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S U M M A R Y 

Seismic gradient measurements from distributed acoustic sensors and rotational sensors are 
becoming increasingl y av ailable for field surv e ys. These measurements provide a wealth of 
information and are currently being considered for many applications such as earthquake de- 
tection and subsurface characterizations. In this work, using a simple 2-D numerical approach, 
we tackle the implications of such wavefield gradient measurements on full wav eform inv ersion 

(FWI) techniques using a simple 2-D numerical test. In particular, we study the impact of the 
wavefield gradient measurement sensitivity to heterogeneities that are much smaller than the 
minimum wavelength. Indeed, as shown through the homogenization theory, small-scale het- 
erogeneities induce an unexpected coupling of the strain components to the wavefield gradient 
measurement. We further show that this coupling introduces a potential limitation to the FWI 
results if it is not taken into account. We demonstrate that a gradient measurement-based FWI 
can only reach the accuracy of a classical displacement field-based FWI if the coupling coef- 
ficients are also inver ted. Fur ther more, there appears to be no specific gain in using gradient 
measurements instead of conventional displacement (or velocity, acceleration) measurements 
to image str uctures. Never theless, the inver ted correctors contain fine-scale heterogeneities 
information that could be exploited to reach an unprecedented resolution, particularly if an 

array of receivers is used. 

Key words: Inverse theory; Numerical solutions; Computational seismology; Seismic to- 
mog raphy; Wavefor m inversion. 
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 I N T RO D U C T I O N  

ecent advances in seismic instrumentation have enabled the use of
avefield gradient measurements to more comprehensi vel y charac-

erize ground motions and further constrain various seismic phe-
omena, including earthquake mechanisms, the directionality of
eismic waves and anisotropic structures. Ho wever , it is important
o carefully examine the feasibility of directly applying seismic
ethods such as seismic tomography and estimation of earthquake
echanisms that have been used for translational measurements to
avefield gradient measurements. 
The ability to acquire seismic wavefield gradient measurements

as existed for decades. Tiltmeters, which measure the tilt of the
round surface (spatial deri v ati v es of displacement), hav e tradition-
lly been used to investigate tidal tilt (Nishimura 1950 ; Melchior
966 ). Seismic observations have also been made using tilt meters
Sassa & Nishimura 1951 ); ho wever , measurements of seismic ro-
ational motion have been a long-standing challenge due to their
uch smaller amplitudes compared with the translational motions

hat are excited by earthquakes. There have been rapid develop-
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
ents in rotational sensor technology (Bernauer et al. 2021 ; Igel
t al. 2021 ; Zembaty et al. 2021 ) that enabled rotational motion
easurement and applications. For example, collocated measure-
ents of rotation and translational motions have been analysed

o retrieve the local phase velocity (Igel et al. 2005 ; Fichtner &
gel 2009 ). Recently, the theory to measure the dispersion relation
sing both translational and wavefield gradient measurements at
ingle observation point in weakly anisotropic media has been in-
roduced (Tang et al. 2023 ). The distributed acoustic sensing (DAS)
s a photonic technology that allows for the collection of dynamic
train data along fibre-optic cables with densely spaced measure-
ent points. Initially, DAS applications were implemented in the oil

nd gas industry for exploration and reservoir monitoring (Matee v a
t al. 2012 ; Daley et al. 2013 ; Willis et al. 2016 ). Subsequently,
he utilization of DAS has notably expanded in seismological in-
estigations based on its strain measurements (Zhan 2020 ). These
ecent advances in sensor technology and the increased use of ro-
ational sensors and DAS arra ys ha ve enabled a transition towards
cti vel y observing and utilizing measurements of seismic wavefield
radients. 
oyal Astronomical Society. This is an Open Access 
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Many seismic analyses based on rotational sensor and DAS obser- 
vations have been conducted. Phase-velocity and polarization anal- 
yses using rotational sensors (Wassermann et al. 2016 ; Keil et al. 
2021 ), and structural imaging (Parker et al. 2018 ), seismic-wave 
monitoring (Dou et al. 2017 ) and earthquake studies (Ajo-Franklin 
et al. 2019 ) using DAS cables have made important advances in 
seismology. These studies have demonstrated the potential of using 
wavefield gradient measurements to address fundamental seismo- 
lo gical questions; howe ver, it is important to pay attention to the 
distinct nature of the wavefield gradients compared with transla- 
tional motions when analysing wavefield gradient measurements. 

Wavefield gradients can be significantly influenced by local 
small-scale heterogeneities in the subsurface that distort both the 
phase and amplitudes of the wavefield gradients (King & Bilham 

1973 ; Harrison 1976 ; van Driel et al. 2012 ; Singh et al. 2020 ; 
Muir & Zhan 2022 ). This issue has been acknowledged as a criti- 
cal problem in tilt measurements (Melchior 1966 ; Lennon & Baker 
1973 ; Goulty 1976 ). A previous study reported sudden changes 
in tilt values due to local subsurface heterogeneities at the sen- 
sor, such as cavities, discontinuities and elastic contrasts, and also 
the local topography, and noted discrepancies between the theo- 
retical and observed tilt values (Meertens et al. 1989 ). Impacts of 
sub-w avelength hetero geneities on rotational sensor and DAS mea- 
surements have been observed by comparisons of wavefield gradi- 
ent measurements with conventional measurements of translational 
motions (Singh et al. 2020 ; Muir & Zhan 2022 ). Singh et al. ( 2020 ) 
obtained a strong fit between the observed and synthetic displace- 
ment waveforms using a smooth Earth model whereas the observed 
rotational waveforms from the same locations did not fit the syn- 
thetic wa veforms w ell; they attributed these findings to the effects 
of small-scale heterogeneities on measurements of the wavefield 
gradients. 

The two-scale homogenization theory offers a mathematical 
framework capable of addressing multiscale challenges across di- 
verse scientific domains. This theory enables the assessment of the 
macroscopic behaviour of elastic materials based on their micro- 
scopic properties (Bensoussan et al. 1978 ; Sanchez-Palencia 1980 ). 
Its recent introduction into seismology (Capdeville et al. 2020 ) has 
proven invaluable for tackling multi-scale issues, such as upscaling 
subsurface models to reduce computational complexity in seismic 
wave simulations (Cupillard & Capdeville 2018 ) and interpreting 
tomographic models (Capdeville & M étivier 2018 ). 

This theory highlights the difference of behaviour of wavefield 
gradients versus translation motions regarding small-scale hetero- 
geneities. Specifically, the ‘corrector,’ a fundamental parameter 
within this theory, explicitly shows the effects of small-scale het- 
erogeneities (Singh et al. 2020 ; Capdeville et al. 2020 ). Previous 
studies (Singh et al. 2020 ; Muir & Zhan 2022 ) have underscored 
the importance of the corrector to interpret rotational and DAS 

observations. 
To our best knowledge, no study has investigated the effects of 

small-scale heterogeneities on wavefield gradients in seismic in- 
verse problems, such as full waveform inversion (FWI). FWI is the 
seismic tomography method to estimate subsurface models with 
high resolution and accuracy owing to its full computations of seis- 
mic wavefields (Tarantola 1984 ; Mora 1987 ; Virieux & Operto. 
2009 ). Due to significant computational advancements, it has been 
made possible to perform FWI to estimate crust- and global-scale 
subsurface models (Fichtner et al. 2009 ; Tape et al. 2010 ; Muku- 
moto & Tsuji 2023 ). While most FWI applications have traditionally 
relied on translational measurements, several recent studies have 
explored FWI based on DAS measurements (Egorov et al. 2018 ; 
Pan et al. 2023 ). Given the recent rapid deployment of wavefield gra- 
dient measurements, the utilization of FWI with DAS and rotational 
sensors is going to e xpand. Howev er, the impacts of small-scale het- 
ero geneities on w a vefield gradient-based FWI ha ve not been thor- 
oughly investigated. This study aims to investigate the effects of 
wavefield gradient measurements on FWI results and address the 
impact of small-scale heterogeneities. Our findings demonstrate that 
small-scale heterogeneities can strongly affect the FWI inversion 
results. Given the sensitivity of FWI frameworks to these small- 
scale effects, we propose a new FWI framework that can account 
for small-scale heterogeneities and improve the accuracy of FWI 
results. 

