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Abstract

We study several discretizations of a second order gradient-like system with damp-
ing. We first consider an explicit scheme with a linear damping in finite dimension.
We prove that every solution converges if the nonlinearity satisfies a global Lojasiewicz
inequality. Convergence rates are also established. In the case of a strong nonlinear
damping, we prove convergence of every solution for a fully implicit scheme in the
one-dimensional case, even if the nonlinearity does not satisfy a Lojasiewicz inequality.
The optimality of the damping is also established. Numerical simulations illustrate the
theoretical results.
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1 Introduction

In this paper, we study the asymptotic behaviour of solutions to several discretizations of
the second order ordinary differential system

u′′ + ‖u′‖αu′ +∇F (u) = 0, t ≥ 0, (1)

where F : Rd → R is a C1 function and α ∈ [0, 1].
The asymptotic behaviour of solutions to (1) has been extensively studied. A crucial tool

is the energy estimate
d

dt
E(t) = −‖u′(t)‖2+α ≤ 0,

where E is the energy defined for every solution u by

E(t) =
1

2
‖u′(t)‖2 + F (u(t)).

The system (1) is known as a gradient-like system. In particular, the ω-limit set of a bounded
solution consists only of equilibrium points. A natural question is the study of convergence
of such a solution.

Haraux [10] proved under quite general assumptions on F that if d = 1 and 0 ≤ α < 1,
every bounded solution converges to a critical point of F as time goes to infinity. This is no
longer true if the damping is too weak (α ≥ 1), as pointed out in [10], or if d ≥ 2, as proved
in [14].

However, if F satisfies additional properties, more can be said. If F is real analytic,
α = 0 and d is arbitrary, Haraux and Jendoubi [12] proved that every bounded solution
to (1) converges to a single point. Their result is based on the celebrated Lojasiewicz
inequality [15, 16]. A similar convergence result was obtained by Chergui [7] in the case
0 ≤ α < 1, where α depends also on the global Lojasiewicz exponent of the function F . We
refer the reader to the book [11] for details on this matter. Alvarez [3] proved convergence
to an equilibrium for convex functions in the case α = 0 (see also [6]). Generalizations of (1)
have been considered in [5].

Discretizations of the system (1) have also been studied. In [3] mentioned above, Alvarez
also studied the asymptotic behaviour for convex functions of a fully implicit discretization
in the case α = 0. Convergence to equilibrium was also proved in [9] for a fully implicit
scheme in the case of real analytic functions and linear damping (α = 0). A semi-implicit
scheme was considered in [2] for functions satisfying a Lojasiewicz inequality. Horsin and
Jendoubi [13] studied the nonlinear damping 0 < α < 1 for a fully implicit scheme. Related
schemes were considered in [4].

Our main purpose in this paper is to study an explicit discretization of (1) for a linear
damping and a function F which satisfies a global Lojasiewicz inequality. In contrast to the
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fully implicit discretization, we do not prove that the energy is nonincreasing but instead,
we prove that a modified energy is nonincreasing. This is achieved in Section 2 and the proof
of convergence is based on an angle condition introduced in [1]. Convergence rates are also
established.

In Section 3, we consider an implicit discretization of (1) in the one-dimensional case
(d = 1) and we prove that the sequence generated by the scheme converges for 0 ≤ α < 1,
without assuming that F satisfies a Lojasiewicz inequality. The optimality of α is established
in Section 4, where a non convergence result is shown to hold for α = 1 and d = 1, even if F
satisfies a Lojasiewicz inequality with optimal exponent θ = 1/2. We note that altogether, in
Sections 2-4, the discrete case mimicks the situation for the continuous system (1). Numerical
simulations illustrate the theoretical results in the last section.

2 Convergence to equilibrium for an explicit scheme

In this section, we prove convergence to equilibrium for an explicit discretization of the
system (1). We first recall a general convergence result.

2.1 A discrete angle condition

Let Φ : RN −→ R be a C1 function, σ > 0 and let us consider a sequence (xn) satisfying for
all n ∈ N

Φ(xn)− Φ(xn+1) ≥ σ‖∇Φ(xn)‖‖xn+1 − xn‖, (2)

[Φ(xn+1) = Φ(xn)] =⇒ [xn+1 = xn]. (3)

Theorem 1 (Absil et al. [1]) We assume that there exists θ ∈ (0, 1
2
] such that

∀a ∈ RN ∃ca > 0 ∃ra > 0/ ∀x ∈ RN :

‖x− a‖ < ra =⇒ ‖∇Φ(x)‖ ≥ ca|Φ(x)− Φ(a)|1−θ. (4)

Let (xn) be a sequence satisfying (2) and (3). Then either lim
n→+∞

‖xn‖ = +∞, or there exists

x∞ ∈ RN such that ∇Φ(x∞) = 0 and

lim
n→+∞

xn = x∞.

