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ABSTRACT

Current state-of-the-art audio analysis systems rely on pre-
trained embedding models, often used off-the-shelf as (frozen)
feature extractors. Choosing the best one for a set of tasks is the
subject of many recent publications. However, one aspect often
overlooked in these works is the influence of the duration of audio
input considered to extract an embedding, which we refer to as Tem-
poral Support (TS). In this work, we study the influence of the TS
for well-established or emerging pre-trained embeddings, chosen to
represent different types of architectures and learning paradigms.
We conduct this evaluation using both musical instrument and envi-
ronmental sound datasets, namely OpenMIC, TAU Urban Acoustic
Scenes 2020 Mobile, and ESC-50. We especially highlight that Au-
dio Spectrogram Transformer-based systems (PaSST and BEATs)
remain effective with smaller TS, which therefore allows for a dras-
tic reduction in memory and computational cost. Moreover, we
show that by choosing the optimal TS we reach competitive results
across all tasks. In particular, we improve the state-of-the-art results
on OpenMIC, using BEATs and PaSST without any fine-tuning.

Index Terms— audio embeddings, acoustic scene classification,
instrument recognition, temporal support, transformers

1. INTRODUCTION

In the audio processing domain, the lack of vast task-specific an-
notated datasets has been a persistent challenge. This scarcity has
led to the development of models that are pre-trained on large-scale
and diverse audio datasets, enabling them to generate very effective
representations [1, 2]. These pre-trained models are subsequently ei-
ther fine-tuned or used as frozen feature extractors when applied to
smaller task-specific datasets [3, 4, 5].

Notably, pre-trained audio models are typically trained using
either Supervised Learning (SL) [6, 7, 8] or Self Supervised Learn-
ing (SSL) techniques [9, 10, 11, 12]. While Convolution Neural
Network (CNN) architectures were once the prevailing choice, the
newer Audio Spectrogram Transformer (AST) architectures [13]
have proven to be more effective than CNNs in numerous scenar-
ios. To assess the effectiveness and the generalization ability of
such models across diverse downstream tasks, various benchmark-
ing frameworks and challenges have been proposed [14, 15, 16, 9],
aiding in the selection of the most suitable frozen pre-trained model
to develop audio analysis systems.

However, one aspect that has not been systematically addressed
in model evaluation is the impact of the duration of audio input con-
sidered for the extraction of an embedding, which we refer to as
Temporal Support (TS). Remarkably, the subject of TS has received
limited consideration in current research, with only one study, to
our knowledge, addressing it [17]. In this study, the authors show
that altering the TS of a PaSST model from 160 ms to 640 ms im-
proves the results on the DCASE 2016 Task 2 dataset [18]. Shedding
light on the influence of the TS in model performance, we conduct
an in-depth evaluation of a selection of well-established and current
state-of-the-art pre-trained models.

We selected the models to study based on four criteria: i) data
used for training: we chose models that were pre-trained using Au-
dioSet [1], a dataset rich in both musical content and environmental
sounds; ii) training paradigm: we considered SL vs SSL approaches;
iii) type or architecture: CNN vs AST variants; and iv) levels of
complexity: choosing both lightweight and computationally inten-
sive models. This resulted in the selection of BYOL-A [9], PaSST
[8], and BEATs [10]. Needless to say, the selection was also moti-
vated by the recent success of these models in various audio classi-
fication tasks.

Our evaluation of these frozen pre-trained audio embeddings
extends across three distinct audio classification tasks: Instrument
Recognition (IR) using OpenMIC [19], Audio Scene Classifica-
tion (ASC) employing TAU Urban Acoustic Scenes 2020 Mobile
[20], and Environmental Sound Classification (ESC) utilizing ESC-
50 [21]. We chose these datasets as reference results exist for them
in previous works with most of the selected embeddings [17, 15, 9].
We adopted a simple and uniform classification protocol across
these datasets for all pre-trained models to ensure a fair and robust
basis for comparative analysis.

The contributions of this paper are as follows. Firstly, we pro-
vide valuable guidelines for the selection of pre-trained audio em-
beddings with regard to the influence of TS. Notably, we highlight
the efficacy of AST models such as PaSST and BEATs, even when
operating with smaller TS across all tasks. Reducing TS substan-
tially decreases memory and computational overhead at inference
time. Secondly, through the selection of the optimal TS, we improve
the state-of-the-art results on the OpenMIC dataset using BEATs and
PaSST without resorting to any fine-tuning procedure. Finally, we
explored the utility of intermediate layer representations when using
PaSST and BEATs, enhancing overall results.