2  F W I  A N D  H O M O G E N I Z AT I O N  

T H E O RY  

2.1 Context 

We consider a 2-D elastic domain � with absorbing boundary con- 
ditions on its boundary ∂ �. We use a Cartesian coordinate system 

in �, where the x -axis is the horizontal axis and the z -axis is the 
ver tical axis. The par ticle displacement vector u ( x , t ) in the plane 
(referred to as the P -SV case) within � is dri ven b y the elastic wave 
equation: 

ρ∂ t t u − ∇ · σ = f s , (1) 

σ = c : ε( u ) , (2) 

where εkl ( u ) = 

1 
2 ( ∂ k u l + ∂ l u k ) is the strain operator, ( k , l ) ∈ { x , z } 2 ,

ρ( x ) is the density, c ( x ) is the elastic tensor, σ ( x , t) is the stress
tensor, f is the source term and x = ( x , z ) is the position vector in
�. We use point sources: 

f s ( x , t) = F s δ( x − x s ) g( t) (3) 

for a point force, or: 

f s ( x , t) = −M s · ∇ δ( x − x s ) g( t) (4) 

for a point moment tensor, where F s is the force vector, M s is the 
moment tensor, x s is the source location and g ( t ) is the source time 
wavelet. 

The mechanical properties ( ρ( x ), c ( x )) are considered hetero- 
geneous at all spatial scales, as expected in geological media. The 
two-scale homogenization mathematical framework is therefore ap- 
propriate to deal with such heterogeneities. 

2.2 Two-scale homogenization 

Two-scale homogenization is a mathematical framework that can 
deal with multiscale problems. It was originally developed for peri- 
odic and stochastic elastostatic and elastodynamic problems (Ben- 
soussan et al. 1978 ; Sanchez-Palencia 1980 ) before being extended 
to deterministic multiscale heterogeneous media with no scale sep- 
aration for wave propagation (Capdeville et al. 2020 ). 

We briefly introduce the basics and main results of two-scale 
homogenization theory. The reader is referred to Capdeville et al. 
( 2020 ) for details of the theor y. Homogenization theor y considers 
scales of heterogeneities as either small-scale (microscopic scale) 
or large-scale (macroscopic scale) features. Small-scale hetero- 
geneities are meant to be homogenized and replaced by effective 
properties. For periodic heterogeneities, the small scale is the pe- 
riodic structure, and the large scale is the constant background. In 
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Figure 1. (a) Schematic diagram of the I 22 
e mesh structure. The shaded grey area shows the target area to be inverted. Black lines define the element boundaries. 

(b) V S (left-hand panel), V P (centre panel) and density (right-hand panel) structures of the target model. 
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Figure 2. Flowchart of the FWI process, with correctors. The process be- 
gins with forward modelling to generate synthetic data. The correctors are 
inverted, and the synthetic data are corrected using the inverted correctors. 
Then, the inversion of the elastic mechanical properties is performed. If 
convergence is not obtained, the process is repeated. 
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eismology, there is no periodicity in the media and we rely on an
rbitrary scale λ0 to separate small or large scales. Homogenization
s an asymptotic method based on a small parameter ε 0 , which is
efined as follows: 

 0 = 

λ0 

λmin 
. (5) 

 0 measures the position of the separation between the small and
arge scales with respect to the minimum wavelength λmin . Note
hat an y v alue can be chosen for ε 0 . Ho wever , ε 0 = 0.5 (meaning
hat heterogeneities half the size of the minimum wavelength and
maller are considered small-scale heterogeneities) is a good ap-
roximation that has generally been employed for most cases. The
wo-scale homogenization method relies on two space variables:
he regular space variable x (also called the large- or macroscopic-
cale variable) and a new space variable y = 

x 
ε 0 

(also called the
mall- or microscopic-scale v ariable). A ne w mathematical prob-
em is deri ved, whereb y all of the physical quantities depend on
oth the macro-scale spatial variable x and the micro-scale spatial
ariable y . The displacement u , which is a solution of the wave
quation (eqs 1 and 2 ), is a power-series approximation in ε 0 : 

 

ε 0 ( x , y , t) = u 

0 ( x , y , t) + ε 0 u 

1 ( x , y , t) + ε 2 0 u 

2 ( x , y , t) + ... , (6) 

art/ggae158_f1.eps
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Figure 3. Source (red stars) and receiver (black diamonds) configurations employed for the synthetic tests. (a) Configuration A: All sources and receivers 
are positioned outside of the heterogeneous area. (b) Configuration B: All sources are positioned outside of the heterogeneous area, whereas all receivers are 
positioned within the heterogeneous area. (B1,B2) Close-up views of the receiver arrangement in Configuration B for the areas indicated by the dashed green 
squares. 
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where the homogenized coefficients u 

i need to be determined. Sim- 
ilarly, the strain can also be expanded as a power-series approxima- 
tion in ε 0 : 

εε 0 ( x , y , t) = ε0 ( x , y , t) + ε 0 ε
1 ( x , y , t) + ε 2 0 ε

2 ( x , y , t) + ... (7) 

where εi are the strain homogenized expansion coefficients. Note 
that the exponent i is the power for ε 0 and an index for u 

i and εi in 
eqs ( 6 ) and ( 7 ). We can also define a homogenized expansion for 
the rotational field ω = 

1 
2 ∇ × u : 

ω 

ε 0 ( x , y , t) = ω 

0 ( x , y , t) + ε 0 ω 

1 ( x , y , t) + ε 2 0 ω 

2 ( x , y , t) + ... . (8) 

The true u , ε and ω values are then found via: 

u ( x , t) = u 

ε 0 ( x , y = 

x 
ε 0 

, t) , (9) 

ε( x , t) = εε 0 ( x , y = 

x 
ε 0 

, t) and (10) 

ω( x , t) = ω 

ε 0 ( x , y = 

x 
ε 0 

, t) . (11) 

The main results of the homogenization development are the 
following: 

(i) The displacement of the leading-order approximation (in ε 0 ) 
is independent of the small-scale variable y : 

u 

0 ( x , y , t) = u 

0 ( x , t) . (12) 

In the following, we denote ef fecti ve quantities (which do not de- 
pend upon y ) with a ∗ superscript. u 

0 therefore becomes u 

∗. 
(ii) u 

∗ is the solution of the ef fecti ve w ave equation: 

ρ∗∂ t t u 

∗ − ∇ · σ ∗ = f ∗s , (13) 

σ ∗ = c ∗ : ε∗ , (14) 
where ε∗ = ε( u 

∗) and ( ρ∗, c ∗) are the ef fecti ve mechanical proper- 
ties (see below) and f ∗s is the ef fecti ve source (Burgos et al. 2016 ; 
Capdeville 2021 ). 

(iii) The first-order homogenized coefficient can be written as 
follows: 

u 

1 ( x , y , t) = χ( x , y ) : ε∗( x , t) + 

〈
u 

1 
〉
( x , t) , (15) 

where χ is the first-order corrector (a third-order tensor) and 〈 u 

1 〉 
can generally be neglected. 

