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We study several discretizations of a second order gradient-like system with damping. We first consider an explicit scheme with a linear damping in finite dimension. We prove that every solution converges if the nonlinearity satisfies a global Lojasiewicz inequality. Convergence rates are also established. In the case of a strong nonlinear damping, we prove convergence of every solution for a fully implicit scheme in the one-dimensional case, even if the nonlinearity does not satisfy a Lojasiewicz inequality. The optimality of the damping is also established. Numerical simulations illustrate the theoretical results.

Introduction

In this paper, we study the asymptotic behaviour of solutions to several discretizations of the second order ordinary differential system u + u α u + ∇F (u) = 0, t ≥ 0, [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF] where

F : R d → R is a C 1 function and α ∈ [0, 1].
The asymptotic behaviour of solutions to [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF] has been extensively studied. A crucial tool is the energy estimate

d dt E(t) = -u (t) 2+α ≤ 0,
where E is the energy defined for every solution u by

E(t) = 1 2 u (t) 2 + F (u(t)).
The system (1) is known as a gradient-like system. In particular, the ω-limit set of a bounded solution consists only of equilibrium points. A natural question is the study of convergence of such a solution.

Haraux [START_REF] Haraux | Asymptotics for some nonlinear O.D.E. of the second order[END_REF] proved under quite general assumptions on F that if d = 1 and 0 ≤ α < 1, every bounded solution converges to a critical point of F as time goes to infinity. This is no longer true if the damping is too weak (α ≥ 1), as pointed out in [START_REF] Haraux | Asymptotics for some nonlinear O.D.E. of the second order[END_REF], or if d ≥ 2, as proved in [START_REF] Jendoubi | Non-stabilizing solutions of semilinear hyperbolic and elliptic equations with damping[END_REF].

However, if F satisfies additional properties, more can be said. If F is real analytic, α = 0 and d is arbitrary, Haraux and Jendoubi [START_REF]Convergence of solutions of second-order gradient-like systems with analytic nonlinearities[END_REF] proved that every bounded solution to [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF] converges to a single point. Their result is based on the celebrated Lojasiewicz inequality [START_REF] Lojasiewicz | Colloques internationaux du C.N.R.S #117. Les équations aux dérivées partielles[END_REF][START_REF]Ensembles semi-analytiques[END_REF]. A similar convergence result was obtained by Chergui [START_REF] Chergui | Convergence of global and bounded solutions of a second order gradient like system with nonlinear dissipation and analytic nonlinearity[END_REF] in the case 0 ≤ α < 1, where α depends also on the global Lojasiewicz exponent of the function F . We refer the reader to the book [START_REF] Haraux | The convergence problem for dissipative autonomous systems -classical methods and recent advances[END_REF] for details on this matter. Alvarez [START_REF] Alvarez | On the minimizing property of a second order dissipative system in Hilbert spaces[END_REF] proved convergence to an equilibrium for convex functions in the case α = 0 (see also [START_REF] Attouch | The heavy ball with friction method, I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system[END_REF]). Generalizations of [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF] have been considered in [START_REF] Attouch | Fast optimization via inertial dynamics with closed-loop damping[END_REF]. Discretizations of the system (1) have also been studied. In [START_REF] Alvarez | On the minimizing property of a second order dissipative system in Hilbert spaces[END_REF] mentioned above, Alvarez also studied the asymptotic behaviour for convex functions of a fully implicit discretization in the case α = 0. Convergence to equilibrium was also proved in [START_REF] Grasselli | Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems[END_REF] for a fully implicit scheme in the case of real analytic functions and linear damping (α = 0). A semi-implicit scheme was considered in [START_REF] Alaa | Convergence to equilibrium for discretized gradient-like systems with analytic features[END_REF] for functions satisfying a Lojasiewicz inequality. Horsin and Jendoubi [START_REF] Horsin | Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities[END_REF] studied the nonlinear damping 0 < α < 1 for a fully implicit scheme. Related schemes were considered in [START_REF] Attouch | Convergence of descent methods for semialgebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF].

Our main purpose in this paper is to study an explicit discretization of (1) for a linear damping and a function F which satisfies a global Lojasiewicz inequality. In contrast to the fully implicit discretization, we do not prove that the energy is nonincreasing but instead, we prove that a modified energy is nonincreasing. This is achieved in Section 2 and the proof of convergence is based on an angle condition introduced in [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF]. Convergence rates are also established.

In Section 3, we consider an implicit discretization of (1) in the one-dimensional case (d = 1) and we prove that the sequence generated by the scheme converges for 0 ≤ α < 1, without assuming that F satisfies a Lojasiewicz inequality. The optimality of α is established in Section 4, where a non convergence result is shown to hold for α = 1 and d = 1, even if F satisfies a Lojasiewicz inequality with optimal exponent θ = 1/2. We note that altogether, in Sections 2-4, the discrete case mimicks the situation for the continuous system [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF]. Numerical simulations illustrate the theoretical results in the last section.

Convergence to equilibrium for an explicit scheme

In this section, we prove convergence to equilibrium for an explicit discretization of the system [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF]. We first recall a general convergence result.