2. METHOD

The aim is to use a frozen pre-trained model, denoted as f(·), to
project audio instances into embeddings. These embeddings are then
used to make class predictions using a simple classification probe
denoted as g(·).



Fig. 1: Projection of an audio instance X into an embedding E with
pre-trained model f(·), using a Temporal Support δt. This is fol-
lowed by the label prediction facilitated by a classification probe g(·)
and aggregation operation µ(·).

2.1. Embedding projection using f(·)

Given an audio instance X = (xn)n∈{1,...,N}, where N represents
the number of audio samples, we project X into an embedding space
using the pre-trained model f(·). This result in an embedding se-
quence E = (et)t∈{1,...,T}, where T corresponds to the number of
embedding vectors, and et ∈ Rm with m indicating the dimension-
ality of the embedding. Typically, generating a single embedding
entails feeding a segment of X as input of f(·). We denote by Tem-
poral Support, δt, the duration (in seconds) of this segment. The
number of embeddings T is a function of N , and the value of δt.
Precisely, T can be calculated as follows: T = ⌊ N

δt×sr
⌋, where sr is

the sample rate of X. To illustrate, if we consider δt = 1 and an au-
dio instance of 10 s, we obtain 10 embeddings (et)t∈{1,...,10}. For a
given embedding system, δt should not be chosen to be too small and
is always assumed to be significantly greater than the length of the
analysis window used to compute the input representation (typically
a spectrogram).

2.2. Label prediction using g(·)

To predict labels from the embedding representation E, we employ
a classification probe g(·) resulting in Ŷ = g(E) = (ŷt)t∈{1,...,T}.
This yields a label prediction ŷt for each time step of the embedding
representation. Yet, we place ourselves in a so-called weakly labeled
data setting where for each audio instance X we only have a global
label y ∈ {0, 1}L with L representing the number of classes. Here,
yl = 1 indicates the presence of the class l in the audio X. Since
the projection head yields a label prediction for each time step of E,
it is necessary to aggregate these “local” predictions ŷt to get the
final estimated label ŷ, as illustrated in Figure 1. We consider two
alternative aggregation methods: a learnable aggregation operation,
commonly referred to as attention [22], and simple average pooling,
also known as mean temporal integration. We denote the aggregation
function by µ(.), such that ŷ = µ(g(E)) ∈ [0, 1]L, where ŷ is
the final clip-level label prediction for an instance X. Specifically,
we refer to µ(.) as µm(·) for mean-based aggregation and µa(·) for
attention-based aggregation.

3. PRE-TRAINED EMBEDDINGS f(·)

The selection of the following embeddings was guided by the criteria
outlined in the introduction.
BYOL-A [9] is a SSL model that extends the BYOL [24] method tai-
lored to learn representations that capture foreground acoustic events
and sound texture details. Its encoder relies on a CNN architecture

trained on AudioSet. The training data consists of 1-second long
audio segments, corresponding to δt = 1.
PaSST [8], falls under theAST category [13] and draws inspiration
from the popular Vision Transformers (ViT) models [25]. Unlike
BYOL-A, PaSST is trained in a supervised fashion on AudioSet. To
reduce memory and computational costs, it employs patchout mask-
ing during training, enabling classification with incomplete patch se-
quences. The training segments in this case are 10 seconds long, i.e.
δt = 10 s.
BEATs [10] similarly to PaSST, adopts an AST architecture, but
uses a SSL iterative training procedure. Optimization involves a to-
kenizer model for generating pseudo-labels and knowledge distilla-
tion. BEATs is also trained on the AudioSet dataset using full-length
audio instance, hence with δt = 10 s.

It is important to bear in mind that, regardless of the TS that was
used for training the embedding networks, one may always exploit
them to extract embeddings with a different temporal support. To
clarify this with an example: although BEATs was initially trained
with δt = 10, we are interested in examining its behavior when,
for a specific downstream classification task, we opt for a different
temporal support (e.g., δt = 3) for extracting these embeddings.
These embeddings will then serve as input features for training the
classifier.