Precisely, in this case we have

‖xn − x∞‖ =

{
O(e−cn) for some c > 0 if θ = 1

2

O(n−
θ)

1−2θ ) if θ ∈ (0, 1
2
).

(5)

Remark 2 If there exists M > 0 such that ∀n ∈ N, ‖xn‖ ≤ M, then the assumption (4)
may merely apply to those a ∈ RN such that ‖a‖ ≤M .
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2.2 The explicit scheme

We consider a sequence (un, vn)n∈N in Rd × Rd satisfying
un+1 − un

∆t
= vn

vn+1 − vn
∆t

= −vn −∇F (un)

u0, v0 ∈ Rd

(6)

where α > 0 and F : Rd −→ R is a C1 function such that

∃LF > 0/ ∀u, v ∈ Rd ‖∇F (u)−∇F (v)‖ ≤ LF‖u− v‖, (7)

∃c1, c2 > 0/ ∀u ∈ Rd F (u) ≥ c1‖u‖2 − c2. (8)

It is easy to check (see for example [2, 13]) that hypothesis (7) on F implies the following
inequalities (< .,> denoting the standard scalar product on Rd)

∀u, v ∈ Rd < ∇F (u)−∇F (v), u− v >≥ −LF‖u− v‖2, (9)

∀u, v ∈ Rd F (v) ≥ F (u)+ < ∇F (u), v − u > −LF
2
‖u− v‖2. (10)

The existence and uniqueness of a sequence satisfying (6) are obvious.

Proposition 3 For any (u0, v0) ∈ R2d the sequence (un, vn) given by (6) is well defined.

We define

E(u, v) =
1

2
‖v‖2 + F (u).

Proposition 4 Assume F satisfies (7). Let (un, vn) be a sequence satisfying (6), then we
have

E(un+1, vn+1)− E(un, vn) ≤ −∆t

[
1−

(
1 +

3LF
2

)
∆t

]
‖vn‖2 + (∆t)2‖∇F (un)‖2.

Proof. By taking the scalar product of the second relation of (6) with ∆tvn, it comes

<
vn+1 − vn

∆t
,∆tvn >=< −vn −∇F (un),∆tvn >,

< vn, vn+1 > −‖vn‖2 = −∆t‖vn‖2− < ∇F (un),∆tvn >,
1

2
‖vn+1‖2 −

1

2
‖vn‖2 −

1

2
‖vn+1 − vn‖2 = −∆t‖vn‖2− < ∇F (un), un+1 − un > .

Then we obtain

E(un+1, vn+1)− E(un, vn)− 1

2
‖vn+1 − vn‖2

≤ −∆t‖vn‖2 + F (un+1)− F (un)− < ∇F (un), un+1 − un >
≤ −∆t‖vn‖2 + F (un+1)− F (un)− < ∇F (un+1), un+1 − un >

+ < ∇F (un+1)−∇F (un), un+1 − un > .
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By using (7) and (10), we get

E(un+1, vn+1)− E(un, vn)

≤ −∆t‖vn‖2 +
1

2
‖vn+1 − vn‖2 +

LF
2
‖un+1 − un‖2 + LF‖un+1 − un‖2

≤ −∆t

[
1− 3LF

2
∆t

]
‖vn‖2 +

1

2
‖vn+1 − vn‖2.

Since

1

2
‖vn+1 − vn‖2 =

(∆t)2

2
‖vn +∇F (un)‖2 ≤ (∆t)2‖vn‖2 + (∆t)2‖∇F (un)‖2,

we deduce

E(un+1, vn+1)− E(un, vn) ≤ −∆t

[
1−

(
1 +

3LF
2

)
∆t

]
‖vn‖2 + (∆t)2‖∇F (un)‖2.

Let S = {a ∈ Rd /∇F (a) = 0}.
Now we assume also that there exists θ ∈ (0, 1

2
] such that

∀a ∈ S ∃δa > 0 ∃νa > 0/ ∀u ∈ Rd : ‖u−a‖ < δa =⇒ ‖∇F (u)‖ ≥ νa|F (u)−F (a)|1−θ. (11)

2

Proposition 5 ([15, 16, 8, 7]) Assumption (11) is satisfied if one of the following two cases
holds:
- F is a polynomial, or
- F is analytic and S is compact.

The first part of this proposition is a result of D’Acunto and Kurdyka [8]. The proof of the
second part can be found in [7].

Theorem 6 Let F : Rd −→ R be a C2 function satisfying (7), (8) and (11). Assume also
that ∆t is small enough. Let (un, vn) be a sequence satisfying (6). Then (un, vn) is bounded
and there exists a ∈ S such that

lim
n→+∞

‖vn‖+ ‖un − a‖ = 0.

In addition as n→ +∞ we have

‖vn‖+ ‖un − a‖ =

{
O(e−cn) for some c > 0 if θ = 1

2

O(n−
θ)

1−2θ ) if θ ∈ (0, 1
2
).

