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A holistic approach to the energy-efficient
smoothing of traffic via autonomous vehicles

Amaury Hayat, Xiaoqian Gong, Jonathan Lee, Sydney Truong, Sean McQuade,
Nicolas Kardous, Alexander Keimer, Yiling You, Saleh Albeaik, Eugene Vinistky,
Paige Arnold, Maria Laura Delle Monache, Alexandre Bayen, Benjamin Seibold,
Jonathan Sprinkle, Dan Work, Benedetto Piccoli

Abstract The technological advancement in terms of vehicle on-board sensors and
actuators, as well as for infrastructures, open an unprecedented scenario for the
management of vehicular traffic. We focus on the problem of smoothing traffic by
controlling a small number of autonomous vehicles immersed in the bulk traffic
stream. Specifically, we aim at dissipating stop-and-go waves, which are ubiquitous
and proven to increase fuel consumption tremendously and reduce. Our approach is
holistic, as it is based on a large collaborative effort, which ranges frommathematical
models for traffic and control all the way to building infrastructures capable of
measuring energy efficiency and providing real-time data. Such an approach allows
to clearly set and measure a metric for success in the form of a reduction of at
least 10% of fuel consumption using 5% of autonomous vehicles immersed in bulk
traffic. The chapter illustrates the overall approach and provides simulation results
on a tuned microsimulator for the California I-210.

1 Introduction

1.1 Stop-and-go waves

It is commonly known that having many drivers at the same speed on the road and
the same distance between vehicles can lead to jam [49, 46]. Stop-and-go waves
can seem to appear without any particular reason (no road reduction, no roadwork
ahead, etc.). There is however a simple explanation to this phenomena: steady states
in traffic flows are sometimes unstable [7]. Stop-and-go waves have a large impact
both on the economy and sustainability of traffic. Not only can they reduce the
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outflow compared to a steady-state situation where all vehicles are equally spaced
and have the same speed, but in addition the fuel consumption and CO2 emissions
associated with constantly braking and accelerating are much higher than the fuel
consumption and CO2 emission of the corresponding steady-state [39].

This chapter introduces an initiative aiming at reducing stop-and-go waves by
incorporating a small number of autonomous vehicles (AV) in the traffic and using
it as a system controller. After presenting an overview of the project in Section 1,
we focus in Sections 2 to 3 on a control design approach derived from theory-based
model, and in Section 4 we present some results when using the resulting controller
in simulations on a highway model. In particular, we show that in a highly congested
traffic this controller allows for a strong reduction of fuel consumption for the same
throughput, even with a very low proportion of AVs in the traffic.

1.2 An initiative to increase energy efficiency

Finding ways to increase energy efficiency, i.e., the miles traveled per gallon of
fuel (denoted “fuel economy” in the US) or distance traveled per Joule of electric
power, through traffic control is not a new idea. Numerical simulation results and
stability analysis to regulate traffic flow via autonomous vehicles are available, see
[10, 20, 47, 51]. Other approaches used variable speed limits, see [2, 21, 52], or jam
absorption [23, 34]. Our project is based on evidence shown by the experimental
results on a ring road, see [44, 45, 53].

However, the energy efficiency of today’s vehicular mobility relies on the com-
bination of two elements: control via static assets (traffic lights, metering, variable
speed limits, etc.); and onboard vehicle automation (adaptive cruise control (ACC),
ecodriving, etc.). These two families of controls were not co-designed and are not en-
gineered to work in coordination. Recent studies have shown limitations of controls,
and even sometimes negative impacts of ACC [30]. Our general approach focuses
on the technology development, implementation and prototyping, and validation of
Mobile Traffic Control (MTC). In other words using AVs as mobile controllers in
the traffic flow.

This can be viewed as an extension of classical traffic control (in which static
infrastructure actuates traffic flow). In theMTCparadigm, automated vehicles impact
the entire surrounding traffic via their behavior, offering enhanced possibilities to
optimize the energy footprint of traffic, if designed correctly.

We want to demonstrate for the first time that considerably reduced fuel con-
sumption of all vehicles in traffic can be achieved via distributed control of a small
proportion of controlled autonomous vehicles (CAV)s. The level of autonomy ex-
pected for the CAV is level 2 (according to the SAE taxonomy J3016_201806).
Compared to baseline vehicular technologies, our work offers a significant design
departure: control algorithms for the CAV consider the impact one vehicle can have
on overall traffic, improving resulting overall fuel consumption. We focus on using
a few vehicles as traffic controllers (via CAV technology) to improve the energy ef-
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ficiency of traffic flow to further optimize energy efficiency. The target is to achieve
energy gains exceeding 10% in average for all vehicles on the road when the traffic
is congested, through automation of less than 5% of the vehicles in the flow (called
penetration rate in the following).

This ambitious goal is motivated by prior field experiments that demonstrated fuel
consumption reductions of up to 40% with a single CAV on a single lane track under
ideal conditions [45]. Of course, for real life multilane traffic many new difficulties
have to be taken into account such as lane-changing, drivers’ responses to actuation,
interaction between CAV, topography of the road, etc.

To achieve our aim, several challenges need to be addressed on the technical level:

• Establishing the minimum sensing and connectivity required for eliminating traf-
fic waves with mobile actuation;

• Investigating control requirements to dampen stop-and-go traffic;
• Designing simulation models representing reliably the multilane stop-and-go

traffic and the relevant behaviors;
• Deducing a precise and realistic energy model for vehicles consumption, taking

into account the different types of vehicles;
• Designing sensing systems on a highway as well as estimation algorithms to

detect the traffic state using on-board vehicle sensing and/or infrastructure sensor
networks;

• Finding efficient control algorithms either from accurate mathematical models
and tools or from machine learning methods.

In the following, we present the main methods and achievements related to each of
these issues, before focusing on the design of control algorithms from microscopic
mathematical models.

Testbed Development

Research and development for a testbed began with evaluating modern Close-Circuit
Television (CCTV) camera systems for possible deployment on roadside poles for
traffic observation. A determination of high-resolution (4K) cameras, capable of
individual pan-tilt-zoom control, was made. Roadside poles at a height of 110ft
were selected to minimize optical occlusion between vehicles. Six cameras could
be housed on a single roadside pole with their fields of view adjusted for complete
coverage of 500 linear feet of roadway. These developments are done on a portion of
the I-24 (Tennessee), in complement to the test site of the I-210 California presented
in this chapter. Motivations for this site were roadside site layout, traffic patterns,
and existing data sources. Testing of this proposed configuration was conducted on
an existing roadside pole owned by the Tennessee Department of Transportation
(TDOT). The test also provided valuable video data for computer vision algorithm
development. The poles carry 18 4K resolution cameras that can provide continuous
coverage of traffic on I-24, capturing trajectories from≈ 150,000 vehicles daily [17].
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Fig. 1: Installation of a roadside pole on the I-24

Fast car tracking computer vision methods

To meet the needs of our project, we required a new method for object tracking.
Existing methods, while fairly accurate, fall far short of the testbed needs in terms of
speed; a fastmethod is necessary to process video data as it is streamed, and to provide
high-fidelity estimates of vehicle positions. The core innovation of this new tracking
method is to rely on a convolutional neural network for object localization within a
small crop of a video frame, rather than utilizing object detectors that specialize in
finding all object locations within an entire video frame. The lightweight localization
network is able to run much faster than the object detector at only a small cost in
accuracy. Computer vision algorithms have been continually developed on video
data from cameras on roadside traffic monitoring poles, mimicking the setup of the
I-24 testbed. This has enabled algorithms to be tuned for performance with large
numbers of objects in view, which exhibit realistic vehicle dynamics within the field
of view.

