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Optimality Conditions for Parabolic Stochastic Optimal Control

Problems with Boundary Controls

Piero Visconti∗

March 14, 2024

Abstract

Optimality conditions are provided for a class of control problems driven by a cylindrical
Wiener process, which amount to a stochastic maximum principle in differential form. The
control is considered to act on the drift and the volatility, both of which may be unbounded
operators, which allows us to consider SPDEs with control and/or noise on the boundary. By
the factorization method, a regularizing property is established for the state equation which is
then employed to prove, by duality, a similar result for the backward time costate equation. The
costate equation is understood in the sense of transposition. Finally, the cost is shown to be
Gateaux differentiable and it’s derivative is represented in terms of the costate, the optimality
condition is deduced using results of set valued analysis.

Keywords: Stochastic optimal control, Boundary control, Neccessary optimality conditions,
Backward stochastic evolution equations.

1 Introduction

The aim of this paper is to give optimality conditions in the form of a maximum principle for optimal
control problems involving stochastic parabolic evolution equations. Specifically, we consider the
situation where all functions defining the dynamics are allowed to take values outside the state
space, which enables us to consider a broader class of boundary control problems for stochastic
partial differential equations (SPDEs) than is covered in the literature.

Let X and H be separable Hilbert spaces, let U be a Banach space, Uad ⊂ U be a closed subset,
and let Ω be a probability space. Suppose W is a cylindrical Wiener process on H with underlying
probability space Ω. Let A be the generator of an analytic semigroup on X.

Consider the stochastic evolution equation (SEE)

dx(t) = [Ax(t) + b(t, x(t), u(t))] dt+ σ(t, x(t), u(t))dW (t), x(0) = x0. (1.1)

Consider as well the cost function

J (x, u) = E
∫ T

0
f(t, x(t), u(t))dt+ Eh(x(T )). (1.2)

A pair of predictable stochastic processes (x, u) with values in X×Uad is said to be an admissible
pair if it satisfies equation (1.1), and it is an optimal pair if J (x, u) is minimal among admissible
pairs.
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If we set X = Rn and omit σ and W , we are left with a control system governed by an ordinary
differential equation, and the expectation can be omitted from the cost functional. In the influential
work [5], the costate equation

˙̄y(t) = −[A∗y + bx(t, x̄(t), ū(t))∗ȳ(t)− fx(t, x̄(t), ū(t))], y(T ) = −hx(x̄(T )), (1.3)

was introduced, as well as the Hamiltonian

H(t, x, u, y) = 〈y, b(t, x, u)〉X∗,X − f(t, x, u), (1.4)

and it was established that under mild assumptions (most notably differentiability with respect to
(w.r.t.) x and continuity w.r.t. u of the functions b, f and h), for a given optimal pair (x̄, ū), and
the respective solution ȳ of (1.3), the function

Uad 3 u 7→ H(t, x̄(t), u, ȳ(t))

is maximized at ū(t) a.e. in [0, T ]. The power of this results is that it reduces an optimization
problem in infinite dimensions (the space of controls) to a family of optimization problems in Uad.
We refer to [32, 7].

For optimal control in infinite dimensions, we refer to the monographs [22, 31]. More specifically,
for semilinear parabolic equations with boundary control, we refer to [6, 28, 29], it is worth noting
that the adjoint equation is also parabolic and typically the same regularity holds for its solutions as
for those of the state equation, this is of particular importance when considering boundary controls,
as the optimality conditions often involve a trace of the costate.

We briefly consider again X = Rn and now let H = Rd and consider σ in the control system again,
the dynamics now involve two expressions, as a consequence, the costate includes an additional
process q, taking values in Rn×d. The costate equation is given by

dy(t) = −[A∗y + bx(t, x(t), u(t))∗y(t) + σx(t, x(t), u(t))∗q(t)− fx(t, x(t), u(t))]dt+ q(t)dW (t),

y(T ) = −hx(x(T )).

(1.5)

In this case, the process q is part of the solution, and the costate corresponds to the pair of
processes (y, q).

We define the Hamiltonian

H(t, x, u, y, q) = 〈y, b(t, x, u)〉X∗,X + tr [q∗σ(t, x, u)]− f(t, x, u), (1.6)

where tr denotes the trace of an matrix or operator (recall that Rn×d is a Hilbert space with
Frobenius product).

The naive extension of the maximum principle would say that for any optimal pair (x̄, ū), there
are solutions (ȳ, q̄) of equation (1.5) such that the stochastic Hamiltonian (1.6) is maximized at
ū(t) a.e. in [0, T ] × Ω. However, even in finite dimensions, the Hamiltonian is not necessarily
maximized at an optimal control (see [34, Chapter 3, Example 3.1] for a simple counterexample
with X = U = H = R). A maximum principle can be established under additional assumptions,
one may point as very early examples to [20, 19] (σ independent of the control) or [4] (convexity
assumptions).

In [27], the author proves the maximum principle for general stochastic differential equations, in
such generality, it is necessary to impose more regularity for b, σ, f and h (up to second derivatives
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w.r.t. x) and introduce a second order adjoint equation with solutions (Y,Q) taking values in
L(X)× L(H,L(X)) and add to the Hamiltonian the quadratic correction term

1

2
tr[(σ(t, x̄(t), u)− σ(t, x̄(t), ū(t)))∗Y (t)(σ(t, x̄(t), u)− σ(t, x̄(t), ū(t)))]. (1.7)

We refer the reader to [34] and the references therein for a revision of what is by now the classical
theory of stochastic optimal control in finite dimension. We mention [14], where the authors are
able to obtain a first order optimality condition involving only first derivatives of b, σ, f and h
without the assumption that the admissible control set Uad is convex, the present paper takes a
similar approach.

We revert back now to our original setting in which X and H are separable Hilbert spaces
and U is a Banach space. We refer to [2] for a pioneering work, where it is shown that, while a
maximum principle doesn’t necessarily hold, assuming differenciability w.r.t. u and imposing that
the admissible control set is a convex subset of a Hilbert space U, the derivative of the Hamiltonian
at an optimal control is not positive along feasible directions.

See [25] and the rich references therein for a recent review on the state of control theory for
infinite dimensional stochastic control systems. We refer in particular to [12, 15, 24], all of which
give meaning (in different ways) to the correction term (1.7) in the infinite dimensional case, this is
a delicate technical question and in the case that σ is unbounded (i.e. does not belong to L(H,X)),
it would not be enough to have Y take values in L(X), one should prove that it is in some sense
regularizing, this kind of well-posedness for the second order adjoint is not available at the moment,
we therefore aim for an optimality condition in the spirit of [2, 14], making use of only one adjoint
equation.

Unlike in the deterministic setting, backward time stochastic equations are not equivalent to
their forward time counterparts through a simple change of variable as the adaptedness of solutions
is lost in the process, however, much like in the deterministic case, it is possible to establish
additional regularity in the parabolic case. This regularity for the costate is relevant because, a
priori, the Hamiltonian as found in equation (1.6) is not well defined when b and σ are unbounded.
For a maximum principle involving stochastic boundary control systems we refer to [18, 35] where
additional regularity of the costate y is shown to hold and optimality conditions are established.
In order to treat the case where σ depends on the control, the properties of the process q become
relevant, even when σ is assumed to take values in L(H,X) it could be necessary to establish
additional regularity for q, for instance, when the noise is infinite dimensional (see [16], where the
authors need to prove an integrability condition for the trace of q). As far as we know, there
is no work establishing optimality conditions for a controlled SEE with σ being simultaneously
unbounded and depending on the control. The main novelty of the present paper is to consider
unbounded b and σ, both possibly depending on u.

The rest of the paper is organized as follows: In section 2 we introduce the notation and some
preliminary concepts. In section 3, we provide a mathematical setting and define the optimal control
problem considered. In section 4, we provide well posedness results for the state equation, in doing
so, we refine the known results for the regularity of solutions of parabolic stochastic evolution
equations, which may be of independent interest. In section 5 we prove the well-posedness and
regularity of the solutions of the costate equation. Section 6 concerns the optimality conditions of
the solutions of our optimal control problem, finally, we give two worked out examples for which
we write our costate equation and optimality conditions.
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2 Notation and preliminaries

2.1 General notation

Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces. We denote by L(X,Y ) the space of bounded linear
operators from X to Y , which we endow with the operator norm:

‖B‖L(X,Y ) = sup{‖Bx‖Y : ‖x‖X ≤ 1}.

Denote L(X) := L(X,X), we denote IdX ∈ L(X) the identity operator IdXx = x, when it is
clear from context, we omit the subscript. We define the dual space X∗ := L(X,R). For x∗ ∈ X∗
we denote x∗(x) = 〈x, x∗〉X,X∗ .

For B ∈ L(X,Y ), define the adjoint operator B∗ ∈ L(Y ∗, X∗), given by

〈x,B∗y∗〉X,X∗ := 〈Bx, y∗〉Y,Y ∗ .

2.2 Analytic semigroups and interpolation spaces

Let A be the infinitesimal generator of an analytic semigroup S. For large enough β ∈ ρ(A) ∩ R,
we have

(βId−A)−α =
1

Γ(α)

∫ ∞
0

tα−1e−βtS(t)dt (2.1)

where Γ(α) =
∫∞

0 tα−1e−tdt.
We denote Xα = D((βId−A)α) with the norm ‖x‖Xα = ‖(β −A)αx‖X and X−α the completion

of X with the norm ‖(βId−A)−αx‖X .
Analytic semigroups have the following regularizing property:

Proposition 2.1 ([26, Chapter 2, Theorem 6.13]). Let S be an analytic semigroup and {Xα}α
defined as before. Then for all t > 0 and α ≥ 0 we have S(t) ∈ L(X,Xα). Moreover, there exists
Mα such that for all t > 0,

‖S(t)‖L(X,Xα) ≤Mαt
−αeβt.

2.3 Stochastic processes

Let (Ω,F∞,P) be a probability space and let the filtration F = {Ft}t∈R+ be an increasing collection
of σ−algebras contained in F∞.

We define Fpr to be the smallest σ-algebra on R+×Ω containing all sets of the form (s, t]×Bs
with Bs ∈ Fs and s < t, and of the form {0} ×B0 for B0 ∈ F0.

A function f : R+×Ω→M where (M,FM ) is any measurable space is said to be F-predictable
if it’s measurable w.r.t. the predictable σ-algebra Fpr, i.e. if f−1(B) ∈ Fpr for all B ∈ FM .
We write MF for the set of M−valued predictable functions. When M is a topological space (in
particular, for a Banach space), we consider on it the Borel σ-algebra.

For T ∈ (0,∞], 1 ≤ p, q ≤ ∞ and a Banach space X we will use the following notations:

• LpF(Ω;Lq(0, T ;X)) =

{
x ∈ XF : E

(∫ T
0 ‖xt‖

q
X dt

)p/q
<∞

}
with norm

[
E
(∫ T

0 ‖(·)t‖
q
X dt

)p/q]1/p

.

• LqF(0, T ;Lp(Ω;X)) =
{
x ∈ XF :

∫ T
0

(
E ‖xt‖pX

)q/p
dt <∞

}
with norm

[∫ T
0

(
E ‖(·)t‖pX

)q/p
dt
]1/q

.

Both defined up to equality a.e. in [0, T ] × Ω with the obvious adjustment when p or q are
∞.
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• LpF(Ω;C([0, T ], X)) is the subspace of LpF(Ω;L∞(0, T ;X)) consisting of processes x which
almost surely have continuous paths, i.e. for almost every ω ∈ Ω, t 7→ xt(ω) is continuous
from [0, T ] to X.

• DF([0, T ], Lp(Ω;X)) is the subspace of L∞F (0, T ;Lp(Ω;X)) consisting of processes x which are
càdlàg (right continuous with left limits) from [0, T ] into LpFT (Ω;X), i.e. for every t ∈ [0, T ],

lim
s→t+

E ‖xt − xs‖p = 0

and the limit lims→t− xs in LpFt(X) exists.

• CF([0, T ], Lp(Ω;X)) is the subspace of L∞F (0, T ;Lp(Ω;X)) consisting of processes x which are
continuous from [0, T ] into LpFT (Ω;X), i.e. for every t ∈ [0, T ],

lim
s→t

E ‖xt − xs‖p = 0.

2.4 Hilbert-Schmidt space & stochastic integration

Let Z and K be Hilbert spaces. By the Riesz representation theorem, it is possible to identify Z
with Z∗ and K with K∗, and thus the adjoint P ∗ of a bounded operator P ∈ L(Z,K) may be
thought of as belonging to L(K,Z), and it is defined by the relation 〈z, P ∗k〉Z = 〈Pz, k〉K .

Let I be an arbitrary set of indices, we say that {ei}i∈I ⊂ Z is a Hilbert basis of Z if it’s an
orthonormal set, i.e.

〈ei, ej〉Z =

{
1 i = j
0 i 6= j

,

and {ei}i∈I spans a dense subset of Z.
Fix a Hilbert basis {ei}i∈I . For any positive bounded operator T+ ∈ L(Z), i.e. one satisfying

〈T+z, z〉Z ≥ 0 for all z ∈ Z, we define

tr(T+) =
∑
i∈I
〈T+ei, ei〉Z .