4. EXPERIMENTAL SETUP

4.1. Datasets

We employ three datasets for our study: OpenMIC for musical in-
strument recognition, TAU Urban for audio scene classification, and
ESC-50 for environmental sound classification, which are described
in the following.
OpenMIC [19] is sourced from the Free Music Archive [26], featur-
ing a broad and diverse set of musical genres and instruments. This
dataset comprises 20 possible instrument classes, with each of the
20,000 10-second audio clip annotated with at least one instrument
label at the clip-level, making it suitable for multi-label classifica-
tion. In our experiments, we use the provided training and testing
splits and further partition the training set, keeping 15% of the sam-
ples for validation purposes as in [5, 27]. To handle missing labels
within OpenMIC, we compute the loss exclusively for the observed
labels, following the approach outlined in [5, 27]. For evaluation, we
report the instrument-wise Mean Average Precision (mAP) scores,
as done in prior works such as [27, 8, 23].
TAU Urban Acoustic Scenes 2020 Mobile [20] This dataset com-
prises 10-second audio recordings captured in various urban environ-
ments from 12 European cities. It covers the following scenes: air-
port, shopping mall, metro station, pedestrian street, public square,
street traffic, tram, bus, metro, and park. Designed for multi-class
classification, it contains a total of 23,040 samples. We used the of-
ficial training and testing splits and further divided the training set
by reserving 30% of the samples for validation following the ap-
proach used in [8]. We use classification accuracy as a metric for
this dataset.
ESC-50 [21] is a dataset intended for multi-class audio classification
of environmental sounds. It consists of 2,000 5-second audio clips
categorized into 50 classes with 40 examples per class. These classes
can be grouped into five broader categories: Animals, Natural sound-
scapes\water sounds, Human\non-speech sound, Interior\Domestic
sounds, and Exterior\urban noises. The audio samples are sourced
from the Freesound.org project. We use a 5-fold cross-validation
setting as it is customary for this dataset [14]. We use classification
accuracy as a metric for this dataset.



Model δt
OpenMIC TAU Urban ESC-50 Emb. Size #Param. f(·)

µm(·) µa(·) µm(·) µa(·) µm(·) µa(·)

BYOL-A v2
1

0.792 ± 0.001 0.797 ± 0.003 52.5 ± 1.4 50.6 ± 1.7 69.1 ± 1.4 68.7 ± 1.1 3072 6.3M
PaSST 0.851 ± 0.001 0.860 ± 0.002 63.3 ± 0.4 62.0 ± 0.5 93.1 ± 0.2 93.0 ± 0.4 768 87M
BEATs 0.852 ± 0.001 0.865 ± 0.001 67.5 ± 0.2 61.0 ± 4.3 93.2 ± 0.1 93.4 ± 0.4 48 · 768 90M

BYOL-A v2
3

0.805 ± 0.001 0.804 ± 0.005 53.9 ± 0.9 52.3 ± 0.9 71.2 ± 1.1 72.6 ± 1.0 3072 6.3M
PaSST 0.866 ± 0.001 0.865 ± 0.000 65.0 ± 0.4 64.5 ± 0.5 95.7 ± 0.1 95.0 ± 0.1 768 87M
BEATs 0.862 ± 0.000 0.866 ± 0.002 66.8 ± 0.2 64.9 ± 1.4 95.4 ± 0.1 93.4 ± 0.3 144 · 768 90M

BYOL-A v2
5

0.806 ± 0.002 0.808 ± 0.003 53.8 ± 1.1 53.6 ± 0.9 72.8 ± 1.8 74.0 ± 1.1 3072 6.3M
PaSST 0.866 ± 0.001 0.868 ± 0.001 66.5 ± 0.5 65.9 ± 1.0 96.8 ± 0.2 96.6 ± 0.2 768 87M
BEATs 0.869 ± 0.002 0.869 ± 0.001 67.5 ± 0.2 65.4 ± 2.6 96.1 ± 0.0 95.7 ± 0.3 248 · 768 90M

BYOL-A v2
10

0.803 ± 0.001 0.805 ± 0.002 52.4 ± 1.5 54.7 ± 0.8 - - 3072 6.3M
PaSST 0.861 ± 0.001 0.857 ± 0.001 66.7 ± 0.5 66.9 ± 0.4 - - 768 87M
BEATs 0.866 ± 0.000 0.867 ± 0.000 67.5 ± 0.3 67.2 ± 1.1 - - 496 · 768 90M

Results from papers

ResAtt [23] 10 0.860 - - 2048 -
PaSST-S [8] 10/5 0.843 75.6 96.8 768 87M
BEATsiter3+[10] 5 - - 98.1 248 · 768 90M

Table 1: Results for frozen pre-trained embeddings with varying δt and two temporal aggregations µm(·) and µa(·). Metrics include mAP for
OpenMIC, and accuracy for TAU Urban and ESC-50.