Sensing and hardware development

Modern vehicles (since 1995 in the United States) operate through an system of
control units and sensors that are interconnected through a Controller Area Network
(CAN) architecture. Messages sent between electronic control units throughout a
vehicle are sent through a CAN bus (or in some cases, on multiple buses), which
provides an opportunity to detect the vehicle state directly by recording these mes-
sages. While there exist a bevy of off-the-shelf solutions to inspect CANmessages or
(in some cases) record these data, such solutions do not reliably deliver the messages
in a timely way that permits for closed-loop control of the system.
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To address these limitations in data fidelity and timeliness, we developed a cus-
tom library called libpanda that interfaces with vehicle’s CAN bus through opti-
mized software and off-the-shelf hardware for data acquisition in real-time [5, 50].
Libpanda is a multi-threaded C++ based library for custom Panda interface appli-
cations (such as those in [41]) using the observer based software design pattern (i.e.
callbacks). Also featured in the software area are pre-made data recording utilities,
simple data visualizers, startup services, and network handling services.
Libpanda utilities save CSV-formatted data that are of interest to vehicle state

estimation, control, and in some cases estimation of surrounding traffic. Recorded
data values include instantaneous velocity, acceleration, wheel-speeds, steering angle
(and rate), accelerator angle, brake angle, cruise control settings and state, as well
as other vehicle states. Localization and information on the surroundings include
radar trace information from vehicles equipped with adaptive cruise control systems,
permitting estimation of following distance and lead-vehicle dynamics. Additional
contextual information is provided by synchronized GPS sensors that come standard
with the off-the-shelf CAN-bus hardware. Libpanda records, for each drive, a pair
of files that are synchronized to GPS time, and which include the CAN data in one
file, and GPS data in the other.

Downstream analysis of these data files are performed by our data-analytic tool
strym [4],written in Python, for further downstreamanalysis of acquired data.Strym
uses existing standards for decoding CAN messages files that are CSV-formatted, to
produce time-series data representing desired signals for a particular drive.

Validation of CAN data through offline analysis using strym permitted us to
produce runtime analysis and computation on the data through a software bridge
that joins the Robot Operating System (ROS) [38] with streaming data produced by
libpanda. Through this bridge, additional software components can make runtime
decisions on data coming from the CAN bus—and could potentially inject control
commands to vehicles in the future.

Using these software and hardware interfaces it is possible to imagine how to put
a human-in-the-loop with sensed data from the vehicle that a driver cannot perceive
in real time. Inspired by this possibility we created the CANCoach, which is a system
that continuously feeds time gap sensor information from the CAN bus back to the
driver in near real time. Three sets of preliminary experiments are conducted inwhich
the study vehicle follows a lead vehicle driving a specified driving profile to assess the
potential of the CAN Coach to modify driver behavior. The experiments consider
three modes: Normal driving (the driver is given no prompt and no feedback),
Instructed driving (driver is given a prompt to drive at a two second time gap, but
is not given any feedback from the CAN Coach), and Coached driving (two second
prompt and CAN Coach feedback). The mean time gap errors from the 2 second
target are 0.39s (Normal Driving), 0.09s (Instructed Driving), and 0.01s (Coached
Driving). The standard deviation of the time gap error with the CAN Coach reduced
by 72% and 68% from Normal Driving and Instructed Driving, respectively. Given
this reduction of mean and standard deviation of the time gap error, we conclude that
it is possible to “coach” drivers using only data from the CAN. Below shows how
CAN Coach fits in the loop:
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Fig. 2: A diagram showing where libpanda, ROS, and the CAN Coach fit in the
hardware/software stack.

Traffic Flow Modelling

To train and test wave smoothing control strategies, we have been working on devel-
oping high fidelity traffic simulation models that explicitly produce non-equilibrium
phenomena. Target traffic patterns, such as stop-and-go waves and traffic conges-
tion, are evaluated and carefully tested for consistency with known phenomena on
real roads. We developed a model to capture bulk traffic on a stretch of I-210 in
California. We investigated various calibration routines and associated metrics [43].
This was done to prepare for the development of a model on I-24, and so while not
complete, it served as a starting point to better design micro simulations with the
macro statistics of bulk traffic flow.

Energy Modelling

Based on two fitted energy models, calibrated to measurements conducted by
Toyota, we have produced two simplified models that provide an easy structural
adaptability to the control and simulation framework employed below. Specifically,
the models are of the form P(v,a), i.e., the instantaneous energy consumption rate at
time t is given by P( Ûxi(t), Üxi(t)), where Ûxi(t) is the speed, and Üxi(t) the acceleration,
of a vehicle at that same time t. The quantity P can be fuel usage per time (g/s or
`/s), or the power equivalents (kW) of the battery depletion per time. One model
(PriusEV 1.0) is for a hypothetical vehicle that possesses all the characteristics of the
2017 Prius, except for being a fully electric vehicle rather than a hybrid vehicle.While
the (proprietary) measurements/models by Toyota do cover real battery properties,
particularly the fact that the power consumption does depend on the battery’s state
of charge, this simplified fit in Fig. 3 is restricted to a fixed battery state of charge of
60%. The other model (Tacoma 1.0) represents an internal combustion engine, the
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2017 Tacoma. These simplified models, shown in Fig. 3, are represented by explicit
equations (thus admit rapid evaluation), and are piecewise smooth, convex functions.
This last property is an approximation of reality, as a real vehicle’s gear switching
dynamics tends to introduce non-convexity effects that may render a vehicle-specific
unsteady driving profile more energy efficient than a uniform velocity profile. The
motivation for this simplification is that we wish to have energy metrics representing
vehicle types in an averaged sense, rather than results that are fine-tuned to a specific
single vehicle. In particular, the simple structure facilitates optimization andmachine
learning.

Fig. 3: Visualization of simplified models for energy consumption rate P (in power
equivalent) as a function of instantaneous vehicle speed u and acceleration a. Left:
PriusEV 1.0 model for an electric vehicle. The negative values of P reflect that the
electric vehicle can recuperate some of the energy when braking.Right: Tacoma 1.0
for an internal combustion engine vehicle.

Safety

With real-life implementation in mind, ensuring safety of the control algorithms
is paramount. We seek to establish a method of validating safety via the use of
reachability analysis, i.e. looking at the set of reachable states for the AV given
admissible controls. We aim at producing safe sets that represent a set of states from
which, when evolved forward for all time, our controller’s action will not result in
a collision. To solve the reachability problem, we formulate the problem as a two
player game with a leading vehicle and subject (following) vehicle. The two player
game is an optimization problem optimizing over control inputs of both vehicles.
The cost function of the optimization problem is the minimum distance between
two vehicles at all times. The subject vehicle is governed by a controller, while the
leading vehicle’s input is some input that minimizes the cost function. Both vehicles
have a maximal acceleration and deceleration. The safety set is determined as a
positive value set of the optimal value function. An example is shown in Fig. 4.
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Fig. 4: An example of safe set. The safe set is defined in the domain where distance
is positive, lead speed is between 0 and 30, and follower speed is between 0 and 30.
The red surface represents the boundary of the safety set. The safe set is the set of
states bounded by the surface (i.e. all states below the surface).

Control design using Reinforcement Learning

Due to the complexities of the driving and lane changing model, one approach
pursued is to model-free reinforcement learning (RL) methods which can return
effective controllers via optimization. At a high level, the RL formulation consists
of defining a reward function (in this case, maximizing average miles per gallon)
and then searching for a controller that optimizes the sum of the reward over a
given horizon. By casting the problem as an optimization problem, we can find
controllers for systems whose system dynamics are challenging to analyze. RL
works by running the controller repeatedly in an environment, i.e. a simulator or a
real world deployment. Figure 5 demonstrate the process of running RL to acquire
sequences of state, action, reward pairs. Over these repeated runs, we acquire an
estimate of the expected cumulative reward and then use optimization schemes to
update the controller parameters to increase the expected cumulative reward, often
using first order / gradient-based methods. By running this process repeatedly, we
eventually return a controller that is close to a local maximum of the cumulative
reward function.