It can be checked that tr(T+) doesn’t depend on the choice of Hilbert basis {ei}i∈I . Define the
space L1(Z) of trace-class operators on Z as

L1(Z) := {T ∈ L(Z) : tr(|T |) <∞},

where |T | = (T ∗T )1/2, then tr(T ) is also well defined by the same formula for T ∈ L1(Z).
We denote L2(Z,K) the space of Hilbert-Schmidt operators P : Z → K, defined as

L2(Z,K) := {P ∈ L(Z,K) : P ∗P ∈ L1(Z)} = {P ∈ L(Z,K) : tr(P ∗P ) <∞}.

We list below some facts about Hilbert-Schmidt and trace-class operators (see for instance [30,
Section VI.6]):

Proposition 2.2. Let Z and K be Hilbert spaces. The following statements hold.

• Every Hilbert-Schmidt operator is compact.

• Every trace-class operator is Hilbert-Schmidt: L1(Z) ⊂ L2(Z). In particular, every trace-class
operator is compact.
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• Let T ∈ L1(Z). There exists (at least) a Hilbert basis {ei}i∈I of Z such that∑
i∈I
‖Tei‖Z ≤ ∞.

One such basis is the one consisting of eigenvectors of |T | (whose existence follows from
Hilbert’s spectral decomposition theorem).

• The composition QP of two Hilbert-Schmidt operators P ∈ L2(Z,K) and Q ∈ L2(K,Z) is a
trace-class operator on Z.

• L2(Z,K) is itself a Hilbert space with the inner product (P,Q) = tr(Q∗P ), which is again
well defined by

tr(Q∗P ) =
∑
i∈I
〈Q∗Pei, ei〉Z =

∑
i∈I
〈Pei, Qei〉K

and is independent of the choice of basis. If Z,K are separable, L2(Z,K) is again separable.

We have the following identification:

Proposition 2.3. Assume Z,K are Hilbert spaces. Then (L2(Z,K))∗ = L2(Z,K∗) with the duality

〈P,Q〉L2(Z,K),L2(Z,K∗) =
∑
i∈I
〈Pei, Qei〉K,K∗ ,

for an orthonormal basis {ei}i∈I of Z. Moreover, if H is another Hilbert space densely and con-
tinuously included in K, then L2(Z,H) ⊂ L2(Z,K) and L2(Z,K∗) ⊂ L2(Z,H∗) with dense and
continuous inclusions and

〈P,Q〉L2(Z,K),L2(Z,K∗) = 〈P,Q〉L2(Z,H),L2(Z,H∗)

when P ∈ L2(Z,H) and Q ∈ L2(Z,K∗).

See appendix A for a proof.
We now define a cylindrical Wiener process. Let H be a separable Hilbert space densely embed-

ded in another separable Hilbert space H−1 such that the inclusion I : H→ H−1 is Hilbert-Schmidt.
Let W : Ω × R+ → H−1 be a measurable function, we write W (ω, t) = Wt(ω) and often omit de-
pendence on ω. We say that W is a cylindrical Wiener process on H if for all h, k ∈ H−1, t, s ∈ R+,
〈Wt, h〉H−1 is a centered Gaussian random variable, W (ω, ·) ∈ C(R+,H−1) a.s. and

EP
[
〈Wt, h〉H−1〈Ws, k〉H−1

]
= (t ∧ s)〈I∗h, I∗k〉H.

We say the filtration F is admissible for W if for all t ≥ 0, Wt is Ft−measurable and Ws −Wt

is independent of Ft for any s > t. For a given process W , an admissible filtration can always
be constructed, the smallest such filtration is called the natural filtration of W and it consists of
{FWt }t∈R+ , where FWt is the smallest σ−algebra for which Ws is measurable for all s ∈ [0, t].

In the rest of the paper, we assume the filtration F is admissible for W .
For a Hilbert spaceK, the Itô stochastic integral is then defined for predictable L2(H,K)−valued

processes which belong to L2
loc(0,∞;L2(H,K)) a.s. (see for instance [10, Part I, Chapter 4]).
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3 Setting of the problem

In this section we introduce the functional setting for our control problem, we then give conditions
under which the state equation is well-posed and the cost is well defined, we also provide some
estimates that will be useful in the rest of the paper.

Let X be a separable Hilbert space, A : D(A) ⊂ X → X is the infinitesimal generator of an
analytic semigroup. For s ∈ R, write Xs = D((αId − A)s) and X∗s = D((αId − A∗)s) for α ∈ R
large enough, so that (Xs)∗ = X∗−s (we don’t identify X with X∗).

Let H be a separable Hilbert space and W a cylindrical Wiener process on H. Let (Ω,F∞,P)
a probability space endowed with a right-continuous filtration F = {Ft}t∈R+ (i.e. Ft = ∩s>tFs for
every t ∈ R+) which is admissible for W .

The control space U is assumed to be a reflexive and separable Banach space.
Consider the state equation

dx(t) = [Ax(t) + b(t, x(t), u(t))] dt+ σ(t, x(t), u(t))dW (t), x(0) = x0 ∈ LpF0
(Ω;X). (3.1)

Hypothesis 3.1. Assume p > 2 and η ∈ R. Let b : [0, T ] × X × U × Ω → X−1/2 and σ :
[0, T ]× X× U× Ω→ L2(H,X−η). Assume the following conditions hold:

1.

η <
1

2
− 1

p
(3.2)

2. b(·, x, u), σ(·, x, u) are predictable for any x ∈ X, u ∈ U.

3. b, σ are Lipschitz continuous w.r.t. x, u, i.e. for some Cb, Cσ ≥ 0

‖b(t, x1, u1)− b(t, x2, u2)‖X−1/2
+ ≤ Cb (‖x1 − x2‖X + ‖u1 − u2‖U) , (3.3)

‖σ(t, x1, u1)− σ(t, x2, u2)‖L2(H,X−η) ≤ Cσ (‖x1 − x2‖X + ‖u1 − u2‖U) . (3.4)

4. b(·, 0, 0) ∈ L2
F(0, T ;Lp(Ω;X−1/2)), σ(·, 0, 0) ∈ LpF(Ω;Lp(0, T ;L2(H,X−η))).

Definition 3.2. Let x0 ∈ X a.s. A predictable X-valued process x is said to be a mild solution of
(3.1) if for every t ≥ 0 we have S(t− s)b(s, x(s), u(s)) ∈ L1(0, t;X) a.s., S(t− s)σ(s, x(s), u(s)) ∈
L2(0, t;L2(H,X)) a.s. and

x(t) = S(t)x0 +

∫ t

0
S(t− s)b(s, x(s), u(s))ds+

∫ t

0
S(t− s)σ(s, x(s), u(s))dW (s) a.s. (3.5)

Definition 3.2 is similar to the notion of mild solution given in [10, Chapter 7], the difference is
that we have relaxed the assumption that b(s, x(s), u(s)) takes values in X, and that σ(s, x(s), u(s))
takes values in L2(H,X), we assume instead that they belong to the larger spaces X−1/2 and
L2(H,X−η). We don’t assume that σ(s, x(s), u(s)) takes values in L(H,X) either.

Example 3.3. Let Wst be a cylindrical Wiener process on L2(0, 1) (from now on Lp := Lp(0, 1)),
so that Ẇst is (formally) a space-time white noise. Let w0 and w1 be 1-D Wiener processes,
independent of each other and of Wst.

Consider the equation

∂tx = ∂ξξx+ bst(t, ξ, x, ust) + σst(t, ξ, ust)Ẇst(t, ξ) t ∈ (0, T ), ξ ∈ (0, 1)
∂nx(t, i) = bi(t, ui) + σi(t, ui)ẇi(t) t ∈ (0, T ), i = 0, 1
x(0, ξ) = x0(ξ) ξ ∈ (0, 1)

(3.6)

where x = x(t, ξ), ust = ust(t, ξ) and ui = ui(t), i = 0, 1.
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1. Let bst : [0, T ]×Ω× (0, 1)×R×R→ R be a function which is continuously differentiable and
uniformly Lipschitz continuous w.r.t. x, u a.e. in [0, T ] × Ω × (0, 1). Assume bst(·, ξ, x, ust)
is predictable for fixed values of (ξ, x, ust) and bst(·, ξ, 0, 0) ∈ Lp([0, T ]× Ω× (0, 1)).

2. Let b0 : [0, T ] × Ω × R → R be a function which is continuously differentiable and uniformly
Lipschitz continuous w.r.t. u a.e. in [0, T ]×Ω. Assume b0(·, u0) is predictable for fixed values
of u0 and b0(·, 0) ∈ Lp(ΩL2(0, T )).

3. Let b1 : [0, T ] × Ω × R → R be a function which is continuously differentiable and uniformly
Lipschitz continuous w.r.t. u a.e. in [0, T ]×Ω. Assume b1(·, u1) is predictable for fixed values
of u1 and b1(·, 0) ∈ Lp(ΩL2(0, T )).

4. Let σst : [0, T ] × Ω × (0, 1) × R → R be a function which is continuously differentiable and
uniformly Lipschitz continuous w.r.t. u a.e. in [0, T ] × Ω × (0, 1). Assume σst(·, ξ, ust) is
predictable for fixed values of (ξ, ust) and σst(·, ξ, 0) ∈ Lp([0, T ]× Ω× (0, 1)).

5. Let σ0 : [0, T ]× Ω× R→ R be a function which is continuously differentiable and uniformly
Lipschitz continuous w.r.t. u a.e. in [0, T ]×Ω. Assume σ0(·, u0) is predictable for fixed values
of u0 and σ0(·, 0) ∈ Lp([0, T ]× Ω).

6. Let σ1 : [0, T ]× Ω× R→ R be a function which is continuously differentiable and uniformly
Lipschitz continuous w.r.t. u a.e. in [0, T ]×Ω. Assume σ1(·, u1) is predictable for fixed values
of u1 and σ1(·, 0) ∈ Lp([0, T ]× Ω).

We consider A = ∂ξξ and D(A) = {x ∈ H2(0, 1) : ∂ξx(0) = ∂ξx(1) = 0}, so that A generates an
analytic semigroup on L2. Define H2s = D((αId−A)s) for a fixed α > 0. With this, Hs = Hs(0, 1)
for s ∈ (−1

2 ,
3
2) (see [21, Theorem 3A.1]). Let r = 2

p−2 , notice that due to [11, Theorem 6.7], we

have the inclusions H1/p ⊂ Lr ⊂ L2 ⊂ Lr∗ ⊂ H−1/p, where 1
r + 1

r∗ = 1.
The function bst(t, ξ, ·, ·) is Gateaux differentiable w.r.t. (x, u) from L2×Lp to L2. Its derivatives

at x, u are the multiplications by bstx (t, ξ, x(ξ), u(ξ)) and bstu (t, ξ, x(ξ), u(ξ)).
Notice that for Σst ∈ Lp, the product h 7→ Σsth maps L2 linearly and continuously into Lr

∗
,

and therefore, into H−1/p.

It follows from the spectral decomposition of A that when η > 1
4 + 1

2p , the inclusion from H−1/p

into H−2η is Hilbert-Schmidt.
The function σst(t, ξ, ·) is Gateaux differentiable w.r.t. u from Lp to Lp, and its derivative at u

is the multiplication by σstu (t, ξ, u(ξ)). Therefore, the mapping u 7→ [h 7→ σst(t, ·, u(·))h] is Gateaux
differentiable w.r.t. u from Lp to L2(L2,H−2η).

For u ∈ R2, define b∂(t, u) = (αId−A)z where

αz − ∂ξξz = 0, ∂nz(i) = bi(t, ui) i = 0, 1,

so that b∂(t, ·) is Gateaux differentiable from R2 into H−β for β > 1/2 (see for instance [21, Section
3.3]). Notice that, integrating by parts, the adjoint (b∂u(t, u))∗ is then the following Dirichlet trace
operator

(b∂u(t, u))∗y = (b0u(t, u)y(0), b1u(t)y(1)).

Define as well [σ∂(t)u]w = (αId−A)z where

αz − ∂ξξz = 0, ∂nz(i) = σi(t, ui)wi i = 0, 1,
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we have that σ∂(t, ·) is Gateaux differentiable from R2 into L(R2,H−β) ' L2(R2,H−β) for β > 1/2.
Notice that, integrating by parts, the adjoint (σ∂u(t, u))∗ is then the following Dirichlet trace operator

(σ∂u(t, u))∗(q0, q1) = (σ0
u(t, u)q0(0), σ1

u(t, u)q1(1)).

Define H = L2 ⊕ R2 so that W = (Wst, w0, w1) is a cylindrical Wiener process on H.
In the notation of 6.2, denote Xs = H2s.
Denote also Uad := U = Lp ⊕ R2, we write u = (ust, u0, u1), and define

b(t, x, u) = bst(t, ξ, x, ust) + b∂(t, u0, u1) ∈ H−1.

Similarly, we define

σ(t, x, u) = (σst(t, ξ, ust) σ∂(t, u0, u1)) ∈ L2(H,H−2η).

