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Abstract

The potential lack of robustness to delays and characteristic velocities
is a well known feature of boundary feedback control of hyperbolic sys-
tems. We consider the case of a one-dimensional fluid system with the
flow rate as control input located at one boundary and the density as mea-
sured output located at the other boundary. Using a simple model where
friction and viscosity are neglected, the system is open-loop unstable but
it can be stabilized by a dynamic controller that involves a delayed output
feedback. However this control is not robust with respect to delay uncer-
tainties. Our main contribution is to show that this lack of robustness
is actually an artefact which stems from the assumption that the fluid
viscosity is negligible when modelling the fluid motion. In the presence of
a small unknown viscosity in the model, it appears that the non-robust
feedback for the inviscid case is actually a perfectly robust stabilizer for
the viscous system and that there is an intrinsic uniform margin of stabil-
ity which is independent of the viscosity value even if it is asymptotically
small.

1 Introduction

The lack of robustness of boundary feedback stabilization of hyperbolic systems
when there is a transmission delay between the output measurement and the
control input is a well known problem (see for instance [2], [3], [4], [14], [20], [30]
and the references therein). When sensing and actuation are not co-located (see
e.g. [1], [7], [8], [19], [22], [25], [26], [29]), a similar lack of robustness may occur

1



with respect to modelling uncertainties. The problem happens when the stabi-
lization requires a dynamic feedback control law that includes delayed values of
the output or relies, using a state observer, on the exact compensation of the
characteristic velocities of the plant. In that case, the lack of robustness means
that arbitrarily small modelling errors or unknown transmission delays may re-
sult in unstable solutions of a closed-loop system which is a priori theoretically
exponentially stable.

In a previous paper [7], we have discussed this problem for a simple unstable
transportation system with anti-located boundary actuation and sensing. For
that system, we have shown that the presence of a small additional diffusion term
in the model may be sufficient to guarantee the robustness of the control against
delay uncertainties and to compute an upper bound to the exponential decay
of the solutions. Related issues regarding the diffusion-robustness of feedback
control were also recently addressed for an advection-convection process in [9]
and for the viscous nonlinear Saint-Venant equations in [24].

In this article, using a simple model of fluid flow, we go further in the analysis
of the problem by demonstrating that a strict margin of stability, guaranteed by
the diffusion, holds even for an asymptotically small diffusion and that we are
able to give the exact value of this margin in the left half complex plane. This
means that, in the case of a liquid fluid flow, the apparent lack of robustness is
actually an artefact which stems from the assumption that the fluid viscosity is
negligible when modelling the fluid motion.

Our paper is organized as follows. The control problem is presented and
motivated in Section 2. We consider a classical simple linear model of the
motion of fluids when friction and viscosity are negligible. The control input is
the flow rate at one boundary and the measured output is the density at the
other boundary. It is first shown that this control system is open-loop unstable
and cannot be stabilized by a simple proportional output feedback. Then, it is
shown that the system can be stabilized by a dynamic controller that involves a
delayed output feedback. However, this control turns out to be not robust with
respect to delay uncertainties precisely because the delay requires a (utopian)
exact knowledge of the characteristic velocity.

The main contribution of this paper is to show that the robustness of the
control against delay uncertainties is recovered as soon as an arbitrary small
diffusion is present in the system. For that purpose, in Section 3, it is assumed
that the fluid is slightly viscous and the model is modified accordingly by in-
troducing a viscosity coefficient η. The corresponding (unstable) input-output
transfer function is computed. Then in Sections 4 and 5, we show that the
dynamic output (non robust) feedback designed for the inviscid case stabilizes
the viscous system. Furthermore, in this case, the control proves to be perfectly
robust, even if the (unknown) viscosity is almost negligible. In addition, and
this is a new result compared to our previous paper [7], using degree theory [10]
we are able to determine the exact value of the stability margin which appears
to be uniform with respect to the viscosity coefficient η (i.e. independent of the
value of η when η is small).

Some final conclusions are given in Section 6.
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2 Presentation and motivation of the control prob-
lem

Consider hyperbolic systems of two linear conservation laws over a finite interval
in one spatial dimension with general form:

∂tH + ∂xQ = 0, (1a)

∂tQ+ c1c2∂xH + (c1 − c2)∂xQ = 0, (1b)

where t ∈ [0,+∞) is the time coordinate, x ∈ [0, L] is the spatial coordinate, c1
and c2 are two real positive constants. In these equations H(t, x) is the density
and Q(t, x) is the flow density of some extensive quantity of interest. Therefore,
this system is called a “density-flow” system.

The model (1) can be used to represent many physical systems. In particular,
it can be a valid approximate linearized model for applications in fluid mechanics
where friction and diffusion are neglected. We can mention for example gas
pipelines where H is the gas density and Q is the gas flow rate (see e.g. [15]
and [18]), open channels where H is the water depth and Q is the water flow
rate (see e.g. [5, Chapter 1], [6] and [23]) or the motion of liquid fluids in rigid
pipes where H is the piezometric head and Q is the flow rate ([5, Chapter 1],
[17], [27]).

In this paper, we are concerned with the solutions of the Cauchy problem
for the system (1) under an initial condition:

H(0, x), Q(0, x), x ∈ [0, L], (2)

and two boundary conditions of the form

Q(t, 0) = Q0(t), Q(t, L) = Q∗, t ∈ [0,+∞), (3)

where Q0(t) is a time varying input flow which can be assigned by the opera-
tor while Q∗ is a given constant outflow, arbitrarily imposed by the operating
conditions.