A discrete angle condition

Let Φ : R N -→ R be a C 1 function, σ > 0 and let us consider a sequence (x n ) satisfying for all n ∈ N

Φ(x n ) -Φ(x n+1 ) ≥ σ ∇Φ(x n ) x n+1 -x n , (2) 
[Φ(x n+1 ) = Φ(x n )] =⇒ [x n+1 = x n ]. (3) 
Theorem 1 (Absil et al. [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF]) We assume that there exists θ ∈ (0, 1 2 ] such that

∀a ∈ R N ∃c a > 0 ∃r a > 0/ ∀x ∈ R N : x -a < r a =⇒ ∇Φ(x) ≥ c a |Φ(x) -Φ(a)| 1-θ . (4) 
Let (x n ) be a sequence satisfying (2) and (3). Then either lim n→+∞

x n = +∞, or there exists

x ∞ ∈ R N such that ∇Φ(x ∞ ) = 0 and lim n→+∞ x n = x ∞ .
Precisely, in this case we have

x n -x ∞ = O(e -cn ) for some c > 0 if θ = 1 2 O(n -θ) 1-2θ ) if θ ∈ (0, 1 2 ). 
(

) 5 
Remark 2 If there exists M > 0 such that ∀n ∈ N, x n ≤ M, then the assumption (4) may merely apply to those a ∈ R N such that a ≤ M .

The explicit scheme

We consider a sequence (

u n , v n ) n∈N in R d × R d satisfying          u n+1 -u n ∆t = v n v n+1 -v n ∆t = -v n -∇F (u n ) u 0 , v 0 ∈ R d (6) 
where α > 0 and

F : R d -→ R is a C 1 function such that ∃L F > 0/ ∀u, v ∈ R d ∇F (u) -∇F (v) ≤ L F u -v , (7) ∃c 1 , c 2 > 0/ ∀u ∈ R d F (u) ≥ c 1 u 2 -c 2 . ( 8 
)
It is easy to check (see for example [START_REF] Alaa | Convergence to equilibrium for discretized gradient-like systems with analytic features[END_REF][START_REF] Horsin | Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities[END_REF]) that hypothesis [START_REF] Chergui | Convergence of global and bounded solutions of a second order gradient like system with nonlinear dissipation and analytic nonlinearity[END_REF] on F implies the following inequalities (< ., > denoting the standard scalar product on R d )

∀u, v ∈ R d < ∇F (u) -∇F (v), u -v >≥ -L F u -v 2 , ( 9 
) ∀u, v ∈ R d F (v) ≥ F (u)+ < ∇F (u), v -u > - L F 2 u -v 2 . ( 10 
)
The existence and uniqueness of a sequence satisfying (6) are obvious.

Proposition 3 For any (u 0 , v 0 ) ∈ R 2d the sequence (u n , v n ) given by ( 6) is well defined.

We define

E(u, v) = 1 2 v 2 + F (u).
Proposition 4 Assume F satisfies [START_REF] Chergui | Convergence of global and bounded solutions of a second order gradient like system with nonlinear dissipation and analytic nonlinearity[END_REF]. Let (u n , v n ) be a sequence satisfying (6), then we have

E(u n+1 , v n+1 ) -E(u n , v n ) ≤ -∆t 1 -1 + 3L F 2 ∆t v n 2 + (∆t) 2 ∇F (u n ) 2 .
Proof. By taking the scalar product of the second relation of [START_REF] Attouch | The heavy ball with friction method, I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system[END_REF] with ∆tv n , it comes

< v n+1 -v n ∆t , ∆tv n >=< -v n -∇F (u n ), ∆tv n >, < v n , v n+1 > -v n 2 = -∆t v n 2 -< ∇F (u n ), ∆tv n >, 1 2 v n+1 2 - 1 2 v n 2 - 1 2 v n+1 -v n 2 = -∆t v n 2 -< ∇F (u n ), u n+1 -u n > .
Then we obtain

E(u n+1 , v n+1 ) -E(u n , v n ) - 1 2 v n+1 -v n 2 ≤ -∆t v n 2 + F (u n+1 ) -F (u n )-< ∇F (u n ), u n+1 -u n > ≤ -∆t v n 2 + F (u n+1 ) -F (u n )-< ∇F (u n+1 ), u n+1 -u n > + < ∇F (u n+1 ) -∇F (u n ), u n+1 -u n > .
By using [START_REF] Chergui | Convergence of global and bounded solutions of a second order gradient like system with nonlinear dissipation and analytic nonlinearity[END_REF] and [START_REF] Haraux | Asymptotics for some nonlinear O.D.E. of the second order[END_REF], we get

E(u n+1 , v n+1 ) -E(u n , v n ) ≤ -∆t v n 2 + 1 2 v n+1 -v n 2 + L F 2 u n+1 -u n 2 + L F u n+1 -u n 2 ≤ -∆t 1 - 3L F 2 ∆t v n 2 + 1 2 v n+1 -v n 2 .
Since

1 2 v n+1 -v n 2 = (∆t) 2 2 v n + ∇F (u n ) 2 ≤ (∆t) 2 v n 2 + (∆t) 2 ∇F (u n ) 2 ,
we deduce

E(u n+1 , v n+1 ) -E(u n , v n ) ≤ -∆t 1 -1 + 3L F 2 ∆t v n 2 + (∆t) 2 ∇F (u n ) 2 .
Let S = {a ∈ R d / ∇F (a) = 0}. Now we assume also that there exists θ ∈ (0, 1 2 ] such that

∀a ∈ S ∃δ a > 0 ∃ν a > 0/ ∀u ∈ R d : u -a < δ a =⇒ ∇F (u) ≥ ν a |F (u) -F (a)| 1-θ . (11) 2 
Proposition 5 ([15, 16, 8, 7]) Assumption ( 11) is satisfied if one of the following two cases holds:

-F is a polynomial, or -F is analytic and S is compact.