(iv) The strain of the leading-order approximation depends on 
the small-scale variable y : 

ε0 ( x , y , t) = 

(
I + εy ( χ )( x , y ) 

)
: ε∗( x , t) , (16) 

where I is the fourth-order identity tensor and [ εy ] i j ( v ) = 

1 
2 ( ∂ y i v j +

∂ y j v i ) for any v . 
(v) Similarly, the leading-order rotational coefficient can be writ- 

ten as: 

ω 

0 ( x , y , t) = ω 

∗( x , t) + 

1 

2 

(∇ y × χ( x , y ) 
)

: ε∗( x , t) , (17) 

where ω 

∗ = 

1 
2 ∇ × u 

∗. Note that ω 

∗ �= ω 

0 in general. 
(vi) The homogenized quantities of ρ∗( x ) and c ∗( x ) are smooth 

and are such that the ef fecti ve displacement u 

∗ obtained solving 
eqs ( 13 ) and ( 14 ) and the true displacement are the same for given 
maximum frequency f m 

and with an error that can be controlled 
with ε 0 . They, together with the corrector χ( x , y ) , can be computed 
through the homogenized operator H : 

( ρ∗, c ∗, χ ) = H ( ρ, c ) . (18) 

H implies solving a set of equations known as the ‘cell prob- 
lem’, a static elasticity equation with a set of source terms 
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Figure 4. Numerically derived example of the impact of small-scale heterogeneities on displacement and rotational waveforms. (a) Source (black star) and 
recei vers configuration. Hetero geneous area present within black dashed square. Recei vers are placed within black squares labelled b y A and B. (A1) Close-up 
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structures. 4 receivers (R5–R8) are placed outside heterogeneous area. (b) Displacement waveforms at location A. (c) Displacement waveforms at location B. 
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Capdeville et al. 2015 , 2020 ). The solution only depends on ε 0 
nd the elastic model; neither the time nor the seismic source in-
uence H . The presence of normal stress-free boundary conditions
equires the use of ef fecti ve boundary conditions (Capdeville et al.
020 ) to homogenize the small-scale variations in both the local to-
ography and structures just beneath the subsurface. Ho wever , we
mit the ef fecti ve boundary condition in this study for simplicity.
 is a non-linear operator that often yields non-intuitive homog-

nization results. For example, the ef fecti ve properties are almost
l wa ys anisotropic, even if the true model is isotropic (Backus 1962 ;
apdeville et al. 2020 ). Solving the cell problem and then finding

he ef fecti ve mechanical properties generally involve a numerical
olver, with the layered-medium case being the only case that leads
o an analytical solution. Homogenization theory yields the well-
nown results of Backus ( 1962 ) for the layered-medium case. We
o not expand further on this aspect because it is not required for our
iscussion; see Capdeville et al. ( 2020 ) for a complete discussion.
 0 ≤ 0.5 is considered a reasonable choice to obtain homogenized
uantities and preserve the solution accuracy for most geological
edia (Capdeville et al. 2020 ). 

Finally, we can also find the relationship between the ef fecti ve
elds, and the true rotational and gradient of the wavefield. The

eading-order approximation of the wavefield gradient is: 

∇ u ( x , t) = ∇ u 

∗( x , t) + G ( x ) : ε∗( x , t) + O( ε 0 ) , 

where: G ( x ) = ∇ y χ( x , y ) | y = x 
ε 0 

, 
(19) 

nd ∇ y is the gradient operator that is applied to the y variable. 
The leading-order approximation of the rotational field is: 

ω( x , t) = ω 

∗( x , t) + J ( x ) : ε∗( x , t) + O( ε 0 ) , 

where: J ( x ) = 

1 

2 
∇ y × χ ( x , y ) | y = x 

ε 0 
. 

(20) 
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(a) (b)

(c)

Figure 5. Displacement-based FWI results using receivers positioned outside of the heterogeneous area. (a) Misfit reduction. (b) Waveform comparisons 
between the target and synthetic data. Source–receiver positions are shown in the left-hand panel, with the green source (star) and receiver (diamond) positions 
indicating the source–receiver pair that was used to generate the presented target (black) and synthetic (red) waveforms in the right panel. The waveforms 
are normalized by the maximum amplitude of the selected receivers. (c) Target and final V ∗S models and their corresponding residuals. Both the target and 
final models are homogenized using ε 0 = 1.0. The residuals between the target and final models are represented as fluctuations from a background value of 
2.8 km s −1 . 
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In practice, once the ef fecti ve medium ( ρ∗, c ∗) is obtained, the 
ef fecti ve w ave equation (eqs 13 and 14 ), which is the standard wave 
equation, can be then solved to obtain the ef fecti ve displacement 
u 

∗ and its deri v ati ve ε∗, ∇ u 

∗ and ω 

∗. Ne vertheless, if using u 

∗ we 
obtain directly the true displacement with a good approximation 
via eq. ( 12 ), this is not the case for the strain and rotational wave- 
fields respecti vel y. eqs ( 19 ) and ( 20 ) show that an extra term is 
needed to obtain the correct leading-order approximations for the 
ef fecti ve strain and rotational fields. This extra term depends on y , 
thereby suggesting that the waveforms of the wavefield gradients 
are affected by the small-scale structures of the medium. It also 
implies that the gradient and rotational field are sensitive to small- 
scale structures, whereas the displacement is not. In practice, this 
small-scale heterogeneity causes the strain components to couple 
to the expected gradient of the rotational components. This effect 
has already been observed in both synthetic and real data (van Driel 
et al. 2012 ; Singh et al. 2020 ; Muir & Zhan 2022 ). 
2.3 Earth models and associated spaces 

We first define the space of possible earth models prior to intro- 
ducing the inverse problem. An earth model m is defined by its 
mechanical properties [ ρ( x ), c ( x )] at any location x in the domain 
�. We define the admissible model space M , which contains all 
of the physically admissible earth models. If we assume that � is 
heterogeneous at all scales (similar to the real Earth), then M is 
infinite-dimensional. 

We can define the homogenized counterpart of each model 
m ∈ M at a giv en frequenc y band as p 

∗ = H ( m ) . Eq. ( 18 ) shows
that p 

∗ is more than just the ef fecti ve mechanical properties m 

∗

= ( ρ∗, c ∗), as it generally contains the corrector χ . m 

∗ is the 
restriction of p 

∗ to the mechanical properties: m 

∗ = p 

∗| m 

. Note 
that the actual definition of the ef fecti ve model generally depends 
on the receiver geometry, type of observation and homogeniza- 
tion order. If there are only displacement observations and the 
homogenization order is 0, then there is no need for correctors. 
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(a) (b)

(c)

Figure 6. Rotational-based FWI results using receivers positioned outside of the heterogeneous area. (a) Misfit reduction. (b) Waveform comparisons between 
the target and synthetic data. Source–receiver positions are shown in the left panel, with the green source (star) and receiver (diamonds) positions indicating the 
source–receiver pairs that were used to generate the presented target (black) and synthetic (red) waveforms in the right panel. The waveforms are normalized 
by the maximum amplitude of the selected receivers. (c) Target and final V ∗S models and their corresponding residuals. Both the target and final models are 
homogenized using ε 0 = 1.0. The residuals between the target and final models are represented as fluctuations from a background value of 2.8 km s −1 . 
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o wever , if the observations are rotational, even for zeroth-order
omogenization, then the corrector curl is needed at the receiver
ocations (see eq. 20 ). We therefore define the ef fecti ve model
pace M 

∗, which contains all of the possible ef fecti ve models
 

∗. Symbolically, w e ha ve M 

∗ = H ( M ) , where M 

∗ is finite-
imensional. 