Since any pair of constant states H(t, x) = H∗, Q(t, x) = Q∗,∀t and ∀x ∈
[0, L], can be a steady-state, it is clear that the system (1)-(2)-(3) has a con-
tinuum of non-isolated equilibria which are not asymptotically stable. It is
therefore relevant to study the feedback stabilization of this system.

In this paper, for the system (1)-(2)-(3), we address the boundary control
issue where it is assumed that both actuation and sensing are located at the
boundaries. The objective is to design an output feedback controller that reg-
ulates the density H(t, x) at a desired set point H∗ while keeping the system
steady state (H∗, Q∗) exponentially stable.

A fairly common situation in practice occurs when the control input is the
inflow rate Q0(t) and the measured output is the density H(t, 0), that is a
situation where actuation and sensing are co-located at the same boundary. In
that case it is well known that a simple proportional output feedback control is
sufficient to stabilize the system, see e.g. [5, Chapter 2].
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In this paper, however, we address the more challenging situation where actu-
ation and sensing are anti-located, with the control input Q0(t) at one boundary
and the measured output H(t, L) at the other boundary.

For simplicity, we consider the special case where the constant outflow Q∗ =
0 and where the two characteristic velocities are identical, i.e. c1 = c2 = c > 0.
In that case the model (1) becomes the following simple wave equation

∂tH + ∂xQ = 0, (4a)

∂tQ+ c2∂xH = 0, (4b)

where c is the wave celerity. For instance c =
√
gH∗ in the case of open channels

or c is the speed of sound in the case of fluids in pipes.
Now, introducing the following notations for the deviations of the system

states from the steady state

h(t, x) = H(t, x)−H∗, q(t, x) = Q(t, x)−Q∗, (5)

the open-loop control system (2)-(3)-(4) may be written

∂th(t, x) + ∂xq(t, x) = 0, (6a)

∂tq(t, x) + c2∂xh(t, x) = 0, (6b)

q(t, 0) = U(t), (6c)

q(t, L) = 0, (6d)

Y (t) = h(t, L), (6e)

with control input U(t) and measured output Y (t).
In the frequency domain, the system (6) is written

sh(s, x) + ∂xq(s, x) = 0, (7a)

sq(s, x) + c2∂xh(s, x) = 0, (7b)

q(s, 0) = U(s), (7c)

q(s, L) = 0, (7d)

Y(s) = h(s, L), (7e)

with s ∈ C being the Laplace complex variable. In these equations h(s, x),
q(s, x), Y(s) and U(s) denote the Laplace transforms of h(t, x), q(t, x), Y (t)
and U(t) respectively.

By differentiating (7a) with respect to x, we have

s∂xh(s, x) = −∂2
xxq(s, x). (8)

Using this relation in (7b), we get

s2q(s, x)− c2∂2
xxq(s, x) = 0. (9)
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Then, for any value of s 6= 0, the solution of this differential equation (9) is of
the form

q(s, x) = A(s)esx/c +B(s)e−sx/c. (10)

Using this expression in the boundary conditions (7c), (7d), (7e), we have

q(s, 0) = A(s) +B(s) = U(s), (11)

q(s, L) = A(s)esτ +B(s)e−sτ = 0, with τ =
L

c
, (12)

Y(s) = h(s, L) = −1

s
∂xq(s, L) =

1

c

(
−A(s)esτ +B(s)e−sτ

)
. (13)

Eliminating A(s) and B(s) between these three equations, we obtain the transfer
function of the open-loop control system (6):

Go(s) =
Y(s)

U(s)
=

2 e−sτ

c(1− e−2sτ )
. (14)

The poles of the system are the roots of the characteristic equation

e2sτ − 1 = 0. (15)

The open-loop system (6) is therefore clearly not asymptotically stable since all
poles are located on the imaginary axis.

Despite its apparent simplicity, this unstable system cannot be stabilized
with a simple proportional output feedback of the form

U(t) = −kcY (t) (16)

where kc 6= 0 is a control tuning parameter. Indeed, for the system (7) with the
control law (16) the characteristic equation of the closed-loop system is:

e2sτ + 2kce
sτ − 1 = 0. (17)

Solving this equation for esτ , we get

esτ = −kc ±
√

1 + k2
c . (18)

Then for any kc 6= 0 there is an infinity of system poles σ + iω lying on two
vertical lines with real parts:

σ = c ln
(√

1 + k2
c + |kc|

)
> 0 (19a)

or σ = c ln
(√

1 + k2
c − |kc|

)
< 0. (19b)

It follows that the unstable system (6) cannot be stabilized with the static
controller (16) since half of the poles of the closed loop have a strictly positive
real part. We conclude that the feedback stabilization necessarily requires a
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dynamic controller that involves delayed output values (this includes full-state
feedback control, given that the output measurement is located at a boundary).

From (14) it follows that the input-output dynamics of system (6) in the
time domain can alternatively be represented by the delay-difference equation

Y (t)− Y (t− 2τ) =
2

c
U(t− τ). (20)

Hence the system is exponentially stabilized with a simple delayed output feed-
back of the form

U(t) = − c
2
Y (t− τ) (21)

such that the closed-loop dynamics reduce to Y (t) = 0 ∀t after the initial tran-
sient.

