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Abstract

In this article we continue the study of couplings of subelliptic Brownian mo-
tions on the subRiemannian manifolds SU(2) and SL(2,R). Similar to the case
of the Heisenberg group, this subelliptic Brownian motion can be considered as a
Brownian motion on the sphere (resp. the hyperbolic plane) together with its swept
area modulo 4π. Using this structure, we construct an explicit non co-adapted suc-
cessful coupling on SU(2) and, under strong conditions on the starting points, on
SL(2,R) too. This strategy uses couplings of Brownian bridges, taking inspiration
into the work from Banerjee, Gordina and Mariano [3] on the Heisenberg group.
We prove that the coupling rate associated to these constructions is exponentially
decreasing in time and proportionally to the subRiemannian distance between the
starting points. We also give some gradient inequalities that can be deduced from
the estimation of this coupling rate.

1 Introduction

1.1 Motivations

In this article we want to construct some non co-adapted successful coupling of subelliptic
Brownian motions on SU(2) and SL(2,R) and more precisely study its coupling rate to
obtain analysis inequalities. Let �rst remind the de�nition of a coupling. A coupling
of two probability measures µ and ν on M is a probability measure π on M × M such
that µ is its �rst marginal distribution and ν its second one. In fact, in the case of
two Markov processes (Xt)t and (X ′

t)t, one has to study the joint law of (Xt, X
′
t)t to

construct a coupling. Coupling probability distributions, in particular Markov chains or
Markov processes, is a topic of interest of these late decades as it can o�er results not
only in Probability and Optimal Transport but also in Analysis and Geometry (see [31]
for a general introduction). We interest ourselves in the notion of "coupling time" for
a coupling of di�usion processes (Xt, X

′
t)t. This is the �rst meeting time of the two

processes:
τ := inf{t > 0|Xt = X ′

t}.

1



If the coupling time τ is a.s. �nite, the coupling is called successful. A �rst interest in
the construction of successful couplings, and more precisely in the study of the coupling
rate P(τ > t) for t > 0, has been the estimation of the total variation distance between
the laws of Xt and X ′

t. We recall that this total variation distance is de�ned by:

dTV (L(Xt),L(X ′
t)) := sup

A measurable
{P(Xt ∈ A)− P(X ′

t ∈ A)}.

The Aldous inequality also called Coupling inequality (see [2], chapter VII) states that,
for every coupling (Xs, X

′
s)s and every t > 0:

P(τ > t) ≥ dTV (L(Xt),L(X ′
t)). (1)

With this inequality, one can see the relevance in �nding "fast" successful couplings. In
particular, couplings that change (1) into an equality are called maximal couplings. If it
has been proved that such couplings always exist in the case of continuous processes on
Polish spaces, they can be very di�cult to study (simulation, estimation of a coupling
rate) as their construction are often non Markovian and even non co-adapted, in the sense
that we don't only need the common past of the two processes but also the future of one
of these processes to make the construction. In Riemannian manifold, the existence and
unicity of Markovian maximal couplings has been discussed in [29, 24] for the case of the
Brownian motion and in [6] for elliptic di�usions. The general idea is that the existence
of such a coupling needs a sort of "re�ection structure" from the Riemannian manifold
as well as strong properties from the drift part of the di�usion process. In the case of the
Brownian motion such a coupling, if it exists, is the re�ection coupling (also called mirror
coupling) introduced on Rn (see [28]) and then on Riemannian manifolds (see [21]).
Since the 90's, the study of successful couplings has also led to analytic results about
estimates of the spectral gap for elliptic operators (see for example [33, 19, 20, 18, 32, 8])
or Harnack inequalities (see [34]) in Euclidean spaces as well as in Riemannian manifolds.
Note that most of these results use the re�ection coupling cited above.
Here we place ourselves in subRiemannian manifolds and consider the subelliptic Brown-
ian motions induced by the subLaplacian operator. Our main question is to �nd how to
construct explicit successful couplings. The main di�culty comes from the fact that the
subRiemannian distance is, in general, not smooth on every point. Thus the comparison
of two Brownian motions become a challenge. A solution was proposed by Baudoin et.
al in [11] in the case of Sasakian foliations. It consists in approaching the subRiemannian
metric by Riemannian ones and using coupling methods from Riemannian structures.
Another solution is to use the special structure of some subRiemannian manifolds. A
lot of subelliptic, and more generally hypoelliptic di�usions, are written under the form
(Xt, zt := f((Xs)s≤t))t with (Xt)t an elliptic di�usion on a Riemannian manifold that
we will call "the driving noise" and f a functional (see [9] for some examples). Then, a
strategy for coupling such processes consists in coupling the driving noises and see the
e�ects on the "driven processes". It gives numerous examples for couplings, successful
or not [22, 10, 16, 12, 28, 27, 26, 3, 4, 17, 3, 5]. This strategy can be used to study
the subelliptic Brownian motion Bt = (Xt, zt) for three model spaces of subRiemannian
manifolds:

� On the Heisenberg group H, the driving noise Xt is a 2-dimensional Brownian
motion and zt is a signed area swept by (Xs)s≤t in R;
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� On the special unitary group SU(2), Xt is a Brownian motion on the sphere and zt
is a signed area modulo 4π swept by (Xs)s≤t;

� On the special linar group SL(2,R), Xt is a Brownian motion on the hyperbolic
plane and zt is a signed area modulo 4π swept by (Xs)s≤t.

These three models are in fact �ber bundles with, as a basis, the Riemannian manifold
of constant curvature 0, 1 and −1 respectively (for SU(2), this structure is induced by
the well known Hopf �bration). We also have a nice estimation of the subRiemannian
distance dcc for this three space models:

dcc ((Xt, zt), (X
′
t, z

′
t)) ∼ ρt +

√
|At| (2)

with ρt the Riemannian distance between Xt and X ′
t and At a signed swept area between

the two driving noises (or its representative modulo 4π depending of the cases). These
geometrical interpretations have been useful to study couplings. In the case of the Heisen-
berg group, explicit co-adapted (see the works from Kendall and Banerjee [28, 27, 26])
and non co-adapted successful couplings (see the work from Banerjee, Gordina and Mari-
ano [3]) have been obtained. In a previous work [17], we extended one of these co-adapted
couplings to the case of SU(2). The aim of this article is to continue this work by ex-
tending to SU(2) and, in a weaker sense, to SL(2,R), the non co-adapted coupling due
to Banerjee et al. Moreover, we interest ourselves in the estimation of the coupling rate.
Indeed, in the case of the Heisenberg group, Banerjee et al. obtained a successful coupling
starting from any g, g′ ∈ H as well as some constant C independent of g and g′ such that:

P(τ > t) ≤ C
dcc(g, g

′)√
t

. (3)

In particular, if g and g′ are on the same �ber, they get P(τ > t) ≤ C dcc(g,g′)
t

, which is a
better order than for any co-adapted successful coupling (the order of P(τ > t) is not less
than 1√

t
if the coupling is co-adapted). In this article we give estimates of the coupling

rate upon condition of the starting points of the coupling for SU(2) and SL(2,R). We
also look at some gradient estimates we can obtain with this coupling method.

1.2 Results

Our main result is thus the existence of a non co-adapted coupling with a coupling rate
exponentially decreasing and depending of the distance between the starting points of
the coupling. Using the decomposition given by the �bration, every element of SU(2)
(resp. SL(2,R)) can be written on the form g = (x, z) with x an element of the sphere
S2 (resp. of the hyperbolic plane H2) and z ∈]− 2π, 2π].

If the starting points of the Brownian motions are in a same �ber, we obtain a suc-
cessful coupling on SU(2) and on SL(2,R).

Theorem 1.1. Let g = (x, z), g′ = (x′, z′) ∈ SU(2) (resp. SL(2,R)). We suppose that
x = x′.
There exists a non co-adapted successful coupling of Brownian motions (Bt,B

′
t) on SU(2)
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(resp. SL(2,R)) starting at (g, g′). Moreover, for all tf > 0 and 0 < q < 1, there exists
Cq and c some non negative constants that do not depend on the starting points of the
process, such that, for all t > tf :

P(τ > t) ≤
(
Cqe

−ctdcc(g, g
′)2q
)
∧ 1. (4)

In particular, in the case of SU(2), we can use the previous result to construct a
successful coupling whatever the starting points of the processes:

Theorem 1.2. Let g, g′ ∈ SU(2). There exists a non co-adapted successful coupling
of Brownian motions (Bt,B

′
t) on SU(2) starting at (g, g′). Moreover, denoting τ :=

inf{t|Bt = B
′
t}, for all tf > 0, there exists C, c some non negative constants that do not

depend on the starting points of the process, such that, for all t > tf :

P(τ > t) ≤
(
Ce−ctdcc(g, g

′)
)
∧ 1. (5)

Please note that, with Theorem 1.1 and Theorem 1.2, we improve and give a proof of
the results announced during the GSI'23 Conference ([13], Theorem 3).
The coupling strategy is as follow:

1. Supposing that x = x′, we construct a coupling for t ∈ [0, T ] such that XT = X ′
T

a.s. and P(zT = z′T ) > 0. To do that, we use well chosen couplings of Brownian
bridges to construct (Xt, X

′
t). Note that, if this construction takes inspiration from

the strategy developed by Banerjee et. al to deal with the Heisenberg group case, it
needs here a lot of adaptations due to the presence of the curvature. In particular
the coupling that is exposed here is done on the spherical/polar coordinates of the
processes whereas the one in [3] was done on Cartesian coordinates. One of the
consequences is that, if the quantity P(zT = z′T ) is well described for all T for the
Heisenberg group, we obtain much less information in the model spaces considered
here. We yet get some estimations for T small enough comparable to the results on
H.