.4 Full w av eform inv ersion based on displacement data 

e consider an idealized FWI problem whose objective is to re-
over the true mechanical properties ( ρ t , c t ) of the elastic domain

using seismic waveforms. We assume that the true model m t =
 ρ t , c t ) belongs to M . We consider � with N r receivers located
t x r , r ∈ { 1 , ..., N r } and N s sources located at x s , s ∈ { 1 , ..., N s } .
he signal from each source is recorded for a time duration T
t each receiver. We assume that the displacement data set is ac-
urately modelled by solving the wave equation (eqs 1 and 2 ). We
efine the least-squares misfit function and associated minimization
roblem as: 

E( m ) = 

∑ 

r,s 

∫ T 

0 
( d s ( x r , t) − u ( x r , t ; x s , m )) 2 dt , 

m̄ = argmin 
m ∈ M 

E( m ) , (21) 

here d s ( x r , t ) represents the displacement data generated by source
umber s and recorded by receiver number r . Under perfect condi-
ions, the inverse problem has a unique solution and m̄ = m t (Nach-
an 1988 ; Nakamura & Uhlmann 1994 ). Ho wever , eq. ( 21 ) is gen-

rall y an unsolv ab le prob lem because M is an infinite-dimensional
pace and the numerical cost of solving the wave equation is not
ounded. 

The classical strategy to obtain a solvable inverse problem is to
imit the data frequency band. Therefore, a low-pass filter F 

f m is
ntroduced, such that the filtered data d 

f m 
s = F 

f m ( d s ) have no signal
eyond the maximum frequency f m 

in the frequency domain. A new
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Figure 7. Error Ē m 

defined by eq. ( 37 ), which is derived using displacement 
(red) and rotational (black) receivers positioned outside of the heterogeneous 
area. 
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misfit is then defined from this filtered data set as follows: 

E 

f m ( m ) = 

∑ 

r,s 

∫ T 

0 
( d 

f m 
s ( x r , t) − u 

f m ( x r , t ; x s , m )) 2 dt , (22) 

where u 

f m are the synthetic data, which are computed with a low- 
pass-filtered source time function g f m s = F 

f m ( g s ) . The maximum 

frequency f m 

ensures that the wavefield has a minimum wavelength 
λmin for most media (see Zhao et al. 2016 and Capdeville et al. 
2020 , for exceptions). Based on the common assumption that dis- 
placement wavefields are insensitive to spatial heterogeneities that 
are smaller than λmin , it is assumed that it is possible to introduce 
a finite-dimensional model space M 

h , whereby at least one model 
that minimizes eq. ( 22 ) can be found. Fur ther more, M 

h can be 
designed in such a way that the wave equation (eqs 1 and 2 ) can 
be solved in a bounded time for every one of its models. This 
assumption and model design yield the following inverse problem: 

m̄ 

h = argmin 
m ∈ M 

h 

E 

f m ( m ) (23) 

that can be solved in practice, where h is a ‘resolution’ parameter, 
which is a number that characterizes the discretization made in the 
finite-dimensional approximation. For example, if the elastic model 
is spatially represented by constant velocity blocks, then h can be the 
size of these blocks. h is generally directly related to λmin ; ho wever , 
other information, such as the illumination angles, offset ranges or 
data coverage, can influence the choice of h . 

One serious drawback arises when the introduction of frequency- 
limited data and M 

h make the inverse problem solvable: the relation 
between the true model m t and the inverse problem solution m̄ 

h is 
unknown. Fur ther more, there are many different ways to design 
M 

h for a given experiment geometry and λmin , with a different m̄ 

h 

for each of them. 
Capdeville & M étivier ( 2018 ) outlined an approach to solve this 

problem as follows. For a given signal maximum frequency f m 

, we 
search for a solution in M 

∗, as defined in the previous section. We 
therefore define a new inverse problem for a fixed f m 

: 

E 

∗( m 

∗) = 

∑ 

r,s 

∫ T 

0 
( d 

f m 
s ( x r , t) − u 

∗( x r , t ; x s , m 

∗)) 2 dt , 

m̄ 

∗ = argmin 
m 

∗∈ M 

∗
E 

∗( m 

∗) , (24) 

where u 

∗ is the leading-order homogenized displacement, which is 
defined in eq. ( 12 ). Here, we only use the displacement observations 
and zeroth-order homogenization, which implies that no corrector 
is needed in the definition of M 

∗. This simplifies u 

∗ to the displace- 
ment obtained in the ef fecti ve media m 

∗, such that u 

∗ = u 

f m ( m 

∗) .
As shown in eq. ( 12 ), u 

∗ is insensitive to small-scale heterogeneities. 
For any model m and its homogenized version m 

∗ = H ( m ) , it 
can be shown that: 

E 

f m ( m ) = E 

∗( m 

∗) + O( ε 0 ) . (25) 

The true m t minimizes E and also E 

f m ; therefore, m 

∗
t = H ( m t ) is 

a solution of the homogenization FWI (HFWI) problem (eq. 24 ). If 
we assume this solution is unique [this a strong assumption; see the 
discussion in Capdeville & M étivier ( 2018 )], then the solution of 
the HFWI problem is related to the true model as follows: 

m̄ 

∗ = H ( m t ) . (26) 

This important result shows we can access the ef fecti ve true model 
by solving eq. ( 24 ), which is a solvable inverse problem. In practice, 
we can only set up an explicit parametrization of M 

∗ in the layered 
model case. We need to rely on an approximate space model M 

∗h 

for the general case and use the homogenization operator H to 
project the solution into M 

∗. In practice, the construction of M 

∗h 

is very similar to a classical construction of M 

h . Ho wever , we need 
to have M 

∗ ⊂ H ( M 

∗h ) , which often implies that M 

∗h is fully 
anisotropic. The numerical tests shown in Capdeville & M étivier 
( 2018 ) show that the solution of the HFWI problem is indeed the 
homogenized true model. 

2.5 Full w av eform inv ersion based on r otational 
w av eforms 

We now consider the case where the observations d are rotational 
wav eforms. The FWI inv erse problem is very similar to the dis- 
placement case, and it also needs to be based on limited frequency 
band data to be solvable: 

E 

f m ( m ) = 

∑ 

r,s 

∫ T 

0 
( d 

f m 
s ( x r , t) − ω 

f m ( x r , t ; x s , m )) 2 dt , 

m̄ 

h = argmin 
m ∈ M 

h 

E 

f m ( m ) . (27) 

Although this problem is solvable, the relationship between the 
solution m̄ 

h and true model m t is lost. 
Following what was done for the displacement case in the pre- 

vious section, we can define a homogenized inverse problem based 
on rotational data as follows: 

E 

∗( m 

∗) = 

∑ 

r,s 

∫ T 

0 
( d 

f m 
s ( x r , t) − ω 

∗( x r , t ; x s , m 

∗)) 2 dt , 

m̄ 

∗ = argmin 
m 

∗∈ M 

∗
E 

∗( m 

∗) . (28) 

Ho wever , ω 

f m �= ω 

∗ for the leading-order appro ximation, w hich 
means that E 

f m ( m ) �= E 

∗( m 

∗) . This implies that we cannot relate 
the solution m̄ 

∗ of the inverse problem to the true model m t . In 
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(c)

(b)

(a)

Figure 8. Statistics of the displacement- and rotational-based FWI results using receivers positioned outside of the heterogeneous area. (a) Error of the mean 
models of V ∗S . (b) Standard deviation of V ∗S . (c) Resolution of V ∗S . The resolutions were calculated by choosing a specific gridpoint indicated at the intersection 
of two black dashed lines, and then computing correlations with all other gridpoints using eq. ( 41 ). The error and standard deviation values are presented as 
fluctuations from a background value of 2.8 km s −1 . 
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ractice, a solution to the above problem can be found, but it con-
ains errors and/or differences compared with the homogenized true
odel m 

∗
t that cannot be controlled. We can correct this problem

 y rel ying on ω 

0 instead of ω 

∗: 

E 

∗( p 

∗) = 

∑ 

r,s 

∫ T 

0 
( d 

f m 
s ( x r , t) − ω 

0 ( x r , t ; x s , p 

∗)) 2 dt , 

p̄ 

∗ = argmin 
p ∗∈ M 

∗
E 

∗( p 

∗) , (29) 

here ω 

0 ( x r , t ; x s , p 

∗) = ω 

∗( x r , t ; x s , p 

∗| m 

) + J r : ε∗( u 

∗) , with J r
 J ( x r ), from eq. ( 20 ). Here M 

∗ contains all of the possible models
 

∗ = (( ρ∗, c ∗), J r , r ∈ { 1,..., N r } ). The last inverse problem definition
eads to E 

f m ( m ) = E 

∗( p 

∗) + O( ε 0 ) , which makes sure that we can
elate the inverse problem solution m̄ 