Formally, since the autonomous vehicles are decentralized and their observations
are local, we cast the problem as a Decentralized Partially Observed Markov De-
cision Process (DEC-POMDP), a formalism in which we have decentralized actors
trying to each optimize their reward functions while having only partial access to
the true global system state. In particular, each of our cars observe only their speed,
the speed of their leading car, and the distance to the lead car; these are all states
that can easily be acquired by radar but are insufficient. RL studies the problem
of how an agent can learn to take actions in its environment to maximize its cu-
mulative discounted reward. Specifically each agent, indexed by i, tries to optimize
Jπi = Eρ0 , p(st+1 |st ,at )

[∑T
t=0 rt (st,ait ) | π(a

i
t |ot )

]
where rt is the reward at time t and

the expectation is over a distribution of initial states ρ, the probabilistic dynamics
p(st+1 |st,at ), and the probabilistic controller πi which depends on a local observa-
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Fig. 5: The Reinforcement Learning loop. At each time-step, an agent (the controller)
receives a state and reward from the environment/simulator, uses the state to compute
a desired action, then executes that action to receive its next state and reward. This
loop continues until the system horizon is reached.

tion ot rather than the global state ot . Here we have each agent optimize a local
reward function rather than a global reward function.

As a preliminary example of this approach, we use Proximal Policy Optimization
[42] to approximately optimize the following intuitive reward function: r(st,at ) =
−P(vt,at ) i.e. the negative of the instantaneous consumed energy. Additionally,
a bonus of 5 is added to the reward every time the vehicle completes 50 meters to
ensure that it makes forward progress. After several hundred iterations, the controller
generates the space-time diagram shown in Fig. 6 (note, only one lane showed) at a
penetration rate of 10%.

Fig. 6: Left-most lane of the I-210 without control (left) and under control of AVs at
a 10% penetration rate (right).

Control design using mathematical models

Control strategies were designed in multi-line multi-population microscopic models
by using a small number of autonomous vehicles (AV) (less than 5% penetration
rate) to represent Lagrangian control actuators that can smooth stop-and-go waves in
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multilane traffic flow. A microscopic multilane model is typically composed of two
components: longitudinal dynamics for each lane and a lane-change mechanism. The
parameters used on the lane changing mechanism were shown to have a potentially
large impact on the macroscopic behaviour of the systems [28]. This implies that
the control algorithm has to be robust with respect to the lane-changing mechanism.
Two other approaches were considered by looking at the traffic at two higher scales: a
macro-model consisting of a PDE coupled to several ODEs by a flux relation, which
represents the interaction between the global traffic flow and the AV, identified as
moving bottlenecks. And a new mean-field model that allows us to take the behavior
of the well-known and well-studied microscopic models (such as the IDM) to a
mesoscopic scale. This is obtained by considering the microscopic equations as
equations on concentrated distributions that are the individual vehicles and showing
a convergence when the number of vehicles goes to infinity. In the following, we
focus on a way to design an efficient controller from a microscopic model. This is
detailed in Sections 3 to 4.

2 Control system studied

Depending on the scale at which they represent vehicular traffic, mathematical traffic
models usually can be classified into different categories: microscopic, mesoscopic,
macroscopic, and cellular. We refer to the survey papers [6, 3], and reference therein,
for general discussions about the models at various scales in the literature. In this
section, we only focus on microscopic and macroscopic models.

Microscopic traffic models represent traffic by looking at each single vehicle. The
aim is to simulate each single vehicle via the variables of position and velocity. Each
vehicle is seen as a particle or agent, and its trajectory usually evolves according
to the behaviour of other vehicles in front. The dynamics of all vehicle can then be
caused by a system of ordinary differential equation (ODE). In this section, we first
focus on two microscopic traffic models:

• The Bando-Follow-the-Leader (Bando-FTL) model.
• The Intelligent Driver Model (IDM).

Then, we introduce novel multilane and multiclass traffic by dividing the vehicle
population into human-driven vehicles and autonomous vehicles. The autonomous
vehicles are influenced by external policy makers with controlled dynamics. The
multilane traffic is distinguished by its hybrid nature: continuous dynamics on each
lane and discrete events due to lane-changing. For the lane-changing mechanism, we
consider three components: safety (cars do not become too close), incentive (cars
benefit from changing lanes with larger prescribed acceleration) and cool down time
(cars cannot change lanes too rapidly). To this end, we study an optimal control
problem related to the controlled microscopic hybrid system to model, for instance,
the minimization of energy cost.
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2.1 Microscopic traffic models: Bando-FTL model and IDM model

Consider a population of P ∈ N vehicles on an open stretch road of a single lane. For
each vehicle i ∈ {1, . . . ,P}, let iL ∈ {1, . . . P} and iF = {1, . . . ,P} be the indices of
the leading vehicle and following vehicle i, respectively. In other words, we associate
with vehicle i an indices vector ι(i) = (i, iL, iF) where iL is index of the leader and
iF the index of the follower of vehicle i. To fix notation, we assume that iL = 0 if
there is no other vehicle in front of vehicle i and iF = 0 if there is no other vehicle
following vehicle i. Let the considered time horizon T ∈ R>0 be fixed. For each
vehicle i ∈ {1, . . . ,P}, let (xi(t), vi(t)) ∈ R × R≥0 be the position-velocity vector of
vehicle i at time t ∈ [0,T].

The Bando-FTL model

The Bando-Follow-the-Leader (FTL) model is a combination of the Bando model
and the Follow-the-Leader model. In this section, we will introduce the Bando
model and Follow-the-Leader model separately before giving the formulation of the
Bando-FTL model.

The Bando model, which is also called optimal velocity (OV) model, is a traffic
model proposed in [1]. One key feature is that each vehicle adjusts its acceleration or
deceleration according to the difference between the optimal and their own “optimal”
of preferred velocity. Specifically, the dynamics are given by the following system
of second order ODEs

Ûxi(t) = vi(t), t ∈ [0,T], i ∈ {1, . . . ,P},
Ûvi(t) = a(V(hi(t)) − vi(t)), t ∈ [0,T], i ∈ {1, . . . ,P}.

(1)

In the above formula, the dot represents the time derivative and a ∈ R>0 is a
sensitivity constant. For every t ∈ [0,T], hi(t) B xiL (t) − xi(t) is the headway of
vehicle i. The functionV : R→ R is called “OV-function” and describes the optimal
velocity determined by the headway. In general, V is monotonically increasing with
respect to the headway, i.e. the optimal velocity is “smaller” if the headway is small
and increases as the headway increases. In addition, if the headway is large enough
for a sufficiently large time, the vehicle’s velocity should arrive at the maximum
velocity vmax ∈ R>0, which may depend on the driver. One example of OV-function
is V : R≥0 7→ R≥0, h 7→ V(h), with

V(h) = vmax
tanh (h−l−d)+tanh(l+d)

1+tanh (l+d) , (2)

where l ∈ R>0 is the length of the vehicles and d ∈ R>0 is the minimum safe
distance between vehicles. Note that the equilibrium point of the Bando model is
obtained when all vehicles travel at constant velocity and have the same headway.
The Bando model has been extended in [33] by considering interactions with the
following vehicle (beside the leading) to stabilize the traffic flow.
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The follow the leader (FTL) model was introduced in [16]. It is based on the
idea that the acceleration of a vehicle is determined only by the vehicle in front.
In particular, the acceleration of a vehicle is directly proportional to the difference
between its leader’s velocity and its own velocity, and is inversely proportional to
the vehicle’s headway. The main dynamics are given by

Ûxi(t) = vi(t), t ∈ [0,T], i ∈ {1, . . . ,P},

Ûvi(t) = b
viL (t)−vi (t)

(hi (t))2
, t ∈ [0,T], i ∈ {1, . . . ,P},

(3)

where b ∈ R>0 reflects the sensitivity of the driver. In the case that there is no leading
vehicle for vehicle i, i.e., iL = 0, the dynamics of vehicle i is given by

Ûxi(t) = vmax ∀t ∈ [0,T]. (4)

Wewould like to mention the following drawback of the FTLmodel: the acceleration
for vehicle i is zero as long as vehicle i and its leader have the same velocity. This
implies that an extremely small headway is allowed even with high speeds.