(12)
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Remark 7 We are able to give an upper bound of ∆t namely

0 < ∆t < min

(
1

4 + 6LF
,

1

4 + 3LF (1 + η)
,

η

2 + LFη

)

with η = min
(

1
2
, c1
2L2

F
, 1
2LF+1

, 1
2C

)
, where C = max

(
1, max
‖u‖≤R

‖∇2F (u)‖
)

and R is given by

(17).

Proof. Let ε be a positive real. We define for all u, v ∈ Rd

Φε(u, v) = E(u, v) + ε < ∇F (u), v > .

First of all we will prove that for ε small enough, Φε will be coercive. In fact, using (7), we
see that

∀u ∈ Rd ‖∇F (u)‖ ≤ LF‖u‖+ ‖∇F (0)‖,

and then
∀u ∈ Rd ‖∇F (u)‖2 ≤ 2L2

F‖u‖2 + 2‖∇F (0)‖2. (13)

Now for all (u, v) ∈ Rd, we have by Cauchy-Schwarz inequality

Φε(u, v) ≥ 1

2
‖v‖2 + F (u)− ε

2
‖v‖2 − ε

2
‖∇F (u)‖2

≥
by (8) and (13)

(
1

2
− ε

2

)
‖v‖2 + (c1 − εL2

F )‖u‖2 − c2 − ε‖∇F (0)‖2.

We impose to ε to be such that ε ≤ min
(

1
2
, c1
2L2

F

)
. We see that with this choice, we have

Φε(u, v) ≥ 1

4
‖v‖2 +

c1
2
‖u‖2 − c2 −

1

4
‖∇F (0)‖2, (14)

so that Φε is coercive.
Next, we prove that for ε small enough, (Φε(un, vn)) is nonincreasing. Let us define

xn = (un, vn). According to Proposition 4, for all n ∈ N :

Φε(xn+1)− Φε(xn)

≤ −∆t

[
1−

(
1 +

3LF
2

)
∆t

]
‖vn‖2 + (∆t)2‖∇F (un)‖2.

+ε

< ∇F (un+1), vn+1 > − < ∇F (un), vn >︸ ︷︷ ︸
Tn

 .
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We have

Tn = < ∇F (un+1)−∇F (un) +∇F (un), vn −∆tvn −∆t∇F (un) > − < ∇F (un), vn >

= < ∇F (un+1)−∇F (un), vn −∆tvn −∆t∇F (un) > −∆t‖∇F (un)‖2

−∆t < ∇F (un), vn >

≤ ‖∇F (un+1)−∇F (un)‖‖vn −∆tvn −∆t∇F (un)‖ −∆t‖∇F (un)‖2

−∆t < ∇F (un), vn >

≤
by (7)

LF‖un+1 − un‖‖vn −∆tvn −∆t∇F (un)‖ −∆t‖∇F (un)‖2 −∆t < ∇F (un), vn >

≤
by (6)

LF∆t‖vn‖‖vn −∆tvn −∆t∇F (un)‖ −∆t‖∇F (un)‖2 −∆t < ∇F (un), vn >

≤ LF∆t‖vn‖2 + LF (∆t)2‖vn‖2 + LF (∆t)2‖vn‖‖∇F (un)‖ −∆t‖∇F (un)‖2 +

∆t‖∇F (un)‖‖vn‖

≤ ∆t

[(
LF +

1

2

)
+

3

2
LF∆t

]
‖vn‖2 −

∆t

2
(1− LF∆t) ‖∇F (un)‖2 (15)

where we used the triangle and the Cauchy-Schwarz inequalities. Then we get

Φε(xn+1)− Φε(xn)

≤ −∆t

[
1−

(
1 +

3LF
2

)
∆t

]
‖vn‖2 + (∆t)2‖∇F (un)‖2

+ε∆t

[(
LF +

1

2

)
+

3

2
LF∆t

]
‖vn‖2 − ε

∆t

2
(1− LF∆t) ‖∇F (un)‖2

≤ −∆t

[
1− ε

(
LF +

1

2

)
−
(

1 +
3LF

2
(1 + ε)

)
∆t

]
‖vn‖2

−∆t
[ε

2
− (1 +

ε

2
LF )∆t

]
‖∇F (un)‖2

We choose ε ≤ ε = min
(

1
2
, c1
2L2

F
, 1
2LF+1

)
. Then we obtain

Φε(xn+1)− Φε(xn)

≤ −∆t

[
1

2
−
(

1 +
3LF

2
(1 + ε)

)
∆t

]
‖vn‖2 −∆t

[ε
2
− (1 +

ε

2
LF )∆t

]
‖∇F (un)‖2.