∗ = p̄ 

∗| m 

to the ef fecti ve true
odel m 

∗
t . 
 I N V E R S I O N  S C H E M E  

e use the same in version framew ork as in Capdeville & M étivier
 2018 ), whereb y we spatiall y parametrize M 

∗h b y di viding the
quared inversion domain I ∈ � into non-overlapping n × n square
lements: I = ∪ 

n 2 
e= 1 I 

n 
e . An example of inversion domain I with 22

22 elements ( I 

22 
e ) is shown in Fig. 1 . A N × N degree polynomial

asis is then used for each element I 

n 
e , and each inverted mechanical

roperty is expanded within each element. Here we name such a
arametrization P 

N 
n ( I ) . We use a fully anisotropic parametrization

or M 

∗h , thereb y impl ying that each c ij and ρ is inverted. Therefore,
 e ha ve 7 × n 2 × ( N + 1) 2 free parameters to characterize M 

∗h if
o correctors are inverted. 

.1 Gauss–Newton iterative inversion 

e iterati vel y update the model parameters using a Gauss–Newton
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(a) (b)

(c)

Figure 9. Displacement-based FWI results using receivers positioned within the heterogeneous area. (a) Misfit reduction. (b) Waveform comparisons between 
the target and synthetic data. Source–receiver positions are shown in the left panel, with the green source (star) and receiver (diamond) positions indicating the 
source–receiver pair that was used to generate the presented target (black) and synthetic (red) waveforms in the right-hand panel. The waveforms are normalized 
by the maximum amplitude of the selected receivers. (c) Target and final V ∗S models and their corresponding residuals. Both the target and final models are 
homogenized using ε 0 = 1.0. The residuals between the target and final models are represented as fluctuations from a background value of 2.8 km s −1 . 
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model m 

i for the rotational wavefields is updated as follows: 

m 

i+ 1 = m 

i + (( F 

i ) T · F 

i + λi ) −1 [( F 

i ) T · ( d − ω ( m 

i ))] , (30) 

where F 

i is the partial deri v ati ve matrix and λi is the damping param- 
eter, which is used to stabilize the inversion. The damping parameter 
λi is optimized in each numerical test. The partial deri v ati ve matri- 
ces F 

i with respect to the model parameters were e v aluated using 
the adjoint technique (Tarantola 1984 , 1988 ; Pratt et al. 1998 ). The 
detailed calculations of the partial deri v ati ves for both the displace- 
ment and rotational wavefields are provided in appendix . 

We set up two criteria for convergence: 

(i) A 98 per cent decrease in the misfit between the observed 
and synthetic data, where the starting model in the inversion is a 
homogeneous model. 

(ii) A < 1 per cent decrease in the misfit from the previous itera- 

tion. 
3.2 FWI with correctors 

The model space for a rotational-based FWI includes both the ef- 
fective mechanical properties and correctors. Adding the corrector 
parameters to the inverted parameters can be done via the same 
frame work that w as used for the elastic parameters alone. The 
Gauss–Newton scheme remains the same for this case; the main 
modifications are an increase in the size of the partial Hessian ma- 
trix to be inverted and slightly more complex programming to keep 
track of the inverted parameters. 

Here we rely on a two-stage approach to simplify the computa- 
tions. During each Gauss–Newton iteration, the mechanical param- 
eters are inverted to obtain the current model m 

i in the first stage, 
and the correctors are then independently inverted following Singh 
et al. ( 2020 ) in the second stage. We minimize the squared error 
by summing over all of the sources for a given rotational receiver 
location x r as follows: 

E( J r ) = 

∑ 

s 

∫ T 

0 
( d s ( x r , t) − ω 

0 ( x r , t ; x s , p 

∗)) 2 dt , 

where: ω 

0 ( x r , t ; x s , p 

∗) = ω 

∗( x r , t ; x s , p 

∗| m 

) + J r : ε
∗( u 

∗) , (31) 

art/ggae158_f9.eps


Gradient FWI and subwavelength heterogeneities 245 

(a)

(c)

(b)

Figure 10. Rotational-based FWI results, without correctors, using receivers positioned within the heterogeneous area. (a) Misfit reduction. (b) Waveform 

comparisons between the target and synthetic data. Source–receiver positions are shown in the left panel, with the green source (star) and receiver (diamonds) 
positions indicating the source–receiver pairs that were used to generate the presented target (black) and synthetic (red) waveforms in the right panel. The 
wavefor ms are nor malized by the maximum amplitude of the selected receivers. (c) Target and final V ∗S models, and their corresponding residuals. Both the 
target and final models are homogenized using ε 0 = 1.0. The residuals between the target and final models are represented as fluctuations from a background 
value of 2.8 km s −1 . 
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nd ω 

∗ and ε∗ are the synthetic data and strain computed in the
urrent mechanical model m 

i , respecti vel y. The misfit is simple
uadratic with respect to J r and can be inverted via a simple least-
quares approach: 

 r = ( F 

t 
r F r ) 

−1 F 

t 
r b , (32) 

here F r is the partial deri v ati ve matrix that is limited to a specific
eceiver, and b is the residual between the target and synthetic data.
his calculation is a small computation (three and six free parame-

ers for 2-D and 3-D problems, respecti vel y) and underparametrized,
hich implies that damping is not needed to obtain a stable result.

n addition, the adjoint sources for the rotational data are moment
ensors, as explained in the Appendix . Therefore, moment tensors of
he adjoint sources for the rotational data should be corrected with
nverted correctors (Burgos et al. 2016 ; Capdeville 2021 ). Fig. 2
hows the overview of the FWI with correctors employed in this
tudy. 

This two-step inversion process is expected to slow down the
auss–Newton inversion convergence compared with a single-step
n version scheme. Ho wever , we generally do not observe a signifi-
ant difference in the number of iterations compared with the cases
here correctors are not needed. 

 N U M E R I C A L  E X P E R I M E N T S  

.1 Experiment design 

.1.1 Target model 

he target model that the FWI tries to estimate is a 2-D elastic
edium, such as that shown in Fig. 1 . The � domain is a 40 km
40 km region that consists of a homogeneous background with

 16 km × 16 km heterogeneous area embedded at the centre.
his heterogeneous area is made of 40 × 40 square anomalies,
ith each square possessing constant mechanical properties that

re randomly generated. The background model is isotropic with
hear and compressional velocities ( V S and V P , respecti vel y), and a
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Figure 11. Error Ē m 

defined by eq. ( 37 ), which is derived from the FWI 
results, without correctors, using displacement (red) and rotational (black) 
receivers positioned within the heterogeneous area. 
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density of 2.8 km s −1 , 5.0 km s −1 and 3.0 t.m 

−3 , respecti vel y. The 
random mechanical properties of the heterogeneous region are gen- 
erated using a flat probability distribution that is within 60 per cent 
of the elastic tensor and density of the homogeneous background 
values. 

4.1.2 Spectral element simulation setup 

We use the spectral element method (Komatitsch & Vilotte 1998 ) 
to solve the wave equations (eqs 1 and 2 ) for both generating the 
data to be inverted and solving the inverse problem. The absorbing 
boundaries for each of our experimental cases are based on perfectly 
matched layers (Festa & Vilotte 2005 ) that are used all around the 
domain. Two different spectral element meshes are used: 

(i) We rely on a square 100 × 100 element mesh to generate 
the data to be inverted. We use a polynomial degree of 10 in each 
tensorial direction of each element. The mesh is designed such 
that all of the material discontinuities are honoured by an element 
boundary, which is important to obtain good accuracy. 