2. Using the fact that zt takes its values in the compact [−2π, 2π], we can obtain a
positive lower bound for P(zT = z′T ) which is independent of the starting points.
The iteration of the previous construction can then be compared to the iteration of
identically and independently distributed experiments. Thus, we obtain a successful
coupling with a coupling rate exponentially decreasing. Moreover, for any tf > 0,
we obtain:

P(τ > t) ≤ Cqe
−ct|z − z′|q for all t > tf (6)

with T > 0, Cq, c independent of the starting points.

In particular, under the above condition x = x′, we have the equivalence dcc(g, g
′) ∼√

|z − z′| (see relation (10) in section 2.1). This leads to inequality (4).

3. In the case of SU(2), when x ̸= x′, the idea is to use a successful coupling on the
sphere, in fact the re�ection coupling, to obtain Xt = X ′

t at an almost surely �nite
time and then, use the strategy given above. Note that this can't be done in the
case of SL(2,R) as there exists no successful coupling on the hyperbolic plane (we
can state it using Theorem (5.4) from Wang [35], as there exists some non constant
but bounded harmonic functions on the hyperbolic plane).
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Remark 1. Please note that, by taking polar coordinates, this coupling strategy gives a
coupling on the Heisenberg group which is di�erent from the one in [3]. However we
cannot say that this new coupling will be successful. Indeed, as the swept area is not
bounded in the Heisenberg group, to obtain a successful coupling it seems that we would
need to iterate our construction for geometrically increasing intervals of time T (see [3]
for more details). As explained before, as we lack information on the quantity P(zT = z′T )
for T too large, we cannot make any conclusion.

From these theorems, we can deduce some analytic results. We denote by ∇H the
subgradient induced by the subLaplacian operator and by || · ||H the norm induced by
the subRiemannian structure. We get:

Corollary 1.3. For every function f ∈ C2(SU(2)), we have:

||∇HPtf(g)||H ≤ 2||f ||∞Ce−ct a.e. (7)

In particular, if f is harmonic on SU(2), then it is constant.

We also get some results for SL(2,R):

Corollary 1.4. Let g = (x, z), g′ = (x′, z′) ∈ SL(2,R). We suppose that x = x′ and we
consider a bounded function f ∈ C2(SL(2,R)). For all q ∈]0, 1[, there exists Cq, c some
constants independent of g, g′ such that :

|Ptf(g)− Ptf(g
′)| ≤ 2||f ||∞Cqe

−ctdcc(g, g
′)2q.

Moreover, if f is harmonic and bounded, it is constant on each �ber {(x, z) ∈ SL(2,R) | z ∈
[−2π, 2π]} above x.

Note that in [1], Arnaudon and Thalmaier obtained some expressions for ∇HPtf(g)
in the cases of SU(2) (Theorem 3.2) but also SL(2,R) (Theorem 7.1). These expressions
are obtained in function of an adapted process (ϕt)t leaving in the cotangent bundle at
point g. In particular, this leads to:

||∇HPtf(g)||H ≤ ||f ||∞ × C(t) with C(t) < ∞.

For the moment, there is no easy estimation of (ϕt)t and thus no easy estimation of C(t)
contrary to our result from Corollary 1.3 which o�ers a decreasing in long times.

1.3 Plan

The structure of the paper is as follows. In the second section we introduce the space
models SU(2) and SL(2,R) and give some results about their subelliptic Brownian mo-
tions. In section 3 we provide two lemmas about the subRiemannian distance between
the subelleptic Brownian motions and about exit times of real Brownian motions that
will be used all along the article. In a fourth section we describe the coupling strategy in
SU(2) and SL(2,R) for the case where the starting points of the Brownian motions are
in the same �ber which provides the proof of Theorem 1.1. The general case for SU(2),
using the re�ection coupling on the sphere and proving Theorem 1.2, is completed in
section 5. Finally, the analytic results from Corollaries 1.3 and 1.4 are proven in section
6.
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2 Preliminaries

2.1 SubRiemannian structure

We consider the two following matrices groups that we will denote Ek, with k ∈ {−1, 1}:

� E1 := SU(2) denotes the group of the unitary two dimensional matrices with com-
plex coe�cients and with determinant 1;

� E−1 := SL(2,R) denotes the group of two dimensional matrices with real coe�cients
and with determinant 1.

Considering the manifold structure induced by the usual topology on the matrices group

and, as the application
{ Ek × Ek → Ek

(A,B) 7→ A−1 ·B is smooth, Ek is a Lie group. We denote

by ek the Lie algebra associated to Ek. It is canonically identi�ed to the tangent space of
Ek at the neutral point I2. To construct the usual SubRiemannian structure, we chose a
basis (X, Y, Z) of this algebra such that:

[X, Y ] = Z , [Y, Z] = kX and [Z,X] = kY. (8)

For SU(2) (k = 1), we take the Pauli matrices:

X =
1

2

(
0 1
−1 0

)
, Y =

1

2

(
0 i
i 0

)
and Z =

1

2

(
i 0
0 −i

)
.

For SL(2,R) (k = −1), we take X = 1
2

(
1 0
0 −1

)
, Y = 1

2

(
0 −1
−1 0

)
and Z = 1

2

(
0 −1
1 0

)
.

It is important to notice that every element of Ek can be written on the form

exp(φ(cos(θ)X + sin(θ)Y )) exp(zZ) (9)

with:

� for k = 1: φ ∈ [0, π[, θ ∈ [0, 2π[ and z ∈]− 2π, 2π];

� for k = −1: φ ∈ [0,+∞[, θ ∈ [0, 2π[ and z ∈]− 2π, 2π].

Note that φ(cos(θ)X+sin(θ)Y ) and z are unique. This provides some coordinates (φ, θ, z)
called cylindrical coordinates. They will be of importance in all the paper. In particular
there exists a natural projection Πk from Ek to the Riemannian manifold Mk of constant
curvature k (that is the sphere S2 in the case of SU(2) and the hyperbolic plane H2 in
the case of SL(2,R)), sending (φ, θ, z) to the point of S2 (resp. H2) described by the
spherical coordinates (φ, θ) according to the north pole N0 := (0, 0, 1) ∈ S2 and the vector
e0 := (0,−1, 0) ∈ TN0S

2 (resp. the polar coordinates relative to the pole N0 := i ∈ H2

and the vector e0 := i ∈ TN0H
2) (see [17] for more details). In the case of SU(2), this

projection is the one induced by the Hopf �bration.
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We can then de�ne a basis on all the tangent space TE by considering X̄, Ȳ and Z̄
the left-invariant vector �elds associated to X, Y , Z. For g ∈ Ek they are given by:

Āg =
∂

∂ϵ |ϵ=0
(g exp(ϵA)) for A = X, Y, Z.

By considering H := V ect⟨X̄, Ȳ ⟩, we de�ne a subspace of the tangent space TEk that
we call horizontal space. The subRiemannian structure is de�ned by considering curves
γ : J ⊂ R→ Ek that "move" only with directions in H, in the sense that γ̇(t) ∈ Hγ(t) for
all t ∈ J . Such curves are called horizontal curves. We construct a scalar product ⟨·, ·⟩Hg

on Hg for all g ∈ Ek, such that (X̄g, Ȳg) is an orthonormal basis. The same way as for a
Riemannian structure, we obtain a length L(γ) of the horizontal curve γ:

L(γ) :=

∫
I

√
⟨γ̇(t), γ̇(t)⟩Hγ(t)

dt.

The Carnot-Caratheodory distance between g and h ∈ E is �nally de�ned by:

dcc(g, h) = inf{L(γ) | γ horizontal curve between g and h}.

Thanks to relation (8), the parabolic Hörmander conditions are satis�ed in the sense that
H is Lie-bracket generating. A consequence is that dcc is �nite and the subRiemannian
structure is well de�ned. Note that, because we have chosen left invariant vector �elds,
the Carnot-Caratheodory distance is left invariant too. Moreover, from [7, 14, 15] we
have:

d2cc(0, (φ, θ, z)) is equivalent to φ2 + |z|. (10)

Because we deal with Lie groups and because the Hörmander conditions are satis�ed, we
can introduce a subelliptic di�usion operator, the subLaplacian operator:

L =
1

2

(
X̄2 + Ȳ 2

)
.

2.2 Brownian motions on SU(2) and SL(2,R)

Given this operator, we can de�ne the Brownian motion on these Lie groups as the Markov
process Bt with in�nitesimal generator L. By using the cylindrical coordinates, the con-
tinuous Brownian motion Bt can be written Bt = exp(φt(cos(θt)X + sin(θt)Y )) exp(ztZ)
with φt, θt and zt three continuous real di�usion processes satisfying the di�erential
stochastic equations 

dφt = dB1
t +

1
2

√
k cot(

√
kφt)dt

dθt =
√
k

sin(
√
kφt)

dB2
t

dzt =
tan

(√
kφt
2

)
√
k

dB2
t

(11)

where B1
t and B2

t are two independent real Brownian motions. In particular, we get
from [7, 15, 14] the following geometric interpretation:
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Proposition 2.1 ([7, 15, 14]). In SU(2) (resp. SL(2,R)), (φt, θt) are the spherical
coordinates (resp. polar coordinates) relative to (N0, e0) of a Brownian motion on the
sphere S2 (resp. the hyperbolic plane H2) and zt − z0 is the signed swept area of (φt, θt)
with respect to the �xed pole N0.