We assume that ∆t is small enough such that 1
2
−
(
1 + 9LF

4

)
∆t > 0 (then 1

2
−
(
1 + 3LF

2
(1 + ε)

)
∆t >

0 since ε ≤ 1
2
) and ε

2
− (1 + ε

2
LF )∆t > 0.

Then there is a constant δ = δ(∆t, LF ) > 0 such that

∀n ∈ N Φε(xn+1)− Φε(xn) ≤ −δ
(
‖vn‖2 + ‖∇F (un)‖2

)
. (16)

Then the sequence (Φε(xn)) is nonincreasing. Using (14), we see that (un) and (vn) are
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bounded:

Φε(xn) ≤ Φε(x0)

=⇒ 1

4
‖vn‖2 +

c1
2
‖un‖2 − c2 −

1

4
‖∇F (0)‖2 ≤ 1

2
‖v0‖2 + F (u0) + ε < ∇F (u0), v0 >

=⇒ 1

4
‖vn‖2 +

c1
2
‖un‖2 ≤

1

2
‖v0‖2 + F (u0) + ‖∇F (u0)‖‖v0‖+ c2 +

1

4
‖∇F (0)‖2

=⇒ min(
1

8
,
c1
4

)[‖vn‖+ ‖un‖]2 ≤
1

2
‖v0‖2 + F (u0) + ‖∇F (u0)‖‖v0‖+ c2 +

1

4
‖∇F (0)‖2

=⇒ ‖vn‖+ ‖un‖ ≤ R

where

R =

[
1

min(1
8
, c1

4
)

(
1

2
‖v0‖2 + F (u0) + ‖∇F (u0)‖‖v0‖+ c2 +

1

4
‖∇F (0)‖2

)] 1
2

. (17)

At this stage, it is important to note that if we choose ε smaller, (16) remains true. Note
also that R is independent of ∆t and ε.

Obviously we have
∑

(‖vn‖2 + ‖∇F (un)‖2) converges. Then vn −→ 0 and the ω−limit
set ω((un)n∈N) := {a ∈ Rd : ∃nk →∞/unk −→ a} is a nonempty compact connected subset
of S.

Let us show that (xn) = (un, vn) satisfies (2) and (3) with the function Φε. Indeed, if for
some n we have Φε(xn+1) = Φε(xn), then by (16) we deduce that vn = 0 and ∇F (un) = 0.
Using system (6), we get that un+1 = un and vn+1 = vn, that is xn+1 = xn and (3) is satisfied.
On the other hand, a simple computation gives

∇Φε(u, v) =

(
∇F (u)+ε∇2F (u)·v

v+ε∇F (u)

)
.

Since (un) and (vn) are bounded, there exists a constant η1 > 0 such that

∀n ∈ N ‖∇Φε(xn)‖ ≤ η1[‖vn‖+ ‖∇F (un)‖]. (18)

On the other hand, there exists a constant η2 > 0 such that

‖xn+1 − xn‖ = ‖(un+1 − un, vn+1 − vn)‖
= ‖(∆tvn,−∆tvn −∆t∇F (un))‖
≤ η2[‖vn‖+ ‖∇F (un)‖]. (19)

By combining (16) − (18) and (19), we get that (Φε(xn)) satisfies (2) with σ = δ
2η1η2

.

Now we will show that under the hypothesis (11) on F , Φε satisfies (4).
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From the remark 2, let B = {(u, v) ∈ Rd×Rd, ‖u‖+‖v‖ ≤ R} where R is given by (17).
Clearly B contains the sequence (un, vn). Now, for all (u, v) ∈ B

‖∇Φε(u, v)‖
= ‖∇F (u) + ε∇2F (u) · v‖+ ‖v + ε∇F (u)‖
≥ ‖∇F (u)‖ − ε‖∇2F (u) · v‖+ ‖v‖ − ε‖∇F (u)‖
≥ (1− ε max

‖u‖≤R
‖∇2F (u)‖)‖v‖+ (1− ε)‖∇F (u)‖

≥ (1− εC)[‖v‖+ ‖∇F (u)‖]

where C = max

(
1, max
‖u‖≤R

‖∇2F (u)‖
)

.

By possibly taking ε > 0 smaller (ε = min(ε, 1
2C

)), there exists ρ > 0 such that

∀(u, v) ∈ B ‖∇Φε(u, v)‖ ≥ ρ[‖v‖+ ‖∇F (u)‖]. (20)

If (a, b) is not a critical point of Φε, then Φε satisfies (4) with θ = 1
2

as best exponent, thanks
to the continuity of Φε.
Let (a, b) ∈ B be a critical point of Φε. Then ∇F (a) = 0 and b = 0. From (11)

∃δa > 0 ∃νa > 0/ ∀u ∈ Rd : ‖u− a‖ < δa =⇒ ‖∇F (u)‖ ≥ νa|F (u)− F (a)|1−θ. (21)

On the other hand, by using the Cauchy-Schwarz inequality, we get

[Φε(u, v)− Φε(a, 0)]1−θ =
[
1
2
‖v‖2 + F (u)− F (a) + ε < ∇F (u), v >

]1−θ
≤ ‖v‖2(1−θ) + |F (u)− F (a)|1−θ + ‖∇F (u)‖1−θ‖v‖1−θ. (22)

Thanks to Young’s inequality we obtain

‖∇F (u)‖1−θ‖v‖1−θ ≤ ‖∇F (u)‖+ ‖v‖
1−θ
θ .

