure 4.
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Figure 4, which shows a comparison among three different examples, con-
sidered for p = 2 on the left and for p = 15 on the right and ε = 1. The two
pictures on top in Figure 4 show the representation by arrows of the output
when µ is uniformly concentrated on 400 points which discretize the unitary
square and ν is uniformly concentrated on the points (1, 2) and (2, 1). This
is a discretization of the case µ uniform on the square [0, 1]2, where (see also
Example 2.2 in [6]) every γ ∈ Π(µ, ν) is optimal for the problem

inf
γ∈Π(µ,ν)

γ − ess sup c = ‖c‖L∞(γ).

Indeed

‖c‖L∞(γ) = sup{c(x, y) : (x, y) ∈ spt γ}
= |(0, 0)− (1, 2)| = |(0, 0)− (2, 1)| =

√
5,

for every γ ∈ Π(µ, ν). Since every plan is optimal, when p is smaller, as
shown in the picture on the left, the role of the entropy is more important
and the algorithm selects the most diffuse plan. While increasing the value
of p the entropy becomes more and more negligible and output becomes
sparser: already for p = 15 (on the right) the output is a good approxima-
tion of the ∞-cyclically monotone plan, which in this case is unique (see
Theorem 5.6 in [6]). A small variation, represented by the two figures in the
middle, is to consider ν which is not uniformly concentrated on the points
(1, 2) and (2, 1). Here we have taken ν = 0.1δ(1,2) + 0.9δ(2,1). Finally, on
the bottom, we have implemented the case in which also ν is the discretiza-
tion of an absolutely continuous measure. Here µ approximates the square
[−0.25, 0.25] × [−0.25, 0.25] and ν the rectangle [1.25, 1.5] × [−0.5, 0.5] and
both measures are supported on 100 points. As previously, one can notice
that for p = 2 the entropy plays an important role and the algorithm selects
the most diffuse plan, while, already for p = 15 the plan is considerably
sparser.
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Figure 4: Comparison among three different examples: ε = 1, c(x, y) = |x−
y|p, on the left p = 2, on the right p = 15. On top: µ a uniform discretization
of the unitary square and ν uniformly concentrated on the points (1, 2) and
(2, 1). In the middle: µ the same discretization of the unitary square, ν =
0.1δ(1,2)+0.9δ(2,1) (the point (2, 1) is represented by a bigger dot). On bottom:
µ a uniform discretization of the square [−0.25, 0.25]× [−0.25, 0.25] and ν of
the rectangle [1.25, 1.5]× [−0.5, 0.5].
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We are now interested in the asymptotic behavior of vp := minΠ(µ,ν) Jp
and we want to numerically represent the upper and lower bounds on the
speed of convergence of vp towards v∞ := minΠ(µ,ν) J∞ proved in Proposition
5.1 and Proposition 5.3. In order to apply Proposition 5.1 and Proposition
5.3 it is enough to assume a lower bound on v∞ and not a pointwise one on
c.

Figure 5: Comparison among the speed of convergence of vp − v∞, Be−βp

and −A
p

for p ∈ [10, 206], µ and ν as the ones on top of Figure 4. On top:

vp in blue and v∞ in orange. On bottom: Be−βp in green, −A
p

in orange and

vp − v∞ in blue. Here A,B are obtained by linear regression (least squares)
and β = log(v∞) (the same β as in Proposition 5.1).

Figure 5 provides an example of the asymptotic behavior of vp and of the
speed of convergence in the case of µ and ν as the ones represented in the
two pictures on top of Figure 4. In light of what we have just remarked, we
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have re-scaled the cost c in order to have v∞ ' 1.08166. For p ∈ [10, 206]
the image on top of Figure 5 shows in blue how vp changes varying p, while
v∞ is constant and is represented by the orange line. On bottom of Figure 5
we have represented in blue vp− v∞, in green the upper bound Be−βp and in
orange the lower bound −A

p
, where β = log(v∞) by Proposition 5.1 (indeed

in this case c is Lipschitz so α = 1 > log(v∞)) and A,B have been estimated
by a linear regression method (by least squares).

Finally, an example in which it is possible (even if it is really slow!) to
compute v∞ exactly (see Remark 6.1) is represented in Figure 6. Here µ is
concentrated on 8 points, given by

{(x1, x2) : x1 = −0.25 + 0.125 · i, i = 1, . . . , 4, x2 ∈ {−0.1, 0.1}}
and ν is concentrated on 8 equidistant points of the segment starting from the
point (0.625, 1.25) to the point (1.25, 0) of the line y2 = −2y1 + 2.5. We have
computed v∞ for the cost c(x, y) = |x−y| applying Remark 6.1, and we have
obtained that v∞ ' 1.38647347 and that the points which are at the minimal-
maximal distance are x∗ = (−0.25,−0.1) and y∗ = (0.98214286, 0.53571429),
connected by the purple segment in the picture. Regarding the speed of con-
vergence we rescaled the cost in order to decrease further v∞ ' 1.052460609.
As shown in Figure 7, vp is calculated varying p in the interval [10, 172], with
ε = 5002. We observe that in this case, as shown in the picture on top, vp
is initially smaller than v∞, then it increases becoming greater and finally it
starts decreasing converging to v∞.

Figure 6: µ and ν uniformly distributed both concentrated on 8 points. The
value of v∞ is about 1.38647347 and it is obtained transporting mass between
the two points connected by the yellow segment.
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Figure 7: Comparison among the speed of convergence of vp−v∞, Be−βp and
−A

p
for p ∈ [10, 172] and ε = 5002, µ and ν as the ones in Figure 6. On top:

vp in blue and v∞ in orange. On bottom: Be−βp in green, −A
p

in orange and

vp − v∞ in blue. Here A,B are obtained by linear regression (least squares)
and β = log(v∞) (the same β as in Proposition 5.1).
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Schmitzer. Convergence of entropic schemes for optimal transport and
gradient flows. SIAM J. Math. Anal., 49(2):1385–1418, 2017.

[5] Guillaume Carlier, Paul Pegon, and Luca Tamanini. Convergence rate
of general entropic optimal transport costs, 2022.

[6] Thierry Champion, Luigi De Pascale, and Petri Juutinen. The ∞-
Wasserstein distance: local solutions and existence of optimal transport
maps. SIAM J. Math. Anal., 40(1):1–20, 2008.

[7] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal
transport. Advances in neural information processing systems, 26, 2013.

[8] Marcel Nutz Espen Bernton, Promit Ghosal. Entropic optimal trans-
port: Geometry and large deviations. arXiv:2102.04397, 2021.

[9] Wilfrid Gangbo and Robert J. McCann. The geometry of optimal trans-
portation. Acta Math., 177(2):113–161, 1996.
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plications. Birkhäuser/Springer, Cham, 2015. Calculus of variations,
PDEs, and modeling.

[16] Alexandre B. Tsybakov. Introduction to nonparametric estimation.
Springer Series in Statistics. Springer, New York, 2009. Revised and
extended from the 2004 French original, Translated by Vladimir Zaiats.

[17] Cédric Villani. Topics in optimal transportation, volume 58 of Graduate
Studies in Mathematics. American Mathematical Society, Providence,
RI, 2003.

[18] Cédric Villani. Optimal transport, volume 338 of Grundlehren der math-
ematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin, 2009. Old and new.

30


	1 Introduction
	2 Assumptions and notations
	3 -convergence
	4 Selection of plans with -cyclically monotone support
	5 Some estimates on the speed of convergence
	5.1 Upper bounds
	5.2 Upper and lower bounds in the discrete case
	5.3 A large deviations upper bound

	6 Numerical results