One way to handle the abovementioned drawback of the FTLmodel is to combine
the Bando model and the FTL model in the following way:

Ûxi(t) = vi(t), t ∈ [0,T], i ∈ {1, . . . ,P},

Ûvi(t) = a(V(hi(t)) − vi(t)) + b
viL (t)−vi (t)

(hi (t))2
, t ∈ [0,T], i ∈ {1, . . . ,P}.

(5)

We point out that the Bando-FTL model justifies the fact that drivers adjust their
acceleration or deceleration based on their own velocities, the optimal velocities and
the velocities of their leading vehicles. This model allows formation and persistence
of stop-and-go waves, and can be well calibrated following the experimental results
of [46], see [11].

The intelligent driver model

The intelligent driver model (IDM) introduced in [48] is a time-continuous micro-
scopic car-following model, which is widely used in the traffic engineering commu-
nity. It assumes that each vehicle-driver decides to accelerate or to brake depending
only on their own velocity, and on the position and velocity of the leading vehicle im-
mediately ahead. To simplify notations, we set the velocity difference or approaching
rate of vehicle i at time t ∈ [0,T] as ∆vi(t) B vi(t) − viL (t) and the net distance of
vehicle i at time t ∈ [0,T] as si(t) B xiL (t) − xi(t) − l, where l ∈ R>0 is again the
vehicle length. The dynamics of vehicles are then described by the following system
of ODE:

Ûxi(t) = vi(t), t ∈ [0,T], i ∈ {1, . . . ,P},

Ûvi(t) = a
(
1 −

(
vi (t)
v0

)δ
−

(
s∗(vi (t),∆vi (t))

si (t)

)2
)
, t ∈ [0,T], i ∈ {1, . . . ,P},

(6)
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where the desiredminimumgap of the vehicle i represented by the function s∗ : R×R,
is given by

s∗(vi(t),∆vi(t)) B s0 + vi(t)τ +
vi (t)∆vi (t)

2
√
ab

t ∈ [0,T]. (7)

The parameters’ meaning and choice are as follows:

• v0 ∈ R>0 is the desired velocity the vehicle would drive in free traffic (m/s)
• s0 is the minimum desired net distance
• τ is the safety time gap
• a is the maximum vehicle acceleration
• b is the comfortable braking deceleration
• the exponent δ ∈ R>0 a tuning parameter, usually set to 4.

The desired minimum gap depends on the safety time gap, the vehicle acceleration,
deceleration and the velocity difference. Specifically, Eq. (7) contains three terms:

1. The minimum distance s0 in congested traffic;
2. The safety gap that the follower must have with its leader, vi(t)τ;
3. The term vi (t)∆vi (t)

2
√
ab

which is designed to stabilize the platoon vehicle in terms of
velocity.

Furthermore, the acceleration of vehicle i can be separated into a free road term

afree(t) = a
(
1 −

(
vi (t)
v0

)δ)
, t ∈ [0,T] (8)

and an interaction term

aint(t) = −a
(
s∗(vi (t),∆vi (t))

si (t)

)2
= −a

(
s0+vi (t)τ

si (t)
+

vi (t)∆vi (t)

2
√
absi (t)

)2
, t ∈ [0,T]. (9)

Note that in the case of a free road when the net distance of vehicle i, si , is large, the
vehicle’s acceleration is governed by the free road term Eq. (8) which vanishes as
vi approaches v0. Thus a vehicle on a free road will gradually approach its desired
velocity v0. For large approaching rate ∆vi , the interaction term Eq. (9) is dominated

by the term −a
(
vi (t)∆vi (t)

2
√
absi (t)

)2
= −

(vi (t)∆vi (t))
2

4bsi (t)2
which leads to a driving behavior that

compensates velocity differences while trying not to brake much harder than the
comfortable braking deceleration b. For negligible velocity differences and small net
distance, the interaction term Eq. (9) is approximately equal to −a (s0+vi (t)τ)

2

si (t)2
. This

resembles a simple repulsive force such that small net distances are quickly enlarged
towards an equilibrium net distance.

We point out that the IDM model has many drawbacks when it comes to the
drivers’ safety and the vehicles’ real capability especially in the case of a collision,
see [12]. Therein, a modified version of IDM model was proposed and tested in
terms of string stabilization.
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2.2 Lane changing conditions for multilane traffic

In the case ofmultilane traffic, frequent lane changingmaneuvers could disrupt traffic
flow and even worse, lead to accidents. In addition, lane changing behaviors have
significant impact on formulation and propagation of the stop-and-go traffic waves.
Recently, efforts to model lane change have rapidly increased, see [29, 26, 25]. In
this subsection, we propose lane changing rules based on acceleration due to two
main advantages, see [54]:

1. The lane changing decision-making process is dramatically simplified
2. One can readily calculate the accelerations based on an underlying microscopic

traffic model

We consider an open stretch of road with m ∈ N≥1 lanes and assume that the
number of vehicles on lane j ∈ J B {1, . . . ,m} is Pj . We associate each vehicle to
i ∈ {1, . . . ,Pj}, on lane j ∈ J, a vector of indices ι(i) = (i, j, iL, iF), where iL and iF
are defined as in Section 2.1.

We design lane changing rules based on three components: cool-down time,
safety and incentive for lane-changing and assume that lane changing is performed
instantaneously. Then, we propose that a vehicle performs a lane change if the
following conditions are met:

1. The vehicle did not make a recent lane change. To prevent a vehicle changing
lane too frequently, we assign each vehicle a cool-down time τ > 0. A vehicle is
allowed to perform lane changing at most once every τ time units. This constraint
is motivated by two reasons: the lane change is not instantaneous (so there should
be a fixed minimal duration between two lane-changes), a driver that has just
changed lanes is less likely to change lanes again right away. From [24], only
the 15% of the vehicles cross a lane while traveling the road section. In the
simulation presented in [19], we choose the cool-down time T1 = 5s over the time
interval [0,1000s]. The simulation shows that our model with this cool-down time
can handle the case when around 40% of vehicles performing lane-changing. In
particular, one can model higher lane-changing frequency by taking smaller cool-
down times.

2. The lane change can be performed safely into a target lane. This corresponds to
having enough space in between the two vehicles in the target lane where the
vehicle is moving to.

3. There is sufficient incentive to perform lane changing. In other words, if the
expected acceleration of the vehicle in the new lane is sufficiently bigger than its
acceleration on the current lane, the lane change will be performed (assuming
that the other mentioned requirements are met).

We now instantiate the above rules in a mathematically sound and precise way. We
associate to each vehicle i in lane j ∈ J an internal time for lane change called
τ
j
i : [0,T] → R≥0 with T > 0 being fixed, such that the following holds:



A holistic approach to the energy-efficient smoothing of traffic via autonomous vehicles 15

Ûτ
j
i (t) = 1, t ∈ [0,T]

τ
j
i (0) = τ

j
i,0 ∈ [0, τ),

(10)

where τ ∈ R>0 is the cool down time. To avoid synchronous lane changes, we assume
that all initial conditions of the internal times are distinct one from another. That is,
we assume for j, j ′ ∈ J, i ∈ {1, . . . ,Pj}, k ∈ {1, . . . ,Pj′}, with j , j ′ and i , k,

τ
j
i,0 , τ

j′

k ,0.