Then (22) becomes

[Φε(u, v)− Φε(a, 0)]1−θ ≤ ‖v‖2(1−θ) + |F (u)− F (a)|1−θ + ‖∇F (u)‖+ ‖v‖
1−θ

θ−α(1−θ) .

Since 2(1 − θ) and 1−θ
θ

are bigger then 1, using also (21), we get for all (u, v) ∈ B with
‖v‖ ≤ 1 and ‖u− a‖ < δa

[Φε(u, v)− Φε(a, 0)]1−θ ≤ ‖v‖+ |F (u)− F (a)|1−θ + ‖∇F (u)‖+ ‖v‖

≤
(

2 +
1

νa

)
[‖∇F (u)‖+ ‖v‖]

≤ 1

ρ

(
2 +

1

νa

)
‖∇Φε(u, v)‖ by (20).

Therefore Φε satisfies (4). Theorem 1 is proved. 2
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3 A convergence result in the one dimensional case

We consider the case of a strong nonlinear damping (0 ≤ α < 1) in the one-dimensional
situation (d = 1). This time, we use an implicit discretization of (1). The proof is adapted
from the continuous case. We recall it for the reader’s convenience.

3.1 The continuous version

Let u ∈ W 1,∞(R) be a bounded solution of the ODE

u′′ + |u′|αu′ + f(u) = 0,

where f ∈ C1(R,R). We know that (see, e.g., [11])

ω(u, u′) ⊂ f−1({0})× {0},

where ω(u, u′) is the ω-limit set of the solution defined by

ω(u, u′) =
{

(u?, v?) ∈ R2, ∃tn → +∞, (u(tn), u′(tn))→ (u?, v?) as n→ +∞
}
.

Theorem 8 ([10, 11]) There exists a ∈ f−1({0}) such that

lim
t→∞
|u′(t)|+ |u(t)− a| = 0.

Proof. For the sake of completeness, we give the proof here. If ω(u, u′) is not reduced to a
single point, then there are a, b ∈ f−1({0}) (a < b) such that ω(u, u′) = [a, b] × {0}. Let
c = a+b

2
. Since lim

t→∞
u′(t) = 0 and (c, 0) ∈ ω(u, u′), then there exists T > 0 such that

|u(T )− c| < b− a
8

,

|u′(t)|1−α

1− α
<
b− a

8
∀t ≥ T.

We will prove that
∀t ≥ T u(t) ∈ [a, b].

Assume that this is not the case and let

θ = inf{t ≥ T, u(t) 6∈ [a, b]}.

Clearly we have θ <∞ and
∀t ∈ [T, θ] u(t) ∈ [a, b].

Then
∀t ∈ [T, θ] u′′(t) + |u′(t)|αu′(t) = 0.
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If there is a s ∈ [T, θ] such that u′(s) = 0, then u′(t) = 0 for all t ∈ [T, θ], in this case we
conclude easily. Otherwise, solving this ODE, we get

∀t ∈ [T, θ] |u′(t)| = 1

[|u′(T )|−α + α(t− T )]
1
α

. (23)

|u(θ)− u(T )| ≤
∫ θ

T

|u′(t)| dt

≤
∫ θ

T

dt

[|u′(T )|−α + α(t− T )]
1
α

≤ |u′(T )|1−α

1− α
<
b− a

8
.

|u(θ)− c| ≤ |u(θ)− u(T )|+ |u(T )− c|

<
b− a

8
+
b− a

8
=
b− a

4
,

which contradicts the definition of θ and then θ =∞.
Now from (23), we deduce that u′ ∼

1

α
1
α t

1
α

, and then u′ ∈ L1(R+). This proves that u

converges and the ω-limit set ω(u, u′) is reduced to a single point. 2

3.2 The discrete version

The scheme reads: 
un+1 − un

∆t
= vn+1

vn+1 − vn
∆t

= −|vn+1|αvn+1 − f(un+1)

u0, v0 ∈ R

(24)

and f : R −→ R is such that

∃cF > 0/ ∀u, v ∈ Rd (f(u)− f(v))(u− v) ≥ −cF |u− v|α+2, (25)

∃LF > 0/ ∀u, v ∈ Rd |f(u)− f(v)| ≤ LF‖u− v‖. (26)

Let S = {a ∈ Rd / f(a) = 0} and F be an antiderivative of f. We define

E(u, v) =
1

2
|v|2 + F (u).

We recall the following results.

11



Proposition 9 [13] Assume that F is of class C1(Rd), coercive and that (25) and (26) hold,
then for any (u0, v0) ∈ R2d, provided ∆t is small enough, the sequence (un, vn) given by (24)
is well defined, and we have

∀n ∈ N E(un+1, vn+1) ≤ E(un, vn). (27)

Moreover we have

E(un+1, vn+1)− E(un, vn) ≤ −∆t
[
1− cF

2
(∆t)α+1

]
|vn+1|α+2.