4.2. Training Setup

We applied the methodology described in Section 2 to each dataset
employing different pre-trained models f(·) and varying TS. For
g(·), we used a linear layer to map the embedding to the number of
classes of the task, followed by either µm(·) or µa(·) for temporal
aggregation of predictions. We selected µa(·) as described in [5] for
OpenMIC, and we utilized the attention mechanism commonly de-
scribed in the DCASE Challenge [28] for TAU Urban and ESC-50.
For training the classification probe, we used the Adam optimizer,
a learning rate of 1e−4 with a binary cross entropy loss for the IR
task, and a learning rate1 of 1e−3 for ASC and ESC, both using
cross entropy loss. We used a batch size of 128 for IR and a batch
size of 32 for the other tasks. While batch size differences were
not intended, our preliminary experiments revealed no performance
changes linked to this variation. We kept the model with the best val-
idation loss. Each experiment was conducted 5 times, and we report
the averaged results along with the standard deviation. Regarding
the pre-trained models, we used publicly available weights: BYOL-
A version 2 for BYOL-A, PaSST-S for PaSST, and iter3+ weights
for BEATs.

5. RESULTS

In this section, we conduct a performance evaluation of the selected
embeddings. To this end, we extract embeddings with audio seg-
ments of varying durations: δt = 1 s, δt = 3 s, δt = 5 s and
δt = 10 s, denoted by δ1, δ3, δ5 and δ10, respectively. The compre-
hensive results of this evaluation are presented in Table 1.

5.1. Influence of the Temporal Support

First, it is evident that pre-trained AST models consistently outper-
form BYOL-A across all δt configurations, which is to be expected
due to the inherent differences in the number of parameters between

1We used a fixed learning rate for every classification probe as a strategic
trade-off. While it may not optimize performance for every embedding type,
it strikes a balance that ensures fairness and simplifies comparisons.

these models. A more interesting finding is that pre-trained models
are not necessarily more effective when used with the largest possi-
ble δt. For instance, all models achieve the best performance on the
OpenMIC dataset for δ5. BEATs behaves similarly on the TAU Ur-
ban dataset, since results for δ1, δ5 and δ10 yielded the same results.
While BYOL-A achieves its highest score for δ3 on TAU Urban,
PaSST achieves its best scores when using either δ5 or δ10. Con-
versely, for ESC-50, all pre-trained models achieve the best results
for the largest possible temporal support, which is δ5. Overall, this
highlights the importance of selecting the optimal δt value for each
pre-trained model, depending on the specific task, in order to at-
tain the best possible performance. This is of paramount importance
for pre-trained AST models, given the computational cost associated
with larger TS. Indeed, let L denote the sequence length of an atten-
tion layer within an AST model. It’s worth noting that the compu-
tation complexity grows quadratically, specifically in O(L2) as the
sequence length L increases. Consequently, opting for a smaller TS
implies processing sequences of much smaller length in each atten-
tion layer, which reduces drastically the computational burden dur-
ing inference. For instance, one should extract embeddings with δ1
rather than δ10 with BEATs on TAU Urban due to the significantly
reduced computational inference cost while maintaining equivalent
performance. Furthermore, it is noteworthy to highlight that we im-
prove the state-of-the-art performance on OpenMIC with BEATs and
PaSST for every value of δt (with the exception of δ10 for PaSST)
without any fine-tuning effort.
Discussion. When it comes to AST models, adjusting their TS can
be likened to altering the receptive field of a CNN. Indeed, in CNNs
the receptive field is defined as the input area that contributes to the
resulting embedding at a given position. In contrast, AST models
rely on the attention mechanism, where the entire input contributes
to the final embedding (especially on short sequences as it is the case
here), effectively determined by the input’s length, i.e. δt. Remark-
ably, prior research [27] demonstrated that regularizing the recep-
tive field of a CNN for a specific task can significantly improve per-
formance. Therefore, selecting the optimal TS for pre-trained AST
models may be as advantageous as fine-tuning the receptive field of
a CNN model for a given task.