The first part of this proposition is a result of D'Acunto and Kurdyka [START_REF] Kurdyka | Explicit bounds for the Lojasiewicz exponent in the gradient inequality for polynomials[END_REF]. The proof of the second part can be found in [START_REF] Chergui | Convergence of global and bounded solutions of a second order gradient like system with nonlinear dissipation and analytic nonlinearity[END_REF].

Theorem 6 Let F : R d -→ R be a C 2 function satisfying (7), ( 8) and [START_REF] Haraux | The convergence problem for dissipative autonomous systems -classical methods and recent advances[END_REF]. Assume also that ∆t is small enough. Let (u n , v n ) be a sequence satisfying [START_REF] Attouch | The heavy ball with friction method, I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system[END_REF]. Then (u n , v n ) is bounded and there exists a ∈ S such that

lim n→+∞ v n + u n -a = 0.
In addition as n → +∞ we have

v n + u n -a = O(e -cn ) for some c > 0 if θ = 1 2 O(n -θ) 1-2θ ) if θ ∈ (0, 1 2 ). ( 12 
)
Remark 7 We are able to give an upper bound of ∆t namely

0 < ∆t < min 1 4 + 6L F , 1 4 + 3L F (1 + η) , η 2 + L F η with η = min 1 2 , c 1 2L 2 F , 1 2L F +1 , 1 2C , where C = max 1, max u ≤R ∇ 2 F (u)
and R is given by (17).

Proof. Let ε be a positive real. We define for all

u, v ∈ R d Φ ε (u, v) = E(u, v) + ε < ∇F (u), v > .
First of all we will prove that for ε small enough, Φ ε will be coercive. In fact, using [START_REF] Chergui | Convergence of global and bounded solutions of a second order gradient like system with nonlinear dissipation and analytic nonlinearity[END_REF], we see that

∀u ∈ R d ∇F (u) ≤ L F u + ∇F (0) , and then ∀u ∈ R d ∇F (u) 2 ≤ 2L 2 F u 2 + 2 ∇F (0) 2 . ( 13 
)
Now for all (u, v) ∈ R d , we have by Cauchy-Schwarz inequality

Φ ε (u, v) ≥ 1 2 v 2 + F (u) - ε 2 v 2 - ε 2 ∇F (u) 2
≥ by ( 8) and ( 13)

1 2 - ε 2 v 2 + (c 1 -εL 2 F ) u 2 -c 2 -ε ∇F (0) 2 .
We impose to ε to be such that ε ≤ min 1 2 , c 1 2L 2

F

. We see that with this choice, we have

Φ ε (u, v) ≥ 1 4 v 2 + c 1 2 u 2 -c 2 - 1 4 ∇F (0) 2 , (14) 
so that Φ ε is coercive. Next, we prove that for small enough, (Φ

ε (u n , v n )) is nonincreasing. Let us define x n = (u n , v n ). According to Proposition 4, for all n ∈ N : Φ ε (x n+1 ) -Φ ε (x n ) ≤ -∆t 1 -1 + 3L F 2 ∆t v n 2 + (∆t) 2 ∇F (u n ) 2 . +ε   < ∇F (u n+1 ), v n+1 > -< ∇F (u n ), v n > Tn   .
We have

T n = < ∇F (u n+1 ) -∇F (u n ) + ∇F (u n ), v n -∆tv n -∆t∇F (u n ) > -< ∇F (u n ), v n > = < ∇F (u n+1 ) -∇F (u n ), v n -∆tv n -∆t∇F (u n ) > -∆t ∇F (u n ) 2 -∆t < ∇F (u n ), v n > ≤ ∇F (u n+1 ) -∇F (u n ) v n -∆tv n -∆t∇F (u n ) -∆t ∇F (u n ) 2 -∆t < ∇F (u n ), v n > ≤ by (7) L F u n+1 -u n v n -∆tv n -∆t∇F (u n ) -∆t ∇F (u n ) 2 -∆t < ∇F (u n ), v n > ≤ by (6) L F ∆t v n v n -∆tv n -∆t∇F (u n ) -∆t ∇F (u n ) 2 -∆t < ∇F (u n ), v n > ≤ L F ∆t v n 2 + L F (∆t) 2 v n 2 + L F (∆t) 2 v n ∇F (u n ) -∆t ∇F (u n ) 2 + ∆t ∇F (u n ) v n ≤ ∆t L F + 1 2 + 3 2 L F ∆t v n 2 - ∆t 2 (1 -L F ∆t) ∇F (u n ) 2 (15) 
where we used the triangle and the Cauchy-Schwarz inequalities. Then we get