Corollary 10 [13] Let F satisfy (25) and assume that 0 < ∆t <
(

2
cF

) 1
α+1

. Let (un, vn) be

a sequence satisfying (24). If (un) is bounded, then lim
n→∞

E(un, vn) exists and vn −→ 0.

Moreover the ω−limit set ω((un)n∈N) given by

ω((un)n∈N) = {a ∈ R : ∃nk →∞/unk −→ a}

is a nonempty compact connected subset of S.

The main result of this paper is the following

Theorem 11 Under the assumptions of the corollary 10, there exists a ∈ S such that un −→
a.

Proof. As in the continuous case, by connectedness we have either ω((un)n∈N) = {a} × {0}
for some a ∈ f−1({0}) and the result is established, or ω((un)n∈N) = [a, b] × {0} for some
a, b ∈ f−1({0}) (a < b). In this case, let c = a+b

2
. Using corollary 10, we can choose n0 large

enough such that

|un0 − c| <
b− a

8
, (28)

∆t|vn0|+ 2α+1

1− α
|vn0| < b− a

8
∀n ≥ n0, (29)

∆t|vn|α ≤ 1, ∀n ≥ n0. (30)

Assume by contradiction that the set {n ≥ n0 : un+1 6∈ [a, b]} is nonempty and let

n1 = inf
{
n ≥ n0 : un+1 6∈ [a, b]

}
.

Note that n1 > n0 + 2. In fact by (29), we have ∆t|vn0+1| < b−a
8

and ∆t|vn0+2| < b−a
8

. Using
(24) and tringle inequality, we find

|un0+1 − c| ≤ |un0+1 − un0|+ |un0 − c|

= ∆t|vn0+1|+ |un0 − c| <
b− a

8
+
b− a

8
=
b− a

4
;

|un0+2 − c| ≤ |un0+2 − un0+1|+ |un0+1 − c|

= ∆t|vn0+2|+ |un0 − c| <
b− a

8
+
b− a

4
= 3

b− a
8

.

12



It is clear that
∀n ∈ {n0, · · · , n1 − 1}, un+1 ∈ [a, b]

and then f(un+1) = 0 since [a, b] ⊂ S. Using (24), we get

∀n ∈ {n0, · · · , n1 − 1}, vn+1 − vn
∆t

= −|vn+1|αvn+1.

which can also be written

∀n ∈ {n0, · · · , n1 − 1}, vn+1(1 + ∆t|vn+1|α) = vn.

Obviously we have

∀n ∈ {n0, · · · , n1 − 1}, |vn| − |vn+1| = ∆t|vn+1|α+1 ≥ 0. (31)

Now assume that there exists p ∈ {n0, · · · , n1 − 1} such that vp = 0. Then for all n ∈
{n0, · · · , n1 − 1}, vn = 0. In this case n1 =∞ and (un) is a constant sequence.
Otherwise for all n ∈ {n0, · · · , n1 − 1}, vn 6= 0. Now from (30) and (31) we deduce that

∀n ∈ {n0, · · · , n1 − 1}, |vn| ≤ 2|vn+1|. (32)

Then we get from (31)

∆t =
|vn| − |vn+1|
|vn+1|α+1

≤
by (31) and (32)

2α+1 |vn| − |vn+1|
|vn|α+1

≤ 2α+1

∫ |vn|
|vn+1|

dt

tα+1

=
2α+1

α

[
−|vn|−α + |vn+1|−α

]
.

Summing from n0 to n ∈ {n0, · · · , n1 − 1}, we obtain

α

2α+1
∆t(n− n0) ≤ |vn+1|−α − |vn0|−α

or

|vn+1| ≤ 1[
|vn0|−α + α

2α+1 ∆t(n− n0)
] 1
α

. (33)

13



Now let n ∈ {n0, · · · , n1 − 1}, we have

|un+1 − un0| ≤
n∑

k=n0

|uk+1 − uk|

=
by (24)

∆t
n∑

k=n0

|vk+1|

≤
by (33)

∆t
n∑

k=n0

1[
|vn0|−α + α

2α+1 ∆t(k − n0)
] 1
α

≤ ∆t|vn0|+ ∆t

∫ n

n0

dx[
|vn0|−α + α

2α+1 ∆t(x− n0)
] 1
α

≤ ∆t|vn0|+ 2α+1

1− α
|vn0|

<
by (29)

b− a
8

. (34)

In particular with n = n1−1, we get |un1−un0 | < b−a
8

. By the triangle inequality we deduce

|un1 − c| ≤ |un1 − un0|+ |un0 − c|

<
by (28)

b− a
8

+
b− a

8
=
b− a

4
,

and this contradicts un1 6∈ [a, b]. Then the set {n ≥ n0 : un+1 6∈ [a, b]} is empty and n1 =∞.
Now (34) holds for all n ≥ n0 :

|un+1 − un0| < b− a
4

and by triangle inequality, we get

∀n ≥ n0 |un+1 − c| ≤ |un+1 − un0|+ |un0 − c| < b− a
4

+
b− a

8
=

3(b− a)

8
.