We assume that a vehicle does not lane change unless its internal time reaches the
cool down time τ. In addition, we reset the internal time for each vehicle to be zero
just after it reaches the cool-down time τ. Thus, we set

Ûτ
j
i (t) = 1, t ∈]kτ, (k + 1)τ] ∩ [0,T], k ∈ {1,2, . . . },

τ
j
i (kτ+) = 0, j ∈ J, i ∈ {1, . . . ,Pj},

(11)

where kτ+ represents the right hand side limit which is needed as τ ji is only piece-
wise continuous. Note that we do not allow two vehicles to change lane at the same
time. This assumption is reasonable since it has been experimentally shown that lane
changing is not frequent in a traffic flow, see [27].
Let us now describe the safety and incentive conditions. Let ∆ ∈ R>0 be fixed.
Vehicle i on lane j ∈ J will change to lane j ′ = j + 1or j − 1 ∈ J at time t ∈ [0,T],
if the following conditions are met

Safety: ā j′

i (t) ≥ −∆ and ā j′

l
(t) ≥ −∆; Incentive: ā j′

i (t) ≥ a j
i (t) + ∆,

where l is the index of the potential follower of vehicle i on the new lane j ′, a j
i (t)

denote the acceleration of vehicle i on lane j at time t, and ā j′

l
(t) and ā j′

i (t) are the
expected acceleration of vehicles l and i on lane j ′ at time t, respectively.

2.3 A controlled hybrid system

In this subsection, we present a multi-population multilane model. First, we divide
the whole traffic population into two classes: autonomous vehicles and human-driven
vehicles. Let Mj ∈ N≥1 and Nj ∈ N≥1 represent the number of autonomous vehicles
and human-driven vehicles on lane j ∈ J, respectively. Due to the fact that external
policy makers can influence the dynamics of the autonomous vehicles, we only
add controls to the autonomous vehicles instead of controlling the whole traffic
population.

The dynamics of vehicles on each lane are continuous and are governed by a sys-
tem of ODEs consisting of, for instance Bando-FTL model or IDMmodel described
in Section 2.1. Roughly speaking, for any microscopic model, the acceleration of
an individual vehicle is determined by its desired velocity, and the position-velocity
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vectors of its leader and its own. Let
(
x j
i (t), v

j
i (t)

)
∈ R×R≥0 be the position-velocity

vector of human-driven vehicle i and
(
y
j
k
(t),w j

k
(t)

)
∈ R×R≥0 be the position-velocity

vector of autonomous vehicle k on lane j ∈ J at time t ∈ [0,T]. Then, the dynamics
of vehicles on the j-th lane can be written for t ∈ [0,T] as

Ûy
j
k
(t) = w

j
k
(t), (j , k) ∈ J × {1, . . . ,Mj },

Ûw
j
k
(t) = ACC(y j

k
(t),w

j
k
(t), z

j
kL
(t), ν

j
kL
(t), v

j ,∗
k
(t)) + u

j
k
(t), (j , k) ∈ J × {1, . . . ,Mj },

Ûx
j
i (t) = v

j
i (t), (j , k) ∈ J × {1, . . . , N j },

Ûv
j
i (t) = ACC(x j

i (t), v
j
i (t), z̃

j
iL
(t), ν̃

j
iL
(t), v

j ,∗
i (t)), (j , k) ∈ J × {1, . . . , N j },

(12)

where ACC: R×R≥0×R×R≥0×R≥0 7→ R is the general formulation of a vehicle’s
acceleration based on a microscopic traffic model, (z j

kL
(t), ν j

kL
(t)) and (z̃ jiL (t), ν̃

j
iL
(t))

are the position-velocity vectors of the leaders of autonomous vehicle k and human-
driven vehicle i on lane j, respectively, at time t ∈ [0,T] and v

j ,∗
k
(t) and v

j ,∗
i (t) are

the desired velocities of autonomous vehicle k and human-driven vehicle k on lane
j, respectively. Notice that the dynamics of autonomous vehicle k on lane j are
distinguished by the control term u j

k
: [0,T] 7→ R.

In addition, the lane changing mechanism of the vehicles introduced in Section 2.2
generates discrete events for the multilane, multi-class traffic system. The presence
of both time-dependent continuous dynamics in Eq. (12) and discrete events lead to a
system of hybrid nature, see [35, 36]. Such systems are characterized by the presence
of continuous dynamics, which, at discrete times – so called switching times – are
effected by logic variables. The latter, in turn, change their values depending on the
values of the continuous variables at switching times. We call such system a hybrid
system or a switched system. In our example, the switching times are precisely
the lane changing times. The discrete variables are the lane indices of each vehicle,
which may change depending on position, speed and accelerations of vehicles, which
represent the continuous variables. Because of the cool down time assumption, we
avoid the famous Zeno phenomenon, which impacts strongly the behavior of hybrid
systems [9].
Furthermore, we formulate an optimal control problem related to the mentioned
controlled hybrid system to minimize, for instance, the energy cost. Let U B
{u : [0,T] 7→ RM } be the set of admissible controls, where M =

∑
j∈J

Mj is the total

number of the autonomous vehicles. We define a cost functional F : U 7→ R, by

F(u) =
∑
j∈J

∫ T

0

Lj

(
xj(t),vj(t),yj(t),wj(t),uj(t)

)
+

Mj∑
k=1

|u j
k
(t)|

Mj

 dt (13)

where for each j ∈ J, the Lagrangian function Lj : RN j×R
N j

≥0×R
Mj×R

Mj

≥0 ×R
Mj 7→ R

is sufficiently smooth. The hybrid optimal control problem is to minimize the cost
functional Eq. (13) over the set of admissible controlsU, where x,v,y,u satisfies the
hybrid system Eq. (12). For the existence of optimal control, we refer the interested
reader to [13].
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2.4 A mean-field approach

Macroscopic traffic models describe vehicular traffic as fluid flow by assuming a
sufficiently large number of vehicles on a road. By capturing and predicting the
main phenomena of microscopic dynamics, macroscopic models provide overall
and statistical views of traffic. There are three important variables in a macroscopic
traffic model:

• the traffic density ρ : R × [0,T] → R≥0
• the speed v : R × [0,T] → R≥0 of the traffic
• the flow rate q : R × [0,T] → R≥0 passing through a fixed point

The three variables satisfy the following relationship: for (x, t) ∈ R × [0,T],

q(x, t) = ρ(x, t)v(x, t). (14)

The evolution of the traffic density is governed by partial differential equations
(PDEs), for example the Lighthill-Whitham-Richards (LWR) model in [31, 40]
consists of a single conservation law for the density, and closing the system by
assuming that the speed depends only on the density. Models with more equations
and different “closure relationships” were developed, see [14, 15] for an extensive
discussion. For the multi-population traffic system introduced in Section 2.3, one
can use a coupled ODE-PDE system to model the dynamics of a small number of
autonomous-vehicles with ODEs and the large number of human-driven vehicles
with PDEs. This is a combination of the microscopic and macroscopic models using
multiple scales.