Φ ε (x n+1 ) -Φ ε (x n ) ≤ -∆t 1 -1 + 3L F 2 ∆t v n 2 + (∆t) 2 ∇F (u n ) 2 +ε∆t L F + 1 2 + 3 2 L F ∆t v n 2 -ε ∆t 2 (1 -L F ∆t) ∇F (u n ) 2 ≤ -∆t 1 -ε L F + 1 2 -1 + 3L F 2 (1 + ε) ∆t v n 2 -∆t ε 2 -(1 + ε 2 L F )∆t ∇F (u n ) 2 We choose ε ≤ ε = min 1 2 , c 1 2L 2 F , 1 2L F +1 . Then we obtain Φ ε (x n+1 ) -Φ ε (x n ) ≤ -∆t 1 2 -1 + 3L F 2 (1 + ε) ∆t v n 2 -∆t ε 2 -(1 + ε 2 L F )∆t ∇F (u n ) 2 .
We assume that ∆t is small enough such that

1 2 -1 + 9L F 4 ∆t > 0 (then 1 2 -1 + 3L F 2 (1 + ε) ∆t > 0 since ε ≤ 1 2 ) and ε 2 -(1 + ε 2 L F )∆t > 0. Then there is a constant δ = δ(∆t, L F ) > 0 such that ∀n ∈ N Φ ε (x n+1 ) -Φ ε (x n ) ≤ -δ v n 2 + ∇F (u n ) 2 . ( 16 
)
Then the sequence (Φ ε (x n )) is nonincreasing. Using ( 14), we see that (u n ) and (v n ) are bounded:

Φ ε (x n ) ≤ Φ ε (x 0 ) =⇒ 1 4 v n 2 + c 1 2 u n 2 -c 2 - 1 4 ∇F (0) 2 ≤ 1 2 v 0 2 + F (u 0 ) + ε < ∇F (u 0 ), v 0 > =⇒ 1 4 v n 2 + c 1 2 u n 2 ≤ 1 2 v 0 2 + F (u 0 ) + ∇F (u 0 ) v 0 + c 2 + 1 4 ∇F (0) 2 =⇒ min( 1 8 , c 1 4 )[ v n + u n ] 2 ≤ 1 2 v 0 2 + F (u 0 ) + ∇F (u 0 ) v 0 + c 2 + 1 4 ∇F (0) 2 =⇒ v n + u n ≤ R where R = 1 min( 1 8 , c 1 4 ) 1 2 v 0 2 + F (u 0 ) + ∇F (u 0 ) v 0 + c 2 + 1 4 ∇F (0) 2 1 2 . ( 17 
)
At this stage, it is important to note that if we choose ε smaller, ( 16) remains true. Note also that R is independent of ∆t and ε.

Obviously we have

( v n 2 + ∇F (u n ) 2 ) converges. Then v n -→ 0 and the ω-limit set ω((u n ) n∈N ) := {a ∈ R d : ∃n k → ∞/u n k -→ a} is a nonempty compact connected subset of S.
Let us show that (x n ) = (u n , v n ) satisfies ( 2) and (3) with the function Φ ε . Indeed, if for some n we have Φ ε (x n+1 ) = Φ ε (x n ), then by [START_REF]Ensembles semi-analytiques[END_REF] we deduce that v n = 0 and ∇F (u n ) = 0. Using system (6), we get that u n+1 = u n and v n+1 = v n , that is x n+1 = x n and (3) is satisfied. On the other hand, a simple computation gives

∇Φ ε (u, v) = ∇F (u)+ε∇ 2 F (u)•v v+ε∇F (u)
.

Since (u n ) and (v n ) are bounded, there exists a constant η 1 > 0 such that

∀n ∈ N ∇Φ ε (x n ) ≤ η 1 [ v n + ∇F (u n ) ]. ( 18 
)
On the other hand, there exists a constant η 2 > 0 such that

x n+1 -x n = (u n+1 -u n , v n+1 -v n ) = (∆tv n , -∆tv n -∆t∇F (u n )) ≤ η 2 [ v n + ∇F (u n ) ]. ( 19 
)
By combining ( 16) -(18) and ( 19), we get that (Φ ε (x n )) satisfies ( 2) with σ = δ 2η 1 η 2 . Now we will show that under the hypothesis [START_REF] Haraux | The convergence problem for dissipative autonomous systems -classical methods and recent advances[END_REF] on F , Φ ε satisfies (4).