(ii) A different spectral element mesh than the previous one is 
used when computing the full wavefields from the sources and ad- 
joint sources to compute the partial deri v ati ves. This mesh consists 
of 50 × 50 elements with a polynomial degree of 4. 

(iii) The model estimated by FWI is represented with 22 × 22 
elements within the inversion domain, as illustrated in Fig. 1 . 

The different spatial meshes for generating the target and syn- 
thetic data sets during the inversion process allow us to avoid an 
‘inverse crime’ because the numerical errors due to spatial dis- 
cretization are different. Fur ther more, we do not introduce any a 
priori knowledge of the heterogeneity geometry in the inversion 
modelling mesh. 
4.1.3 FWI acquisition geometry 

The source and receiver geometries used in our numerical experi- 
ments are shown in Fig. 3 . The sources are located all around the 
inverted area, with each consisting of a single vector force that pro- 
duces a Ricker wavelet. This wavelet possesses a 0.25-Hz central 
frequency and 0.7-Hz maximum source frequency. In the subse- 
quent numerical illustrations, the determination of f m 

is based on 
this maximum frequency of the Ricker wavelet g , defined in eq. ( 3 ). 
No additional direct low-pass filter is applied to the data. The as- 
sociated minimum wavelength in the background medium is 4 km, 
which is 10 times larger than the lengths of the small anomalies in 
the target model. 

We use two different geometries for the receivers: 

(i) Configuration A (Fig. 3 ): The receivers are located around the 
inverted area and are far from the heterogeneities. 

(ii) Configuration B (Fig. 3 ): The receivers are located within the 
inverted area and are in contact with the heterogeneities. 

This setup is designed to investigate the impact of small-scale 
heterogeneities on FWI using rotational wavefields recorded using 
two receiver configurations. Such perfect source–receiver config- 
urations rarely occur in real field scenarios. Ho wever , this setup 
is well-suited for e v aluating onl y the ef fects of small-scale hetero- 
geneities on FWI as it allows for easy satisfaction of source–receiver 
coverage. 

4.1.4 Representation and evaluation of the FWI results 

We first need to define what will be presented and how the results 
will be assessed prior to conducting the numerical experiments. 

The FWI results are al wa ys a full elastic tensor c after homoge- 
nization. We present the results by first projecting the anisotropic 
elastic tensor c ∗ to the nearest isotropic tensor c ∗, iso following 
Browaeys & Chevrot ( 2004 ). The compressional- and shear-wave 
velocities are defined as follows: 

V 

∗
P ( x ) = 

√ 

( c *,iso 
1111 ( x ) /ρ( x )) , (33) 

and: 

V 

∗
S ( x ) = 

√ 

( c *,iso 
1212 ( x ) /ρ( x )) , (34) 

respecti vel y, and the total anisotropy is defined as: 

aniso ( x ) = 

√ ∑ 

i jkl ( c 
iso 
i jkl ( x ) − c i jkl ( x )) 2 √ ∑ 

i jkl ( c 
iso 
i jkl ( x )) 2 

. (35) 

One objective of our work is to compare the rotational-based 
FWI results to the displacement-based FWI results, particularly 
to assess the accuracy and resolution of the two approaches. A 

classical way to perform this analysis is to analyse the diagonal of 
the partial Hessian and compute the point spread functions (Fichtner 
& Trampert 2011 ). The partial Hessian represents an approximation 
of specific subsets within the complete Hessian matrix. Ho wever , 
our use of a homogenization step in the FWI, which is a non-linear 
step, makes it impossible for us to work directly on the partial 
Hessian. We overcome this dif ficulty b y performing a brute-force 
statistical analysis. We generate 200 different data sets for both the 
displacement and rotational receiver configuration cases by adding 
random noise to the data. This added noise possesses a standard 
deviation of 10 per cent of the original data set and spans the same 
frequency band as the original data set. Two hundred inversions are 
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(a)

(b)

(c)

Figure 12. Statistics of the displacement- and rotational-based FWI results, without correctors, using receivers positioned within the heterogeneous area. (a) 
Error of the mean models of V ∗S . (b) Standard deviation of V ∗S . (c) Resolution of V ∗S . The resolutions were calculated by choosing a specific gridpoint indicated 
at the intersection of two black dashed lines, and then computing correlations with all other gridpoints using eq. ( 41 ). The error and standard deviation values 
are presented as fluctuations from a background value of 2.8 km s −1 . 
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hen performed, one for each data set. We define the inversion error
s follows: 

E 

2 
m 

( ε 0 , x ) = 

∑ n = N 
n = 1 

∑ 

i j ( c 
∗,n 
i j ( x ) − c ∗,t 

i j ( x )) 2 

N 

∑ 

i j ( c 
∗,t 
i j ( x )) 2 

, (36) 

here c ∗, n and c ∗, t are the homogenized FWI model results for noise
umber n and the true homogenized elastic tensor, respectively, for
 given ε 0 . We finally define the inverted area-averaged inversion
rror as: 

Ē 

2 
m 

( ε 0 ) = 

∫ 
I 

∑ n = N 
n = 1 

∑ 

i j ( c 
∗,n 
i j ( x ) − c ∗,t 

i j ( x )) 2 dx 

N 

∫ 
I 

∑ 

i j ( c 
∗,t 
i j ( x )) 2 dx 

, (37) 

nalysing Ē 

2 
m 

( ε 0 ) as a function of ε 0 allows us to find an estimate
f the smallest ε 0 that can be used. This smallest ε 0 can be seen
s the overall resolution limit of the inversion. Constraining ε 0 in
his manner highlights the compromise between the resolution and
rror in the inversion: using a smaller ε 0 would generate higher-
esolution images with larger error, whereas using a larger ε 0 instils
ood confidence in the accuracy of the imaged structures at a lower
patial resolution. 

We also assess the inversion results using three statistical mea-
ures: the standard deviations, mean values and resolutions (corre-
ations) of V 

∗
S and V 

∗
P (obtained from eqs 33 and 34 , respecti vel y),

nd density. The mean values are the same as the noise-free inver-
ion results and are used to compare the inversion results and target
odel for a given ε 0 . We note that the mean values and noise-free

nversion results are not exactly the same, but it does not change the
oint of the paper and we ignore these differences. For a given ε 0 ,
he mean με 0 

p ( x ) and co variance Co v ε 0 ( x , y ) of mechanical property
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(a) (b)

(c)

Figure 13. Rotational-based FWI results, with correctors, using receivers positioned within the heterogeneous area. (a) Misfit reduction. (b) Waveform 

comparisons between the target and synthetic data. Source–receiver positions are shown in the left-hand panel, with the green source (star) and receiver 
(diamonds) positions indicating the source–receiver pairs that were used to generate the presented target (black) and synthetic (red) waveforms in the right-hand 
panel. Selected receivers are same as those in Fig. 10 . The waveforms are normalized by the maximum amplitude of the selected receivers. (c) Target and final 
V ∗S models, and their corresponding residuals. Both the target and final models are homogenized using ε 0 = 1.0. The residuals between the target and final 
models are represented as fluctuations from a background value of 2.8 km s −1 . 

Figure 14. Error Ē m 

defined by eq. ( 37 ), which is derived from the FWI results, with correctors, using displacement (solid red) and rotational (solid black) 
receivers positioned within the heterogeneous area. Results from the other cases (dashed curves) are also shown for comparison. 
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(a)

(b)

(c)

Figure 15. Statistics of the displacement- and rotational-based FWI results, with correctors, using receivers positioned within the heterogeneous area. (a) Error 
of the mean models of V ∗S . (b) Standard deviation of V ∗S . (c) Resolution of V ∗S . The resolutions were calculated by choosing a specific gridpoint indicated at 
the intersection of two black dashed lines, and then computing correlations with all other gridpoints using eq. ( 41 ). The error and standard de viation v alues are 
presented as fluctuations from a background value of 2.8 km s −1 . 