We have hypothesis 6.2 for η ∈ (1
4 ,

1
2) and p > max{ 2

1−2η ,
2

4η−1} (this imposes p > 6, and p may
be chosen arbitrarily close to 6 by choosing η = 1/3).

This SPDE is similar to some of those considered [9], with the difference that we consider a
variable volatility term on the boundary condition which is controlled.

It is worth mentioning that in [16], the authors take hypotheses similar to 3.1, however, neither
setting completely encompasses the other. In the particular case that A is analytic, [16, Assumption
3.3] implies that the inclusion from X into X−η is Hilbert-Schmidt for some η ∈ (0, 1

2), and therefore
[16, Assumption 2.1] implies hypothesis 3.1.

The advantage of the present approach is twofold: In removing the assumtions that b and σ take
values in X and L(H,X), this setting gives flexibility in choosing a functional setting for a concrete
equation, for instance, in example 3.3 we are able to consider the control space to be Lp(0, 1) (which
is reflexive) instead of L∞(0, 1). More importantly, our approach yields improved regularity for the
costate, which allows us to define the Hamiltonian and obtain optimality conditions even when
b(s, x(s), u(s)) /∈ X and σ(s, x(s), u(s)) /∈ L(H,X), both of which happen, for instance, in problems
with a control on the boundary whose action is perturbed multiplicatively by a noise.

For x ∈ LpF(Ω;C([0, T ],X)) and u ∈ LpF(Ω;Lp(0, T ;U)) (chosen freely, not solving any particular
equation) define

J (x, u) = E
∫ T

0
f(t, x(t), u(t))dt+ Eh(x(T )). (3.7)

The following will be our working hypothesis in order to have a well defined cost function.

Hypothesis 3.4. Let p > 2. The mappings f : [0, T ]×X×U×Ω→ R and h : X×Ω→ R satisfy
the following:

1. f(·, x, u) is predictable and h(x) is FT−measurable for any x ∈ X, u ∈ U.

2. For some C0 ≥ 0:

|f(t, x, u)| ≤ C0(1 + ‖u‖pU + ‖x‖pX).

|h(x)| ≤ C0(1 + ‖x‖pX).
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3. For some C1 ≥ 0:

|f(t, x1, u1)−f(t, x2, u2)| ≤ C1 (1 + ‖u1‖U + ‖u2‖U + ‖x1‖X + ‖x2‖X)p−1 (‖x1 − x2‖X + ‖u1 − u2‖U) .

|h(x1)− h(x2)| ≤ C1 (1 + ‖x1‖X + ‖x2‖X)p−1 ‖x1 − x2‖X

We now define our optimal control problem. Let Uad ⊂ U be a closed subset. Define

Uad :=
{
u ∈ LpF(Ω;Lp(0, T ;U)) : u ∈ Uad a.e. [0, T ]× Ω

}
(3.8)

Problem P. Let x0 ∈ LpF(Ω;X). Find a pair (x̃, ũ) ∈ LpF(Ω;C([0, T ],X))×Uad which solve equation
(3.1), such that for all (x, u) ∈ LpF(Ω;C([0, T ],X))× Uad also solving equation (3.1) we have

J (x̃, ũ) ≤ J (x, u).

We call such (x̃, ũ) an optimal pair, x̃ an optimal trajectory and ũ an optimal control for the
problem.

4 State equation

We will now establish the basic existence and uniqueness results for our state equation. In order
to do so, we first refine some results on the existing literature for stochastic evolution equations.
Specifically, regarding the regularizing properties of the stochastic convolution which defines the
mild solution of equation (3.1).

4.1 Well-posedness for parabolic stochastic evolution equations

The aim of this subsection is to extend the regularity results in [10, Theorem 5.15] to the case
where the stochastic convolution has a source that isn’t constant, in order to be able to incorporate
the action of the control. Proposition 4.2 states the regularity for the stochastic convolution, and
mixes techniques from the proof of [10, Theorem 5.15] and that of [10, Proposition 7.3]. We then
show the regularity of mild solutions for linear and semilinear equations, in propositions 4.3 and
4.4 respectively.

We first establish a generalized version of the factorization formula [10, Theorem 5.11], here we
allow the integrand to be a stochastic process, and we allow its values to be unbounded operators.
The proof is essentially contained in that of [17, Proposition 3.2], but in said proposition the authors
consider g : [0, T ]× Ω→ L(H,X).

Lemma 4.1. Suppose A is the infinitesimal generator of a C0−semigroup S, write X1 = D(A)
and X−1 = (D(A∗))∗, so that X1 ⊂ X ⊂ X−1. Assume for some α ∈ (0, 1

2), p > 1
α , g : [0, T ]× Ω→

L(H,X−1) is predictable, S(t− s)g(s) ∈ L2(H,X) a.e. on {0 < s < t < T} × Ω and∫ T

0

(
E
[∫ t

0
(t− s)−2α ‖S(t− s)g(s)‖2L2(H,X) ds

])p/2
dt <∞. (4.1)
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Then x(t) =
∫ t

0 S(t−s)g(s)dW (s) has a.s. continuous paths in X. Moreover, x ∈ Lp(Ω;C([0, T ],X))
and

‖x‖LpF(Ω;C([0,T ],X)) ≤ C

(∫ T

0

(
E
[∫ t

0
(t− s)−2α ‖S(t− s)g(s)‖2L2(H,X) ds

])p/2
dt

)1/p

with C only depending on A,α, p, T (and not on g), moreover, C → 0 as T → 0.

Proof. It is clear that y(t) =
∫ t

0 (t− s)−αS(t− s)g(s)dW (s) is well defined for almost all t ∈ [0, T ]
and by the Burkholder-Davis-Gundy inequality ([10, theorem 4.36])

(
E[‖y(t)‖pX]

)1/p ≤ Cp(E [∫ t

0
(t− s)−2α ‖S(t− s)g(s)‖2L2(H,X) ds

])1/2

,

for any p > 1
α , with which(

E
[∫ T

0
‖y(t)‖pX dt

])1/p

=

(∫ T

0
E
[
‖y(t)‖pX

]
dt

)1/p

≤ Cp

(∫ T

0
E
[∫ t

0
(t− s)−2α ‖S(t− s)g(s)‖2L2(H,X) ds

]p/2
dt

)1/p

<∞

in light of (4.1), so that y ∈ LpF(Ω;Lp(0, T ;X)).
We now want to rewrite x as a deterministic integral of a process involving y, to this end we

apply the stochastic Fubini theorem ([10, Theorem 4.33]) to the function defined for fixed t ∈ [0, T ]
by

(r, s) 7→ (t− r)α−1(r − s)αS(t− s)I0<s<r<tg(s) ∈ L1([0, t], L2(0, t;L2(H,X))).

We have for p > 1
α , p∗ := p

p−1 <
1

1−α , so, letting MT = supt∈[0,T ] ‖S(t)‖,∫ t

0
(t− r)α−1

(
E
[∫ r

0
(r − s)−2α ‖S(t− s)g(s)‖2L2(H,X) ds

])1/2

dr

≤
(∫ t

0
(t− r)(α−1)p∗dr

)1/p∗
(∫ t

0

(
E
[∫ r

0
(r − s)−2α ‖S(t− s)g(s)‖2L2(H,X) ds

])p/2
dt

)1/p

≤
(∫ t

0
(t− r)(α−1)p∗dr

)1/p∗
(∫ t

0

(
E
[∫ r

0
(r − s)−2α ‖S(t− r)‖ ‖S(r − s)g(s)‖2L2(H,X) ds

])p/2
dt

)1/p

≤MT

(∫ t

0
(t− r)(α−1)p∗dr

)1/p∗
(∫ T

0

(
E
[∫ r

0
(r − s)−2α ‖S(r − s)g(s)‖2L2(H,X) ds

])p/2
dt

)1/p

<∞

for all t ∈ [0, T ], so we may indeed interchange the stochastic and deterministic integrals, notice
that

∫ t
s (t− r)α−1(r − s)−αdr = c doesn’t depend on s, t, with this

x(t) =

∫ t

0
S(t− s)g(s)dW (s) = c−1

∫ t

0

∫ t

s
(t− r)α−1(r − s)−αdrS(t− s)g(s)dW (s)

= c−1

∫ t

0

∫ r

0
(t− r)α−1(r − s)−αS(t− s)g(s)dW (s)dr
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= c−1

∫ t

0
(t− r)α−1

∫ r

0
(r − s)−αS(t− r)S(r − s)g(s)dW (s)dr

= c−1

∫ t

0
(t− r)α−1S(t− r)

∫ r

0
(r − s)−αS(r − s)g(s)dW (s)dr = c−1

∫ t

0
(t− r)α−1S(t− r)y(r)dr.

We now have by [10, Proposition 5.9] that y 7→ x(t) = c−1
∫ t

0 (t − r)α−1S(t − r)y(r)dr maps
Lq(0, T ;X) into C([0, T ];X) for q large enough, namely, when q > 1

α . Applying this result for q = p,

we find that c−1
∫ t

0 (t − r)α−1S(t − r)y(r)dr ∈ LpF(Ω;C([0, T ],X)) so that x ∈ LpF(Ω;C([0, T ],X)),
redefining x on a subset of Ω× [0, T ] of null measure if necessary.

Finally,

‖x‖LpF(Ω;C([0,T ],X)) ≤

∥∥∥∥∥ sup
t∈[0,T ]

[
sup
s∈[0,t]

‖S(s)‖
∥∥sα−1

∥∥
Lp∗ (0,t)

‖y‖Lp(0,t;X)

]∥∥∥∥∥
Lp(Ω)

≤ sup
t∈[0,T ]

‖S(t)‖
∥∥tα−1

∥∥
Lp∗ (0,T )

∥∥∥‖y‖Lp(0,T ;X)

∥∥∥
Lp(Ω)

= sup
t∈[0,T ]

‖S(t)‖
∥∥tα−1

∥∥
Lp∗ (0,T )

‖y‖LpF(Ω;Lp(0,T ;X))

≤MT

∥∥tα−1
∥∥
Lp
∗

(0,T )
‖y‖LpF(Ω;Lp(0,T ;X)) = MT

∥∥tα−1
∥∥
Lp∗ (0,T )

(
E
[∫ T

0
‖y(t)‖pX dt

])1/p

≤MT

∥∥tα−1
∥∥
Lp∗ (0,T )

Cp

(∫ T

0
E
[∫ t

0
(t− s)−2α ‖S(t− s)g(s)‖2L2(H,X) ds

]p/2
dt

)1/p

.

When T → 0, we have
∥∥tα−1

∥∥
Lp∗ (0,T )

→ 0 so that C → 0.

In lemma 4.1, there is no additional requirement made directly on A beyong generating a
C0−semigroup (hence the explicit introduction of X−1, as the construction of Xs made in the pre-
vious section for analytic semigroups doesn’t apply). In the sequel, we will establish the integrability
assumption (4.1) by imposing that the semigroup generated by A is analytic.

Proposition 4.2. Let A be the infinitesimal generator of the analytic semigroup S on X, for
some β ∈ ρ(A) fixed, denote Xs = D((βId − A)s) the respective interpolation spaces for s ∈ R
(see section 2). If there exist η ≥ 0 and p > 2 such that g ∈ LpF(Ω;Lp(0, T ;L2(H,Xη))), then

x(t) =
∫ t

0 S(t− s)g(s)dW (s) has continuous paths in Xγ a.s. for γ < η+ 1
2 −

1
p . Moreover, we have

x ∈ LpF(Ω;C([0, T ],Xγ)) and

‖x‖LpF(Ω;C([0,T ],Xγ)) ≤ C ‖g‖LpF(Ω;Lp(0,T ;L2(H,Xη)))

with C only depending on A, η, γ, p, T (and not on g).

Proof. Fix γ < η + 1
2 −

1
p and choose α ∈ (1

p , η + 1
2 − γ) (in particular, p > 1

α), so that

‖S(t− s)g(s)‖L2(H,Xγ) ≤ ‖S(t− s)‖L(Xη ,Xγ) ‖g(s)‖L2(H,Xη) ≤ C(t− s)η−γ ‖g(s)‖L2(H,Xη) ,

due to proposition 2.1, from which it follows that∫ T

0
E
[∫ t

0
(t− s)−2α ‖S(t− s)g(s)‖2L2(H,Xγ) ds

]p/2
dt

≤ C
∫ T

0
E
[∫ t

0
(t− s)−2(α−η+γ) ‖g(s)‖2L2(H,Xη) ds

]p/2
dt
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≤ C

(
T 1−2(α−η+γ)

1− 2(α− η + γ)

)p/2
‖g‖p

LpF(Ω;Lp(0,T ;L(H,Xη)))
<∞

by Young’s convolution inequality with exponents 1, p2 . The result follows by lemma 4.1.