From the remark 2, let

B = {(u, v) ∈ R d × R d , u + v ≤ R} where R is given by (17). Clearly B contains the sequence (u n , v n ). Now, for all (u, v) ∈ B ∇Φ ε (u, v) = ∇F (u) + ε∇ 2 F (u) • v + v + ε∇F (u) ≥ ∇F (u) -ε ∇ 2 F (u) • v + v -ε ∇F (u) ≥ (1 -ε max u ≤R ∇ 2 F (u) ) v + (1 -ε) ∇F (u) ≥ (1 -εC)[ v + ∇F (u) ] where C = max 1, max u ≤R ∇ 2 F (u) .
By possibly taking ε > 0 smaller (ε = min(ε, 1 2C )), there exists ρ > 0 such that

∀(u, v) ∈ B ∇Φ ε (u, v) ≥ ρ[ v + ∇F (u) ]. (20) 
If (a, b) is not a critical point of Φ ε , then Φ ε satisfies (4) with θ = 1 2 as best exponent, thanks to the continuity of Φ ε . Let (a, b) ∈ B be a critical point of Φ ε . Then ∇F (a) = 0 and b = 0. From ( 11)

∃δ a > 0 ∃ν a > 0/ ∀u ∈ R d : u -a < δ a =⇒ ∇F (u) ≥ ν a |F (u) -F (a)| 1-θ . (21) 
On the other hand, by using the Cauchy-Schwarz inequality, we get

[Φ ε (u, v) -Φ ε (a, 0)] 1-θ = 1 2 v 2 + F (u) -F (a) + ε < ∇F (u), v > 1-θ ≤ v 2(1-θ) + |F (u) -F (a)| 1-θ + ∇F (u) 1-θ v 1-θ . ( 22 
)
Thanks to Young's inequality we obtain

∇F (u) 1-θ v 1-θ ≤ ∇F (u) + v 1-θ θ . Then (22) becomes [Φ ε (u, v) -Φ ε (a, 0)] 1-θ ≤ v 2(1-θ) + |F (u) -F (a)| 1-θ + ∇F (u) + v 1-θ θ-α(1-θ) .
Since 2(1 -θ) and 1-θ θ are bigger then 1, using also (21), we get for all (u, v)

∈ B with v ≤ 1 and u -a < δ a [Φ ε (u, v) -Φ ε (a, 0)] 1-θ ≤ v + |F (u) -F (a)| 1-θ + ∇F (u) + v ≤ 2 + 1 ν a [ ∇F (u) + v ] ≤ 1 ρ 2 + 1 ν a ∇Φ ε (u, v) by (20).
Therefore Φ ε satisfies (4). Theorem 1 is proved. 2

A convergence result in the one dimensional case

We consider the case of a strong nonlinear damping (0 ≤ α < 1) in the one-dimensional situation (d = 1). This time, we use an implicit discretization of (1). The proof is adapted from the continuous case. We recall it for the reader's convenience.

The continuous version

Let u ∈ W 1,∞ (R) be a bounded solution of the ODE

u + |u | α u + f (u) = 0,
where f ∈ C 1 (R, R). We know that (see, e.g., [START_REF] Haraux | The convergence problem for dissipative autonomous systems -classical methods and recent advances[END_REF])

ω(u, u ) ⊂ f -1 ({0}) × {0},
where ω(u, u ) is the ω-limit set of the solution defined by 

ω(u, u ) = (u , v ) ∈ R 2 , ∃t n → +∞, (u(t n ), u (t n )) → (u , v ) as n → +∞ .
|u(T ) -c| < b -a 8 , |u (t)| 1-α 1 -α < b -a 8 ∀t ≥ T.
We will prove that

∀t ≥ T u(t) ∈ [a, b].
Assume that this is not the case and let

θ = inf{t ≥ T, u(t) ∈ [a, b]}. Clearly we have θ < ∞ and ∀t ∈ [T, θ] u(t) ∈ [a, b]. Then ∀t ∈ [T, θ] u (t) + |u (t)| α u (t) = 0.
If there is a s ∈ [T, θ] such that u (s) = 0, then u (t) = 0 for all t ∈ [T, θ], in this case we conclude easily. Otherwise, solving this ODE, we get

∀t ∈ [T, θ] |u (t)| = 1 [|u (T )| -α + α(t -T )] 1 α . ( 23 
) |u(θ) -u(T )| ≤ θ T |u (t)| dt ≤ θ T dt [|u (T )| -α + α(t -T )] 1 α ≤ |u (T )| 1-α 1 -α < b -a 8 . |u(θ) -c| ≤ |u(θ) -u(T )| + |u(T ) -c| < b -a 8 + b -a 8 = b -a 4 ,
which contradicts the definition of θ and then θ = ∞.

Now from (23), we deduce that u ∼ 1

α 1 α t 1 α
, and then u ∈ L 1 (R + ). This proves that u converges and the ω-limit set ω(u, u ) is reduced to a single point. 2

The discrete version

The scheme reads:

         u n+1 -u n ∆t = v n+1 v n+1 -v n ∆t = -|v n+1 | α v n+1 -f (u n+1 ) u 0 , v 0 ∈ R (24) 
and f : R -→ R is such that

∃c F > 0/ ∀u, v ∈ R d (f (u) -f (v))(u -v) ≥ -c F |u -v| α+2 , ( 25 
) ∃L F > 0/ ∀u, v ∈ R d |f (u) -f (v)| ≤ L F u -v . ( 26 
)
Let S = {a ∈ R d / f (a) = 0} and F be an antiderivative of f. We define

E(u, v) = 1 2 |v| 2 + F (u).
We recall the following results.