We now consider two Brownian motions on Ek: Bt = (φt, θt, zt) and B
′
t = (φ′

t, θ
′
t, z

′
t).

To compare the two Brownian motions, and in particular to have an estimation of the
Carnot-Caratheodory distance, using (10), we need to study B−1

t ·B′
t. From [17], we have:

Proposition 2.2 ([17]). Let denote by Xt = (φt, θt) and X ′
t = (φ′

t, θ
′
t) the projec-

tion of the Brownian motions Bt = exp(φt(cos(θt)X + sin(θt)Y )) exp(ztZ) and B
′
t =

exp(φ′
t(cos(θ

′
t)X + sin(θ′t)Y )) exp(z′tZ) on the sphere (resp. hyperbolic plane). The cylin-

drical coordinates of B−1
t · B′

t are given by (ρt,Θt, ζt) with

� ρt equal to the usual Riemannian distance between Xt and X ′
t.

� ζt ≡ z′t − zt + sign(θt − θ′t)AXt,X′
t,N0

mod (4π) with Aa,b,c the area of the spherical
(resp. hyperbolic) triangle of vertices a, b and c and N0 the pole of reference chosen
by the projection Πk.

In particular, reminding that, by de�nition, ζt ∈]− 2π, 2π], we have:

d2cc(Bt,B
′
t) ∼ ρ2t + |ζt|

Remark 2. Similar results are well known (and easier to obtain) in the Heisenberg group.
First, the subRiemannian structure is de�ned such that the relations (8) are true for
k = 0. The same way, the Brownian motion can be seen as a Brownian motion Xt in the
plane together with its swept area zt (the Levy's area). In fact when Xt is expressed in the
polar coordinates (φt, θt), the Brownian motion exactly satis�es equation (11), taking the
limit 0 for k. Propositions (2.1) and (2.2) are also true with the use of planar triangles.

3 Some useful Lemmas

3.1 Stability of z′t − zt under changes of coordinates

In Proposition 2.2, the quantities ρt and ζt are intrinsic to B
−1
t Bt and do not depend on

the choice of the projection Πk. As seen in this same proposition, this does not seem to
be the case of the quantity z′t−zt as the quantity sign(θt−θ′t)AXt,X′

t,N0
mod (4π) depends

on the choice of the pole N0 and the vector e0. To prove our theorems, we study this non
intrinsic quantity. For various reasons we need to change the system of spherical/polar
coordinates on Mk induced by Πk, that is we change the pole and the vector of reference.
Thus it is interesting to see how z′t − zt reacts. Let consider (Xt)t and (X ′

t)t as in Propo-
sition 2.2. We chose (N, e) ∈ TMk. Let introduce some notations.

� We denote by (φ
(N,e)
t , θ

(N,e)
t ) (resp. (φ′(N,e)

t , θ′
(N,e)
t )) the spherical/polar coordinates

of Xt (resp. X
′
t) relative to N and e.
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� We denote by It(N, e) (resp. I ′t(N, e)) the signed area swept by (Xs)s≤t (resp.
(X ′

s)s≤t) relative to N and e and starting at point z0 (resp. z
′
0). More precisely, it

is de�ned such that (φ
(N,e)
t , θ

(N,e)
t , It(N, e)) satis�es the stochastic di�erential equa-

tions (11).

� We denote by At the signed swept area between (Xs)s≤t and (X ′
s)s≤t, that is the

area delimited by (Xs)s≤t, (X
′
s)s≤t and the geodesics joining X0 to X ′

0 and Xt to
X ′

t with the sign changing when the paths are crossing (see [17] for more details).
Note that this quantity does not depend on the choice of N and e.

In particular, we have (φt, θt) = (φ
(N0,e0)
t , θ

(N0,e0)
t ) and zt = It(N0, e0). Note that zt ̸=

It(N, e) in general for (N, e) ̸= (N0, e0). Then we have the following results:

Lemma 3.1. For all (N, e) ∈ TMk,we have:

At = I ′t(N, e)− It(N, e)− (z′0 − z0) + sign
(
θ
(N,e)
t − θ′

(N,e)
t

)
AXt,X′

t,N

− sign
(
θ
(N,e)
0 − θ′

(N,e)
0

)
AX0,X′

0,N
. (12)

In particular, we have:

ζt ≡ I ′t(N, e)− It(N, e) + sign
(
θ
(N,e)
t − θ′

(N,e)
t

)
AXt,X′

t,N
− sign

(
θ
(N,e)
0 − θ′

(N,e)
0

)
AX0,X′

0,N

+ sign
(
θ
(N0,e0)
0 − θ′

(N0,e0)
0

)
AX0,X′

0,N0
mod (4π). (13)

Proof. Relation (12) is an immediate geometric result. We look at the second relation
(13). From Proposition 2.2, we have:

ζt ≡ I ′t(N0, e0)− It(N0, e0) + sign
(
θ
(N0,e0)
t − θ′

(N0,e0)
t

)
AXt,X′

t,N0
mod (4π).

Then using (12) with N0, we get:

ζt ≡ z′0 − z0 + At + sign
(
θ
(N0,e0)
0 − θ′

(N0,e0)
0

)
AX0,X′

0,N0
mod (4π).

Using (12) this time with N , we obtain the expected result.

Remark 3. If we have X0 = X ′
0 and XT = X ′

T , then for any (N, e) ∈ TMk:

ζt ≡ I ′t(N, e)− It(N, e) mod (4π).

Remark 4. The impact of these change of coordinates can also be seen directly in Ek on
the process Bt. Let (N, e) ∈ TMk. We claim that the process:

Jt := exp
(
φ
(N,e)
t

(
cos(θ

(N,e)
t )X + sin(θ

(N,e)
t )Y

))
exp (It(N, e)Z)

can be obtained from Bt by looking at g−1
Bt exp(zZ) for g depending only on the choice

(N, e) and z depending on N , e but also X0. Let explain this fact. Taking g = (φg, θg, zg) ∈
Ek, it is possible to prove that for all h ∈ Ek, Πk(g

−1h) = mg (Πk(h)) with mg a direct
isometry in Mk that can be decomposed as follow:
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� we �rst make a rotation of angle −zg and of axis directed by (0, 0, 1) for SU(2)
(resp. of center N0 for SL(2,R)). It keeps the pole N0 invariant but acts on the
vector of reference e0 = TI2Πk(X);

� we then apply a direct isometry which acts by translation on the geodesic from Πk(g)
to N0. In particular this isometry transports the new vector obtained above parallelly
along this geodesic. The vector obtained �nally is equal to TgΠk(X̄).

Thus, for (N, e) ∈ TMk, we can �nd g ∈ Ek such that Πk(g) = N and TgΠk(X̄) = e.
For all t, Πk(g

−1
Bt) gives the polar coordinates of Πk(Bt) relative to N and e, that is(

φ
(N,e)
t , θ

(N,e)
t

)
. With similar results as in Proposition 2.2, we have g−1

Bt equal to:

exp
(
φ
(N,e)
t

(
cos(θ

(N,e)
t )X + sin(θ

(N,e)
t )Y

))
× exp

((
zt − zg + sign

(
θg − θ

(N0,e0)
t

)
AN,Xt,N0

)
Z
)
.

Using some geometric comparisons, we can obtain:

zt − zg + sign
(
θg − θ

(N0,e0)
t

)
AN,Xt,N0 = It(N, e)− zg + sign

(
θg − θ

(N0,e0)
0

)
AN,X0,N0 .

The process Jt is then equal to:

Jt = g−1
Bt exp

((
zg − sign

(
θg − θ

(N0,e0)
0

)
AN,X0,N0

)
Z
)

We now consider this change of coordinates for the two processes Bt and B
′
t that we

want to compare. As before, we de�ne

J ′
t := exp

(
φ′(N,e)

t

(
cos(θ′t

(N,e)
)X + sin(θ′t

(N,e)
)Y
))

exp (I ′t(N, e)Z) .

We have
J ′
t = g−1

B
′
t exp

((
zg − sign

(
θg − θ′0

(N0,e0)
)
AN,X′

0,N0

)
Z
)

Here it seems evident that, in general dcc(Bt,B
′
t) ̸= dcc(Jt, J

′
t). However, if X0 = X ′

0

and XT = X ′
T , as exp(αZ) and exp(βZ) commute for all α, β ∈ R, we have B−1

T B
′
T =

exp(−zT ) exp(z
′
T ) and:

J−1
T J ′

T = exp
((

−zg + sign
(
θg − θ

(N0,e0)
0

)
AN,X0,N0

)
Z
)
exp(−zT ) exp(z

′
T )

exp
((

zg − sign
(
θg − θ′0

(N0,e0)
)
AN,X0,N0

)
Z
)
= exp(−zT ) exp(z

′
T ).

Thus at time T , dcc(BT ,B
′
T ) = dcc(JT , J

′
T ). This gives an echo of Remark 3.