Proposition 4.3. Let A be the infinitesimal generator of the analytic semigroup S on X, for some
β ∈ ρ(A) fixed, denote Xs = D((βId−A)s) the respective interpolation spaces for s ∈ R (see section
2). Assume f ∈ L2

F(0, T ;Xγ− 1
2
) and there exists η ≥ 0 such that g ∈ LpF(Ω;Lp(0, T ;L2(H,Xη)))

and we assume also x0 ∈ Xγ a.s. is F0−measurable with γ < η + 1
2 −

1
p , then the mild solution

(3.5) of

dx(t) = [Ax(t) + f(t)]dt+ g(t)dW (t)

x(0) = x0

is well defined and has continuous paths in Xγ a.s. Moreover, there exists C = C(A, γ, η, p, T ),
such that if E[‖f‖p

L2(0,T ;X
γ− 1

2
)

+ ‖x0‖pXγ ] <∞, then

‖x‖LpF(Ω;C([0,T ],Xγ)) ≤ C
(
‖f‖LpF(Ω;L2(0,T ;X

γ− 1
2

)) + ‖g‖LpF(Ω;Lp(0,T ;L2(H,Xη))) + ‖x0‖LpF0 (Ω;Xγ)

)
.

Proof. We decompose x = xdet + xstoch with

xdet(t) = S(t)x0 +

∫ t

0
S(t− s)f(s)ds, xstoch(t) =

∫ t

0
S(t− s)g(s)dW (s).

The result follows from [3, Chapter II.1 Theorem 3.1 & Remark 4.2] for xdet and from proposition
4.2 for xstoch.

We now will consider the following equation:

dx(t) = [Ax(t) + b(t, x(t))]dt+ σ(t, x(t))dW (t)

x(0) = x0
(4.2)

Proposition 4.4. Let γ < η + 1
2 −

1
p . Suppose A is the infinitesimal generator of the analytic

semigroup S on X, denote Xs = D((βId − A)s) the respective interpolation spaces for s ∈ R (see
section 2). Assume aditionally that b : [0, T ]×Xγ×Ω→ Xγ− 1

2
and σ : [0, T ]×Xγ×Ω→ L2(H,Xη)

satisfy

‖b(t, x1)− b(t, x2)‖X
γ− 1

2

≤ Lb(t) ‖x1 − x2‖Xγ , ‖σ(t, x1)− σ(t, x2)‖L2(H,Xη) ≤ Lσ(t) ‖x1 − x2‖Xγ
(4.3)

for some Lb ∈ L2(0, T ) and Lσ ∈ Lp(0, T ). Assume also that

x0 ∈ LpF0
(Ω;Xγ), b(·, 0) ∈ LpF(Ω;L2(0, T ;Xγ− 1

2
)), σ(·, 0) ∈ LpF(Ω;Lp(0, T ;L2(H,Xη))).

Then problem (4.2) has a unique mild solution x ∈ LpF(Ω;C([0, T ],Xγ) and there exists C =
C(A, γ, η, p, T, Lb, Lσ) such that

‖x‖LpF(Ω;C([0,T ],Xγ)) ≤ C
(
‖x0‖LpF0 (Ω;Xγ) + ‖b(·, 0)‖LpF(Ω;L2(0,T ;X

γ− 1
2

)) + ‖σ(·, 0)‖LpF(Ω;Lp(0,T ;L2(H,Xη)))

)
(4.4)
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Proof. Let ≤ t1 < t2 ≤ T . We define for z ∈ LpF(Ω;C([t1, t2],Xγ)) and xt1 ∈ LpFt1
(Ω;Xγ) the

application F : z 7→ F (z) given by

F (z)(t) = S(t− t1)xt1 +

∫ t

t1

S(t− s)b(s, y(s))ds+

∫ t

t1

S(t− s)σ(s, y(s))dW (s).

Since

‖b(·, y(·))‖LpF(Ω;L2(t1,t2;X
γ− 1

2
)) ≤ ‖b(·, 0)‖LpF(Ω;L2(t1,t2;X

γ− 1
2

)) + ‖Lb‖L2(t1,t2) ‖y‖LpF(Ω;C([t1,t2],Xγ)) <∞

and

‖σ(·, y(·))‖LpF(Ω;Lp(t1,t2;L2(H,Xη))) ≤ ‖σ(·, 0)‖LpF(Ω;Lp(t1,t2;L2(H,Xη)))+‖Lσ‖Lp(0,T ) ‖y‖LpF(Ω;C([t1,t2],Xγ)) <∞

it follows by proposition 4.3 that F : LpF(Ω;C([t1, t2],Xγ)) → LpF(Ω;C([t1, t2],Xγ)) is well defined.
Clearly, x is a mild solution of equation (3.1) (on [Tl, Tu]) if and only if it is a fixed point of F .

Notice that

‖F (z1)− F (z2)‖LpF(Ω;C([t1,t2],Xγ)) ≤ C(‖Lb‖L2(t1,t2) + ‖Lσ‖Lp(t1,t2)) ‖z1 − z2‖LpF(Ω;C([t1,t2],Xγ))

it follows that for t1, t2 sufficiently small, F is Lipchitz with constant smaller than one, so it has a
unique fixed point. Existence on [0, T ] follows by subdividing the interval and finding fixed points
successively, uniqueness follows from the uniqueness on each subinterval. The estimate follows from
the previous inequalities.

Remark 4.5. For x1, x2 ∈ LpF(Ω;C([Tl, Tu],Xγ)) ⊂ CF([Tl, Tu], Lp(Ω;Xγ)) we have

b(·, x1(·))− b(·, x2(·)) ∈ L2
F(Tl, Tu;Lp(Ω;Xγ− 1

2
)).

In particular, if we assume that b(·, 0) ∈ L2
F(Tl, Tu;Lp(Ω;Xγ− 1

2
)), we find b(·, x(·)) ∈ L2

F(Tl, Tu;Lp(Ω;Xγ− 1
2
)).

4.2 Controlled state equation

Proposition 4.6. Under hypothesis 3.1, for any x0 ∈ LpF(Ω;X) and u ∈ LpF(Ω;Lp(0, T ;U)),
equation (3.1) admits a unique mild solution xu ∈ LpF(Ω;C([0, T ],X)). Moreover, there exists
C = C(A, η, p, T, Cb, Cσ) such that

‖xu‖LpF(Ω;C([0,T ],X))

≤ C(‖b(·, 0, 0)‖L2
F(0,T ;Lp(Ω;X−1/2)) + ‖σ(·, 0, 0)‖LpF(Ω;Lp(0,T ;L2(H,X−η))) + ‖x0‖LpF(Ω;X) + ‖u‖LpF(Ω;Lp(0,T ;U))).

(4.5)

Proof. Follows from proposition 4.4 (for γ = 0) and the fact that

‖b(·, 0, u(·))‖LpF(Ω;L2(0,T ;X−1/2)) ≤ ‖b(·, 0, 0)‖LpF(Ω;L2(0,T ;X−1/2)) + Cb ‖u‖LpF(Ω;L2(0,T ;U))

≤ ‖b(·, 0, 0)‖L2
F(0,T ;Lp(Ω;X−1/2)) + Cb ‖u‖LpF(Ω;L2(0,T ;U))

and

‖σ(·, 0, u(·))‖LpF(Ω;Lp(0,T ;L2(H,X−η))) ≤ ‖σ(·, 0, 0)‖LpF(Ω;Lp(0,T ;L2(H,X−η))) + Cσ ‖u‖LpF(Ω;Lp(0,T ;U)) .
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Fix x0 ∈ LpF(Ω;X). Denote xu the solution of equation (3.1) for a given u ∈ LpF(Ω;Lp(0, T ;U)).

Proposition 4.7. Assume hypothesis 3.1. Then the mapping

u 7→ xu : LpF(Ω;Lp(0, T ;U))→ LpF(Ω;C([0, T ],X))

is Lipschitz continuous.

Proof. Let u1 and u2 be in LpF(Ω;Lp(0, T ;U)). We have

d(xu1 − xu2)(t) = [A(xu1 − xu2)(t) + b(t, xu1(t), u1(t))− b(t, xu2(t), u2(t))] dt

+ [σ(t, xu1(t), u1(t))− σ(t, xu2(t), u2(t))] dW (t),

xu1(0)− xu2(0) = 0 ∈ LpF0
(Ω;X).

The estimates of propositon 4.4 provide C ≥ 0 such that for any t ∈ [0, T ]

‖xu1 − xu2‖p
LpF(Ω;C([0,t],X))

≤ C
(
‖b(·, xu1(·), u1(·))− b(·, xu2(·), u2(·))‖p

LpF(Ω;L2(0,t;X−1/2))

+ ‖σ(·, xu1(·), u1(·))− σ(·, xu2(·), u2(·))‖p
LpF(Ω;Lp(0,t;L2(H,Xη)))

)
≤ C(Cpb + Cpσ)E

[(∫ t

0
[‖xu1(s)− xu2(s)‖X + ‖u1(s)− u2(s)‖U]2 ds

)p/2
+

∫ t

0
[‖xu1(s)− xu2(s)‖X + ‖u1(s)− u2(s)‖U]p ds

]
≤ C̄

∫ t

0
‖xu1 − xu2‖p

LpF(Ω;C([0,s],X)
ds+ ‖u1 − u2‖pLpF(Ω;Lp(0,t;U))

,

and the result follows from the Grönwall inequality.

5 Adjoint equations

Throughout this section we assume that hypotheses 3.1 and 3.4 hold. We wish to quantify variations
in the cost in terms of changes in the trajectories. For this we introduce the adjoint or costate
equation at the pair (xu, u):

Define, for any u ∈ LpF(Ω;Lp(0, T ;U)), xu as the solution of

dxu(t) = [Axu(t) + b(t, xu(t), u(t))]dt+ σ(t, xu(t), u(t))dW (t), xu(0) = x0.

Define the costate (yu, qu) as the solution of the following backward stochastic evolution equation
(BSEE):

dyu(t) = −[A∗yu(t) + bx(t, xu(t), u(t))∗yu(t) + σx(t, xu(t), u(t))∗qu(t)− fx(t, xu(t), u(t))]dt+ qu(t)dW (t),

yu(T ) = −hx(xu(T )).

(5.1)

Equation (5.1) may be written more compactly as

dyu(t) = −[A∗yu(t) +Hx(t, xu(t), u(t), yu(t), qu(t))]dt+ qu(t)dW (t),

yu(T ) = −hx(xu(T )).
(5.2)
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where

H(t, x, u, y, q) = 〈y, b(t, x, u)〉X∗
1/2

,X−1/2
+ 〈q, σ(t, x, u)〉L2(H,X∗η),L2(H,X−η) − f(t, x, u).

The aim of this section is to give a framework for equation (5.1) and establish existence, unique-
ness and regularity results.

Hypothesis 5.1. Assume hypothesis 3.1 holds and b, σ are differentiable w.r.t. x a.e. on [0, T ]×Ω.

Hypothesis 5.2. Assume hypothesis 3.4 holds and f is differentiable w.r.t. x a.e. on [0, T ] × Ω
and h is differentiable w.r.t. x a.s.

Remark 5.3. Assuming hypotheses 5.1 and 5.2, the Hamiltonian

H(t, x, u, y, q) = 〈y, b(t, x, u)〉X∗
1/2

,X−1/2
+ 〈q, σ(t, x, u)〉L2(H,X∗η),L2(H,X−η) − f(t, x, u),

is differentiable w.r.t. x and it’s derivative Hx is given by bx(t, x, u)∗y + σx(t, x, u)∗q − fx(t, x, u).
With this, equation (5.2) is not only a formalism, but actually the same as equation (5.1).

5.1 Regularity for solutions of parabolic BSEEs

Notice that in the BSEE (5.1) equation both y, q are unknown. We now consider the general BSEE:

dy(t) = − [A∗y(t) + g(t, y(t), q(t))] dt+ qdW (t), y(T ) = yT ∈ Lp
∗

FT (Ω;X∗). (5.3)

Definition 5.4. Let A be the generator of an analytic semigroup and

g : Ω× [0, T ]× X∗1/2 × L2(H,X∗η)→ X∗

be a function. Let p > 2 and write p∗ = p
p−1 . We say the pair

(y, q) ∈
[
DF([0, T ], Lp

∗
(Ω;X)) ∩ L2

F(0, T ;Lp
∗
(Ω;X∗1/2))

]
× Lp

∗

F (0, T ;Lp
∗
(Ω;L2(H,X∗η)))

is a transposition solution of equation (5.3) if g(·, y(·), q(·)) ∈ L1
F(0, T ;Lp

∗
(Ω;X∗)) and for every

t ∈ [0, T ] , xt ∈ LpFt(Ω;X), B ∈ L2
F(t, T ;Lp(Ω;X−1/2)) and Σ ∈ LpF(t, T ;Lp(Ω;L2(H,X−η))) we have

E〈yT , x(T )〉X∗,X + E
∫ T

t
〈g(s, y(s), q(s)), x(s)〉X∗,Xds

= E〈y(t), xt〉X∗,X + E
∫ T

t
〈y(s), B(s)〉X∗

1/2
,X−1/2

ds+ E
∫ T

t
〈q(s),Σ(s)〉L2(H,X∗η),L2(H,X−η)ds,

(5.4)

where
dx(t) = [Ax(t) +B(t)] dt+ Σ(t)dW (t), x(t) = xt.