It is however well known that the boundary feedback stabilization of hyper-
bolic systems with delayed control should be considered with caution because it
is sensitive to arbitrarily small delay modeling errors. For our case, this lack of
robustness can be highlighted by rewriting the model in Riemann coordinates
defined as

y1(t, x) := 1
2 (q(t, x) + c h(t, x)), (22a)

y2(t, x) := 1
2 (q(t, x)− c h(t, x)). (22b)

In these coordinates, the open-loop control system (6) is equivalent to

∂ty1(t, x) + c∂xy1(t, x) = 0, (23a)

∂ty2(t, x)− c∂xy2(t, x) = 0, (23b)

y1(t, 0) = −y2(t, 0) + U(t), (23c)

y2(t, L) = −y1(t, L), (23d)

Y (t) =
2

c
y1(t, L). (23e)

Moreover, a time domain representation of the dynamical control (21) may be
defined as

∂ty3(t, x) + c∂xy3(t, x) = 0,

y3(t, 0) = Y (t),

U(t) = − c
2
y3(t, L).

(24)

Closing the system (23) with the controller (24), the boundary conditions of the
closed-loop system can be expressed asy1(t, 0)

y2(t, L)

y3(t, 0)

 =

 0 −1 −c/2
−1 0 0

2/c 0 0


︸ ︷︷ ︸

K

y1(t, L)

y2(t, 0)

y3(t, L)

 . (25)
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Now, for the matrix K defined in (25), it can be shown that

ρ̄(K) =
√

2 for all c > 0, (26)

where the function ρ̄(K) is defined as follows:

ρ̄(K) := max
{
ρ
(
diag

{
e−iθ1 , e−iθ2 , e−iθ3

}
K
)

; (θ1, θ2, θ3)T ∈ R3
}
, (27)

ρ(M) denoting the spectral radius of the matrix M . For the computation of
ρ̄(K) we refer the reader to [7, Appendix A].

This is an important point because it is well known (see [28], [21, Chapter 9,
Theorem 6.1] or [5, Chapter 3, Theorem 3.8 and Corollary 3.10]) that ρ̄(K) < 1
is a necessary (and sufficient) condition to have a stability which is robust against
uncertainties in the characteristic velocities. In the framework of this paper,
this means that the control law (21) (or (24)) is not robust with respect to
uncertainties on the value of the celerity parameter c. More precisely, if we
assume that in the model (1) the characteristic velocities are c1 = c + ε1 and
c2 = c + ε2 with ε1 and ε2 representing small modelling uncertainties, then
equations (23a)-(23b) in Riemann coordinates are replaced by

∂ty1(t, x) + (c+ ε1)∂xy1(t, x) = 0, (28a)

∂ty2(t, x)− (c+ ε2)∂xy2(t, x) = 0, (28b)

and the closed-loop system may become unstable, with poles moving to the
right half complex plane even for arbitrarily small εi perturbations. This will
be illustrated in Figure 2 of Section 5.

In this paper, our contribution will be to show that this lack of robustness is
actually an artefact which stems from the assumption that the viscosity can be
neglected when modelling the fluid system (4). We shall show that the robust-
ness of the output feedback stabilization is recovered as soon as an arbitrary
small diffusion is present in the system even with the simple delay control law
(21).

3 The open-loop control system with viscosity

Let us modify the control system (6) by assuming that the fluid is slightly
viscous. For simplicity and without loss of generality, we assume a unit nominal
length L = 1 and a unit nominal delay τ = L/c = 1. The system dynamics in
the time domain are therefore simplified as follows:

∂th(t, x) + ∂xq(t, x) = 0, (29a)

∂tq(t, x) + ∂xh(t, x)− η∂2
xxq(t, x) = 0, (29b)

q(t, 0) = U(t), (29c)

q(t, 1) = 0, (29d)

Y (t) = h(t, 1). (29e)

7



An additional diffusion term η∂2
xxq is introduced in equation (29b) with the

viscosity coefficient η > 0. The other equations remain unchanged.
Here also it is easily seen that any pair of constant states h(t, x) = H∗, q(t, x) =

0, ∀t and ∀x ∈ [0, 1], is a steady-state corresponding to U(t) = 0. Thus the sys-
tem (29) has a continuum of non-isolated equilibria which are therefore not
asymptotically stable.

In the frequency domain, the system (29) is written

sh(s, x) + ∂xq(s, x) = 0, (30a)

sq(s, x) + ∂xh(s, x)− η∂2
xxq(s, x) = 0, (30b)

q(s, 0) = U(s), (30c)

q(s, 1) = 0, (30d)

Y(s) = h(s, 1). (30e)

Using equation (8) which also holds for this system, we have from (30b)

s2q(s, x)− (1 + ηs)∂2
xxq(s, x) = 0. (31)

Then, for any value of s 6= 0, the solution of this differential equation (31) is of
the form

q(s, x) = A(s)eλ(s)x +B(s)e−λ(s)x (32)

where λ(s) and −λ(s) are the roots of the polynomial

(1 + ηs)λ2 − s2 = 0. (33)

Using the solution (32) in the boundary conditions (30c), (30d), (30e), we have

q(s, 0) = A(s) +B(s) = U(s), (34)

q(s, 1) = A(s)eλ(s) +B(s)e−λ(s) = 0, (35)

Y(s) = h(s, 1) = −1

s
∂xq(s, 1) (36)

= −λ(s)

s
(A(s)eλ(s) −B(s)e−λ(s)). (37)

Eliminating A(s) and B(s) between these three equations, the transfer function
(see, for example, [12] and [13, Chapter 7]) of the open-loop control system (29)
is the meromorphic function:

G(s) =
Y(s)

U(s)
=

2 eλ(s)

(
√

1 + ηs)(e2λ(s) − 1)
. (38)

It can be checked that for all η 6= 0 the transfer function G(s) has a pole at the
origin. Therefore we recover that the open-loop system (29) is not asymptoti-
cally stable whatever the value of the viscosity η.
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4 Stability of the closed-loop system with vis-
cosity

Let us now assume that the system is closed with the control law (21) i.e.
U(t) = − 1