In general, by left invariance of the Carnot Carathéodory distance, we have dcc(Bt,B
′
t) =

dcc(g
−1
Bt, g

−1
B
′
t). In fact, (g−1

Bt)
−1

g−1
B
′
t = B

−1
t Bt and thus, the third cylindrical coordi-

nate of (g−1
Bt)

−1
g−1

B
′
t is equal to ζt as de�ned in Proposition 2.2. Applying Proposition

2.2 on g−1
B
′
t and g−1

Bt, we obtain the following equality modulo 4π:

ζt = I ′t(N, e)− It(N, e) + sign
(
θg − θ′0

(N0,e0)
)
AN,X′

0,N0
− sign

(
θg − θ

(N0,e0)
0

)
AN,X0,N0

+ sign
(
θ
(N,e)
t − θ′t

(N,e)
)
Amg(X′

t),mg(Xt),N0

10



As we have:

sign
(
θg − θ′0

(N0,e0)
)
AN,X′

0,N0
− sign

(
θg − θ

(N0,e0)
0

)
AN,X0,N0

= −sign
(
θ
(N0,e0)
0 − θ′0

(N0,e0)
)
AX0,X′

0,N
+ sign

(
θ
(N0,e0)
0 − θ′0

(N0,e0)
)
AX0,X′

0,N0
,

and Amg(X′
t),mg(Xt),N0

= AX′
t,Xt,m

−1
g (N0)

with m−1
g (N0) = N , we obtain the relation (13)

from Lemma 3.1.

3.2 First hitting time, �rst exit time for one-dimensional Brow-

nian motions

Let W be a one dimensional Brownian motion starting at 0. The results we give here are
well known and can be found in numerous references. They will be used later to obtain
estimates of the coupling rates. We �rst begin with relations about �rst hitting time.

Lemma 3.2. Let a ∈ R. We denote Da := inf{t > 0 | Wt = a}, the �rst hitting time of
a by W . We have, for all t > 0:

P(Da > t) ≤
(

|a|√
2πt

)
∧ 1.

Proof. The density of Da is well known, given by ga(u) =
|a|√
2πu3

exp(− a2

2u
) × 1[0,+∞[(u).

We just have to upper bound the exponential part in this density to obtain the above
inequality.

We now list some relations involving the �rst exit time of a Brownian motion from an
open set:

Lemma 3.3. We set two reals a and b such that a < 0 < b and Ha,b = inf{t > 0|Wt /∈
]a, b[}. Then, for δ > 0, we get:

E[e−δHa,b ] =
cosh

(√
δ
2
(a+ b)

)
cosh

(√
δ
2
(b− a)

) ; (14)

E[eδHa,b ] =
cos
(√

δ
2
(a+ b)

)
cos
(√

δ
2
(b− a)

) if

√
δ

2
(b− a) ∈]0, π

2
[; (15)

E[Ha,be
δHa,b ] ≤ −ab

cos2
(√

δ
2
(b− a)

) if

√
δ

2
(b− a) ∈]0, π

2
[; (16)

E[Ha,b] = −ab; (17)

P(Ha,b = Db) =
−a

b− a
. (18)
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4 Brownian bridges Coupling

As announced we �rst deal with the proof of the two Theorems in the case where x = x′.
Let �rst consider some deterministic constants T > 0, φ0 ∈]0, i(Mk)[ and θ0 ∈]0, 2π[ with
i(Mk) the injective radius of Mk. We begin with the construction of a coupling strategy
on [0, T ]:

Proposition 4.1. We �x (N, e) ∈ TMk. We consider Xt and X ′
t two Brownian motions

on Mk and
(
φ
(N,e)
t , θ

(N,e)
t

)
,
(
φ
(N,e)
t

′
, θ

(N,e)
t

′)
their spherical/polar coordinates relative to

(N, e). We suppose that φ
(N,e)
0 = φ

(N,e)
0

′
= φ0 and θ

(N,e)
0 = θ

(N,e)
0

′
= θ0. We also consider

the swept area It(N, e) and I ′t(N, e), as de�ned in Lemma 3.1, starting from z0 and z′0
respectively such that z0 − z′0 ∈]− 4π, 4π[.
There exists a coupling of Xt and X ′

t such that XT = X ′
T a.s. and such that, for T small

enough, we have:

min
z0,z′0

(
P
(
IT (N, e)− I ′T (N, e) ≡ 0 mod (4π)

))
> 0.

4.1 Construction of the coupling on [0, T ]

Proof of Proposition 4.1. To simplify the notations and as the change of coordinates in-
duced by (N, e) doesn't intervene in this section, during this proof we will simply denote(
φ
(N,e)
t , θ

(N,e)
t , It(N, e)

)
by (φt, θt, It) and

(
φ
(N,e)
t

′
, θ

(N,e)
t

′
, I ′t(N, e)

)
by (φ′

t, θ
′
t, I

′
t). By ex-

changing the roles of Xt and X ′
t if needed, we can suppose that z0 − z′0 > 0.

We �rst chose B1
t = B1′

t and thus φt = φ′
t. We de�ne the change of time σ(t) =∫ t

0
k

sin2(
√
kφs)

ds, there exists two Brownian motions β and β′ adapted to the �ltration(
Fσ(t)

)
t
such that: {

θt = θ0 + βσ(t)

θ′t = θ0 + β′
σ(t)

.

As in the coupling described in [3], we are going to couple β and β′ using Brownian
bridges. Knowing all the path of (φt)t∈[0,T ] we de�ne, for σ ∈ [0, σ(T )]:{

βσ = Bbr
σ + σ

σ(T )
G

β′
σ = Bbr′

σ + σ
σ(T )

G

with Bbr and Bbr′ two Brownian bridges on [0, σ(T )] and G a Gaussian variable with mean
0 and variance σ(T ), independent of the Brownian bridges. This way we will be able to

de�ne B2
t (resp. B

2′
t ) such that dB2

t = sin(
√
kφt)√
k

dβσ(t) (resp. dB
2′
t = sin(

√
kφt)√
k

dβ′
σ(t)). Using

the Karhunen Loève decomposition of the Brownian bridges, for σ ∈ [0, σ(T )], we can
write:

Bbr
σ =

√
σ(T )

∑
j≥1

Zj

√
2

jπ
sin

(
jπσ

σ(T )

)
(19)
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(
resp. Bbr′

σ =
√

σ(T )
∑
j≥1

Z ′
j

√
2

jπ
sin

(
jπσ

σ(T )

))
(20)

with (Zj)j (resp. (Z ′
j)j) a sequence of independent standard Gaussian variables, inde-

pendent of B1. Note that, because of this independence with B1, knowing (B1
s )s∈[0,T ],

B2
t =

∫ t

0

√
k

sin(
√
kφs)

dβσ(s) de�nes an almost surely continuous process with independents

increments and such that B2
t

L∼ N (0, t), that is a Brownian motion. As that distribution
doesn't depend of the conditioning, B1 and B2 are two independent Brownian motions
and our coupling is well de�ned.
We now explain how we chose (Zj)j and (Z ′

j)j. If we take Zj = Z ′
j for all j ≥ 2, we get:

βσ − β′
σ = (Z1 − Z ′

1)

√
2σ(T )

π
sin

(
πσ

σ(T )

)
.

Note that, with this choice of (Zj, Z
′
j)j≥2, Xt and X ′

t are equal only for t ∈ {0, T}. When
we look at the impact of the choice of (Z1, Z

′
1) on the swept areas, we have:

It − I ′t = z0 − z′0 +

∫ t

0

tan
(√

kφs

2

)
√
k

sin(
√
kφs)√
k

(Z1 − Z ′
1)

√
2σ(T )

π
d

(
sin

(
πσ(s)

σ(T )

))
= z0 − z′0 +

∫ t

0

1

k

(
1− cos

(√
kφs

))
(Z1 − Z ′

1)

√
2σ(T )

π
cos

(
πσ(s)

σ(T )

)
πd (σ(s))

σ(T )

= z0 − z′0 +

∫ t

0

(
1− cos(

√
kφs)

)
(Z1 − Z ′

1)

√
2

σ(T )
cos

(
πσ(s)

σ(T )

)
ds

sin2(
√
kφs)

= z0 − z′0 +K(t)
Z1 − Z ′

1

2

with K(t) = 2

√
2

σ(T )

∫ t

0

1

1 + cos(
√
kφs)

cos

(
πσ(s)

σ(T )

)
ds.

In order to obtain a successful coupling at time T , we need IT − I ′T ≡ 0 mod (4π),

that is K(T )
Z1−Z′

1

2
≡ −(z0 − z′0) mod (4π). Let's take (Wt)t a Brownian motion in-

dependent of B1, G and (Zj)j≥2. We de�ne ς := inf{t|Wt /∈] − z0−z′0
K(T )

,
−(z0−z′0)+4π

K(T )
[} and

W ′
t :=

{
−Wt if t ≤ ς

Wt − 2Wς else
. Note that, by the strong Markov property, (W ′

t)t is a real

Brownian motion starting at 0 and independent of ς. We then chose Z1 = W1 ∼ N (0, 1)
and Z ′

1 = W ′
1 ∼ N (0, 1).

In fact, with this construction we have:
Z1−Z′

1

2
= W1∧ς . Thus, we get two cases:

� If ς ≤ 1, then K(T )
Z1−Z′

1

2
= K(T )Wς ≡ −(z0 − z′0)(4π).

� If ς > 1, then K(T )
Z1−Z′

1

2
= K(T )W1 ̸≡ −(z0 − z′0) mod (4π).