One may use a mean-field approach to relate the two different scales, i.e. micro-
scopic and macroscopic, both formally and rigorously by letting the number P of
vehicles go to infinity. For a population of P ∈ N vehicles on an open stretch of
a single lane, we again let for t ∈ [0,T] the vector (xi(t), vi(t)) ∈ R × R≥0 be the
position-velocity of vehicle i ∈ {1, . . . ,P}. We assume that drivers adjust their accel-
eration based on the position-velocity vectors of several vehicles ahead (instead of
only one vehicle as it is usually assumed in classical car followingmodels). To realize
that, we introduce a locally Lipschitz convolutional kernel function H : R×R≥0 7→ R
which is of sub-linear growth and describes the dynamics of the P vehicles as

Ûxi(t) = vi(t), t ∈ [0,T], i ∈ {1, . . . ,P},
Ûvi(t) = H ∗ µP(xi, vi)(t), t ∈ [0,T], i ∈ {1, . . . ,P},

(15)

where µP(xi, vi) = 1
P

P∑
i=1

δxi ,vi is the probability measure obtained using Dirac

distributions placed at a cars’ position-speed location, also called the empirical
measure. Then, the rigorous mean-field limit of the finite-dimensional ODE system
in Eq. (15) consists of a Vlasov-Poisson type PDE

∂t µ + v∇xµ = ∇v · [(H ∗ µ)µ], (t, x, v) ∈ [0,T] × R × R≥0 (16)
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which describes the evolution of the density distribution µ : (0,T)×R×R≥0 → R≥0
of infinitely many vehicles in (x, v) space, see [13].

For multi-population and multilane traffic with a small number of autonomous
vehicles and a large number of human-driven vehicles, we can proceed as follows.
The mean-field limit is computed only for the human-driven vehicles by taking their
number to infinity, while the number of autonomous vehicles is kept fixed. The lane-
changing maneuvers of the human-driven vehicles generate in the limit a source term
for the Vlasov-Poisson type PDEs Eq. (16) (one equation per lane).

The autonomous vehicles’ lane-changing behaviour (discrete dynamics) can be
considered as controls, thus leading to a controlled hybrid system as in Section 2.3.
Similarly, in the limit one obtains a coupled hybrid system of controlled ODEs (for
the autonomous vehicles) and Vlasov-Poisson type PDEs with source terms. It turns
out that the optimal controls for the finite-dimensional hybrid ODE system converge
to the optimal controls of the hybrid ODE-PDE system when the number of human-
driven vehicles approaches infinity. This is proved rigorously by taking advantage of
Γ-convergence [8] and using a generalized Wasserstein metric [37]. For details on
the limit process see [18].

2.5 Numerical implementation and difficulties about modelling

A traffic smoothing algorithm, or “controller” will be selected among candidate
controllers that we first test in a simulation in the traffic simulator "sumo" [32]. We
use this platform to evaluate the controller’s potential real world performance in
reducing the energy consumption of the bulk traffic. This step allows us to select
the best performing controllers for the eventual road test. To meaningfully evaluate
the road performance, the bulk traffic in the simulation must be similar to real life
bulk traffic. There are features of the bulk traffic that are especially important in
evaluating the controllers, such as stop-and-go traffic waves.

We designed a microscopic traffic model in sumo to simulate the bulk traffic. The
simulation will include stop-and-go waves in expected traffic density regimes using
the Intelligent DriverModel (IDM), augmentedwith a small amount of additive noise
in the velocity to trigger instabilities that can grow into full nonlinear stop-and-go
waves if traffic flow is in the dynamically unstable regime. This microscopic model
must be parameterized to have macroscopic features such as decreasing velocity with
increasing density and congestion formation on a segment of road. The simulation
will have a rate of cars spawning at the upstream boundary, called the inflow, and a
rate of cars leaving the segment, called the outflow. When the inflow is higher than
the outflow congestion will form. The vehicle accelerations from the microscopic
model are used to calculate emissions and energy usage for the bulk traffic flow. In
order to test that our bulk trafficmodel was representing the type of trafficwe require,
we started with a model of a small section of highway and no on ramps or off ramps.
We needed a way to force different levels of congestion and observe the presence or
lack of stop-and-go waves. An initial challenge was the dramatic effect of simulation
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step size on the presence and quality of stop-and-go waves. Unexpected traffic waves
would be present for large time steps.

Designing this bulk traffic model on a small section of highway involves intricate
car-spawning conditions at the beginning of the highway segment. In order to control
congestion levels, we designed a downstream “ghost cell,” which is a section of road
used only to control conditions on the road segment of interest, where vehicles obey
a lower speed limit which propagates upstream to traffic in the highway segment.
The vehicles in the downstream ghost cell approach this new speed with a relaxation
term so as to smooth out unexpected acceleration artefacts and prevent them from
propagating into the segment of interest. Before this segment, we also had to imple-
ment an upstream ghost cell in order to circumvent issues due to vehicles spawning
logic in a high congestion setting. These two ghost cells provided a way to control
the traffic density and make sure we were achieving stop-and-go waves in expected
density and throughput regimes. This design of a highway segment represents the
minimum testbed to meaningfully evaluate the potential road performance of con-
trollers. This was done before including other necessary features, such as inclusion
of trucks, more sophisticated lane change models, and highway topology, such as
on/off ramps.

Fig. 7: Visualization of a simulation on the stretch of the I-210 (top), zoom on a
start of congestion (bottom). Regular vehicles are represented in white, AVs are
represented in red but disabled in this simulation.
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2.6 Energy model used

The results presented in Section 4 assume that all vehicles on the roadway (un-
controlled as well as controlled vehicles) are all combustion engine vehicles with
identical fuel consumption characteristics. We use a simplified, regularized, energy
function that is calibrated to measurements conducted by Toyota on a 2017 Tacoma
vehicle. The energy demand is expressed via a power equivalent function P(v,a) that
expresses the instantaneous power as a function of the vehicle speed v and accelera-
tion a. The simplified function P, shown in Fig. 3, is designed to structurally resemble
physical power functions, augmented by structurally simple correction terms. It is of
the form

P(v,a) = max
(
m av + C0 + C1v + C2v

2 + C3v
3, 0

)
+max (p1a + p3av, 0) , (17)

where m = 2041 kg, C0 = 3405.54W, C1 = 83.1239 kgm/s2, C2 = 6.76507 kg/s,
C3 = 0.70413 kg/m, p1 = 4598.71 kgm/s, and p3 = 975.127 kg. To obtain fuel con-
sumption (in volume per time), the fitted conversion factor 15.09KW = 1 gallon/h
is used, which incorporates the engine’s efficiency. Of the two terms in Eq. (17),
the first represents a physics-equivalent power function (on flat roads) of the form
P = vF, where the force F is composed of the acceleration force ma, and a gen-
eralized friction and drag force function (the Cjv

j terms). The second term is a
correction term that accounts for engine and powertrain inefficiencies. In both terms,
the maximum with zero expresses the fact that no energy is recuperated during
braking, which is the typical situation for combustion engine vehicles. In contrast,
electric vehicles do generally recuperate a certain amount of energy during braking
(see Fig. 3), albeit not the full amount possible during the braking that tends to occur
in strong stop-and-go traffic waves. Hence, flow smoothing will still improve the
energy efficiency of electric vehicles, but not as significantly as the results shown in
Section 4.

In the simulator, the vehicle energy is evaluated as follows. Given that the inte-
gration time step ∆t is chosen suitably small, energy is computed via a simple first
order quadrature rule: for each vehicle, evaluate the energy rate f (v(t),a(t)) at time
t, with a version of the acceleration devoid of noise, and add f (v(t),a(t))∆t to the
cumulative energy.

3 Control design

As stated in the introduction, our ideal goal is to suppress stop-and-go waves in the
system, namely bringing it to a situation where all vehicles have the same velocity.
Given the models’ dynamics in Eq. (5) or in Eq. (6), this corresponds to bringing all
the vehicles to a steady state. This steady-state is uniquely defined by the velocity, and
in particular a given velocity imposes all the vehicles headway. In this section we first
present a simple and ideal controller. We explain why this controller works in ideal
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situations, and can prevent the appearance of new stop-and-go waves, but struggles
to cope with dissipating existing stop-and-go waves in practical situations. Then we
present an approach to make this controller more robust and adapt it to realistic
situation with strong stop-and-go waves. We illustrate these points by providing
numerical simulations on an ideal one lane straight road. Numerical simulations on
a realistic mutlilane setting as well as quantitative results are the subject of the next
section.