Table 1. Model misfits, which are based on eq. ( 37 ), for the numerical FWI 
results using displacement and rotational data. 

Case Ē m 

( ε 0 = 1) 

FWI without correctors 
Displacement and receivers outside of the heterogeneous area 0.041 
Rotation and receivers outside of the heterogeneous area 0.045 
Displacement and receivers within the heterogeneous area 0.042 
Rotation and receivers within the heterogeneous area 0.095 
FWI with correctors 
Rotation and receivers within the heterogeneous area 0.049 

p

μ

Table 2. Model misfit based on eq. ( 37 ) for the FWI results of the joint 
displacement and rotational data experiments. 

Case Ē m 

( ε 0 = 1) 

FWI without correctors 
Joint displacement and rotation data 0.066 
FWI with correctors 
Joint displacement and rotational data 0.038 

a

C

w  

c  
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∗ ( V 

∗
P , V 

∗
S or the ef fecti ve density) are written as: 

ε 0 
p ( x ) = 

∑ N 
n = 1 p 

∗
n ( x ) , (38) 
N 
nd 

ov ε 0 ( x , y ) = 

∑ N 
n = 1 ( p 

∗
n ( x ) − με 0 

p ( x ))( p 
∗
n ( y ) − με 0 

p ( y )) 

N 

, (39) 

here N is the number of samples. In statistical e v aluation, we
alculate the error of mean values by assessing the error between
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(e)(d)

(a) (b) (c)

(f)

Figure 16. Numerical demonstration to show indications of small-scale structures via the inverted correctors. (a) Source (black stars) and receiver (black 
diamonds) configuration for the numerical e xperiment. Fiv e-hundred rotational receiv ers are positioned at location A. (b) V S and (c) V P heterogeneities around 
location A. Black dots represent the receiver positions. (d) Inverted diagonal components, J r , 11 and (e) J r , 22 . (f) Inverted off-diagonal component, J r , 12 . 

discuss later. The residual is calculated as the deviation from a 
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the mean and target models. The deviation σ ε 0 can be derived in 
terms of the covariance as follows: 

σ ε 0 ( x ) = 

√ 

Cov ε 0 ( x , x ) , (40) 

such that the resolutions R 

ε 0 are then written as follows: 

R 

ε 0 ( x , y ) = 

Cov ε 0 ( x , y ) 

σ ε 0 ( x ) σ ε 0 ( y ) 
. (41) 

Here we provide the V 

∗
S results for our presented inversion and 

statistical anal yses. Comprehensi ve results, which include the V 

∗
P 

and ef fecti ve density results, are provided in the Supporting Infor- 
mation ( S1 ). Note that both σ ε 0 and R 

ε 0 depend on ε 0 . This code- 
pendence introduces a trade-off between σ ε 0 and R 

ε 0 . Therefore, the 
resolution limit and overall error cannot be measured independently 
for this inversion process. 

4.2 A simple forward modelling example of a small-scale 
heterogeneity effect on the data 

We first illustrate the different impacts of small-scale heterogeneities 
on displacement and rotational measurements prior to introducing 
the FWI results. Examples of rotational and displacement wave- 
forms for the two source–receiver configurations are shown in Fig. 4 . 
Here, four receivers are located in close proximity to each other at 
two distant locations, A and B, whereby they are spaced at 0.14 km 

from each other. We acquired both the displacement and rotational 
waveforms using a source that generates a Ricker wavelet with a 0.7 
Hz maximum frequency and 4 km minimum wavelength. It should 
be noted that station intervals (0.14 km) and lengths of the anoma- 
lies (0.4 km) are much smaller than the 4 km minimum wavelength. 
All anomaly boundaries were properly incorporated into the mesh 
during computation. 
The displacement waveforms from the four receivers at location 
A, which is within the heterogeneous area, are the same, as expected, 
whereas there are observ able dif ferences among the rotational wave- 
forms. The differences observed in the rotational waveforms are at- 
tributed to the presence of small-scale heterogeneities. These effects 
correspond to the coupling between ef fecti ve strain and corrector as 
depicted in eq. ( 20 ). These differences in the rotational waveforms 
can be interpreted thanks to the corrector in eq. ( 20 ). Conversely, the 
rotational waveforms from the four receivers at location B, which is 
∼2 km from the heterogeneous area, are the same. The corrector is 
large near strong and sharp velocity contrast and w eak awa y from 

them. 
This example clearly highlights that a smooth tomographic model 

would have a hard time explaining data that are contaminated by 
small-scale heterogeneities. It underscores why it is necessary to 
introduce correctors to account for such effects. 

4.3 FWI results without correctors 

4.3.1 Receivers outside of the heterogeneous area 

Here we present displacement and rotational inversion results for 
receivers positioned outside the heterogeneous area (‘configuration 
A’ in Fig. 3 ). 

The displacement-based inversion results, which are presented 
in Fig. 5 , show that the misfit decreases steadily throughout all of 
the Gauss–Newton iterations and satisfies the convergence criteria 
at iteration 19. The strong fit between the target and synthetic data 
indicates that the final model can adequately explain the target data. 
We have used ε 0 = 1.0 to compute the homogenized models, which 
is a good compromise between resolution and accuracy, as we will 
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(a)

(b)

(c)

(d)

Figure 17. Resolution images of V ∗S for different ε 0 . The resolutions for ε 0 = 0.5, ε 0 = 1.0 and ε 0 = 1.5 are shown. The resolutions were calculated by 
choosing a specific gridpoint indicated at the intersection of two black dashed lines, and then computing correlations with all other gridpoints using eq.( 41 ). 
The presented results are for displacement receivers positioned (a) within and (b) outside of the heterogeneous area, and rotational receivers positioned (c) 
within and (d) outside of the heterogeneous area. We used correctors in the FWI process for (c). 
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ackground V S value of 2.8 km s −1 . A comparison of the modelled
V 

∗
S structures shows that the final model exhibits a broadly similar
attern to that in the target model, with the exception of some high-
elocity anomalies in the target model that are not well-recovered
n our final inverted model. 

The rotational inversion results are shown in Fig. 6 . The chosen
eceiver configuration makes it possible to conduct a rotational-
ased FWI without any expected small-scale heterogeneity effects
ecause the rotational waveforms are only influenced by small-scale
eterogeneities that are in close proximity to the receiver locations,
s explained in eq. ( 20 ) and demonstrated in Fig. 4 . The presented
aveform comparisons show a strong fit between the waveforms for

he target and final models, which indicates that the rotational- and
isplacement-based FWI models are comparable in their abilities
o explain the target data. The V S residuals between the target and
nal models for the rotational waveform case are also comparable

o those for the displacement case. 
Our assessment of the optimal ε 0 value, which is based on

q. ( 37 ), is shown in Fig. 7 . We used models from 200 samples,
s opposed to a single solution, for the model error Ē m 

, which was

art/ggae158_f17.eps


252 K. Mukumoto et al . 
D

ow
nloaded from

 https://academ
ic.oup.com

/gji/article/238/1/235/7663592 by U
FR

 Sciences user on 25 June 2024
computed for models that used ε 0 in the 0.3–2.9 range. The model 
error Ē m 

increases exponentially as ε 0 decreases, with the transition 
to a rapid increase in Ē m 

occurring around ε 0 = 1.0 for both the 
displacement- and rotation-based FWI. This result suggests that the 
displacement- and rotation-based FWI have almost the same reso- 
lution limit. We therefore select ε 0 = 1.0 as the optimal choice that 
provides the best overall resolution and accuracy of the final model 
results. 