We have P(IT − I ′T ≡ 0 mod (4π)) = P(ς ≤ 1). For this probability to be positive, we
need to ensure that K(T ) = 0 does not occur a.s. This can be obtained from the following
Lemma:

13



Lemma 4.2. Let de�ne A(T ) :=
√

2
T

∫ T

0
sin
(
πt
T

)
dB1

t . Then, for every curvature k ∈ R,

we have:

K(T ) = −2T

π
A(T ) + o

(
T

3
2 ln

(
1

T

))
with o the Landau's notation for an a.s. convergence with T close to 0. In particular,

as A(T ) has a standard Gaussian distribution, we have πK(T )
2T

L−−−→
T→0

N (0, 1) and, thus,

P(K(T ) = 0) −−−→
T→0

0.

The proof of Lemma 4.2 will be given in subsection 4.3. From Lemma 4.2, we get

that − z0−z′0
K(T )

and
−(z0−z′0)+4π

K(T )
are �nite with a non zero probability for T small enough.

Moreover, by construction, K(T ) is independent of (Wt)t. Thus we have:

0 < P(ς ≤ 1).

Note that, with this strategy, as Xt and X ′
t only meet at time 0 or T , the coupling is

successful after time T if and only if ς > 1. Note also that, by de�ning ς̃ := inf{t| |Wt| =
4π

|K(T )|}, we have ς̃ ≥ ς and thus P(ς ≤ 1) is bounded below by P(ς̃ ≤ 1) that does not

depend of the starting points (z0, z
′
0).

This end the proof of Proposition 4.1.

4.2 Proof of Theorem 1.1

We now have all the tools to construct the successful coupling if the starting points are
in the same �ber. We �rst begin with the construction of an exponentially decreasing
successful coupling without dependence with the starting points of the Brownian motion.
We remind that Ek denotes SU(2) and SL(2,R) depending of the value of k.

Proposition 4.3. Let g = (x, z), g′ = (x′, z′) ∈ Ek. We suppose that x = x′.
There exists a non co-adapted successful coupling of Brownian motions (Bt,B

′
t) on Ek

starting at (g, g′) and T , C̃, c̃ some non negative constants that do not depend on the
starting points of the processes, such that, for all t > T :

P(τ > t) ≤ C̃e−c̃t. (21)

Proof of the Proposition 4.3. To de�ne the coupling on [0,+∞[, we divide the time in
intervals [tn, tn+1[ with length Tn small enough, as in Lemma 4.2, and we repeat the cou-
pling from Proposition 4.1. As we proved that the probability of success at time Tn is non
zero, reproducing this strategy identically and independently on each interval [tn, tn+1[
should be e�cient.
With this in mind, we consider (Tn)n constant with Tn = T . We de�ne Kn(T ), W n

t

and ςn the objects used in the construction of the coupling from Proposition 4.1 for each
interval [tn, tn+1[. It is true that the experiments will not be identical non independent

as
(
φ
(N0,e0)
tn+1

, θ
(N0,e0)
tn+1

, Itn+1(N0, e0)
)
is, in general, non constant and dependent of

14



(
φ
(N0,e0)
tn , θ

(N0,e0)
tn , Itn(N0, e0)

)
. To avoid this problem, the idea is to change the spheri-

cal/polar coordinate system on each interval of time ]tn, tn+1[ by considering a sequence of

tangent vectors (Nn, en)n such that the new sequence of coordinates
(
φ
(Nn,en)
tn , θ

(Nn,en)
tn

)
n

stays constant equal to (φ0, θ0).

To obtain a successful coupling on SU(2) (resp. SL(2,R)), we need to obtain ζtn ≡ 0
mod (4π) for some n. It is true that, for any (N, e) ̸= (N0, e0), we have in general
ζt ̸= It(N, e) − I ′t(N, e). However, using Remark 3, we have ζt ≡ I ′t(Nn, en) − It(Nn, en)
mod (4π) at last at times t = tn for all n (because Xtn = X ′

tn for all n). Thus, the
coupling is successful if and only if there exists n such that I ′tn(Nn, en)− Itn(Nn, en) ≡ 0
mod (4π).
We consider the variables ς̃n := inf{t| |Wt| ≤ 4π

|Kn(T )|} as introduced in the last part of

Proposition 4.1. By choice of (Tn)n and (Nn, en)n, we have (Kn(T ))n independent and
identically distributed and thus (ς̃n)n is too. In particular ς̃n ≥ ςn for all n. This way we
get:

P(τ > tn) = P(ς i > 1 ∀ 0 ≤ i ≤ n− 1)

≤ P(ς̃ i > 1 ∀ 0 ≤ i ≤ n− 1) = P(ς̃0 > 1)n. (22)

This last quantity tends to zero when n → +∞, thus τ is �nite a.s., the coupling is
successful and the coupling rate is clearly exponentially decreasing. More precisely, we
obtain for t ∈ [tn, tn+1[:

P(τ > t) ≤ P(τ > tn) ≤ exp

(
−n ln

(
1

P(ς̃0 > 1)

))

=
1

P(ς̃0 > 1)
exp

−(n+ 1)T
ln
(

1
P(ς̃0>1)

)
T

 ≤ C̃ exp (−tc̃)

with C̃ = 1
P(ς̃0>1)

and c̃ = 1
T
ln
(

1
P(ς̃0>1)

)
.

Note that, if we change the system of coordinates (N0, e0) on S2 at the �rst step, we

can chose (φ
(Nn,en)
tn , θ

(Nn,en)
tn )n constant equal to a value chosen independent of the initial

position (φ0, θ0) of the Brownian motions. Thus the random variables Kn(T ) and ς̃n do
not depend of these starting points and P(ς̃0 > 1) neither. The coupling rate obtained in
this case does not depend of the starting points.

We now want to study how the coupling built above depends on the starting points
of the Brownian motions.

Proposition 4.4. Let g = (x, z), g′ = (x′, z′) ∈ Ek. We suppose that x = x′. We choose
tf > 0.
There exists a non co-adapted coupling of Brownian motions (Bt,B

′
t) on Ek starting at

(g, g′) such that for all 0 < q < 1, there exists some non negative constant C that does
not depend on the starting points g and g′ satisfying for all t > tf :

P(τ > tf ) ≤ C|ζ0| ln
(

1

|ζ0|

)
for |ζ0| small enough.
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In particular, there exists some non negative constant C̃q that does not depend on the
starting points g and g′ satisfying for all t > tf :

P(τ > tf ) ≤
(
C̃q × |ζ0|q

)
∧ 1.

Proof of Proposition 4.4. Without loosing generality, we can still suppose that z0 − z′0 ∈
]− 4π, 4π]. Then, from Proposition 2.2, as X0 = X ′

0, we have exactly ζ0 = z0 − z′0, thus
we need to prove:

P(τ > tf ) ≤ C|z0 − z′0| ln
(

1

|z0 − z′0|

)
. (23)

Let n be an integer that we will precise later, we consider Tf =
tf
n
. We construct on [0, tf ]

the coupling described in Proposition 4.3 using the decomposition in the intervals [tj, tj+1]
with tj := jTf and tj+1 := (j + 1)Tf . We simply denote by It − I ′t the concatenation of
all the (It(Nj+1)− I ′t(Nj+1))t∈[tj ,tj+1[

. Observing that, for t ∈ [0, tf ], we have:

It − I ′t = z0 − z′0 +
n−1∑
j=0

Kj(t ∧ Tf )W
j
1∧ςj , (24)

we de�ne:

Mt := z0 − z′0 +
n−1∑
j=0

Kj(Tf )W
j

1∧(
t−tj
Tf

)
1t≥tj . (25)

On the event τ > tf , we have ςj > 1 for all j ≤ n − 1, and Mt = It − I ′t at times tj.
Moreover, by construction of ςi, Mt ̸≡ 0 mod (4π) for all t ∈ [0, tf ]. As a consequence,
τ > tf if and only if Mt ̸≡ 0 mod (4π) for all t ≤ tf .
As Mt is a martingale, for all t ∈ [0, tf ], using the change of time de�ned by S(t) :=
n−1∑
j=0

Kj(Tf )
2 t−tj

Tf
1t≥tj , we can write Mt = z0 − z′0 + CS(t) with C a Brownian motion

starting at 0. As in Lemma 3.2, we denote D−(z0−z′0)
:= inf{t > 0|Ct = −(z0 − z′0)} and

we get:

P(τ > tf ) = P(z0 − z′0 + CS(s) ∈ (0, 4π) for all s ≤ tf ) (26)

≤ P(D−(z0−z′0)
> S(nTf )) = P

(
D−(z0−z′0)

>
n−1∑
j=0

Kj(Tf )
2

)
. (27)

We separate the cases where |Kj(Tf )| is large enough and the cases where it is not. From
Lemma 4.2, using the convergence in law, there exists 0 < ϵ < 1 and T0 > 0 such that

for all T ≤ T0, P
(

π|K(T )|
2T

≤ 1
2

)
< ϵ. Supposing that n is large enough, we have Tf ≤ T0
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and thus:

P(τ > tf ) = P

(
{τ > tf} ∩

{
∃j ∈ {0, ..., n− 1}

∣∣ π|Kj(Tf )|
2Tf

>
1

2

})
+ P

(
{τ > tf} ∩

{
∀j ∈ {0, ..., n− 1}, π|Kj(Tf )|

2Tf

≤ 1

2

})
≤ P

(
D−(z0−z′0)

>

n−1∑
j=0

Kj(Tf )
2
>

T 2
f

π2

)
+ P

(
π|Kj(Tf )|

2Tf

≤ 1

2

)n

≤ π|z0 − z′0|
Tf

+ ϵn

where we use Lemma 3.2 to get the left hand side term. Finally, we have

P(τ > tf ) ≤
π|z0 − z′0|

tf
n+ ϵn.