5.2. Aggregation method

Our analysis of Table 1 reveals two distinct trends regarding the per-
formance of the aggregation function µ(.). For the IR task, consis-
tent with [5], we observe that µa(·) is more effective, particularly
for small δt values, which results in an increased number of time
steps in Ŷ. In contrast, for ASC and ESC tasks, µm(·) aggregation
has the ascendancy in most cases. There are few exceptions, notably
BYOL-A with δ10 on TAU Urban, and δ3 and δ5 on ESC-50. This
is an interesting finding, as this aggregation approach is far more ef-
ficient, which was not expected. Indeed, given that the dynamics of
target sound classes vary (regardless of the dataset), with some class
activations being localized in time while other classes being active
for longer periods, we expected to see µa(·) be the best aggregation
overall. Even if we would need to further investigate the causes that
can explain this behavior, we believe that in the case of the multi-
class nature of the problems, where events overlap in time, yet the
model yields only one class, the training of the attention mechanism
may be hindered, especially in this regime of rather small datasets.

5.3. Comparing results to previous works

With equal TS, δ10, and without fine-tuning, we achieve a higher
score on OpenMIC with PaSST compared to [8]. This shows that
fine-tuning large pre-trained models on smaller datasets may not al-
ways be beneficial. This phenomenon is akin to forgetting which
may limit the generalization ability of the fine-tuned variant com-
pared to the original one. On the other hand, on the TAU Urban
dataset, we obtain scores with PaSST that are below those obtained
in [8], where fine-tuning is used. For BYOL-A, our results on ESC-
50 deviate from those reported in [9] and [15]. This divergence can
be partly attributed to differences in methodology. In [9], the authors
normalize the embeddings before training the probe g(·) and opti-
mize the learning rate to maximize the scores. In [15], the authors
employed a meticulously tuned support vector machine classifier in
conjunction with data augmentation, which is expected to be more
effective than the shallow probe we use across all tasks. Such im-
provements and careful optimizations are beyond the scope of this
study whose sole focus is on the influence of the temporal support
with a neutral, lightweight downstream classification strategy kept
fixed across all tasks.

5.4. Exploiting outputs of all embedding layers

This last experiment looks into exploiting the outputs of all inter-
mediate layers of the embedding network as opposed to solely re-
lying on the last one. Indeed, different types of information are
encoded across these layers which may be beneficial to the classi-
fication task. This practice aligns with common conventions in the

Model δt OpenMIC TAU Urban ESC-50

PaSST

1 0.860 ± 0.001 63.0 ± 0.4 93.3 ± 0.2
3 0.868 ± 0.001 65.2 ± 0.4 96.2 ± 0.0
5 0.869 ± 0.002 67.1 ± 0.6 97.0 ± 0.0
10 0.868 ± 0.002 67.9 ± 0.4 -

BEATs
1 0.864 ± 0.002 67.2 ± 0.2 93.6 ± 0.1
3 0.867 ± 0.001 67.4 ± 0.3 95.4 ± 0.1
5 0.870 ± 0.002 68.5 ± 0.3 96.0 ± 0.1
10 0.870 ± 0.002 68.2 ± 0.3 -

Table 2: Results for PaSST and BEATs using a learned weighted
sum of the output of all layers.

Speech SSL domain, where benchmarking pre-trained embedding
models often involves leveraging multiple layers. In particular, the
SUPERB benchmark [16] suggests using a weighted sum of the out-
puts from each layer as the final embedding to be exploited by the
downstream classifier g(·), using z =

∑12
l=1 αlz

(l), where z(l) is the
output of layer l. The weights αl are trained jointly with the down-
stream classifier, while the representations z(l) are merely the inter-
mediate outputs of the embedding network without fine-tuning. This
is because fine-tuning such networks is costly and often sub-optimal,
with catastrophic forgetting easily compromising performance, as
explained earlier.