2Y (t− 1). In the frequency domain, this control law is

U(s) = − 1
2e
−sY(s). (39)

It follows that the characteristic equation of the closed-loop system (38), (39)
is:

G(η, s) = es
√

1 + ηs
(
es/
√

1+ηs − e−s/
√

1+ηs
)

+ 1 = 0. (40)

Our purpose is now to address the spectral stability of this closed-loop system.
For a given value of the viscosity η, the spectrum Sη of the closed-loop system
is the set of the poles which are the roots of the characteristic equation (40):

Sη = {s ∈ C : G(η, s) = 0}. (41)

Moreover, the maximal spectral abscissa is defined as the supremum of the real
parts of the spectrum and denoted as follows:

ση := sup{<(s) : s ∈ Sη}. (42)

Our goal is to know whether this maximal spectral abscissa is negative or, in
other words, whether there are no unstable poles located in the right hand side
of the complex plane. The spectrum is illustrated in Figure 1 for η = 0.005, 0.01
and 0.1. From this figure it can be seen that, at least for η sufficiently small, it
appears that the maximal spectral abscissa ση ' − ln(2) is indeed negative and
seems to be independent of η. This intuitive observation is in accordance with
the following theorem which is the main contribution of this paper.

Theorem 1 For every δ ∈ (0, ln(2)), there exists η∗ > 0 such that

− ln(2)− δ < ση < − ln(2) + δ (43)

for all η ∈ (0, η∗].

With a view to proving Theorem 1, let us now consider a sequence

(ηn)n∈N with 0 < ηn ∈ R, ∀n ∈ N

and lim
n→+∞

ηn = 0+, (44)

and an associated sequence of system poles

(sn)n∈N such that sn ∈ Sηn ,∀n ∈ N. (45)

Obviously it follows from (40) that

G(ηn, sn) = esnϑn

(
esn/ϑn − e−sn/ϑn

)
+ 1 = 0, ∀n ∈ N (46)
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Figure 1: The spectrum of the closed-loop system for η = 0.005, 0.01 and 0.1.

with
ϑn =

√
1 + ηnsn. (47)

In order to prove Theorem 1, we will look to the adherent points of the sequences
(sn)n∈N when n→ +∞ (i.e. when ηn → 0+). By definition, we know that s̄ is
an adherent point of a sequence (sn)n∈N if and only if there exists a subsequence
which converges to s̄. With a slight abuse of notation, we will often write

sn −→ s̄ or lim
n→+∞

sn = s̄ (48)

to signify that s̄ is an adherent point of a sequence (sn)n∈N but it is implied
that the convergence in fact only relies on the adequate subsequence. This holds
also for all other sequences that are introduced later in this article.

The proof of Theorem 1 is built from the two following lemmas.

Lemma 1 Let (ηn)n∈N be a sequence of the form (44) and (sn)n∈N be an asso-
ciated sequence of the form (45). Denoting σn = <(sn) and ωn = =(sn), let us
consider induced associated sequences (σn)n∈N and (ηnω

2
n)n∈N. Then

(i) if σ̄ is an adherence point of the sequence (σn)n∈N, then σ̄ ∈ [−∞,+∞);

(ii) if σ̄ ∈ (−∞,+∞) and 2θ is an adherence point of the sequence (ηnω
2
n)n∈N,

then 2θ ∈ [0,+∞).

The proof of this lemma is given in Appendix A.

Lemma 2 Let (ηn)n∈N be a sequence of the form (44) and (sn)n∈N be any
associated sequence of the form (45) with induced associated sequences (σn)n∈N
and (ηnω

2
n)n∈N. Let σ̄ be an adherence point of the sequence (σn)n∈N. Then

σ̄ 6 − ln(2). (49)
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Proof. From Lemma 1, we know that σ̄ ∈ [−∞,+∞). If σ̄ = −∞ the lemma is
obviously satisfied. Hence, according to Lemma 1, we assume from now on that

lim
n→+∞

σn = σ̄ ∈ (−∞,+∞) (50a)

and lim
n→+∞

ηnω
2
n = 2θ ∈ [0,+∞). (50b)

From (50), as n→ +∞, we have

ϑn =
√

1 + ηnsn = 1 + o(1), (51)

sn
ϑn

= sn

(
1− ηnsn

2

)
+ o(1) = σ̄ + θ + iωn + o(1), (52)

esn = eσ̄eiωn + o(1). (53)

Then from (46), (51), (52) and (53), we get

eσ̄eiωn
(
eσ̄+θ+iωn − e−σ̄−θ−iωn

)
+ 1 = o(1), (54)

which implies that (
e2σ̄+θ+2iωn − e−θ

)
+ 1 = o(1). (55)

Looking at the imaginary part of the left and right hand side of (55), we obtain
that either

e2iωn = 1 + o(1) as n→ +∞, (56)

or

e2iωn = −1 + o(1) as n→ +∞. (57)

Let us first assume that (56) holds. From (55) and (56), we get(
e2σ̄+θ − e−θ

)
+ 1 = 0, (58)

which implies that
e2σ̄ = e−2θ − e−θ. (59)

Since θ ∈ [0,+∞), (59) leads to e2σ̄ ≤ 0 which is impossible. Hence (56) cannot
hold and therefore we must have (57). As above we now get

e2σ̄ = e−θ − e−2θ. (60)

Note that

max{e−θ − e−2θ; θ ∈ [0,+∞)} =
1

2
− 1

4
=

1

4
. (61)

Moreover the maximum is achieved for θ = ln(2). Then, from (60) and (61), we
finally get that

σ̄ 6
1

2
ln

(
1

4

)
= − ln(2). (62)
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This completes the proof of Lemma 2.
Proof of Theorem 1.