The preceding definition differs from [25, Definition 4.13] in the fact that we assume the weaker
condition

g : Ω× [0, T ]× X∗1/2 × L2(H,X∗η)→ X∗

instead of
g : Ω× [0, T ]× X∗ × L2(H,X∗)→ X∗,

it is for this reason that we impose

(y, q) ∈ L2
F(0, T ;Lp

∗
(Ω;X∗1/2))× Lp

∗

F (0, T ;Lp
∗
(Ω;L2(H,X∗η))).

We begin by considering the case where g doesn’t depend on y, q. Consider

dy(t) = − [A∗y(t) +G(t)] dt+ qdW (t), y(T ) = yT ∈ Lp
∗

FT (Ω;X∗). (5.5)
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Proposition 5.5. If G ∈ L1
F(0, T ;Lp

∗
(Ω;X∗)) and yT ∈ Lp

∗

FT (Ω;X), then equation (5.5) has a
unique transposition solution (y, q). Moreover

‖y‖DF([0,T ],Lp∗ (Ω;X)) + ‖y‖L2
F(0,T ;Lp∗ (Ω;X∗

1/2
)) + ‖q‖

Lp
∗

F (0,T ;Lp∗ (Ω;L2(H,X∗η)))

≤ C
(
‖yT ‖Lp∗FT (Ω;X)

+ ‖G‖L1
F(0,T ;Lp∗ (Ω;X∗))

)
.

Before we prove proposition 5.5, we state the following lemma.

Lemma 5.6 ([25, Theorem 4.16]). If G ∈ L1
F(0, T ;Lp

∗
(Ω;X∗)) and yT ∈ Lp

∗

FT (Ω;X), then there
exists a unique pair of processes

(y, q) ∈ DF([0, T ], Lp
∗
(Ω;X))× L2

F(0, T ;Lp
∗
(Ω;L2(H,X∗η)))

such that for every t ∈ [0, T ] , xt ∈ LpFt(Ω;X), B ∈ L1
F(t, T ;Lp(Ω;X)) and Σ ∈ L2

F(t, T ;Lp(Ω;L2(H,X)))
we have

E〈yT , x(T )〉X∗,X + E
∫ T

t
〈G(s), x(s)〉X∗,Xds

= E〈y(t), xt〉X∗,X + E
∫ T

t
〈y(s), B(s)〉X∗,Xds+ E

∫ T

t
〈q(s),Σ(s)〉L2(H,X∗),L2(H,X)ds.

(5.6)

where
dx(t) = [Ax(t) +B(t)] dt+ Σ(t)dW (t), x(t) = xt.

Moreover
‖y‖DF([0,T ],Lp

∗
(Ω;X)) + ‖q‖L2

F(0,T ;Lp∗ (Ω;L2(H,X∗)))

≤ C
(
‖yT ‖Lp∗FT (Ω;X)

+ ‖G‖L1
F(0,T ;Lp∗ (Ω;X∗))

)
.

Proof of proposition 5.5. First, by proposition 4.3, (B,Σ) 7→ Γ(B,Σ) = (x(T ), x), where

dx(t) = [Ax(t) +B(t)] dt+ Σ(t)dW (t), x(0) = 0.

defines a bounded linear operator from LpF(Ω;L2(0, T ;X−1/2)) × LpF(0, T ;Lp(Ω;L2(H,X−η))) to
LpFT (Ω;X)× LpF(Ω;C([0, T ],X)). Notice that

G ∈ L1
F(0, T ;Lp

∗
(Ω;X∗)) ⊂ [CF(0, T ;Lp(Ω;X))]∗ ⊂

[
LpF(Ω;C([0, T ],X))

]∗
.

Define (ỹ, q̃) = Γ∗(yT , g) so that

E〈yT , x(T )〉X∗,X + E
∫ T

0
〈G(s), x(s)〉X∗,Xds

= 〈ỹ, B〉[LpF(Ω;L2(0,T ;X−1/2))]
∗
,LpF(Ω;L2(0,T ;X−1/2))

+ E
∫ T

0
〈q̃(s),Σ(s)〉L2(H,X∗η),L2(H,X−η)ds.

Due to [23, corollary 2.3, remark 2.4] we have[
LpF(Ω;L2(0, T ;X−1/2))

]∗ ⊂ [L2
F(0, T ;Lp(Ω;X−1/2))

]∗
= L2

F(0, T ;Lp
∗
(Ω;X∗1/2)),
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so that

‖ỹ‖L2
F(0,T ;Lp∗ (Ω;X∗

1/2
)) + ‖q̃‖

Lp
∗

F (0,T ;Lp∗ (Ω;L2(H,X∗η)))
≤ ‖Γ‖

(
‖yT ‖Lp∗FT (Ω;X)

+ ‖G‖L1
F(0,T ;Lp∗ (Ω;X∗))

)
.

When B ∈ L2
F(0, T ;Lp(Ω;X−1/2)), the term 〈ỹ, B〉[LpF(Ω;L2(0,T ;X−1/2))]

∗
,LpF(Ω;L2(0,T ;X−1/2))

can be

replaced by E
∫ T

0 〈ỹ(s), B(s)〉X∗
1/2

,X−1/2
ds, meaning

E〈yT , x(T )〉X∗,X + E
∫ T

0
〈G(s), x(s)〉X∗,Xds

=E
∫ T

0
〈ỹ(s), B(s)〉X∗

1/2
,X−1/2

ds+ E
∫ T

0
〈q̃(s),Σ(s)〉L2(H,X∗η),L2(H,X−η)ds,

(5.7)

Now, let
(y, q) ∈ DF([0, T ], Lp

∗
(Ω;X))× L2

F(0, T ;Lp
∗
(Ω;L2(H,X∗η)))

be the processes given by 5.6.
Let (B,Σ) belong to

L2
F(0, T ;Lp(Ω;X))× LpF(0, T ;Lp(Ω;L2(H,X))),

then

E
∫ T

0
〈y(s), B(s)〉X∗,Xds+ E

∫ T

0
〈q(s),Σ(s)〉L2(H,X∗),L2(H,X)ds

=E〈yT , x(T )〉X∗,X + E
∫ T

0
〈G(s), x(s)〉X∗,Xds

=E
∫ T

0
〈ỹ(s), B(s)〉X∗

1/2
,X−1/2

ds+ E
∫ T

0
〈q̃(s),Σ(s)〉L2(H,X∗η),L2(H,X−η)ds

=E
∫ T

0
〈ỹ(s), B(s)〉X∗,Xds+ E

∫ T

0
〈q̃(s),Σ(s)〉L2(H,X∗),L2(H,X)ds.

(5.8)

It follows that (y, q) = (ỹ, q̃). Let t ∈ [0, T ), xt ∈ LpFt(Ω;X) and (B,Σ) be supported on [t, T ],
then (5.8) together with (5.6) imply (5.4).

Finally, the result follows because

L2
F(t, T ;Lp(Ω;X))× LpF(t, T ;Lp(Ω;L2(H,X)))

is dense in
L2
F(t, T ;Lp(Ω;X−1/2))× LpF(t, T ;Lp(Ω;L2(H,X−η))).

Our next step is to use a fixed point argument to deduce well-posedness for equation (5.3) from
proposition 5.5.

Theorem 5.7. Let yT ∈ Lp
∗

FT (Ω;X∗). Let

g : Ω× [0, T ]× X∗1/2 × L2(H,X∗η)→ X∗
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be a function such that g(·, y, q) is predictable for every fixed (y, q) ∈ X∗1/2 × L2(H,X∗η) and

g(·, 0, 0) ∈ L1
F(0, T ;Lp

∗
(Ω;X∗)).

Suppose aditionally that

‖g(t, y1, q1)− g(t, y2, q2)‖X∗ ≤ L
(
‖y1 − y2‖X∗

1/2
+ ‖q1 − q2‖L2(H,X∗η)

)
.

Then equation (5.3) has a unique transposition solution (y, q). Moreover, there exists C de-
pending only on A, p, η, T, L such that

‖y‖DF([0,T ],Lp∗ (Ω;X)) + ‖y‖L2
F(0,T ;Lp∗ (Ω;X∗

1/2
)) + ‖q‖

Lp
∗

F (0,T ;Lp∗ (Ω;L2(H,X∗η)))

≤ C
(
‖yT ‖Lp∗FT (Ω;X∗) + ‖g(·, 0, 0)‖L1

F(0,T ;Lp∗ (Ω;X∗))

)
.

Proof. If follows from proposition 4.3 that for 0 ≤ t1 < t2 ≤ T there exists a bounded operator
from

Γt2t1 : LpFt1
(Ω;X)×L2

F(t1, t2;Lp(Ω;X−1/2))×LpF(t1, t2;Lp(Ω;L2(H,X−η)))→ LpFt2
(Ω;X)×LpF(Ω;C([t1, t2],X))

given by Γt2t1(xt1 , B,Σ) = (x(t2), x) where x solves

dx = Bdt+ ΣdW, x(t1) = xt1 .

Moreover, there exists some uniform constant Λ such that
∥∥Γt2t1

∥∥ ≤ Λ (we may take Λ =
∥∥ΓT0

∥∥).
Notice that

L1
F(t1, t2;Lp

∗
(Ω;X∗)) ⊂ [CF(t1, t2;Lp(Ω;X))]∗ ⊂

[
LpF(Ω;C([t1, t2],X))

]∗
and due to [23, corollary 2.3 & remark 2.4] we have[

LpF(Ω;L2(t1, t2;X−1/2))
]∗ ⊂ [L2

F(t1, t2;Lp(Ω;X−1/2))
]∗

= L2
F(t1, t2;Lp

∗
(Ω;X∗1/2)).

For (Y,Q) ∈ L2
F(t1, t2;Lp

∗
(Ω;X∗1/2))× Lp

∗

F (t1, t2;Lp
∗
(Ω;L2(H,X∗η))) we have

‖g(·, Y (·), Q(·))‖L1
F(t1,t2;Lp∗ (Ω;X∗))

≤ ‖g(·, 0, 0)‖L1
F(t1,t2;Lp∗ (Ω;X∗)) + L

(
‖Y ‖L1

F(t1,t2;Lp∗ (Ω;X∗
1/2

)) + ‖Q‖L1
F(t1,t2;Lp∗ (Ω;L2(H,X∗η)))

)
≤ ‖g(·, 0, 0)‖L1

F(t1,t2;Lp∗ (Ω;X∗))+L
(

(t2 − t1)1/2 ‖Y ‖L2
F(t1,t2;Lp∗ (Ω;X∗

1/2
)) + (t2 − t1)1/p∗ ‖Q‖

Lp
∗

F (t1,t2;Lp∗ (Ω;L2(H,X∗η)))

)
<∞

which makes the mapping

F : L2
F(t1, t2;Lp

∗
(Ω;X∗1/2))× Lp

∗

F (t1, t2;Lp
∗
(Ω;L2(H,X∗η)))

→ L2
F(t1, t2;Lp

∗
(Ω;X∗1/2))× Lp

∗

F (t1, t2;Lp
∗
(Ω;L2(H,X∗η)))

given by
F (Y,Q) = π2,3(Γt2t1)∗(yt2 , g(·, Y (·), Q(·))),
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where π2,3 projects Lp
∗

Ft1
(Ω;X∗) × L2

F(t1, t2;Lp
∗
(Ω;X∗1/2)) × Lp

∗

F (t1, t2;Lp
∗
(Ω;L2(H,X∗η))) onto the

subspace L2
F(t1, t2;Lp

∗
(Ω;X∗1/2))×Lp

∗

F (t1, t2;Lp
∗
(Ω;L2(H,X∗η))), well defined for yt2 ∈ L

p∗

Ft2
(Ω;X∗).

Moreover, we have

‖π2F (Y1, Q1)− π2F (Y2, Q2)‖L2
F(t1,t2;Lp∗ (Ω;X∗

1/2
))+‖π3F (Y1, Q1)− π3F (Y2, Q2)‖

Lp
∗

F (t1,t2;Lp∗ (Ω;L2(H,X∗η)))

≤ Λ ‖g(·, Y1(·), Q1(·))− g(·, Y2(·), Q2(·))‖L1
F(t1,t2;Lp∗ (Ω;X∗))

≤ ΛL
(

(t2 − t1)1/2 ‖Y1 − Y2‖L2
F(t1,t2;Lp∗ (Ω;X∗

1/2
)) + (t2 − t1)1/p∗ ‖Q1 −Q2‖Lp∗F (t1,t2;Lp∗ (Ω;L2(H,X∗η)))

)
≤ ΛL

(
(t2 − t1)1/2 + (t2 − t1)1/p∗

)(
‖Y1 − Y2‖L2

F(t1,t2;Lp∗ (Ω;X∗
1/2

)) + ‖Q1 −Q2‖Lp∗F (t1,t2;Lp∗ (Ω;L2(H,X∗η)))

)
,

so that F is a contraction for small enough t2 − t1. In such case, the Banach fixed point theorem
yields the existence of a fixed point (y, q), which moreover satisfies

‖y‖L2
F(t1,t2;Lp∗ (Ω;X∗

1/2
)) + ‖q‖

Lp
∗

F (t1,t2;Lp∗ (Ω;L2(H,X∗η)))

≤
Λ

(
‖yt2‖Lp∗Ft2 (Ω;X)

+ ‖g(·, 0, 0)‖L1
F(t1,t2;Lp∗ (Ω;X∗))

)
1− ΛL

(
(t2 − t1)1/2 + (t2 − t1)1/p∗

) .