Proposition 9 [START_REF] Horsin | Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities[END_REF] Assume that F is of class C 1 (R d ), coercive and that (25) and (26) hold, then for any (u 0 , v 0 ) ∈ R 2d , provided ∆t is small enough, the sequence (u n , v n ) given by (24) is well defined, and we have

∀n ∈ N E(u n+1 , v n+1 ) ≤ E(u n , v n ). ( 27 
)
Moreover we have

E(u n+1 , v n+1 ) -E(u n , v n ) ≤ -∆t 1 - c F 2 (∆t) α+1 |v n+1 | α+2 .
Corollary 10 [13] Let F satisfy (25) and assume that 0

< ∆t < 2 c F 1 α+1 . Let (u n , v n ) be a sequence satisfying (24). If (u n ) is bounded, then lim n→∞ E(u n , v n ) exists and v n -→ 0.
Moreover the ω-limit set ω((u n ) n∈N ) given by

ω((u n ) n∈N ) = {a ∈ R : ∃n k → ∞/u n k -→ a} is a nonempty compact connected subset of S.
The main result of this paper is the following Theorem 11 Under the assumptions of the corollary 10, there exists a ∈ S such that u n -→ a.

Proof. As in the continuous case, by connectedness we have either ω((u n ) n∈N ) = {a} × {0} for some a ∈ f -1 ({0}) and the result is established, or ω((

u n ) n∈N ) = [a, b] × {0} for some a, b ∈ f -1 ({0}) (a < b).
In this case, let c = a+b 2 . Using corollary 10, we can choose n 0 large enough such that

|u n 0 -c| < b -a 8 , (28) 
∆t|v n 0 | + 2 α+1 1 -α |v n 0 | < b -a 8 ∀n ≥ n 0 , (29) 
∆t|v n | α ≤ 1, ∀n ≥ n 0 . ( 30 
)
Assume by contradiction that the set {n ≥ n 0 : u n+1 ∈ [a, b]} is nonempty and let

n 1 = inf n ≥ n 0 : u n+1 ∈ [a, b] .
Note that n 1 > n 0 + 2. In fact by (29), we have ∆t|v n 0 +1 | < b-a 8 and ∆t|v n 0 +2 | < b-a 8 . Using (24) and tringle inequality, we find

|u n 0 +1 -c| ≤ |u n 0 +1 -u n 0 | + |u n 0 -c| = ∆t|v n 0 +1 | + |u n 0 -c| < b -a 8 + b -a 8 = b -a 4 ; |u n 0 +2 -c| ≤ |u n 0 +2 -u n 0 +1 | + |u n 0 +1 -c| = ∆t|v n 0 +2 | + |u n 0 -c| < b -a 8 + b -a 4 = 3 b -a 8 .
It is clear that

∀n ∈ {n 0 , • • • , n 1 -1}, u n+1 ∈ [a, b]
and then f (u n+1 ) = 0 since [a, b] ⊂ S. Using (24), we get

∀n ∈ {n 0 , • • • , n 1 -1}, v n+1 -v n ∆t = -|v n+1 | α v n+1 .
which can also be written

∀n ∈ {n 0 , • • • , n 1 -1}, v n+1 (1 + ∆t|v n+1 | α ) = v n .
Obviously we have

∀n ∈ {n 0 , • • • , n 1 -1}, |v n | -|v n+1 | = ∆t|v n+1 | α+1 ≥ 0. (31) 
Now assume that there exists p ∈ {n 0 , 30) and (31) we deduce that

• • • , n 1 -1} such that v p = 0. Then for all n ∈ {n 0 , • • • , n 1 -1}, v n = 0. In this case n 1 = ∞ and (u n ) is a constant sequence. Otherwise for all n ∈ {n 0 , • • • , n 1 -1}, v n = 0. Now from (
∀n ∈ {n 0 , • • • , n 1 -1}, |v n | ≤ 2|v n+1 |. (32) 
Then we get from (31

) ∆t = |v n | -|v n+1 | |v n+1 | α+1
≤ by (31) and (32)

2 α+1 |v n | -|v n+1 | |v n | α+1 ≤ 2 α+1 |vn| |v n+1 | dt t α+1 = 2 α+1 α -|v n | -α + |v n+1 | -α . Summing from n 0 to n ∈ {n 0 , • • • , n 1 -1}, we obtain α 2 α+1 ∆t(n -n 0 ) ≤ |v n+1 | -α -|v n 0 | -α or |v n+1 | ≤ 1 |v n 0 | -α + α 2 α+1 ∆t(n -n 0 ) 1 α . ( 33 
) Now let n ∈ {n 0 , • • • , n 1 -1}, we have |u n+1 -u n 0 | ≤ n k=n 0 |u k+1 -u k | = by (24) ∆t n k=n 0 |v k+1 | ≤ by (33) ∆t n k=n 0 1 |v n 0 | -α + α 2 α+1 ∆t(k -n 0 ) 1 α ≤ ∆t|v n 0 | + ∆t n n 0 dx |v n 0 | -α + α 2 α+1 ∆t(x -n 0 ) 1 α ≤ ∆t|v n 0 | + 2 α+1 1 -α |v n 0 | < by (29) b -a 8 . (34) 
In particular with n = n 1 -1, we get

|u n 1 -u n 0 | < b-a 8 .
By the triangle inequality we deduce 

|u n 1 -c| ≤ |u n 1 -u n 0 | + |u n 0 -c| < by (28) b -a 8 + b -a 8 = b -a 4 
∀n ≥ n 0 |u n+1 -c| ≤ |u n+1 -u n 0 | + |u n 0 -c| < b -a 4 + b -a 8 = 3(b -a) 8 .
By choosing a subsequence such that u n k -→ b, we obtain

|b -c| ≤ 3(b -a) 8 ,
a contradiction. We conclude that ω((u n )) is a reduced to a single point u * and that u n -→ u * . 2