Now, denoting σ = <(s) and ω = =(s) and introducing the following change
of variables

γ2 = η, ϕ = ωγ, γ ∈ [0,+∞), (63)

we have from (40) and (63):

G(η, s) = eσ+iϕ/γ ϑ̃
(
e(σ+iϕ/γ)/ϑ̃ − e−(σ+iϕ/γ)/ϑ̃

)
+ 1

= G̃(γ, σ, ϕ) (64)

with
ϑ̃ :=

√
1 + γ2σ + iγϕ. (65)

Let B ∈ C∞(R;C) be defined by

B(ϕ) := −e−ϕ
2/2 + 1 (66)

and A : (0,+∞)× R× R→ C be defined by

A(γ, σ, ϕ) := (G̃(γ, σ, ϕ)−B(ϕ))e−2iϕ/γ . (67)

From (64), (66) and (67), we can show that there exists γ0 > 0 such that:

A can be extended as a continuous function

on [0, γ0)× (−2 ln(2),+∞)× R.

Indeed, there exists γ0 > 0 such that for any (γ, σ, ϕ) ∈ [0, γ0)×(−2 ln(2),+∞)×
R,

<(ϑ̃2) = <(1 + γ2σ + iγϕ) > 0, (68)

and therefore the map (γ, σ, ϕ) → 1/
√

1 + γ2σ + iγϕ is continuous (since the
square root is holomorphic on C\R−). From (67) this means that A is continuous
on [0, γ0)× (−2 ln(2),+∞)× R. Therefore, in order to get (4), it only remains
to look at the behavior of the map A as γ → 0+. From (64), (66) and (67), we
have

A(γ, σ, ϕ) = eσ(1+1/ϑ̃)e−i(ϕ/γ)(1−1/ϑ̃)ϑ̃

− eσ(1−1/ϑ̃)e−i(ϕ/γ)(1+1/ϑ̃)ϑ̃+ e−ϕ
2/2e−2iϕ/γ , (69)

The right hand side of the first line of (69) tends to e2σ+ϕ2/2 when γ → 0+. For
the terms in the second line of (69) we have, as γ → 0+,

− eσ(1−1/ϑ̃)e−i(ϕ/γ)(1+1/ϑ̃)ϑ̃+ e−ϕ
2/2e−2iϕ/γ

= e−ϕ
2/2e−2iϕ/γ

− (1 + o(1))e−i(ϕ/γ)(2−(γ2σ+iγϕ)/2+o((γ2σ+iγϕ)))

= e−ϕ
2/2e−2iϕ/γ − (1 + o(1))e−2i(ϕ/γ)−ϕ2/2+o(1)

= (e−ϕ
2/2e−2iϕ/γ)o(1)

(70)
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which clearly tends to 0 when γ → 0+, irrespective of σ and ϕ. Still denoting
by A this continuous extension, we then have

A(0, σ, ϕ) = e2σ+ϕ2/2, ∀σ ∈ (−2 ln(2),+∞), ∀ϕ ∈ R. (71)

Note that, by (66) and (71), we have

A(0,− ln(2),
√

2 ln(2)) =
1

2
, B(

√
2 ln(2)) =

1

2
(72)

and consequently

−A(0,− ln(2),
√

2 ln(2)) +B(
√

2 ln(2)) = 0. (73)

In order to prove Theorem 1, the idea is then to look for a solution (σ̃, ϕ̃) of the
characteristic equation (see (67))

G̃(γ, σ̃, ϕ̃) = e2iϕ̃/γA(γ, σ̃, ϕ̃) +B(ϕ̃) = 0, (74)

such that σ̃ is close to − ln(2), ϕ̃ is close to
√

2 ln(2) and e2iϕ̃/γ is close to −1 if
γ is sufficiently small. We can look for this solution by using the degree theory
(see [10, Appendix B]). Actually we shall see that the condition e2iϕ̃/γ ' −1
must not be imposed a priori but is a consequence of the requirements that
σ̃ ' − ln(2), ϕ̃ '

√
2 ln(2) and (74) are satisfied.

In order to use the degree theory, we consider an open rectangular domain
Ωγ ⊂ R2 defined by

Ωγ =
(
− ln(2)− δ,− ln(2) + δ

)
×
(
k(γ)πγ, (k(γ) + 1)πγ

)
(75)

and the function

φγ : (σ, ϕ)→ e2iϕ/γA(γ, σ, ϕ) +B(ϕ) ∈ C ≡ R2 (76)

defined on the closure Ωγ of the domain Ωγ , with the function k(γ) defined as

k(γ) :=

⌊√
2 ln(2)

πγ

⌋
. (77)

We then have the following lemma.

Lemma 3 There exists γ1 > 0 such that, for every γ ∈ (0, γ1),

degree
(
φγ ,Ωγ ,0

)
= 1. (78)

Proof. According to the degree theory (see [10, Appendix B]), equality (78) just
means that, if (σ, ϕ) follows the boundary of the rectangle Ωγ clockwise, then
the function φγ describes a curve in R2 that does not pass through the origin
0 but encircles the origin exactly once and in the clockwise direction. This is
shown in Appendix B.
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It follows from Lemma 3 (see, for example, [10, Proposition B.10]) that, for
any δ ∈ (0, ln(2)) and any γ ∈ (0, γ1], there exists

(σ̃, ϕ̃) ∈ (− ln(2)− δ,− ln(2) + δ)× (k(γ)πγ, (k(γ) + 1)πγ) (79)

such that (74) holds. Let

s̃ = σ̃ + i
ϕ̃

γ
. (80)

It follows from (64), (74) and (80) that for any γ ∈ (0, γ1]

G(γ2, s̃) = 0. (81)

Hence, we have shown that, for any η ∈ (0, γ2
1 ], there exists s̃ ∈ Sη with <(s̃) ∈

(− ln(2)− δ,− ln(2) + δ) and consequently that

− ln(2)− δ < ση. (82)

Moreover (see the proof of Theorem 1 in [7]) Lemma 2 implies that there exists
η1 > 0 such that

ση < − ln(2) + δ ∀η ∈ (0, η1]. (83)

We conclude that Theorem 1 is satisfied with η∗ = min{γ2
1 , η1}.