3.1 Ideal controller

Let us assume that, given the inflow and outflow conditions, there exists a steady-
state with velocity vopt ∈ R>0 to the system. A natural idea to force the traffic flow
into this steady-state would be to set the velocity of each AV to be vopt, using the
following proportional control law:

ÛvAV(t) = −k
(
vAV(t) − vopt

)
, (18)

where k ∈ R>0 is a design parameter to be chosen. To understand why such a
simple idea might work, one has to see stop-and-go waves as propagating backwards
because all vehicles in the jam alternate between decelerating – when they are at
the top of the wave – and accelerating – when they are at the bottom of the wave.
Usually such acceleration brings them to a higher speed than the steady-state speed,
which therefore inevitably leads to a further deceleration. Few AVs in the bulk traffic
dampening stop-and-gowaves are like rocks on a shore braking seawaves.Hence, this
control law has already been used in several works of research, in both theoretical
and experimental settings. In [11] for instance the authors study this control law
implemented on a single AV on a ring-road, i.e., with the i-th vehicle being also
identified as the N + i-th vehicle and with the Bando-FTL (see Eq. (5)) traffic
model. They show theoretically that this controller guarantees the local exponential
stability of the system for up to 9 vehicles (which correspond to a penetration rate
of 11%). They also show numerically that this stability holds reasonably well up
to 20 vehicles (penetration rate 5%). In [22], the authors show that this controller
guarantees in fact the local exponential stability for any number of vehicles on the
road (penetration rate as low as desired), moreover they show the exponential decay
rate and the optimal k to not depend on the number of vehicles. However, and as
it could be expected, the bound we are able to obtain on the basin of attraction
decreases strongly with the number of vehicles. This means that in order to stabilize
an entire ring-road with a single vehicle, the vehicle’s velocities must be very close
to the steady-state value if the number of vehicles becomes large. In other words,
this means that this controller might not be able to ensure the stability of motion in
heavy stop-and-go sequences. And this, as we will see in the next subsection, will
be the main problem. Nevertheless, this means that this simple controller is good at
preventing the emergence of stop-and-go waves in a steady flow.
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The controller was also tested in a field experiment, on a single lane ring-road
with 20 vehicles and a single AV. Several variants of the controller where tested.
Among them a variant where1

ÛvAV(t) = −β
(
vAV(t) − v1(t)

)
, (19)

where β is a positive coefficient, α = min
(

min
(
∆x−∆xs

γ ,0
)
,1

)
with ∆xs being a

safety distance and

v1(t) = α(t)vtarget(t) + (1 − α(t))vlead(t), (20)

vtarget(t) =
1
τ

∫ τ

0
vAV(τ)dτ +min

(
max

(
∆x−l1
l2

,0
)
,1

)
, (21)

with τ a characteristic time, and l1 and l2 two distances, typically l1 = 7m and
l2 = 23m. This amounts to changing the speed to be reached vopt by v1, an objective
speed that depends on time. This time dependency is important, as we will see later
on in Section 3.2. Despite the fact that a single lane ring-road is a very favorable
situation, the results were astonishing with a nearly complete disappearance of stop-
and-go waves and up to 40% fuel consumption reduction.

3.1.1 Limits in practical situations

While the controller in Eq. (18) works perfectly when the system is close to the
target steady-state, it suffers several limitations when the speed variance is high, all
related to the following fact: if an AV follows the controller in Eq. (18) while the
system undergoes large stop-and-go waves, it might crash in its leading vehicle at
the top of the wave. A natural quick fix would consist of adding a safety mechanism
that overrides the controller and brakes when the AV is too close from its leading
vehicle. However, if the AV is itself decelerating when at the top of the stop-and-go
wave, it propagates the stop-and-go wave and this destroys the stabilizing effect of
the controller. This is where the difficulty lies, and the reason why we consider these
two simple options.

• The first option is to replace vopt by min(vopt, vlead) where vlead is the velocity of
the vehicle in front of the AV. However, this does not prevent it from being caught
in a stop-and-go wave in numerical experiments. In some cases, the stop-and-go
wave reduces the average velocity in a manner that vlead is below vopt most of the
time. This, in turn, leads the AVs to propagate the stop-and-go wave instead of
dissipating it. This can be observed in Fig. 8 representing the speed variance of
vehicles with time of a straight stretch of road with 3 lanes. The road is 2000m and
5% of vehicles are AVs, while the 95% remaining are regular vehicles modeled
with Bando-FTL model. For the first 500s the AVs obey the same dynamics as
the regular vehicles and then start following the controller dynamics at t = 500s.

1 In [11], this variant is given as a discretized control law. We state it its continuous version.
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The simulation is done in MATLAB using a fourth order explicit scheme. We see
on Fig. 8 that a little before t = 500s, the speed variance is high, indicating heavy
stop-and-go waves, and this does not seem to change after the AVs are turned
on. The switch at t = 500s does not lead to any apparent reduction of the overall
speed variance of each lane, indicating that the AVs do not seem to have a real
smoothing effect in this case.

Fig. 8: Speed variance with respect to time in 3 lanes of a straight road, using the
controller with min(vopt, vlead) instead of vopt. AVs are turned on at t = 500s. The
different lanes are represented in different colors, the proportion of AVs in inflow is
5% and the same for each lane

• Another approach consists of adding to the control law a term that mimics a
regular vehicle behavior. For instance for a traffic flowmodelled with Bando-FTL
(see Eq. (5)), this would give the new control law

ÛvAV(t) = a(V(xlead(t) − xAV(t)) − vAV(t))

+ b vlead(t)−vAV(t)
(xlead(t)−xAV(t ))2

− k(vAV(t) − vopt(t)),
(22)

and the parameter k ∈ R properly chosen as well as the parameter a, b ∈ R
introduced in Eq. (5). When too close from the leading vehicle, the FTL term
is dominant and is expected to avoid crashes. However this approach was shown
in [7] to have some limitations: not only with the noise inherent to practical
situations there is a inferior bound to the penetration rate that can achieve the
stabilization of the system, the k needed for the controller to stabilize efficiently
the system increases exponentially when the penetration rate decreases linearly
and could become quickly unpractical.

Finally, another limit comes from the estimation of the steady-state speed vopt and
the possible subsequent errors. While underestimating vopt would mean diminishing
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the throughput, overestimating vopt could render the system unstable. Indeed, in
this case the AV tries to reach a higher speed than what the overall system can
reach. As a consequence it will always end up being too close to its leading vehicle,
triggering a safety brake and starting a wave again. This effect was already seen in
field experiments on a ring road [45].

3.2 Robust approach

Our approach to tackle the limitations mentioned in Section 3.1.1 and have a robust
controller is trying to stabilize another speed vcmd(t) instead of vopt. Motivated by the
field experiment in [11, 45], this speed should be time-dependent and the controller
then becomes

ÛvAV(t) = −k
(
vAV(t) − vcmd(t)

)
+ Ûvcmd(t), (23)

The term Ûvcmd is for compensating that vcmd might depend on t. Indeed, we recover
then (vAV(t)−vcmd(t))′ = −k(vAV(t)−vcmd(t)) so that the velocity of theAV converges
to vcmd(t). From this point, the goal is to find a vcmd that would conciliate two opposite
goals: being as large as possible to avoid decreasing the outflow, while making sure
that the AVs are decelerating as little as possible.