Hence, we explore the impact of combining the outputs from all
layers of the pre-trained AST models, PaSST and BEATs, across the
three datasets for different TS. This yields a total of 11 intermediate
representations along with the final layer embedding that are used (as
a weighted combination) as the final embedding for both PaSST and
BEATs. We select the most effective temporal aggregation method
for each dataset, namely µa(·) for OpenMIC and µm(·) for TAU Ur-
ban and ESC-50. The results of this analysis are presented in Table
2. In general, we observe only marginal performance improvements
when leveraging outputs from all layers considering the augmenta-
tion of the dimensionality of the used features, with no noticeable
influence of TS on the results. Nevertheless, this approach enables
us to improve the state-of-the-art mAP score on OpenMIC, achiev-
ing a remarkable 0.87, and outperforming [8] on ESC-50 without the
need of fine-tuning the pre-trained model.

6. CONCLUSION

In this study, we have conducted a comprehensive experimental anal-
ysis to investigate the influence of Temporal Support on audio em-
beddings extracted with BYOL-A, PaSST, and BEATs, across tasks
including Instrument Recognition, Audio Scene Classification, and
Environmental Sound Classification. Our findings underscore the
crucial importance of selecting the optimal Temporal Support based
on both the pre-trained model and the task at hand. This is par-
ticularly compelling as operating Audio Spectrogram Transformer
pre-trained models with smaller Temporal Support significantly re-
duces their inference computational cost. With adequate Temporal
Support, these pre-trained models obtain competitive results across
all tasks, all without the need for fine-tuning. Moreover, we im-
prove the state-of-the-art result on the OpenMIC dataset. Notably, by
using a weighted combination encompassing all layer outputs from
PaSST and BEATs, we further improved over our prior results. Fu-
ture works could delve into understanding how the weights of the
last layers correlate with the Temporal Support as well as explore
more pre-trained models and tasks.
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[8] Khaled Koutini, Jan Schlüter, Hamid Eghbal-zadeh, and Ger-
hard Widmer, “Efficient training of audio transformers with
patchout,” in Proc. Interspeech. IEEE, 2022, pp. 2753–2757.

[9] Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru
Harada, and Kunio Kashino, “Byol for audio: Exploring pre-
trained general-purpose audio representations,” IEEE ACM
Trans. Audio Speech Lang. Process., vol. 31, pp. 137–151,
2023.

[10] Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Daniel
Tompkins, Zhuo Chen, and Furu Wei, “Beats: Audio pre-
training with acoustic tokenizers,” in Proc. ICML. PMLR,
2022, vol. 202, pp. 5178–5193.

[11] Aurora Linh Cramer, Ho-Hsiang Wu, Justin Salamon, and
Juan Pablo Bello, “Look, listen, and learn more: Design
choices for deep audio embeddings,” in Proc. IEEE ICASSP.
IEEE, 2019, pp. 3852–3856.

[12] Aaqib Saeed, David Grangier, and Neil Zeghidour, “Con-
trastive learning of general-purpose audio representations,” in
Proc. ICASSP. IEEE, 2021, pp. 3875–3879.

[13] Yuan Gong, Yu-An Chung, and James R. Glass, “AST: audio
spectrogram transformer,” in Proc. Interspeech. IEEE, 2021,
pp. 571–575.

[14] J. Turian, J. Shier, H. R. Khan, B. Raj, B. W. Schuller, C. J.
Steinmetz, C. Malloy, G. Tzanetakis, G. Velarde, K. Mc-
Nally, et al., “Hear: Holistic evaluation of audio represen-
tations,” in NeurIPS 2021 Competitions and Demonstrations
Track. PMLR, 2022, vol. 176, pp. 125–145.

[15] Luyu Wang, Pauline Luc, Yan Wu, Adrià Recasens, Lucas
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[26] Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and
Xavier Bresson, “FMA: A dataset for music analysis,” in Proc.
ISMIR, 2017, pp. 316–323.

[27] Khaled Koutini, Hamid Eghbal-zadeh, and Gerhard Widmer,
“Receptive field regularization techniques for audio classifi-
cation and tagging with deep convolutional neural networks,”
IEEE ACM Trans. Audio Speech Lang. Process., vol. 29, pp.
1987–2000, 2021.

[28] Francesca Ronchini, Samuele Cornell, Romain Serizel, Nico-
las Turpault, Eduardo Fonseca, and Daniel P. W. Ellis, “De-
scription and analysis of novelties introduced in DCASE task
4 2022 on the baseline system,” in Proc. DCASE, 2022, pp.
3–4.