A non convergence result

We adapt to the discrete case a result from [START_REF] Haraux | Asymptotics for some nonlinear O.D.E. of the second order[END_REF][START_REF] Haraux | The convergence problem for dissipative autonomous systems -classical methods and recent advances[END_REF]. Let ∆t > 0 denote the time step. We consider a sequence defined by

         u n+1 -u n ∆t = v n+1 , v n+1 -v n ∆t = -|v n+1 |v n+1 -f (u n+1 ), u 0 , v 0 ∈ R, (35) 
where f : R -→ R is locally Lipschitz continuous and satisfies

f is nondecreasing, (36) f (s) < 0, ∀s < a, (37) f (s) = 0, ∀s ∈ [a, b], (38) f (s) > 0, ∀s > b. ( 39 
)
Here a, b ∈ R are such that a < b.

We denote by F an antiderivative of f . The assumptions on f imply that F is convex and that there exist two positive constants c 1 , c 2 such that

F (s) ≥ c 1 |s| -c 2 , ∀s ∈ R. ( 40 
)
Since F is convex, we have

F (u) -F (ũ) ≥ f (ũ)(u -ũ), ∀u, ũ ∈ R. ( 41 
)
Since F is coercive, we have:

Proposition 12 For every (u 0 , v 0 ) ∈ R 2 , there exists at least one sequence (u n , v n ) which complies with (35).

Proof. Assume by induction that for some n ∈ N, the values (u n , v n ) are defined in R 2 . We consider the function

G n : u → (u -u n ) 2 2∆t 2 - uv n ∆t + |u -u n | 3 3∆t 2 + F (u).
It is clear that G n is continuous on R and G n (u) → +∞ as |u| → +∞ (cf. (40)). Thus, G n has at least one minimizer u in R, which solves G n (u ) = 0, that is

u -u n ∆t 2 - v n ∆t + |u -u n |(u -u n ) ∆t 2 + f (u ) = 0.
We set u n+1 = u and v n+1 = (u n+1 -u n )/∆t. We see that u n+1 , v n+1 complies with (35) and we proceed by induction.

2 that is 1 v n+1 - 1 v n 1 ≤ (n -n 1 + 1)∆t.
Thus,

v n+1 ≥ 1 (n -n 1 + 1)∆t + 1/v n 1 ,
and so

u n+1 -u n ≥ ∆t (n -n 1 + 1)∆t + 1/v n 1 , ∀n ≥ n 1 .
Thus, the series ∞ n=n 1 (u n+1 -u n ) diverges and (u n ) tends to +∞. This is absurd since (u n ) is bounded.

• If there exists n 1 ≥ n 0 such that v n 1 < 0, the second equation in (35) yields

v n+1 -v n ∆t + |v n+1 |v n+1 = -f (u n+1 ) ≤ 0 that is v n+1 (1 + ∆t|v n+1 |) = v n -∆tf (u n+1 ), ∀n ≥ n 1 .
In particular, v n 1 +1 < 0 and by induction, v n < 0 for all n ≥ n 1 . Moreover,

|v n+1 |(1 + ∆t|v n+1 |) ≥ |v n |, ∀n ≥ n 1 . If |v n | ≥ |v n+1 |, then 1 |v n+1 | - 1 |v n | = |v n | -|v n+1 | |v n ||v n+1 | ≤ ∆t. If |v n | < |v n+1 |, then 1 |v n+1 | - 1 |v n | < 0.
In both cases, we have

1 |v n+1 | - 1 |v n | ≤ ∆t, ∀n ≥ n 1 .
By summing on n, we find as previously that

|v n+1 | ≥ 1 (n -n 1 + 1)∆t + 1/|v n 1 | , Thus, -(u n+1 -u n ) ≥ ∆t (n -n 1 + 1)∆t + 1/|v n 1 | , ∀n ≥ n 1 .
This shows that ∞ n=n 1 (u n+1 -u n ) diverges and so (u n ) converges to -∞. Again, we obtain a contradiction since (u n ) is bounded. This proves the existence of the subsequence (u n k ). The existence of the subsequence (u n k ) follows similarly by reversing all signs.

2 Remark 15 The oscillations described in Theorem 14 occur even if F satisfies a Lojasiewicz inequality. Indeed, we may consider the function f defined by

f (s) =      s -a ∀s < a, 0 ∀s ∈ [a, b], s -b ∀s > b.
A Taylor expansion near a and b shows that F satisfies the Lojasiewicz inequality with optimal exponent θ = 1/2.