We partition 0 = T0 < T1 < · · · < Tn = T such that F is a contraction on each subinterval
[Ti−1, Ti]. Define (y, q) as the fixed point of F on [Tn−1, Tn] with yTn = yT . Define inductively
yTi−1 = π1(ΓTiTi−1

)∗(yTi , g(·, y(·), q(·))) and (y, q) on [Ti−2, Ti−1] as the fixed point of F on that
subinterval. Fix i, we clearly have

E〈yTi , x(Ti)〉X∗,X + E
∫ Ti

Ti−1

〈g(s, y(s), q(s)), x(s)〉X∗,Xds

= E〈yTi−1 , xTi−1〉X∗,X + E
∫ Ti

Ti−1

〈y(s), B(s)〉X∗
1/2

,X−1/2
ds+ E

∫ Ti

Ti−1

〈q(s),Σ(s)〉L2(H,X∗η),L2(H,X−η)ds,

where x solves dx = Bdt+ ΣdW and x(Ti−1) = xTi−1 . To conclude, leting x solve

dx = Bdt+ ΣdW

with xT0 = x0 = 0, setting xTi−1 = x(Ti−1) and summing over i, we find that (y, q) is a transposition
solution. The uniqueness follows from uniqueness on each subinterval.

The bound for the norm on [0, T ] follows from the bound on each subinterval.

5.2 Adjoint equations for the optimal control problem

Notice that the Lipschitz conditions for b and σ given in hypothesis 3.1 guarantee that the deriva-
tives given by hypothesis 5.1 are uniformly bounded. On the other hand, the local Lipschitz con-
dition for f given in hypothesis 3.4, means that the derivative fx(t, xu(t), u(t)) given by hypothesis
5.2 satisfies

‖fx(t, xu(t), u(t))‖X∗ ≤ C1 (1 + 2 ‖u(t)‖U + 2 ‖xu(t)‖X)p−1

and therefore belongs to Lp
∗

F (0, T ;Lp
∗
(Ω;X∗)) ⊂ L1

F(0, T ;Lp
∗
(Ω;X∗)), and similarly

‖hx(xu(T ))‖X∗ ≤ C1 (1 + 2 ‖xu(T )‖X)p−1 ,
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so that it belongs to Lp
∗

FT (Ω;X∗). These facts combined mean that the function defined by

g(t, y, q) = Hx(t, xu(t), u(t), y, q) = bx(t, xu(t), u(t))∗y + σx(t, xu(t), u(t))∗q − fx(t, xu(t), u(t))

satisfies the hypoheses of theorem 5.7. As a result, we have:

Proposition 5.8. Let 5.1 and 5.2 hold. Let x0 ∈ LpF(Ω;X), u ∈ LpF(Ω;Lp(0, T ;U)) be given, let
xu ∈ LpF(Ω;C([0, T ],X)) be the respective solution of equation (3.1).

Then equation (5.1) admits a unique transposition solution (yu, qu). Moreover

‖yu‖L2
F(0,T ;Lp∗ (Ω;X∗

1/2
)) + ‖qu‖

Lp
∗

F (0,T ;Lp∗ (Ω;L2(H,X∗η)))

≤ C
(
‖hx(x(T ))‖

Lp
∗
FT

(Ω;X∗) + ‖fx(·, xu(·), u(·))‖L1
F(0,T ;Lp∗ (Ω;X∗))

)

≤ C̃
(

1 + ‖x0‖LpF0 (Ω;X) + ‖u‖LpF(Ω;Lp(0,T ;U))

)p−1
.

6 Optimality conditions

In this section, our objective is to give necessary optimality conditions for solutions of problem P.
Our first step is to paremetrize the problem in terms of the control. As we have seen, for fixed u ∈

Uad, under hypothesis 3.1, we have existence and uniqueness of a trajectory x ∈ LpF(Ω;C([0, T ],X))
solving (3.1). This means that the set of pairs (x, u) ∈ LpF(Ω;C([0, T ],X)) × Uad solving (3.1) is
parametrized by u ∈ Uad, and this parametrization is given by u 7→ (xu, u). With this, we may
interpret problem P as

min
u∈Uad

J(u) (6.1)

where
J(u) = J (xu, u). (6.2)

Under hypotheses 3.1 and 3.4, J is well defined and finite. Furthermore we have the following
local Lipschitz property.

Proposition 6.1. Assuming hypotheses 3.1 and 3.4, the cost function J : LpF(Ω;Lp(0, T ;U))→ R
is Lipschitz continuous on bounded subsets of LpF(Ω;Lp(0, T ;U)).

Proof. It follows from proposition 4.7 and hypothesis 3.4, since

|J(u1)− J(u2)| ≤ ‖f(·, xu1(·), u1(·))− f(·, xu2(·), u2(·))‖L1
F(0,T ;L1(Ω))+‖h(xu1(T ))− h(xu2(T ))‖L1

FT
(Ω)

≤ C0

(
T 1/p + ‖u1‖LpF(Ω;Lp(0,T ;U)) + ‖u2‖LpF(Ω;Lp(0,T ;U)) + T 1/p ‖xu1‖LpF(Ω;C([0,T ],X)) + T 1/p ‖xu2‖LpF(Ω;C([0,T ],X))

)p−1

×
(
‖xu1 − xu2‖LpF(Ω;C([0,T ],X)) + ‖u1 − u2‖LpF(Ω;Lp(0,T ;U))

)
+C0

(
1 + ‖xu1(T )‖LpFT (Ω;X) + ‖xu2(T )‖LpFT (Ω;X)

)p−1
‖xu1(T )− xu2(T )‖LpFT (Ω;X)

≤ C
(

1 + ‖u1‖LpF(Ω;Lp(0,T ;U)) + ‖u2‖LpF(Ω;Lp(0,T ;U))

)p−1
‖u1 − u2‖LpF(Ω;Lp(0,T ;U)) .
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Our next step is to quantify the variations in the cost in terms of variations in the Hamiltonian.

Hypothesis 6.2. Assume hypothesis 5.1 holds and b, σ are differentiable w.r.t. u. Assume also
that the derivatives bx, bu, σx, σu are strongly continuous w.r.t. x, u a.e. on [0, T ]× Ω.

Hypothesis 6.3. Assume hyopthesis 5.2 holds and f is differentiable w.r.t. u. Assume also that
the derivatives fx, fu are strongly continuous w.r.t. x, u a.e. on [0, T ] × Ω and hx is strongly
continuous w.r.t. x a.s.

Notice that hypotheses 6.2 and 6.3 are similar to hypotheses 3.1 and 3.4. In both cases, the only
additional assumption is differenciability w.r.t. u and strong continuity of all derivatives. Because
for a Banach space X strong continuity into L(X,C) is equivalent to weak∗ continuity into X∗, we
have that fx, fu, hx are weak∗ continuous, and therefore, weak continuous, by the reflexivity of X
and U.

Remark 6.4. Assuming hypotheses 6.2 and 6.3, the Hamiltonian

H(t, x, u, y, q) = 〈y, b(t, x, u)〉X∗
1/2

,X−1/2
+ 〈q, σ(t, x, u)〉L2(H,X∗η),L2(H,X−η) − f(t, x, u),

is differentiable w.r.t. u and it’s derivative Hu is given by bu(t, x, u)∗y + σu(t, x, u)∗q − fu(t, x, u).

Proposition 6.5. Fix u, v ∈ LpF(Ω;Lp(0, T ;U)), and write uε = u + εv. Assume hypotheses 6.2
and 6.3. Then the costate equation 5.1 for u admits a unique transposition solution (yu, qu), we

have Hu(·, xu(·), u(·), yu(·), qu(·)) ∈ Lp
∗

F (Ω;Lp
∗
(0, T ;U∗)) and we have∣∣∣∣J(uε)− J(u) + εE

∫ T

0
〈Hu(t, xu(t), u(t), yu(t), qu(t)), v(t)〉U∗,Udt

∣∣∣∣ = o(ε).

The proof is in appendix B.

Remark 6.6.

Let X be a Banach space, let K ⊂ X be a subset. We define T bK(x), the adjacent cone to K at
x ∈ X (see, for instance, [1, section 4.1]) as

{d ∈ X : ∀ [{εk}k∈N ⊂ (0,∞) : εk → 0 as k →∞]∃ [{dk}k∈N ⊂ X : dk → d as k →∞ and x+ εkdk ∈ K ∀k]} .

Proposition 6.7. Assume hypotheses 6.2 and 6.3 hold. Let ū be a solution of problem P. Then
the costate equation 5.1 for u = ū admits a unique transposition solution (yū, qū) and we have

E
∫ T

0
〈Hu(t, xū(t), ū(t), yū(t), qū(t)), v(t)〉U∗,Udt ≤ 0 ∀v ∈ T bUad(ū). (6.3)

Proof. It follows from propositions 6.1 and 6.5. Let v ∈ T bUad(ū), {εk}k∈N ⊂ (0,∞), and {vk}k∈N ⊂
LpF(Ω;Lp(0, T ;U)) satisfying (εk, vk) → (0, v) such that ū + εkvk ∈ Uad. Denote still {εk}k∈N the
subsequence given by proposition 6.5. Let L be the Lipschitz constant of J in a ball to which
ū+ εkvk, ū+ εkv are confined. We have

0 ≤ J(ū+ εkvk)− J(ū) = J(ū+ εkvk)− J(ū+ εkv) + J(ū+ εkv)− J(ū)

≤ Lεk ‖v − vk‖LpF(Ω;Lp(0,T ;U)) − εkE
∫ T

0
〈Hu(t, xū(t), ū(t), yū(t), qū(t)), v(t)〉U∗,Udt+ o(εk)

= −εkE
∫ T

0
〈Hu(t, xū(t), ū(t), yū(t), qū(t)), v(t)〉U∗,Udt+ o(εk).

22



Theorem 6.8. Assume hypotheses 6.2 and 6.3 hold. Let ū be a solution of problem P. Then the
costate equation 5.1 for u = ū admits a unique transposition solution (yū, qū) and we have[

〈Hu(t, xū(t), ū(t), yū(t), qū(t)), v〉U∗,U ≤ 0 ∀v ∈ T bUad(ū(t))
]

a.e. in [0, T ]× Ω. (6.4)

We will need the following result, which is proven in [33, Lemma 4.6] for p = 2, and X finite
dimensional; and in [13, Lemma 3.2.], also for p = 2, with the Clarke tangent cone in place of the
adjacent cone and with the assumption that X is a separable Hilbert space.

Lemma 6.9 ([33, Lemma 4.6],[13, Lemma 3.2.]). Assume X is separable, (S,Σ, µ) is a σ−finite
measure space, p ∈ [1,∞) and p∗ = p

p−1 (1∗ =∞). Denote

K = {u ∈ Lp(S, µ;X) : u(·) ∈ K µ− a.e.} .

Suppose also that F ∈ Lp∗(S, µ;X∗) and for every v ∈ T bK(u),∫
S
〈F (s), v(s)〉X∗,Xdµ(s) ≤ 0.

Then 〈F (s), v〉X∗,X ≤ 0 ∀v ∈ T bK(u(s)) for µ−a.e. s ∈ S.

The proof is omitted as it is the same as that of [13, Lemma 3.2.], replacing 2 with p and
the Clarke cone with the adjacent cone, this can be done because the latter is closed as well, and
therefore T bK(u(s)) is a measurable set-valued mapping with closed values, so a suitable measurable
selection can be constructed (see [1, theorem 8.5.1] for the measurability of T bK(u(s))). In the proof
of [13, lemma 3.2.], X being Banach and separable are the sole relevant properties of the space X.

Proof of theorem 6.8. Follows from proposition 6.7 and lemma 6.9.

Example 6.10. Recall the setting of example 3.3.
For

J(u) =
1

p
E
∫ T

0

[
αst ‖ust(t)‖pLp + α0|u0(t)|p + α1|u1(t)|p

]
dt+

αx
2
E
∫ T

0
‖x(t)‖2L2(0,1) dt+

αT
2
E ‖x(T )‖2L2(0,1)

we have hypothesis 6.3. Moreover, if the functions b and σ are linear, existence of a solution
(ũ, x̃) of the optimal control problem is guaranteed by the Weierstrass minimization theorem, as the
equation is linear, the cost convex and coercive, and the control space is a reflexive Banach space.