By choosing a subsequence such that unk −→ b, we obtain

|b− c| ≤ 3(b− a)

8
,

a contradiction. We conclude that ω((un)) is a reduced to a single point u∗ and that un −→
u∗. 2
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4 A non convergence result

We adapt to the discrete case a result from [10, 11]. Let ∆t > 0 denote the time step. We
consider a sequence defined by

un+1 − un
∆t

= vn+1,

vn+1 − vn
∆t

= −|vn+1|vn+1 − f(un+1),

u0, v0 ∈ R,

(35)

where f : R −→ R is locally Lipschitz continuous and satisfies

f is nondecreasing, (36)

f(s) < 0, ∀s < a, (37)

f(s) = 0, ∀s ∈ [a, b], (38)

f(s) > 0, ∀s > b. (39)

Here a, b ∈ R are such that a < b.
We denote by F an antiderivative of f . The assumptions on f imply that F is convex

and that there exist two positive constants c1, c2 such that

F (s) ≥ c1|s| − c2, ∀s ∈ R. (40)

Since F is convex, we have

F (u)− F (ũ) ≥ f(ũ)(u− ũ), ∀u, ũ ∈ R. (41)

Since F is coercive, we have:

Proposition 12 For every (u0, v0) ∈ R2, there exists at least one sequence (un, vn) which
complies with (35).

Proof. Assume by induction that for some n ∈ N, the values (un, vn) are defined in R2. We
consider the function

Gn : u 7→ (u− un)2

2∆t2
− uvn

∆t
+
|u− un|3

3∆t2
+ F (u).

It is clear that Gn is continuous on R and Gn(u)→ +∞ as |u| → +∞ (cf. (40)). Thus, Gn

has at least one minimizer u? in R, which solves G′n(u?) = 0, that is

u? − un
∆t2

− vn
∆t

+
|u? − un|(u? − un)

∆t2
+ f(u?) = 0.

We set un+1 = u? and vn+1 = (un+1 − un)/∆t. We see that un+1, vn+1 complies with (35)
and we proceed by induction. 2
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Remark 13 Let (u0, v0) ∈ R2. By a fixed point argument, it is possible to prove that if
∆t is small enough, there exists a unique sequence (un, vn) which complies with (35) (see,
e.g., [13]).

Theorem 14 Assume that f satisfies (36)-(39). For every non stationary sequence (un, vn)
which complies with (35), there exist a subsequence (unk , vnk) such that unk < a for all k ∈ N
and a subsequence (unk′ , vnk′ ) such that unk′ > b for all k′ ∈ N.

Proof. We multiply the second equation in (35) by ∆tvn+1. We find

(vn+1 − vn)vn+1 + ∆t|vn+1|3 = −f(un+1)(un+1 − un).

By (41),

1

2
|vn+1|2 −

1

2
|vn|2 +

1

2
|vn+1 − vn|2 + ∆t|vn+1|3 ≤ F (un)− F (un+1).

Thus,
∆t|vn+1|3 ≤ E(un, vn)− E(un+1, vn+1), (42)

where

E(u, v) :=
1

2
|v|2 + F (u).

The sequence (En) = (E(un, vn)) is nonincreasing and since E(u, v) is coercive by (40), the
sequence (un, vn) is bounded. Morevover, (En) has a limit as n tends to +∞, so |vn+1| → 0
by (42).

We assume that un ≥ a for al n ≥ n0, for some n0 ∈ N. We must prove that (un) is
stationary.

• If vn ≥ 0 for all n ≥ n0, then (un) is nondecreasing and since (un) is bounded, it
converges to some value c ∈ [a, b]. In particular, un ∈ [a, b] for all n ≥ n0 and the
second equation in (35) becomes

vn+1 − vn
∆t

= −|vn+1|vn+1 ⇐⇒ vn+1(1 + ∆t|vn+1|) = vn. (43)

If vn = 0 for all n ≥ n0, then (un) is stationary. Otherwise, there exists n1 ≥ n0 such
that vn1 > 0. Equation (43) shows that vn1+1 > 0 and vn1 > vn1+1 and by induction,
vn > vn+1 > 0 for all n ≥ n1. We have

1

vn+1

− 1

vn
=
vn − vn+1

vnvn+1

≤ vn − vn+1

v2n+1

= ∆t, ∀n ≥ n1.

On summing this inequality, we find

n∑
k=n1

(
1

vk+1

− 1

vk

)
≤ (n− n1 + 1)∆t,
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that is
1

vn+1

− 1

vn1

≤ (n− n1 + 1)∆t.