Remark 1 Since, for every η > 0, there exists δη > 0 such that the function
s → G(η, s) is holomorphic on {z ∈ C | <(z) > δη}, then its degree gives
exactly the number of zeroes of G (see, for example, [16, pages 45 and 46]).
In particular, if η = γ2 > 0 is sufficiently small, there is one and only one s̃
satisfying (81) such that

<(s̃) ∈ (− ln(2)− δη,− ln(2) + δη), (84)

ω̃ := =(s̃) ∈ (k(γ)π, (k(γ) + 1)π). (85)

Note that (77) and (85) imply that

lim
η→0+

ηω̃2 = 2 ln(2). (86)

Remark 2 The degree theory was also used in [11] to study the spectrum of a
closed-loop partial differential equation control system to deal with high frequency
issues, but in a simpler situation.

Remark 3 Our proof of the existence of (σ̃, ϕ̃) as above uses very mild as-
sumptions on the maps A and B, namely that they are simply two continu-
ous functions. The proof can be extended to more general continuous functions
A : [0,+∞)× R× R→ R2 and B : [0,+∞)× R× R→ R2. Assume that there
exists σ∗ ∈ R, δ∗ ∈ (0,+∞) and ϕ∗ ∈ (0,+∞) such that

A(0, σ∗, ϕ∗) = B(0, σ∗, ϕ∗) 6= 0, (87)
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and the map
σ → |A(0, σ, ϕ∗)| − |B(0, σ, ϕ∗)| (88)

is strictly monotone on [σ∗ − δ∗, σ∗ + δ∗].
Then the above proof can be adapted to get that, for every δ0 ∈ (0, δ∗), there

exists γ0 such that, for every γ ∈ (0, γ0), there exists σ̃ ∈ R and ϕ̃ ∈ R such that

G̃(γ, σ̃, ϕ̃) = e2iϕ̃/γA(γ, σ̃, ϕ̃) +B(γ, σ̃, ϕ̃) = 0, (89)

(σ̃, ϕ̃) ∈ (σ∗ − δ0, σ∗ + δ0)× (k(γ)πγ, (k(γ) + 1)πγ), (90)

where the function k is defined by

k(γ) :=

⌊
ϕ∗
πγ

⌋
. (91)

This generalization can be used, for instance, to solve Conjecture 1 in our previ-
ous paper [7] where we addressed the output feedback stabilization of an unstable
interconnection of transport systems with anti-located sensing and control.

Remark 4 In this section, to simplify the calculations, we addressed the special
case where the model is normalized with a unit celerity c = 1 and a unit length
L = 1. In that case we found that, with a small viscosity η, there is a stability
margin SM = ln(2) which is independent of the value of η. But obviously, by
following the same approach, the stability margin can also be determined in the
general case where c and L have arbitrary positive real values. Considering the
control system (with the notations defined in Section 2)

∂tH + ∂xQ = 0, (92a)

∂tQ+ c2∂xH − η∂xxQ = 0, (92b)

Q(t, 0) = U(t), (92c)

Q(t, L) = Q∗, (92d)

Y (t) = H(t, L), (92e)

under an output feedback control law

U(t) =
c

2

(
H∗ −H(t− τ, L)

)
with τ =

L

c
, (93)

it can be shown that the stability margin is

SM =
c

L
ln(2) (94)

for the closed-loop system (92), (93). As one might intuitively expect, we see
that the stability margin increases with the celerity c and decreases with the
length L.
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5 Robustness analysis.

In order to analyze the robustness of the control, we now assume that there is
some parameter uncertainty in the fluid flow model. We therefore introduce an
additional perturbation ε such that the normalized open-loop system (29) in the
time domain is now written with a celerity term c2 = 1 + ε instead of c2 = 1:

∂th(t, x) + ∂xq(t, x) = 0, (95a)

∂tq(t, x) + (1 + ε)∂xh(t, x)− η∂2
xxq(t, x) = 0, (95b)

q(t, 0) = U(t), (95c)

q(t, 1) = 0, (95d)

Y (t) = h(t, 1). (95e)

We suppose, as before, that the system is closed with the control law (21):

U(t) = − 1
2Y (t− 1). (96)

Remark that this control law depends on the theoretical delay (τ = 1), ignoring
the uncertainty represented by ε corresponding to a delay τ = 1/

√
1 + ε.

The characteristic equation of the closed-loop system in the frequency do-
main is then modified as follows:

Gε(η, s) =

es
√

1 + ε+ ηs
(
es/
√

1+ε+ηs − e−s/
√

1+ε+ηs
)

+ 1 = 0. (97)

As in the previous section, we introduce the spectrum Sη,ε and the maximal
abscissa ση,ε defined by

Sη,ε := {s ∈ C : s is solution of (97)}, (98)

ση,ε := sup{<(s) : s ∈ Sη,ε}. (99)

We remark that, by definition, we have

Sη,0 = Sη and ση,0 = ση. (100)

We then have the following robustness theorem.

Theorem 2 Let δ > 0 and η > 0 be such that Theorem 1 holds, i.e.