Formally, the abstract costate equation 5.1 may be regarded as

∂ty(t, ξ) = −∂ξξy(t, ξ)− bstx (s, ξ, x, u)y(t, ξ) + αxx(s, ξ)

+qst(t, ξ)Ẇst(t, ξ) + q0(t, ξ)ẇ0(t) + q1(t, ξ)ẇ1(t) t ∈ (0, T ), ξ ∈ (0, 1)
∂ny(t, i) = 0 t ∈ (0, T ), i = 0, 1
y(T, ξ) = −α3x(T, ξ) ξ ∈ (0, 1)

where

(qst q0 q1) = q ∈ L2(H,H2η) ' L2(L2,H2η)⊕L2(R,H2η)⊕L2(R,H2η) ' L2(L2,H2η)⊕H2η⊕H2η.
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Notice that because η > 1
4 + 1

2p >
1
4 , the inclusions from H2η into H1/p, and hence into L2, are

Hilbert-Schmidt, therefore, L2(L2,H2η) ⊂ L1(L2). Fix qst ∈ L2(L2,H2η), if we choose a Hilbert
basis {ϕi}i∈N of L2 which consists of eigenvectors of |qst|, then∫ 1

0

∑
i∈N
|[qstϕi](ξ)ϕi(ξ)|dξ =

∑
i∈N

∫ 1

0
|[qstϕi](ξ)ϕi(ξ)|dξ ≤

∑
i∈N

∥∥qstϕi∥∥L2 ‖ϕi‖L2

=
∑
i∈N

∥∥qstϕi∥∥L2 =
∑
i∈N

∥∥|qst|ϕi∥∥L2 =
∑
i∈N
〈|qst|ϕi, ϕi〉L2 <∞,

it follows that the function [Tr(qst)](ξ) :=
∑

i∈N[qstϕi](ξ)ϕi(ξ) is well defined for a.e. ξ ∈ (0, 1)
and belongs to L1, moreover, for Σst ∈ L∞ ⊂ Lp, and [BΣst]h = Σsth, we have∫ 1

0
Σst[B∗qst](ξ)dξ = 〈BΣst, qst〉L2(L2,H−2η),L2(L2,H2η) =

∑
i∈N
〈Σstϕi, q

stϕi〉H−2η ,H2η

=
∑
i∈N
〈Σstϕi, q

stϕi〉Lr∗ ,Lr =

∫ 1

0
Σst[Tr(qst)](ξ)dξ.

It follows that Tr(qst) = B∗qst and therefore belongs to Lp
∗

and depends linearly and continu-
ously on qst (the linearity is not obvious from the definition because the choice of {ϕi}i∈N depends
on qst).

Recalling that (b∂u)∗, (σ∂u)∗ correspond to the Dirichlet traces we have, denoting b̃u = bu(t, x, u)
and similarly for σ̃u and f̃u,

b̃∗uy
u(t) + σ̃∗uq

u(t)− f̃u =

bstu (t, ·, x, ust)yū(t, ·) + σstu (t, ·, ust)[Tr(qūst(t))](·)− αst|ūst|p−2ūst(t, ·)
b0u(t, u0)yu(t, 0) + σ0

u(t, u0)qu0 (t, 0)− α0|u0|p−2u0(t)
b1u(t, u1)yu(t, 1) + σ1

u(t, u1)qu1 (t, 1)− α1|u1|p−2u1(t)

 ,

It follows from theorem 6.8, because TUad(·) ≡ U, that

bstu (t, ξ, x, ust)y
ū(t, ·) + σstu (t, ξ, ust)[Tr(q

ū
st(t))](·) = αst|ūst|p−2ūst(t, ξ) (6.5)

and
biu(t, ūi)y

ū(t, i) + σiu(t, ūi)q
ū
i (t, i) = αi|ū|p−2ū(t, i), i = 0, 1. (6.6)

Example 6.11. Let D ⊂ Rd. Let Wst be a cylindrical Wiener process on L2(D) (from now on
Lp := Lp(D)).

∂tx(t, ξ) = ∆x(t, ξ) + (−∆)−γu(t, ξ)Ẇst(t, ξ) t ∈ (0, T ), ξ ∈ D
x(t, ξ) = 0 t ∈ (0, T ), ξ ∈ ∂D
x(0, ξ) = x0(ξ) ξ ∈ D

(6.7)

We consider A = ∆ and D(A) = H2(D) ∩H1
0 (D), so that A generates an analytic semigroup

on L2. Define H2s = D((−A)s). Notice that Hs = Hs(D) for s ∈ (−1
2 ,

1
2).

Let p > 2d, r = 2
p−2 , notice that due to [11, Theorem 6.7], we have the inclusions Hd/p ⊂ Lr ⊂

L2 ⊂ Lr∗ ⊂ H−d/p, where 1
r + 1

r∗ = 1.

For u ∈ Lp(D) we define Σ(u)x = ux, we have 1
p + 1

r = 1
2 , with this, Σ(u) ∈ L(L2, Lr

∗
), and

‖Σ(u)‖L(L2,Lr
∗

) = ‖u‖Lp(D) .
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It follows from the spectral decomposition of A that when η > d
4 + d

2p − γ,

(−∆)−γΣ(u) ∈ L2(L2,H−2η) and
∥∥(−∆)−γΣ(u)

∥∥
L2(L2,H−2η)

≤ C ‖u‖Lp .

Wst is a cylindrical Wiener process on L2. Denote Xs = H2s.
Denote U := Lp, and define σ(u) = (−∆)−γΣ(u) we have hypothesis 6.2 for η ∈ (1

4 ,
1
2) and

p > max

{
2

1− 2η
,

2d

4η + 4γ − d

}
,

this imposes γ > d−2
4 .

For

J(u) =
1

2
E
∫ T

0
αx ‖x(t)‖2L2(0,1) dt+

1

p
E
∫ T

0
αu ‖u(t)‖pU dt+

αT
2
E ‖x(T )‖2L2(0,1)

we have hypothesis 6.3.
Formally, the abstract costate equation 5.1 may be regarded as

∂ty(t, ξ) = −∂ξξy(t, ξ) + αxx(s, ξ) + q(t, ξ)Ẇst(t, ξ) t ∈ (0, T ), ξ ∈ D
y(t, i) = 0 t ∈ (0, T ), i = 0, 1
y(T, ξ) = −αTx(T, ξ) ξ ∈ D.

Notice that because η > d
4 + d

2p − γ > d
4 − γ, the inclusions from H2η into Hd/p−2γ, and

hence into H−2γ, are Hilbert-Schmidt, therefore, for q ∈ L2(L2,H2η), we have (−∆)−γq ∈ L1(L2).
Fix q ∈ L2(L2,H2η), if we choose a Hilbert basis {ϕi}i∈N of L2 which consists of eigenvectors of
|(−∆)−γq|, then∫
D

∑
i∈N
|[(−∆)−γqϕi](ξ)ϕi(ξ)|dξ =

∑
i∈N

∫
D
|[(−∆)−γqϕi](ξ)ϕi(ξ)|dξ ≤

∑
i∈N

∥∥(−∆)−γqϕi
∥∥
L2 ‖ϕi‖L2

=
∑
i∈N

∥∥(−∆)−γqϕi
∥∥
L2 =

∑
i∈N

∥∥|(−∆)−γq|ϕi
∥∥
L2 =

∑
i∈N
〈|(−∆)−γq|ϕi, ϕi〉L2 <∞,

it follows that the function [Tr((−∆)−γq)](ξ) :=
∑

i∈N[(−∆)−γqϕi](ξ)ϕi(ξ) is well defined for a.e.
ξ ∈ D and belongs to L1, moreover, for u ∈ L∞ ⊂ Lp, we have∫

D
u(ξ)[σ∗uq](ξ)dξ = 〈σuu, q〉L2(L2,H−2η),L2(L2,H2η) =

∑
i∈N
〈(−∆)−γuϕi, qϕi〉H−2η ,H2η

=
∑
i∈N
〈uϕi, (−∆)−γqϕi〉H−2η−2γ ,H2η+2γ =

∑
i∈N
〈uϕi, (−∆)−γqϕi〉Lr∗ ,Lr =

∫
D
u[Tr((−∆)−γq)](ξ)dξ.

It follows that Tr((−∆)−γq) = σ∗uq and therefore belongs to Lp
∗

and depends linearly and
continuously on q (the linearity is not obvious from the definition because the choice of {ϕi}i∈N
depends on q).

It follows from theorem 6.8, because TUad(·) ≡ Lp that

bu(t, x̄, ū)∗yū(t) + σu(t, x̄, ū)∗qū(t)− fu(t, x̄, ū) = Tr[(−∆)γqū]− αu|ū|p−2ū(t) = 0.
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A Dual of Hilbert-Schmidt space

Proof of proposition 2.3. Recall that ‖P‖2L2(Z,K) =
∑

i∈I ‖Pei‖
2
K and ‖Q‖2L2(Z,K∗) =

∑
i∈I ‖Qei‖

2
K∗ .

So that, by the Cauchy-Schwarz inequality in `2(I),

〈P,Q〉L2(Z,K),L2(Z,K∗) ≤ ‖P‖L2(Z,K) ‖Q‖L2(Z,K∗) .

It follows that the duality defines a mapping I : L2(Z,K∗)→ (L2(Z,K))∗ with at most unit norm.
Fix Q ∈ L2(Z,K∗), for each i ∈ I, define Pi ∈ K as the Riesz representative of Qei, so that

〈k,Qei〉K,K∗ = 〈k, Pi〉K ,

meaning
〈Pi, Qei〉K,K∗ = 〈Pi, Pi〉K = ‖Pi‖2K = ‖Qei‖2K∗ ,

since ‖Pi‖K ∈ `2(I) it follows that PQ defined as PQei = Pi belongs to L2(Z,K) and
∥∥PQ∥∥L2(Z,K)

=

‖Q‖KL2(Z,K∗), with this,∥∥PQ∥∥L2(Z,K)
‖Q‖L2(Z,K∗) = ‖Q‖2L2(Z,K∗) =

∑
i∈N
‖Qei‖2K∗ =

∑
i∈N
〈Pi, Qei〉K,K∗ = 〈PQ, IQ〉L2(Z,K),(L2(Z,K))∗ ,

so that I is in fact an isometry from L2(Z,K∗) into (L2(Z,K))∗.
We have left to prove that I is onto. Let F ∈ (L2(Z,K))∗. Begin by noticing that L2(Z,K) is a

Hilbert space so that, again by the Riesz representation theorem, there must exist PF ∈ L2(Z,K)
such that

〈P, F 〉L2(Z,K),(L2(Z,K))∗ = 〈P, PF 〉L2(Z,K) =
∑
i∈I
〈Pei, PF ei〉K ,

now define Qi ∈ K∗ given by
〈Qi, k〉K,K∗ = 〈PF ei, k〉K

with which ‖Qi‖K∗ =
∥∥PF ei∥∥K so that QF defined by QF ei = Qi belongs to L2(Z,K∗) and

〈P,QF 〉L2(Z,K),L2(Z,K∗) =
∑
i∈I
〈Pei, Qei〉K,K∗ =

∑
i∈I
〈Pei, PF ei〉K

=
∑
i∈I
〈Pei, PF ei〉K = 〈P, F 〉L2(Z,K),(L2(Z,K))∗ ,

so that IQF = F .
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The continuity of the inclusions L2(Z,H) ⊂ L2(Z,K) and L2(Z,K∗) ⊂ L2(Z,H∗) is direct, the
density follows from the density of finite rank operators in the respective Hilbert-Schmidt spaces
and the density of the inclusions H ⊂ K and K∗ ⊂ H∗.

The identity
〈P,Q〉L2(Z,K),L2(Z,K∗) = 〈P,Q〉L2(Z,H),L2(Z,H∗)

follows from the fact that 〈Pei, Qei〉K,K∗ = 〈Pei, Qei〉H,H∗ when Pei ∈ H and Qei ∈ K∗.

B Proof of proposition 6.5

Proof of proposition 6.5. For x1, x2 ∈ X and u1, u2 ∈ U, define

b̃x(·, x1, x2, u1, u2) =

∫ 1

0
bx(·, θx1 + (1− θ)x2, θu1 + (1− θ)u2)dθ,

b̃u(·, x1, x2, u1, u2) =

∫ 1

0
bu(·, θx1 + (1− θ)x2, θu1 + (1− θ)u2)dθ,

σ̃x(·, x1, x2, u1, u2) =

∫ 1

0
σx(·, θx1 + (1− θ)x2, θu1 + (1− θ)u2)dθ,

σ̃u(·, x1, x2, u1, u2) =

∫ 1

0
σu(·, θx1 + (1− θ)x2, θu1 + (1− θ)u2)dθ,

f̃x(·, x1, x2, u1, u2) =

∫ 1

0
fx(·, θx1 + (1− θ)x2, θu1 + (1− θ)u2)dθ,

f̃u(·, x1, x2, u1, u2) =

∫ 1

0
fu(·, θx1 + (1− θ)x2, θu1 + (1− θ)u2)dθ,

and

h̃x(x1, x2) =

∫ 1

0
hx(θx1 + (1− θ)x2)dθ

Write
So that, for ϕ = b, σ, h, f , we have

ϕ(·, x2, u2)− ϕ(·, x1, u1) = ϕ̃x(·, x1, x2, u1, u2)(x2 − x1) + ϕ̃u(·, x1, x2, u1, u2)(u2 − u1).