Thus,

vn+1 ≥
1

(n− n1 + 1)∆t+ 1/vn1

,

and so

un+1 − un ≥
∆t

(n− n1 + 1)∆t+ 1/vn1

, ∀n ≥ n1.

Thus, the series
∑∞

n=n1
(un+1 − un) diverges and (un) tends to +∞. This is absurd

since (un) is bounded.

• If there exists n1 ≥ n0 such that vn1 < 0, the second equation in (35) yields

vn+1 − vn
∆t

+ |vn+1|vn+1 = −f(un+1) ≤ 0

that is
vn+1(1 + ∆t|vn+1|) = vn −∆tf(un+1), ∀n ≥ n1.

In particular, vn1+1 < 0 and by induction, vn < 0 for all n ≥ n1. Moreover,

|vn+1|(1 + ∆t|vn+1|) ≥ |vn|, ∀n ≥ n1.

If |vn| ≥ |vn+1|, then
1

|vn+1|
− 1

|vn|
=
|vn| − |vn+1|
|vn||vn+1|

≤ ∆t.

If |vn| < |vn+1|, then
1

|vn+1|
− 1

|vn|
< 0.

In both cases, we have
1

|vn+1|
− 1

|vn|
≤ ∆t, ∀n ≥ n1.

By summing on n, we find as previously that

|vn+1| ≥
1

(n− n1 + 1)∆t+ 1/|vn1|
,

Thus,

−(un+1 − un) ≥ ∆t

(n− n1 + 1)∆t+ 1/|vn1 |
, ∀n ≥ n1.

This shows that
∑∞

n=n1
(un+1 − un) diverges and so (un) converges to −∞. Again, we

obtain a contradiction since (un) is bounded.
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This proves the existence of the subsequence (unk). The existence of the subsequence (unk′ )
follows similarly by reversing all signs. 2

Remark 15 The oscillations described in Theorem 14 occur even if F satisfies a Lojasiewicz
inequality. Indeed, we may consider the function f defined by

f(s) =


s− a ∀s < a,

0 ∀s ∈ [a, b],

s− b ∀s > b.

A Taylor expansion near a and b shows that F satisfies the Lojasiewicz inequality with optimal
exponent θ = 1/2.

5 Numerical simulations

We have performed numerical simulations with the Scilab software.

5.1 Slow oscillations for a weak damping
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0.15

0.25
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u

Figure 1: An oscillatory sequence (un) (in black) versus time with f defined by (44). The
two horizontal blue lines represent the values of a and b.
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We first consider a sequence defined by (35) (the case α = 1) with f defined by

f(s) =


−(a− s)2 ∀s < a,

0 ∀s ∈ [a, b],

(s− b)2 ∀s > b.

(44)

and a = 0, b = 0.2. The initial datum is (u0, v0) = (−0.5, 0). The time step is ∆t = 0.01
and we have computed 100 000 iterations so that the final time is 1000.

Figure 1 shows the oscillatory behaviour described in Theorem 14. This is described as
slow oscillations in the case of a weak damping in [10].

5.2 Convergence to equilibrium for a “strong” damping

0 1 000200 400 600 800100 300 500 700 900
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−0.05

0.05

0.15

0.25

t

u

Figure 2: A convergent sequence (un) (in black) versus time with f defined by (44) in the
case α = 0.6. The two horizontal blue lines represent the values of a and b.

Next, we consider a sequence defined by (24) with α = 0.6. The function f and the initial
condition are the same as previously. The time step is ∆t = 0.01 and we have computed
100 000 iterations. Figure 2 illustrates the convergence of the sequence proved in Theorem 11.
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Figure 3: Behaviour of the sequence (un) = (un1 , u
n
2 ) for the explicit scheme (6) with f defined

by (45). The starting point is u0 = (3, 2). The blue line is the ellipse (46).
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Figure 4: Energy vs. time (left) and modified energy vs. time (right).

5.3 Convergence to equilibrium for a system

We consider the sequence (un, vn) defined by the explicit scheme (6). The function F : R2 →
R is

F (x, y) =

{
1
2
(x2 + 2y2 − 1)2 if x2 + 2y2 − 1 ≥ 0,

0 if x2 + 2y2 − 1 < 0.
(45)
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We note that F is a convex function and its set of critical point is the ellipse

S =
{

(x, y) ∈ R2 : x2 + 2y2 − 1 ≤ 0
}
. (46)

Moreover, F satisfies the Lojasiewicz inequality since it is a polynomial outside S.
Figure 3 illustrates the convergence of the sequence (un) to a critical point which belongs

to the interior of S. The initial condition is u0 = (3, 2), v0 = (0, 0), the time step is ∆t = 0.01
and we have performed 1000 iterations. The value of un is approximately (−0.68,−0.17).

Figure 4 (left) shows the energy En versus time tn = n∆t over the first 300 iterations. We
see especially at the beginning that En is not monotonic. In contrast, the modified energy
Φε shown in Figure 4 (right) is decreasing. The value chosen for ε is 0.01.
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