Our proposed algorithm to determine vcmd is the following, inspired by the TCP
algorithm used to reduce congestion in communication networks. The general phi-
losophy is to select a target speed, reduce it if the AV has to brake at some point
(meaning that the target speed was chosen too high compared to the stop-and-go
wave), and increase it slowly again. Besides, if the AV starts to have a headway
significantly larger than the usual headway in the stop-and-go wave, the speed is
increased to the target speed. Finally, if the AV is really too far from its leading
vehicle, vcmd is set to a free flow speed to catch up. This leads vcmd to have an
hysteresis behavior that allows to adapt to the current stop-and-go wave.

More precisely, we define three distances, d0, d1 and d2 ∈ R>0 (typically d0 = 4.5
, d1 = 25m and d2 = 100m) and two speeds:

• vdes = 0.95vopt, slightly slower than the steady-state speed vopt to compensate the
potential errors and overestimation of vopt which would make the system unstable,
as seen in the previous subsection.

• vfast a speed of free-flow, typically significantly higher than vopt.

Then, denoting the headway h ≡ xAV − xlead, we act for t ∈ [0,T] as follows:

• If h(t) < d0, then
vcmd(t) = vlead(t) (safety measure) (24)

• If h(t) ∈ (d0, d1], then we denote by t1 the last time at which h(t) crossed the
threshold d0 (if it does not exist we set t1 = 0 and have

vcmd = vdes min(c1 + c2(t − t1),1) (TCP-type hysteresis), (25)
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where c1 and c2 are design parameters with b = 0.8 typically.
• If h(t) ∈ [d1, d2), then vcmd = vdes
• If h(t) ≥ d2 then

vcmd = vfast (catching-up) (26)

Note that, by setting initially t1 = 0, we ensure that the AVwill start by stabilizing
the system to a speed that is significantly smaller than vdes. This will ensure that the
AV has some room to absorb a stop-and-go wave that would be already present in
the system.

4 Results

We present the implementation of our controller on a model representing a stretch
of the I-210 California described in Section 2.5. We consider a situation where too
many vehicles arrive from inflow compared to the outflow speed and the system
gets rapidly congested. After a time of 600s the road is entirely congested with
strong stop-and go waves (see Fig. 9 left-hand side). The AVs then are activated and
follow the control algorithm described in Section 3.2. They represent 5% of the total
number of vehicles and are spanned randomly among lanes in inflow with a uniform
distribution. In these simulations, the outflow speed is imposed at 5.5 m.s−1 while
vehicles are arriving with an inflow speed of 25.5 m.s−1. The road has five lanes
and is 1430 m long and represents a part of the State Route 134 as a segment of
the I-210. We observe an exceptionally large diminution of fuel consumption and a
large increase of the energy efficiency (+40% reduction of fuel consumption) while
having a comparable throughput (+1% vehicles per minute).

These numbers are quite impressive and, of course, have to be taken with pre-
caution for several reasons. First and foremost, the car-following model used for the
simulations (the IDMwith the chosen parameters) produces, in the given traffic flow
regime, strong stop-and-go traffic waves throughout the domain, so the uncontrolled
baseline state is governed by persistent strong braking and acceleration phases. Real
traffic flow may only rarely be in such an extreme strong waves state all over the
road; and some drivers may drive less aggressively. Second, it is assumed that the
uncontrolled vehicles always drive according to the chosen model dynamics and ac-
cept the control vehicles’ dynamics without any adverse reactions. That being said,
the results are not completely unrealistic. In the field, experiments on a ring-road
using an AV as a sparse controller [45], a 40% fuel reduction was obtained, which
is in the same ballpark.

Besides the absolute value of these numbers, it is interesting to compare to the
ideal baseline, namely the steady-state behavior where all vehicles keep the same
velocity and headway. This ideal baseline represents the lower possible bound on
fuel consumption (equivalently the higher bound on energy efficiency). In this case
the throughput is still roughly the same, despite an increase, (+5.8% vehicles per
hour) while the energy efficiency shows a reduction of fuel consumption by 55%
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with respect to the uncontrolled case. This means that the energy efficiency achieved
with our controller applied to 5% AVs is already quite close to the ideal situation in
terms of reduction of fuel consumption. Increasing the proportion of AVs logically
improves the energy efficiency, but with a decreasing marginal effect as it is bounded
anyway by the ideal case. This is summarized in Table 1.

Quantity Uncontrolled 2% AV 5% AV 15%AV 30% AV ideal
Throughput (vehicles per hour) 7319 7365 7353 7286 7262 7750
Throughput vs. baseline 0% +0.63% +0.46% −0.45% −0.77% +5.8%
Energy efficiency (miles per gallon) 18.1 27.4 32.0 35.5 36.5 40.4
Fuel consumption reduction 0% 34% 43% 49% 50% 55%

Table 1: Effect of AVs on the traffic energy efficiency

To visualize the effect on the stop-and-go waves, we present Fig. 9, which contains
the time space diagrams for each lane with and without the controller. The x axis
represent the time, the y axis the positions of the different vehicles at the considered
time, and the color the actual velocitywhere red stands for lowvelocities and green for
high velocities. On the left hand side of Fig. 9 there are only regular vehicles, while on
the right-hand side there are 5% of AVs equipped with the controller of the previous
section. The AVs are activated in the portion of time that is highlighted (upper-right
side). This means that, until reaching this time, they imitate human normal human
drivers (modelled by the Bando-FTLmodel) and as soon as they reach this time, they
start following the controller. We see that without any controllers strong stop-and-go
waves appear and propagate backward on the road. This is illustrated by the many
parallel lines of darker colors.

When adding the controllers these stop-and-go waves are partially dissipated
even though some still manage to remain. One could do the same with a much larger
proportion of AVs and see that, logically, even less waves appear as seen in Fig. 10
when one has 15% of AVs.

5 Conclusion

In this chapter we presented an initiative aiming at dissipating stop-and-go waves
by using a small number of autonomous vehicles (AVs) as sparse controllers for
traffic flow in a complex setting: a multilane highway. Because of the changes of
lane, the resulting system is of hybrid nature with boundary conditions which make
it difficult to study theoretically. We proposed several approaches to obtain control
algorithms, from Reinforcement Learning controllers to model-based controllers.
We have focused on finding robust model-based controllers when the traffic is highly
congested. In a highly congested situation the model-based controller exhibits a
high energy reduction compared with the uncontrolled case, even with a small
proportion of AVs also called penetration rate. Nevertheless, this controller has
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limitations and the research is still ongoing to ensure suitability for application to an
experimental setting. When increasing the proportion of AVs, the marginal gains in
energy efficiency are decreasing. Therefore, an interesting question is the existence
of an an optimal trade-off between penetration rate and energy efficiency.
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Fig. 9: Time-space diagrams with no control (left side) and 5% AVs (right-side).
Colors represent the vehicle velocities.
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Fig. 10: Time-space diagrams with 15% AVs (left) and 30% AVs (right). Colors
represent the vehicles velocities.


	A holistic approach to the energy-efficient smoothing of traffic via autonomous vehicles
	Amaury Hayat, Xiaoqian Gong, Jonathan Lee, Sydney Truong, Sean McQuade, Nicolas Kardous, Alexander Keimer, Yiling You, Saleh Albeaik, Eugene Vinistky, Paige Arnold, Maria Laura Delle Monache, Alexandre Bayen, Benjamin Seibold, Jonathan Sprinkle, Dan Work, Benedetto Piccoli
	Introduction
	Stop-and-go waves
	An initiative to increase energy efficiency

	Control system studied
	Microscopic traffic models: Bando-FTL model and IDM model
	Lane changing conditions for multilane traffic
	A controlled hybrid system
	A mean-field approach
	Numerical implementation and difficulties about modelling
	Energy model used

	Control design
	Ideal controller
	Robust approach

	Results
	Conclusion
	Appendix
	References
	References