ση,0 6 −ln(2) + δ. (101)

Then there exists ε1 > 0 such that for any ε ∈ (−ε1, ε1) the maximal spectral
abscissa ση,ε satisfies

ση,ε 6 −ln(2) + 2δ. (102)
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Figure 2: Spectrum of the closed-loop system: influence of viscosity on stability
in case of parameter uncertainty.

The proof of this theorem is omitted because it is quite similar to the proof of
Theorem 2 in [7].

The theorem is illustrated in Figure 2. In this figure, we can see what hap-
pens in the situation where there is no viscosity (η = 0) but a slight parameter
uncertainty (ε = 0.1) such that the actual delay is τ = 0.95 instead of τ = 1.
Although the ideal system (without modelling uncertainty) should be expo-
nentially stable, it appears that it becomes unstable with poles (represented by
orange dots in Figure 2) moving to the right-half complex plane, showing clearly
the lack of robustness.

In contrast, when there is some viscosity (η = 0.01) and no uncertainty (ε =
0), we know from Theorem 1 that the closed-loop system must be exponentially
stable as it can be seen with the spectrum of green dots (actually reprinted from
Figure 1) which is entirely strictly located in the left half plane.

Finally, illustrating Theorem 2, the robustness to modelling uncertainty (ε =
0.1) in the presence of a small viscosity (η = 0.01) is clearly evidenced by the
spectrum of blue dots which, resulting from a small shift of the green spectrum,
remains entirely in the left half plane.

6 Conclusion

We have discussed the output feedback stabilization of an unstable fluid system
with anti-located boundary sensing and actuation. We have shown that the
system can be stabilized by a dynamic controller that involves a delayed output
feedback which is non-robust with respect to delay uncertainties. Then, we
have shown that the designed control law can, however, stabilize the system in
a robust way when there is a small unknown viscosity. Furthermore, there is an
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intrinsic uniform margin of stability which is independent of the viscosity value
even if it is asymptotically small.
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A Proof of Lemma 1

For convenience, let us first recall the characteristic equation (46):

G(ηn, sn) = esn
√

1 + ηnsn

(
esn/

√
1+ηnsn

− e−sn/
√

1+ηnsn
)

+ 1 = 0, ∀n ∈ N. (103)

Proof of (i)
Let us assume by contradiction that σ̄ = +∞ and therefore that σn > 0 if

n is sufficiently large, which is always assumed from now on. This implies that

|esn | → +∞ and |
√

1 + ηnsn| > 1. (104)

Then it follows from (103) that

lim
n→+∞

(
esn/

√
1+ηnsn − e−sn/

√
1+ηnsn

)
= 0. (105)

This can be written as limn→+∞
(
Xn −X−1

n

)
= 0 with Xn = esn/

√
1+ηnsn and

implies that both Xn and X−1
n are bounded. Therefore, since ||Xn|− |Xn|−1| ≤

|Xn −X−1
n |, (105) implies that 1 is the only possible adherence value for |Xn|

and therefore
|esn/

√
1+ηnsn | → 1. (106)
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We denote zn = 1/
√

1 + ηnsn. One has

zn =

√
1 + ηnσn − iηnωn√

(1 + ηnσn)2 + (ηnωn)2
, (107)

which implies that, since 1 + ηnσn > 0,

0 ≤ |=(zn)| ≤ 1√
2

1

((1 + ηnσn)2 + (ηnωn)2)1/4
=

1√
2
|zn|

and therefore that

0 ≤ |=(zn)| ≤ 1√
2
|zn| 6 <(zn) 6 |zn|. (108)

With these notations (106) implies

|eσn<(zn)−ωn=(zn)+i(σn=(zn)+ωn<(zn))| → 1, (109)

thus
σn<(zn)− ωn=(zn)→ 0. (110)

We restrict to a subsequence such that ωn converges in [−∞,+∞]. The case
where ωn → 0 can be discarded because, in this case, from (108), ωn=(zn)→ 0
and σn<(zn)→ +∞ which is in contradiction with (110). Thus we can assume
that n is large enough such that ωn > 0 (resp. ωn < 0). From (107), one can see
that if ωn > 0 (resp. ωn < 0) then <(zn) > 0 and =(zn) < 0 (resp. =(zn) > 0).
Hence since σn > 0 we deduce from (110) that

|σn<(zn)|+ |ωn=(zn)| → 0. (111)

Using (111) together with (108) gives

|σn||zn|+ |ωn=(zn)| → 0. (112)

If there exists C > 0 such that for n sufficiently large |ηnωn| ≤ C(1 + |ηnσn|)
then

|σn||zn| =
σn

((1 + ηnσn)2 + (ηnωn)2)1/4

≥ σn
(1 + C2)1/4(1 + ηnσn)1/2

→ +∞, (113)

and this is in contradiction with (112). Thus, for n sufficiently large we can
assume that |ηnωn| > 1 + |ηnσn| (at least up to a subsequence) and therefore,
using (107), there exists a c > 0 independent of n such that |=(zn)| ≥ c|zn|.
This, combined with (112), gives

(|σn|+ |ωn|)|zn| → 0. (114)
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From the definition of zn, we have sn/
√

1 + ηnsn → 0. Taking the square, this
leads to

|sn|∣∣∣ 1
sn

+ ηn

∣∣∣ → 0. (115)

Since |sn| ≥ σn → +∞ and ηn is bounded, we have a contradiction. This
concludes the proof of (i).
Proof of (ii)

Since (ηnω
2
n) is non-negative for all n it follows directly that 2θ > 0. Let us

assume by contradiction that 2θ = +∞. We have

sn√
1 + ηnsn

=
(σn + iωn)