If we chose n such that
ln(|z0−z′0|)

ln(ϵ)
≤ n ≤ ln(|z0−z′0|)

ln(ϵ)
+ 1, we get:

� ϵn < |z0 − z′0|;

� Tf =
tf
n
≤ tf

ln(ϵ)
ln(|z0−z′0|)

,and thus, Tf ≤ T0 for z0 − z′0 small enough;

� π|z0−z′0|
tf

n ≤ π|z0−z′0|
tf

(
ln(|z0−z′0|)

ln(ϵ)
+ 1
)
.

We thus obtain the inequality (23) for |z0 − z′0| small enough. Note that the obtained
constant does depend of the chosen time tf .

Remark 5. Note here that, if 1√
n−1∑
j=0

Kj(Tf )
2

is integrable, then, P(τ > nTf ) ≤ C|z0 −

z′0| (with C independent of the starting points) which would be better than the expected
inequality. Here, contrary to the case of the Heisenberg group dealt in [3] we have not
been able to prove this integrability.

Remark 6. The process (Mt)t introduced in the above proof is the one used in [3] to deal
with the case of the Heisenberg group. We can also use it to obtain a proof of Proposition
4.3. Denoting H = inf{t > 0|Ct /∈]− (z0 − z′0), 4π − (z0 − z′0)[}, we get:

P(τ > tn) = P(z0 − z′0 + CS(s) ∈ (0, 4π) for all s ≤ tn)

= P(H > S(tn)) = P

(
H >

n−1∑
k=0

Kk(T )
2

)
.

Taking some δ > 0 such that
√

δ
2
× 4π ̸≡ π

2
mod (π), and using Lemma 3.3:

P(H > u) = E[eδHe−δH
1H>u] ≤ e−δu

E[eδH ] ≤ e−δu
cos
(√

δ
2
(4π − 2(z0 − z′0))

)
cos
(√

δ
2
× 4π

) .
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Then, P(τ > t) ≤ E[e−δS(tn)] 1

cos
(√

δ
2
×4π

) . As (Kk(T ))k is a sequence of independent and

identically distributed variables, we get:

E[e−δS(tn)] =
n−1∏
k=0

E

[
e−δ(Kk(T ))2

]
= E

[
e−δ(K0(T ))2

]n
≤ enT

ln(E[exp(−δ(K0(T ))2)])
T .

As P
(
K0(T )

2
= 0
)
< 1, we have E

[
exp

(
−δK0(T )

2
)]

< 1 and E
[
e−δS(tn)

]
≤ e−nT

c(δ,T )
T

with c(δ, T ) = − ln
(
E

[
exp

(
−δK0(T )

2
)])

> 0. This gives the expected rate of conver-
gence.

We can now give the �nal construction of the successful coupling from Theorem 1.1:

Proof of Theorem 1.1. We �rst use the coupling from Proposition 4.4 on [0, tf ] and, then
we construct the rest of the coupling using Proposition 4.3 on [tf , τ ]. We have, for t > tf :

P(τ > t) = P(τ > tf )P(τ > t|τ > tf )

≤ C̃q × |ζ0|qC̃ exp(−(t− tf )c̃).

As X0 = X ′
0, we have dcc(B0,B

′
0) ∼

√
|ζ0|. This give the expected inequality.

4.3 Proof of Lemma 4.2

Proof. The proof is using series expansion for T close to 0. In all that follow Landau's
notations o and O are used for an a.s. convergence with T close to 0. We give the proof
for k ̸= 0 but note that the same method can be used for k = 0. Let t ∈ [0, T ]. We �rst
claim that:

σ(t) : =

∫ t

0

k

sin2(
√
kφs)

ds

=
kt

sin2(
√
kφ0)

(
1− 2

√
k cot(

√
kφ0)

1

t

∫ t

0

B1
sds+ o

(
T ln

(
1

T

)))
. (28)

Indeed for s ∈ [0, t], using Itô's relation, we have:

sin(
√
kφs) = sin(

√
kφ0) +

∫ s

0

√
k cos(

√
kφu)dB

1
u

+
k

2

∫ s

0

(
− sin(

√
kφu) +

cos2(
√
kφu)

sin(
√
kφu)

)
du.

We remind that, using the law of the iterated logarithm, we have, for s small enough:

Bs = o
(√

s ln
(
1
s

))
. More generally, if we consider the martingale Ms =

∫ s

0
v(ω, u)dB1

u,

for s → 0, we have:

Ms = o

(√
⟨Ms,Ms⟩ ln

(
1

⟨Ms,Ms⟩

))
. (29)
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Indeed, we just have to use Dambis-Dubins-Schwartz theorem to write Ms as a time-
changed Brownian motion. Then the law of iterated logarithm gives the attended result.
Thus, for s → 0, using (29) for v(u) =

√
k cos(

√
kφu) and remarking that

∫ s

0
v(u)2du =

O(s) (we use the continuity of φ and the compacity of [0, T ]), we get:∫ s

0

√
k cos(

√
kφu)dB

1
u = o

(√
s ln

(
1

s

))
.

Thus:

sin2(
√
kφs) = sin2(

√
kφ0) + 2 sin(

√
kφ0)

∫ s

0

√
k cos(

√
kφu)dB

1
u + o

(
s ln

(
1

s

))
The same way, using Itô's formula and relation (29), we have:

cos(
√
kφu) = cos(

√
kφ0)−

∫ u

0

√
k sin(

√
kφv)dB

1
v − k

∫ u

0

cos(
√
kφv)dv (30)

= cos(
√
kφ0) + ϵ(u).

with ϵ(u) = o
(√

u ln
(
1
u

))
. In particular,

∫ s

0
ϵ(u)2du = o

(
s2 ln

(
1
s

))
. Thus, applying (29)

to
∫ s

0
ϵ(u)dB1

u, we get:∫ s

0

√
k cos(

√
kφu)dB

1
u =

√
k cos(

√
kφ0)B

1
s + o

(
s ln

(
1

s

))
.

Finally we obtain:

sin2(
√
kφs) = sin2(

√
kφ0) + 2

√
k sin(

√
kφ0) cos(

√
kφ0)B

1
s + o

(
s ln

(
1

s

))
= sin2(

√
kφ0)

(
1 + 2

√
k cot(

√
kφ0)B

1
s + o

(
T ln

(
1

T

)))
as s ≤ T.

and:

1

sin2(
√
kφs)

=
1

sin2(
√
kφ0)

(
1− 2

√
k cot(

√
kφ0)B

1
s + o

(
T ln

(
1

T

)))
.

We just have to integrate this expression to obtain (28). We then can deduce an estimation

for cos
(

πσ(t)
σ(T )

)
. Indeed, we have:

1

σ(T )
=

sin2(
√
kφ0)

kT

(
1 + 2

√
k cot(

√
kφ0)

1

T

∫ T

0

B1
sds+ o

(
T ln

(
1

T

)))
. (31)

Thus, as 1
t

∫ t

0
B1

sds = o
(√

T ln
(
1
T

))
for all 0 ≤ t ≤ T , we obtain:

πσ(t)

σ(T )
=

πt

T

(
1− 2

√
k cot(

√
kφ0)

(
1

t

∫ t

0

B1
sds−

1

T

∫ T

0

B1
sds

)
+ o

(
T ln

(
1

T

)))
.
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Finally:

cos

(
πσ(t)

σ(T )

)
= cos

(
πt

T

)
+ sin

(
πt

T

)
πt

T
× 2

√
k cot(

√
kφ0)

(
1

t

∫ t

0

B1
sds−

1

T

∫ T

0

B1
sds

)
+ o

(
T ln

(
1

T

))
.

Using same methods as in the �rst part of this proof, we have:

√
k sin(

√
kφu) =

√
k sin(

√
kφ0) + ϵ(u) with ϵ(u) = o

(√
u ln

(
1

u

))

and so: cos(
√
kφt) = cos(

√
kφ0)−

∫ t

0

√
k sin(

√
kφu)dB

1
u − k

∫ u

0

cos(
√
kφu)du

= cos(
√
kφ0)−

√
k sin(

√
kφ0)B

1
t + o

(
T ln

(
1

T

))
.

Then we get:

1

1 + cos(
√
kφt)

=
1− cos(

√
kφt)

sin2(φt)

=

(
1− cos(

√
kφ0) +

√
k sin(

√
kφ0)B

1
t + o

(
T ln

(
1

T

)))
× 1

sin2(
√
kφ0)

(
1− 2

√
k cot(

√
kφ0)B

1
t + o

(
T ln

(
1

T

)))

=
1− cos(

√
kφ0) +

√
k
(
sin(

√
kφ0)− 2 cot(

√
kφ0)(1− cos(

√
kφ0))

)
B1

t

sin2(
√
kφ0)

+ o

(
T ln

(
1

T

))
.

We can now �nalize the calculation of K(T ) =
√

2
σ(T )

∫ T

0
2

1+cos(
√
kφt)

cos
(

πσ(t)
σ(T )

)
dt. Using

the previous results, we get:

2

1 + cos(
√
kφt)

cos

(
πσ(t)

σ(T )

)
=

2

sin2(
√
kφ0)

(
R1(t) +R2(t) +R3(t)

)
+ o

(
T ln

(
1

T

))
.