Due to hypothesis 6.2 and 6.3,

(ϕ̃x(·, x1, x2, u1, u2), ϕ̃u(·, x1, x2, u1, u2))→ (ϕx(·, x1, u1), ϕu(·, x1, u1))

strongly when x2 → x1 and u2 → u1.
We introduce the notations ϕ̃εx(·) = ϕ̃x(·, xu, xuε , u, uε) and ϕ̃εu(·) = ϕ̃u(·, xu, xuε , u, uε), with

which
ϕ(·, xuε , uε)− ϕ(·, xu, u) = ϕ̃εx(t)(xu

ε − xu) + εϕ̃εu(t)v,

as well as ϕ̂x(t) = ϕx(t, xu(t), u(t)) and ϕ̂u(t) = ϕu(t, xu(t), u(t)).
Consider the equation

dδuv (t) =[Aδuv (t) + b̂x(t)δuv (t) + b̂u(t)v(t)]dt+ [σ̂x(t)δuv (t) + σ̂u(t)v(t)]dW (t)

δuv (0) =0
. (B.1)
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Because of theorem 4.4, there exists a unique δuv ∈ L
p
F (Ω;C([0, T ],X)) solving equation (B.1),

moreover ‖δuv ‖LpF (Ω;C([0,T ],X)) ≤ C ‖v‖LpF(Ω;Lp(0,T ;U)).

We now define rεv = xu
ε − xu − εδuv , which the is a solution of

drεv(t) =[Arεv(t) + b̃εxr
ε
v(t) + ε[(b̃εx(t)− b̂x(t))δuv (t) + (b̃εu(t)− b̂u(t))v(t)]]dt

+ [σ̃εxr
ε
v(t) + ε[(σ̃εx(t)− σ̂x(t))δuv (t) + (σ̃εu(t)− σ̂u(t))v(t)]]dW (t)

rεv(0) =0

. (B.2)

It follows again from theorem 4.4 that

‖rεv‖LpF (Ω;C([0,T ],X)) ≤ ε
∥∥∥(b̃εx(t)− b̂x(t))δuv (t) + (b̃εu(t)− b̂u(t))v(t)

∥∥∥
LpF(Ω;L2(0,T ;X− 1

2
))

+ε ‖(σ̃εx(t)− σ̂x(t))δuv (t) + (σ̃εu(t)− σ̂u(t))v(t)‖LpF(Ω;Lp(0,T ;L2(H,Xη))) .

Let {εk}k∈N ⊂ (0,∞) be a sequence such that εk → 0.
Due to proposition 4.7, xu

εk → xu in LpF (Ω;C([0, T ],X)) as k → ∞, with this, there is a

subsequence {εkj}k∈N for which xu
εkj → xu uniformly on [0, T ] a.s. as k → ∞.. Because of the

strong continuity of the derivatives and the dominated convergence theorem, we have∥∥∥(b̃
εkj
x − b̂x)δuv (t) + (b̃

εkj
u − b̂u)v(t)

∥∥∥
LpF(Ω;L2(0,T ;X− 1

2
))
→ 0

and ∥∥∥(σ̃
εkj
x − σ̂x)δuv (t) + (σ̃

εkj
u − σ̂u)v(t)

∥∥∥
LpF(Ω;Lp(0,T ;L2(H,Xη)))

→ 0,

because the choice of {εk} is arbitrary, it follows that∥∥∥(b̃εx − b̂x)δuv (t) + (b̃εu − b̂u)v(t)
∥∥∥
LpF(Ω;L2(0,T ;X− 1

2
))
→ 0

and
‖(σ̃εx − σ̂x)δuv (t) + (σ̃εu − σ̂u)v(t)‖LpF(Ω;Lp(0,T ;L2(H,Xη))) → 0,

and therefore
‖rεv‖LpF(Ω;C([0,T ],X)) = o(ε).

It follows from the definition of the transposition solution (yu, qu) of equation (5.1), that

E〈−hx(xu(T )), δuv (T )〉X∗,X

+E
∫ T

0
〈bx(s, xu(s), u(s))∗yu(t) + σx(s, xu(s), u(s))∗qu(t)− fx(t, xu(t), u(t)), δuv (t)〉X∗,Xds

= +E
∫ T

0
〈yu(s), bx(s, xu(s), u(s))δuv (s) + bu(s, xu(s), u(s))v(s)〉X∗

1/2
,X−1/2

ds

+E
∫ T

0
〈qu(s), σx(s, xu(s), u(s))δuv (s) + σu(s, xu(s), u(s))v(s)〉L2(H,X∗η),L2(H,X−η)ds,

(B.3)

it follows that

E〈−hx(xu(T )), δuv (T )〉X∗,X + E
∫ T

0
〈−fx(t, xu(t), u(t)), δuv (t)〉X∗,Xds

=E
∫ T

0
〈bu(t, xu(t), u(t))∗yu(t) + σu(t, xu(t), u(t))∗qu(t), v(t)〉U∗,Udt.

(B.4)
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The local Lipschitz condition for f given in hypothesis 3.4, means that the derivative fx(t, xu(t), u(t))
given by hypothesis 5.2 satisfies

‖fx(t, xu(t), u(t))‖X∗ ≤ C1 (1 + 2 ‖u(t)‖U + 2 ‖xu(t)‖X)p−1

with which

‖fu(·, xu(·), u(·))‖
Lp
∗

F (0,T ;Lp∗ (Ω;X∗)) ≤ C1

(
T 1/p + 2 ‖u(t)‖LpF(0,T ;Lp(Ω;U)) + 2T 1/p ‖xu(t)‖LpF(Ω;C([0,T ],X))

)p−1
,

the derivative fu(t, xu(t), u(t)) given by hypothesis 6.3 satisfies

‖fu(t, xu(t), u(t))‖U∗ ≤ C1 (1 + 2 ‖u(t)‖U + 2 ‖xu(t)‖X)p−1

with which

‖fu(·, xu(·), u(·))‖
Lp
∗

F (0,T ;Lp∗ (Ω;U∗)) ≤ C1

(
T 1/p + 2 ‖u(t)‖LpF(0,T ;Lp(Ω;U)) + 2T 1/p ‖xu(t)‖LpF(Ω;C([0,T ],X))

)p−1
.

Similarly the local Lipschitz condition for h given in hypothesis 3.4, means that the derivative
hx(xu(T )) given by hypothesis 5.2 satisfies

‖hx(xu(T ))‖X∗ ≤ C1 (1 + 2 ‖xu(T )‖X)p−1

with which

‖hx(xu(T ))‖
Lp
∗
FT

(Ω;X∗) ≤ C1

(
1 + 2 ‖xu(T )‖LpFT (Ω;X)

)p−1
.

We may show in a similar way that f̃ εx, f̃ εu and h̃εx are uniformly bounded for ε ∈ (0, 1) in

Lp
∗

F (0, T ;Lp
∗
(Ω;X∗)), Lp

∗

F (0, T ;Lp
∗
(Ω;U∗)) and Lp

∗

FT (Ω;X∗) respectively.
We now have:

J(uε)− J(u) + εE
∫ T

0
〈Hu(t, xu(t), u(t), yu(t), qu(t)), v(t)〉U∗,Udt

=E
∫ T

0
f(t, xu

ε
(t), uε(t))dt+ Eh(xu

ε
(T ))− E

∫ T

0
f(t, xu(t), u(t))dt− Eh(xu(T ))

+εE
∫ T

0
〈Hu(t, xu(t), u(t), yu(t), qu(t)), v(t)〉U∗,Udt

=E
∫ T

0

[
〈f̃ εx(t), xu

ε
(t)− xu(t)〉X∗,X + ε〈f̃ εu(t), v(t)〉U∗,U

]
dt+ E〈h̃εx, xu

ε
(T )− xu(T )〉X∗,X

+εE
∫ T

0
〈bu(t, xu(t), u(t))∗yu(t) + σu(t, xu(t), u(t))∗qu(t)− fu(t, xu(t), u(t)), v(t)〉U∗,Udt

=E
∫ T

0

[
〈f̃ εx(t), rεv(t)〉X∗,X + ε(〈f̃ εx(t), δuv (t)〉X∗,X + 〈f̃ εu(t), v(t)〉U∗,U)

]
dt+ E

[
〈h̃εxrεv(T )〉X∗,X + ε〈h̃εx, δuv (T )〉X∗,X

]
+εE〈−hx(xu(T )), δuv (T )〉X∗,X + εE

∫ T

0
〈−fx(t, xu(t), u(t)), δuv (t)〉X∗,Xdt+ εE

∫ T

0
〈−fu(t, xu(t), u(t)), v(t)〉U∗,Udt

=E
∫ T

0

[
〈f̃ εx(t), rεv(t)〉X∗,X + ε(〈f̃ εx(t)− f̂x(t), δuv (t)〉X∗,X + 〈f̃ εu(t)− f̂u(t), v(t)〉U∗,U)

]
dt

+E
[
〈h̃εxrεv(T )〉X∗,X + ε〈h̃εx − hx(xu(T )), δuv (T )〉X∗,X,

]
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it follows that ∣∣∣∣J(uε)− J(u) + εE
∫ T

0
〈Hu(t, xu(t), u(t), yu(t), qu(t)), v(t)〉U∗,Udt

∣∣∣∣
≤
∥∥∥f̃ εx∥∥∥

Lp
∗

F (Ω;L1(0,T ;X∗))
‖rεv‖LpF(Ω;C([0,T ],X)) +

∥∥∥h̃εx∥∥∥
Lp
∗
FT

(Ω;X∗)
‖rεv(T )‖LpFT (Ω;X)

+ε

∣∣∣∣E∫ T

0

[
〈f̃ εx(t)− f̂x(t), δuv (t)〉X∗,X + 〈f̃ εu(t)− f̂u(t), v(t)〉U∗,U

]
dt+ E〈h̃εx − hx(xu(T )), δuv (T )〉X∗,X

∣∣∣∣
= ε

∣∣∣∣E∫ T

0

[
〈f̃ εx(t)− f̂x(t), δuv (t)〉X∗,X + 〈f̃ εu(t)− f̂u(t), v(t)〉U∗,U

]
dt+ E〈h̃εx − hx(xu(T )), δuv (T )〉X∗,X

∣∣∣∣+o(ε).
As before, let {εk}k∈N ⊂ (0,∞) be a sequence such that εk → 0.

Due to proposition 4.7, xu
εkj → xu in LpF (Ω;C([0, T ],X)) as j → ∞, with this, there is a

subsequence , which we still denote {εkj}j∈N, for which xu
εkj → xu uniformly on [0, T ] a.s. as

j →∞.

Because of the strong continuity of the derivatives, it follows that f̃
εkj
x (t) ⇀ f̂x(t) in X∗ a.e.

on [0, T ] × Ω and h̃
εkj
x ⇀ hx(xu(T )) in X∗ a.s. on Ω (this because for a Banach space X strong

convergence in L(X,C) is equivalent to weak∗ convergence in X∗).

Because Lp
∗

F (0, T ;Lp
∗
(Ω;X∗)), Lp

∗

F (0, T ;Lp
∗
(Ω;U∗)), and Lp

∗

FT (Ω;X∗) are reflexive, there is a
subsequence , which we still denote {εkj}j∈N, and elements

Φx ∈ Lp
∗

F (0, T ;Lp
∗
(Ω;X∗)), Φu ∈ Lp

∗

F (0, T ;Lp
∗
(Ω;U∗)) and ΦT ∈ Lp

∗

FT (Ω;X∗),

for which f̃
εkj
x ⇀ Φx, f̃

εkj
u ⇀ Φu and h̃

εkj
x ⇀ ΦT as j →∞.

Because of the Mazur lemma there exists a sequence of weights aj,i such that aj,· is supported
on a finite subset of {i ∈ N : i ≥ j}, 0 ≤ aj,i and

∑
i≥j aj,i = 1, satisfying

Φj
x :=

∑
i≥j

aj,if̃
εki
x → Φx in Lp

∗

F (0, T ;Lp
∗
(Ω;X∗)),

Φj
u :=

∑
i≥j

aj,if̃
εki
u → Φu in Lp

∗

F (0, T ;Lp
∗
(Ω;U∗))

and
Φj
T :=

∑
i≥j

aj,ih̃
εki
x → ΦT in Lp

∗

FT (Ω;X∗).

With this, there is a subsequence {j`}`∈N such that Φj`
x → Φx and Φj`

u → Φu a.e. on [0, T ]× Ω
and Φj`

T → ΦT a.s. on Ω. This implies that Φx = f̂x, Φu = f̂u and hx(xu(T )) = ΦT . The weak
convergence means that

E
∫ T

0

[
〈f̃
εkj
x (t)− f̂x(t), δuv (t)〉X∗,X + 〈f̃

εkj
u (t)− f̂u(t), v(t)〉U∗,U

]
dt+E〈h̃

εkj
x −hx(xu(T )), δuv (T )〉X∗,X → 0,

because the choice of {εk} is arbitrary, it follows that

E
∫ T

0

[
〈f̃ εx(t)− f̂x(t), δuv (t)〉X∗,X + 〈f̃ εu(t)− f̂u(t), v(t)〉U∗,U

]
dt+ E〈h̃εx − hx(xu(T )), δuv (T )〉X∗,X → 0.

Remark B.1. The assumption that U is reflexive can be relaxed if we assume that f is Lipschitz
continuous w.r.t. u, as in that case we can treat the term E

∫ T
0 〈f̃

ε
u(t)− f̂u(t), v(t)〉U∗,Udt using the

dominated convergence theorem.
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