√
1 + σnηn − iωnηn√

(1 + ηnσn)2 + (ωnηn)2
. (116)

Let α denote an adherence point of the sequence (ηnωn). We consider succes-
sively the case where α ∈ [−∞,+∞] \ {0} and the case where α = 0.
• If α ∈ [−∞,+∞] \ {0}, then the sequence (ωn) is unbounded since ηn → 0

and we can restrict to a subsequence (σn, ωn) such that ωn → +∞ (resp. ωn →
−∞) and, from (116),

sn√
1 + ηnsn

=
ωn
|ωn|

(o(1) + i)
√

1 + o(1)− iωnηn√
o(1) + η2

n

, (117)

where the o(1) are real valued. Thus

<
(

sn√
1 + ηnsn

)
= − ωn
|ωn|

[
=

(√
1 + o(1)

|ωnηn|
− i ωnηn
|ωnηn|

)

+ o(1)<

(√
1 + o(1)

|ωnηn|
− i ωnηn
|ωnηn|

)]√
|ωnηn|
o(1) + η2

n

. (118)

We then have, for α ∈ R \ {0},√
1 + o(1)

|ωnηn|
− i ωnηn
|ωnηn|

→

√
1− iα
|α|

(119)

and for α = ±∞ √
1 + o(1)

|ωnηn|
− i ωnηn
|ωnηn|

→
√
∓i (120)

such that, since α 6= 0,

lim
n→+∞

<

(√
1

|ωnηn|
+ o(1)− i ωnηn

|ωnηn|

)
∈ (0,+∞),

lim
n→+∞

=

(√
1

|ωnηn|
+ o(1)− i ωnηn

|ωnηn|

)
∈ (−∞,+∞) \ {0}.

(121)
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From (118) and (121) we deduce that

<
(

sn√
1 + ηnsn

)
→ −∞ or <

(
sn√

1 + ηnsn

)
→ +∞, (122)

which implies that

lim
n→+∞

∣∣∣esn/√1+ηnsn − e−sn/
√

1+ηnsn
∣∣∣ = +∞. (123)

Since σ̄ ∈ (−∞,+∞) by assumption, we deduce that |eσn+iωn | → eσ̄ ∈ (0,+∞)
and |

√
1 + ηnsn|2 ≥ 1/2 for n sufficiently large. Hence, using (123),

lim
n→+∞

∣∣∣esn√1 + ηnsn

∣∣∣ ∣∣∣esn/√1+ηnsn − e−sn/
√

1+ηnsn
∣∣∣

= +∞, (124)

which is in contradiction with (46).
• If α = 0, then ηnsn → 0. Recall that ω2

nηn → +∞ by assumption thus the
sequence (ωn) is again unbounded and we can select a subsequence such that
ωn → +∞ (resp. −∞). Then, we have

sn√
1 + ηnsn

= sn

(
1− ηnsn

2
+ o(ηnsn)

)
= (σn + iωn)

(
1− ηn(σn + iωn)

2
+ o(ηnsn)

)
,

(125)

where the function o(ηnsn) can be complex valued. Hence

<
(

sn√
1 + ηnsn

)
= (1 + o(1))σn +

ω2
nηn
2

(1 + o(1))→ +∞, (126)

where we use that σn/ωn → 0. This means that we have again (123)–(124) and
a contradiction.

This completes the proof of Lemma 1.

B Proof of Lemma 3

Recall that δ ∈ (0, ln(2)) and γ ∈ (0, γ0]. Since A and B are continuous on
[0, γ0)× (− ln(2)− δ,− ln(2) + δ)× R, we have

φγ(σ, k(γ)πγ) = 2e2σ +
1

2
+ o(1), (127)

φγ(− ln(2) + δ, ϕ) =
1

2
(e2iϕ/γe2δ + 1) + o(1), (128)

φγ(σ, (k(γ) + 1)πγ) = 2e2σ +
1

2
+ o(1), (129)

φγ(− ln(2)− δ, ϕ) =
1

2
(e2iϕ/γe−2δ + 1) + o(1), (130)
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where o(1) refers to functions that tend to 0 in the C0-norm when γ → 0+.
These estimates are direct consequences of (66), (71) and (76). When (σ, ϕ)
follows the boundary of the rectangle (− ln(2)−δ,− ln(2)+δ)×(k(γ)πγ, (k(γ)+
1)πγ) one has:

• on the left and right boundaries, the function 2e2σ + 1/2 remains on the
half real line (0,+∞);

• on the upper boundary σ = − ln(2) + δ, as ϕ/γ increases from k(γ)π to
(k(γ)+1)πγ, the function (1/2)(e2iϕ/γe2δ+1) never meets 0 but describes
a closed curve independent of γ > 0 which encircles 0 exactly once and
in the clockwise direction since 2ϕ/γ − 2k(γ)π increases from 0 to 2π and
e2δ ∈ (1,+∞);

• on the lower boundary σ = − ln(2)− δ, the function (1/2)(e2iϕ/γe−2δ + 1)
does not pass through 0 but describes a curve independent of γ > 0 which
remains in the strict right-hand side of the complex plane {z ∈ C | <(z) >
0} since |e2iϕ/γe−2δ| < 1.

Hence, using also (127) to (130), there exists γ1 ∈ (0, γ0) such that, for every
γ ∈ (0, γ1), when (σ, ϕ) follows the boundary of the rectangle Ωγ in the clockwise
direction, the whole curve described by φγ does not pass through the origin 0
but encircles the origin exactly once and in the clockwise direction, which means
that (78) holds. This completes the proof of Lemma 3.
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