With

R1(t) :=
(
1− cos(

√
kφ0)

)
cos

(
πt

T

)
R2(t) :=

√
k
(
sin(

√
kφ0)− 2 cot(

√
kφ0)

(
1− cos(

√
kφ0)

))
B1

t cos

(
πt

T

)
R3(t) :=

√
k
(
1− cos(

√
kφ0)

)
× 2 sin

(
πt

T

)
πt

T
cot(

√
kφ0)

(
1

t

∫ t

0

B1
sds−

1

T

∫ T

0

B1
sds

)
.
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In particular
∫ T

0
R1(t)dt vanishes. We also have:∫ T

0

sin

(
πt

T

)
πt

T

(
1

t

∫ t

0

B1
sds−

1

T

∫ T

0

B1
sds

)
dt

=

∫ T

0

π

T
sin

(
πt

T

)∫ t

0

B1
sdsdt−

1

T

∫ T

0

B1
sds

([
−t cos

(
πt

T

)]T
0

+

∫ T

0

cos

(
πt

T

)
dt

)

=

([
− cos

(
πt

T

)∫ t

0

B1
sds

]T
0

+

∫ T

0

cos

(
πt

T

)
B1

t dt

)
−
∫ T

0

B1
sds

=

∫ T

0

cos

(
πt

T

)
B1

t dt.

Thus
∫ T

0
(R2(t) +R3(t)) dt =

√
k sin(

√
kφ0)

∫ T

0
B1

t cos
(
πt
T

)
dt. As

∫ T

0
B1

t cos
(
πt
T

)
dt =

−T
π

∫ T

0
sin
(
πt
T

)
dB1

t , we obtain:

∫ T

0

2 cos
(

πσ(t)
σ(T )

)
1 + cos(

√
kφt)

dt = − 2
√
kT

sin(
√
kφ0)π

∫ T

0

sin

(
πt

T

)
dB1

t + o

(
T 2 ln

(
1

T

))
.

Using (31) we also have
√

1
σ(T )

= sin(
√
kφ0)√
kT

(
1 + o

(√
T ln

(
1
T

)))
and:

K(T ) =
−2

√
2T

π

∫ T

0

sin

(
πt

T

)
dB1

t + o

(
T

3
2 ln

(
1

T

))
.

As
∫ T

0
sin2

(
πt
T

)
dt = T

2
, the distribution of A(T ) :=

√
2
T

∫ T

0
sin
(
πt
T

)
dB1

t is a standard

Gaussian and K(T ) = −2T
π
A(T ) + o

(
T

3
2 ln

(
1
T

))
.

5 Successful coupling in SU(2)

5.1 Re�ection coupling

We �rst explicit one possible construction for a successful coupling in S2. As explained
in [29], the re�ection coupling is maximal in S2. It can be constructed by di�erent ways.
See for example [29, 21] for a construction using projections, [17] for a construction
using covariant derivatives. We can also obtain this coupling directly with the spherical
coordinates (φt, θt) and (φ′

t, θ
′
t):{

dφt = dB1
t +

1
2
cot(φt)dt

dθt =
1

sin(φt)
dB2

t

and

{
dφ′

t = dB1
t
′
+ 1

2
cot(φ′

t)dt

dθ′t =
1

sin(φ′
t)
dB2

t
′ .

Changing the pole and vector of reference in S2 if needed,we can suppose that φ0 = π−φ0,
φ0 ∈]0, π

2
[ and θ0 = θ′0. To construct the re�ection coupling, we take B1

t = −B1
t
′
and

B2
t = B2

t
′
, we get φt = π−φ′

t and θt = θ′t for all t. With this construction the paths of the
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two Brownian motions in S2 have a symmetry with respect to the equator. In particular
for t ∈ [0, τ1], de�ning ρt := ρ ((φt, θt), (φ

′
t, θ

′
t)), we have ρt = π − 2φt. We obtain:

d
(ρt
2

)
= −dB1

t −
1

2
tan
(ρt
2

)
dt. (32)

This is the equation obtained in [17] using the covariant derivatives to de�ne the re�ection
coupling.

Proposition 5.1. We consider the re�ection coupling described above. For any 0 ≤ u <
π
2
, let denote Tu := inf{t | ρt

2
= u}. If ρ0

2
< u < π

2
, then:

E[T0 ∧ Tu] ≤
ρ0
2

(
2u− ρ0

2

)
. (33)

Moreover the re�ection coupling is successful. If we denote by τ1 its �rst coupling time,
we have:

� E[τ1] = E[T0] ≤ ρ0
2

(
π − ρ0

2

)
.

� there exists some constants C, c > 0 independent of the distance between the starting
points such that:

P(τ1 > t) ≤ Cρ0
e−ct

t
.

Proof. We �rst prove inequality (33). Let π
2
> u > ρ0

2
. Let de�ne three processes:

� Wt :=
ρ0
2
+Bt, with Bt a standard Brownian motion;

� Ut := u− |u−Wt| = ρ0
2
+ βt − Lu

t (W ) with βt := −
∫ t

0
sign(u−Ws)dBs de�ning a

standard Brownian motion and Lu
t (W ) the local time of (Wt)t in u.

� (Vt)t starting at ρ0
2
satisfying: dVt = dβt − 1

2
tan(Vt)dt. In particular (ρt)t and (Vt)t

have the same distribution.

We also de�ne the stopping time T̃v := inf{t > 0 | Vt = v} for v ∈ R. We claim that
Vt ≤ Ut for all 0 ≤ t ≤ T̃0 ∧ T̃u. Let explain this fact.
We consider T := inf{t > 0 | Ut = Vt}. As ρ0

2
< u, for t small enough, we have Ut < u.

Thus, d(Ut − Vt) =
1
2
tan(Vt)dt > 0 and T > 0 a.s. We suppose that T < T̃0 ∧ T̃u. Then,

we have UT = VT < u and, by continuity of U , there exists ϵ > 0 such that, for all
t ∈ [T − ϵ, T ], Ut < u. In particular, Lu

T−ϵ(W ) = Lu
T (W ). We obtain:

0 = UT − VT

= UT−ϵ − VT−ϵ +
1

2

∫ T

T−ϵ

tan(Vs)ds

with UT−ϵ−VT−ϵ > 0 and with 1
2

∫ T

T−ϵ
tan(Vs)ds > 0 since T < T̃0. We get a contradiction,

thus T ≥ T̃0 ∧ T̃u so Vt < Ut on ]0, T̃0 ∧ T̃u[.
As Ut = 0 if and only if Wt ∈ {0, 2u}, we get:

T̃0 ∧ T̃u ≤ inf{t > 0 | Wt /∈]0, 2u[} := H− ρ0
2
,2u− ρ0

2
.
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Finally, as and T0 ∧ Tu has the same distribution as T̃0 ∧ T̃u we get:

E[T0 ∧ Tu] ≤ E[H− ρ0
2
,2u− ρ0

2
] =

ρ0
2

(
2u− ρ0

2

)
.

We can now interest ourselves in the coupling rate of the re�ection coupling. As, ρt
2
< π

2

a.s., we have τ1 = T0 ∧ Tπ
2
. Using the previous results, we have T 0 ∧ T π

2
≤ Ha,b, with

a = −ρ0
2
and b = π − ρ0

2
. From Lemma 3.3, we obtain:

P(τ1 > t) ≤ E

[
e−δHa,b

Ha,b

Ha,be
δHa,b1Ha,b>t

]
≤ e−δt

t
×

(π − ρ0
2
)ρ0
2

cos2
(√

δ
2
π
)

with δ such that 0 <
√

δ
2
< 1

2
that is 0 < δ < 1

2
. Taking C = π

2 cos2
(√

δ
2
π
) and c = δ, we

have:

P(τ1 > t) ≤ P(S1 > t) ≤ ρ0C
e−ct

t
.

with c and C not depending of the initial distance between the Brownian motions. In
particular, the coupling is successful.

5.2 Proof of Theorem 1.2

We now deal with the coupling (Bt = (Xt, zt),B
′
t = (Xt, zt)) on SU(2) announced in The-

orem 1.2. As explained before, the idea is to use re�ection coupling until the �rst time
τ1 such that Xτ1 = X ′

τ1
and then to use the Brownian bridges coupling to couple the

"area parts". According to Theorem 1.1, we need to have an estimation of the quantity
E[|ζτ1|q ∧ 1] for at least one q ∈]0, 1[. Thus we need the following Proposition:

Proposition 5.2. At the end of the re�ection coupling we have, for 0 < p < 1
2
:

E[|ζτ1|
1
2
+p] ≤ C̃pdcc(B0,B

′
0).

with C̃p some constant independent of B0 and B′
0.