Numerical simulations

We have performed numerical simulations with the Scilab software. We first consider a sequence defined by (35) (the case α = 1) with f defined by

Slow oscillations for a weak damping

f (s) =      -(a -s) 2 ∀s < a, 0 ∀s ∈ [a, b], (s -b) 2 ∀s > b. (44) 
and a = 0, b = 0.2. The initial datum is (u 0 , v 0 ) = (-0.5, 0). The time step is ∆t = 0.01 and we have computed 100 000 iterations so that the final time is 1000.

Figure 1 shows the oscillatory behaviour described in Theorem 14. This is described as slow oscillations in the case of a weak damping in [START_REF] Haraux | Asymptotics for some nonlinear O.D.E. of the second order[END_REF]. Next, we consider a sequence defined by (24) with α = 0.6. The function f and the initial condition are the same as previously. The time step is ∆t = 0.01 and we have computed 100 000 iterations. Figure 2 illustrates the convergence of the sequence proved in Theorem 11. 

Convergence to equilibrium for a system

We consider the sequence (u n , v n ) defined by the explicit scheme [START_REF] Attouch | The heavy ball with friction method, I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system[END_REF]. The function F : R 2 → R is

F (x, y) = 1 2 (x 2 + 2y 2 -1) 2 if x 2 + 2y 2 -1 ≥ 0, 0 if x 2 + 2y 2 -1 < 0. ( 45 
) 20
We note that F is a convex function and its set of critical point is the ellipse S = (x, y) ∈ R 2 : x 2 + 2y 2 -1 ≤ 0 .

Moreover, F satisfies the Lojasiewicz inequality since it is a polynomial outside S. Figure 3 illustrates the convergence of the sequence (u n ) to a critical point which belongs to the interior of S. The initial condition is u 0 = (3, 2), v 0 = (0, 0), the time step is ∆t = 0.01 and we have performed 1000 iterations. The value of u n is approximately (-0.68, -0.17).

Figure 4 (left) shows the energy E n versus time t n = n∆t over the first 300 iterations. We see especially at the beginning that E n is not monotonic. In contrast, the modified energy Φ shown in Figure 4 (right) is decreasing. The value chosen for is 0.01.

Theorem 8 (

 8 [START_REF] Haraux | Asymptotics for some nonlinear O.D.E. of the second order[END_REF][START_REF] Haraux | The convergence problem for dissipative autonomous systems -classical methods and recent advances[END_REF]) There exists a ∈ f -1 ({0}) such thatlim t→∞ |u (t)| + |u(t) -a| = 0.Proof. For the sake of completeness, we give the proof here. If ω(u, u ) is not reduced to a single point, then there are a, b ∈ f-1 ({0}) (a < b) such that ω(u, u ) = [a, b] × {0}. Let c = a+b 2 .Since lim t→∞ u (t) = 0 and (c, 0) ∈ ω(u, u ), then there exists T > 0 such that

, and this contradicts u n 1 ∈

 1 [a, b]. Then the set {n ≥ n 0 : u n+1 ∈ [a, b]} is empty and n 1 = ∞. Now (34) holds for all n ≥ n 0 : |u n+1 -u n 0 | < b -a 4 and by triangle inequality, we get

Figure 1 :

 1 Figure 1: An oscillatory sequence (u n ) (in black) versus time with f defined by (44). The two horizontal blue lines represent the values of a and b.

5. 2 Figure 2 :

 22 Figure 2: A convergent sequence (u n ) (in black) versus time with f defined by (44) in the case α = 0.6. The two horizontal blue lines represent the values of a and b.

Figure 3 :

 3 Figure 3: Behaviour of the sequence (un ) = (u n 1 , u n 2 )for the explicit scheme (6) with f defined by (45). The starting point is u 0 = (3, 2). The blue line is the ellipse (46).
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  Figure 4: Energy vs. time (left) and modified energy vs. time (right).
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Remark 13 Let (u 0 , v 0 ) ∈ R 2 . By a fixed point argument, it is possible to prove that if ∆t is small enough, there exists a unique sequence (u n , v n ) which complies with (35) (see, e.g., [START_REF] Horsin | Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities[END_REF]).

Theorem 14 Assume that f satisfies (36)-(39). For every non stationary sequence (u n , v n ) which complies with (35), there exist a subsequence (u n k , v n k ) such that u n k < a for all k ∈ N and a subsequence (u n k , v n k ) such that u n k > b for all k ∈ N.

Proof. We multiply the second equation in (35) by ∆tv n+1 . We find

Thus,

where

) is nonincreasing and since E(u, v) is coercive by (40), the sequence (u n , v n ) is bounded. Morevover, (E n ) has a limit as n tends to +∞, so |v n+1 | → 0 by (42). We assume that u n ≥ a for al n ≥ n 0 , for some n 0 ∈ N. We must prove that (u n ) is stationary.

] for all n ≥ n 0 and the second equation in (35) becomes

If v n = 0 for all n ≥ n 0 , then (u n ) is stationary. Otherwise, there exists

= ∆t, ∀n ≥ n 1 .

On summing this inequality, we find