Proof of Proposition 5.2. By construction of the re�ection coupling using the change of
pole (N1, e1), the quantity AXt,X′

t,N1
= 0 for all t. Then by Lemma 3.1, we have ζt ≡

I ′t(N1, e1) − It(N1, e1) mod (4π). As ρt
2

= π
2
− φt, using the equation of I ′t(N1, e1) −

It(N1, e1) we get ζt ≡ ζ0 − 2
∫ t

0
tan
(
ρs
2

)
dB2

s mod (4π) (this expression of ζt is the one

obtained in [17]). We de�ne ϕp : x ∈]0,+∞[ 7→ x
1
2
+p with 0 < p < 1

2
. We are interested

in the quantity E
[
ϕp

(
|ζ0 − 2

∫ τ1
0

tan
(
ρs
2

)
dB2

s | ∧ 4π
)]
. As ϕp(x + y) ≤ ϕp(x) + ϕp(y) for

all x, y > 0,

E

[
ϕp

(∣∣∣∣ζ0 − 2

∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ ∧ 4π

)]
≤ ϕp (|ζ0|)

+ E

[
ϕp

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ ∧ 4π

)]
.
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Since |ζ0| is bounded by 2π, we have ϕp(|ζ0|) ≤ δp
√
|ζ0| ≤ δ̃pdcc(B0,B

′
0) with δp and δ̃p

two constants independent of B0 and B′
0 . We now just need to prove that the quantity

E
[
ϕp

(∣∣2 ∫ τ1
0

tan
(
ρs
2

)
dB2

s

∣∣ ∧ 4π
)]

is upper bounded by ρ0 up to a multiplicative constant.
It is obvious for ρ0 large enough, thus we consider ρ0 ≤ m, with m > 0 chosen later in
the proof. We can write:

E

[
ϕp

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ ∧ 4π

)]
=

∫ ϕp(4π)

0

P

(
ϕp

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ ∧ 4π

)
> y

)
dy

=

∫ 4π

0

P

(
ϕp

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣) > ϕp(x)

)
ϕ′
p(x)dx

=

∫ 4π

0

P

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x

)(
1

2
+ p

)
xp− 1

2dx.

We set 0 < α < 1. We are going to split the integral into two parts:∫ ( ρ0
2 )

1
α

0

P

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x

)
ϕ′
p(x)dx (34)

and∫ 4π

( ρ0
2 )

1
α

P

(∣∣∣∣2 ∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x

)
ϕ′
p(x)dx. (35)

By simply upper-bounding the probability by 1, the quantity (34) can be upper-bounded

by ϕp

((
ρ0
2

) 1
α

)
≤
(
ρ0
2

) 1+2p
2α . For α ≤ 1

2
+ p and m small enough, we have

(
ρ0
2

) 1+2p
2α ≤ ρ0

2
.

To deal with the second quantity we look at the quantity P
(∣∣2 ∫ τ1

0
tan
(
ρs
2

)
dB2

s

∣∣ > x
)
.

Using the same notations as in proposition 5.1, we consider ρ0
2
< u < π

2
. We have:

P

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x

)
= P

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x, Tu < T0

)
+ P

(∣∣∣∣2 ∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x, Tu > T0

)
≤ P(Tu < T0) + P

(∣∣∣∣2∫ Tu∧T0

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x

)
≤ P(Tu < T0) +

1

x2
E

[
4

∫ Tu∧T0

0

tan2
(ρs
2

)
ds

]
≤ P(Tu < T0) +

4 tan2 (u)

x2
E [Tu ∧ T0] .

As the drift part in the equation of ρt (given by (32)) is negative, we have Tu ≥ inf{t >
0 | ρ0

2
− B1

t = u} and T0 ≤ inf{t > 0 | ρ0
2
− B1

t = 0}. Thus, using relation (18) from
Lemma 3.3 with a = −ρ0

2
and b = u− ρ0

2
, we get P(Tu < T0) ≤ ρ0

2u
. From Proposition 5.2,

we have E [Tu ∧ T0] ≤ ρ0
2

(
2u− ρ0

2

)
. Thus:

P

(∣∣∣∣2∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x

)
≤ ρ0

2

(
1

u
+ 4

tan2(u)

x2

(
2u− ρ0

2

))
. (36)
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We introduce β such that 0 < β < 1. We �rst chose u(x) := xβ. If
(
ρ0
2

) 1
α < x < 1 and

β < α, we have ρ0
2
< u(x) < π

2
. Then we use inequality (36) with u = u(x). We get:

∫ 1

( ρ0
2 )

1
α

P

( ∣∣∣∣2 ∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣∣ > x

)
ϕ′
p(x)dx

≤ ρ0
2

∫ 1

( ρ0
2 )

1
α

(
x−β + 8

tan2(xβ)

x2
xβ

)
dx

≤ δβ
ρ0
2

∫ 1

0

(
x−β + x3β−2

)
xp− 1

2dx,

with δβ independent of ρ0. The last integral is �nite if and only if p+ 1
2
> β > 1

2
− p

3
. In

particular, this is the case for β = 1
2
. If x > 1, we use inequality (36) with u ≡ 1. We

get: ∫ 4π

1

P

(∣∣∣2 ∫ τ1

0

tan
(ρs
2

)
dB2

s

∣∣∣ > x

)
ϕ′
p(x)dx ≤ ρ0

2

∫ 4π

1

(
1 + 8

tan2(1)

x2

)
ϕ′
p(x)dx.

We thus have (35) upper bounded by ρ0 up to a multiplicative constant only depending
of m, β and p.

We can now give the proof of Theorem 1.2:

Proof of Theorem 1.2. To construct our successful coupling on SU(2), we �rst construct
the re�ection coupling described above until time τ1, that is until Xτ1 = X ′

τ1
. Then,

we use the coupling from Theorem 1.1 to deal with the swept area coordinates. As the
coupling rate from the two couplings have an exponential decay, we obtain a successful
coupling with an exponential decay on SU(2). We want to obtain the initial distance-
control from inequality (5). We denote τ2 := inf{t > τ1 | Bt = B

′
t}. The �rst meeting time

τ of the Brownian motions in SU(2) satis�es τ = τ1 + τ2. Then we have, for 1
2
< q < 1:

P(τ > t) = P

(
τ > t, τ1 ≤

t

2

)
+ P

(
τ > t, τ1 >

t

2

)
≤ P

(
τ2 >

t

2
, τ1 ≤

t

2

)
+ P

(
τ1 >

t

2

)
≤ E

[
P

(
τ2 >

t

2

∣∣∣∣ |ζτ1|) 1τ1≤ t
2

]
+ Cρ0

e−c t
2

t
2

≤ E

[
Cqe

−c̃ t
2 |ζτ1 |q1τ1≤ t

2

]
+ 2Cρ0

e−c t
2

t

≤ Cqe
−c̃ t

2E [|ζτ1|
q] + 2Cρ0

e−c t
2

t
.

As ρ0 ≤ ρ0 +
√

|ζ0| with ρ0 +
√

|ζ0| equivalent to dcc(B0,B
′
0), using Proposition 5.2,

we obtain the expected inequality.
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6 Applications to gradients estimates

In this section, we show gradient inequalities involving the heat semi group (Pt)t, that is
the semi-group with in�nitesimal generator 1

2
L, the subLaplacian operator. For a function

f on Ek and g ∈ Ek, we consider the norm of the gradient:

||∇Hf(g)||H :=
√

(X̄f)2(g) + (Ȳ f)2(g).

We recall the de�nition of an upper gradient. We say that a function u is an upper
gradient of f in the sense that for every horizontal curve γ : [0, T ] → Ek parametrized
with the arc-length, we have:

|f(γ(0))− f(γ(t))| ≤
∫ t

0

u(γ(s))ds.

As Ek has a left-invariant subRiemannian structure, it is a regular subRiemannian man-
ifold as described in [25] and so, we get, for all u upper gradient of f :

||∇Hf(g)||H ≤ u(g) a.e. in Ek. (37)

See [25, 23] for some proofs. In particular, for f Lipschitz, an upper gradient will be

given by the gradient length |∇f |(g) := lim
r↓0

sup
g ̸=g′

dcc(g,g′)<r

∣∣∣f(g)−f(g′)
dcc(g,g′)

∣∣∣ (see [30, 23]). Thus we

have:
||∇Hf(g)||H ≤ |∇f |(g) a.e. in Ek. (38)

Then, we can use the coupling rate of Theorem 1.2, to obtain the gradient inequality
of Corollary 1.3.

Proof of Corollary 1.3. Let g, g′ ∈ SU(2). We consider (Bt,B
′
t)t the coupling constructed

in Theorem 1.2 starting from (g, g′) and τ its �rst coupling time. As SU(2) is compact
and f continuous, then it is bounded and we get:

|Ptf(g)− Ptf(g
′)| = |E[f(Bt)− f(B′

t)]|
≤ E[|f(Bt)− f(B′

t)|] = E[|f(Bt)− f(B′
t)|1τ>t]

≤ 2||f ||∞P(τ > t) (39)

≤ 2||f ||∞Ce−ctdcc(g, g
′).

In particular, g 7→ Ptf(g) is Lipschitz and |∇Ptf |(g) ≤ 2||f ||∞Ce−ct. We just use (38) to
obtain: ||∇HPtf(g)||H ≤ 2||f ||∞Ce−ct a.e.
If f is harmonic on all SU(2), we have Ptf = f and so ||∇Hf(g)||H ≤ 2||f ||∞C1e

−C2t for
all t a.e. Then, letting t tend to +∞, we obtain ||∇Hf(g)||H = 0 and so X̄f = Ȳ f = 0
a.e. Using the Lie bracket generating property of H = Span⟨X̄, Ȳ ⟩, we get f constant
a.e. and, by continuity, f is constant on SU(2).

The computations to prove Corollary 1.4 are quite similar:
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Proof of Corollary 1.4. We suppose that g = (x, z), g′ = (x′, z′) ∈ SL(2,R) with x = x′.
The same way as for inequality (39), using Theorem 1.1, we obtain |Ptf(g)− Ptf(g

′)| ≤
2||f ||∞Cqe

−ctdcc(g, g
′)2q.

Moreover, if f is harmonic, Ptf = f and so |f(g) − f(g′)| ≤ 2||f ||∞Cqe
−ctdcc(g, g

′)2q.
Taking t → 0, we get f(g) = f(g′). Thus, z 7→ f(x, z) is constant for all x ∈ H2.
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