Our statistical comparisons between the displacement and rota- 
tional cases, which consist of the error of mean values, standard 
deviation and resolution between the target and final models, are 
based on ε 0 = 1.0 and shown in Fig. 8 . The resolutions were com- 
puted by selecting a single gridpoint y i (intersection of two dashed 
black lines in Fig. 8 ) and computing the correlations against all 
of the x points based on eq. ( 41 ). The estimated resolution can be 
interpreted in the same way as point spread functions (e.g. Fichtner 
& Leeuwen 2015 ). Strong correlations (approaching unity) indi- 
cate that these points cannot be determined separately; therefore, 
the areas with strong correlations correspond to the spatial reso- 
lution of the final model. All of the statistical quantities exhibit 
comparable V 

∗
S trends between the displacement and rotational 

cases. 

4.3.2 Receivers within the heterogeneous area 

Here we present the displacement- and rotational-based inversion 
results using receivers positioned within the heterogeneous area 
(‘configuration B’ in Fig. 3 ). The forward modelling test presented 
in Section 4.2 indicates that it is necessary to invert for the correc- 
tor to obtain good results. Nevertheless, we ignore this fact here 
and perform the displacement- and rotational-based FWI without 
correctors. The displacement-based inversion results, which are pre- 
sented in Fig. 9 , show that the misfit steadily decreased throughout 
all of the iterations and satisfied the convergence criteria at iteration 
11. A strong fit between the target and synthetic data is confirmed, 
thereby indicating that the final model can explain the target data. 
Our model comparisons reveal that the errors between the target 
and final models for the receivers within the heterogeneous area 
are slightly better than the model comparisons when all of the re- 
ceivers are positioned outside of the heterogeneous area. The nearby 
heterogeneities have a small effect on the displacement measure- 
ments, and subsequently, the FWI process, as theoretically expected 
(eq. 12 ). 

The rotational-based inversion results are presented in Fig. 10 . 
The misfit reductions satisfied the convergence criteria at itera- 
tion 46, despite a temporary increase in the misfit at iteration 13. 
The comparison between the target and synthetic models suggests 
that the final model is unable to fully explain the target model, 
which indicates that the inversion did not converge to the best so- 
lution in this case. Fur ther more, the V S residuals in the rotational 
case are larger than those in the displacement case, despite having 
the same source and receiver configurations. We did not observe 
significant misfits in the waveforms and model parameters when 
the receivers were positioned outside of the heterogeneous area, 
even for rotational measurements. The larger residuals between 
the target and final models and larger misfits between the wave- 
forms are likely associated with the presence of small-scale hetero- 
geneities in close proximity to the receiver locations, as theoretically 
expected. 

The trade-off between the model error Ē m 

and ε 0 are shown 
in Fig. 11 . The result of displacement is similar to that when the 
receivers are placed outside the heterogeneous area. Ho wever , the 
Ē m 

results show that errors from the rotational-based FWI are con- 
sistently larger than those from the displacement-based FWI, re- 
gardless of the ε 0 value. The effects of small-scale heterogeneities 
can be clearly seen, even if the scale is limited to very large 
scales. 

Fig. 12 presents our statistical comparison of the displacement- 
and rotational-based FWI results for ε 0 = 1.0. The error of the mean 
value of V S for the rotational case indicates that the inversion could 
not determine the model parameters as accurately as in the other 
cases. The deviations and resolutions also show peculiar results for 
the rotational case. Unlike the displacement case, the deviations 
for the rotational case are not uniform, and the largest anomalies 
are distributed. Fur ther more, the spatial resolutions for the rota- 
tional case are no longer valid, as there are strong correlations at 
distant locations. The inability to converge to optimal models, as a 
consequence of small-scale heterogeneities, could yield these un- 
conventional statistical outcomes. 

4.4 FWI results with correctors 

Here we present the rotational-based FWI results, with correctors, 
for receivers located within the heterogeneous area (‘configuration 
B’ in Fig. 3 ). The correctors are obtained during the inversion based 
on eq. ( 32 ). Incorporating correctors in the rotational-based FWI 
procedure is theoretically expected to enhance the results compared 
with the FWI procedure without correctors. 

The inversion results, which are presented in Fig. 13 , show that 
the misfit decreased in all of the iterations and met the convergence 
criteria at iteration 12. The strong fit between the waveforms for 
the target and synthetic models indicates that the final model with 
correctors can adequately explain the target data, whereas the final 
model without correctors was unable to achieve such a fit. Our 
model comparisons yield smaller residuals between the models with 
correctors than those without, thereby suggesting that including 
correctors led to improvements in the final model. 

Fig. 14 shows relationship between the model error Ē m 

and ε 0 . 
A larger error Ē m 

than that for the displacement case was observed 
when correctors were not included in the rotational-based FWI 
(Fig. 11 ). Ho wever , the rotational-based FWI with correctors pos- 
sesses an error that is almost the same as that for the displacement 
case. The resolution limits for both the rotational and displacement 
cases can be chosen to be 1.0 based on the Ē m 

results, which indi- 
cates that there is no difference in the resolution limit between the 
rotational and displacement cases. 

Fig. 15 presents the statistical results based on ε 0 = 1. As dis- 
cussed in the previous section, the rotational-based FWI without 
correctors resulted in large errors in the mean values and peculiar 
outcomes for the deviations and resolutions. Conversely, incorpo- 
rating correctors into the rotational-based FWI process produced 
stable and analogous statistical results to those obtained from re- 
ceivers outside the heterogeneous area, where small-scale effects 
are absent. This indicates that the inclusion of correctors in the FWI 
procedure mitigates the effects of small-scale heterogeneities. 

Table 1 provides a summary of the misfits, which are defined 
by eq. ( 37 ) for a single model, in each case. Here we use a single 
solution, as opposed to the mean model, to compute the model 
error Ē m 

. The misfits for the FWI without correctors indicate 
that the misfit is largest when rotational data are used and all 
of the receivers are located within the heterogeneous area. How- 
ever, incorporating correctors in the inversion process significantly 
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educes the misfit, with a reduction from 0.095 (without correc-
ors) to 0.049 (with correctors) observed. The misfit of 0.049 for
he rotational-based FWI with correctors is comparable to the FWI
esults when the data is not contaminated by effects of small-scale
eterogeneities. 

We present comprehensive inversion and statistical results, in-
luding the V 

∗
P , density ∗ and anisotropy ∗ results for three cases

FWI using displacement receivers positioned within the hetero-
eneous area; FWI, without correctors, using rotational receivers
ositioned within the heterogeneous area; and FWI, with correc-
ors, using rotational receivers positioned within the heterogeneous
rea), in the supplementary material ( S1 ). 

A short investigation of additional FWI results using strain re-
eivers is also presented in the Supporting Information ( S3 ). The
onclusion of the strain-based FWI results is the same as that for the
otational case: the FWI does not converge to the best model when
he effects of small-scale heterogeneities are present. It is therefore
ecessary to include correctors in strain-based FWI to ef fecti vel y
itigate any small-scale effects. 

 J O I N T  D I S P L A C E M E N T -  A N D  

O  TAT I O NA L - B  A S E D  F W I  

radient sensors are often collocated with seismometers for more
omprehensive field studies. Here we perform a numerical experi-
ent where both displacement and rotational sensors are used. We

sed the same receiver and source configurations as in the previous
ection, whereb y the recei vers are positioned within the heteroge-
eous area, and assume that both displacement and rotational data
re recorded at each receiver location. We therefore incorporated
ata from 52 sensors (26 rotational and 26 displacement sensors)
or the inversion. We utilized a least-squares misfit function by
ombining eqs ( 24 ) and ( 29 ) in this numerical experiment. A data
ovariance matrix that is different from the identity matrix is used to
alance the significant amplitude differences between the displace-
ent and rotational data to ensure that both data types are equally
eighted in the inversion (Tarantola & Valette 1982 ). The results are
 v aluated using the model misfit (eq. 37 ), which are based on ε 0 = 1,
nd presented in Table 2 . The additional results based on model and
aveform comparisons are presented in the Supporting Information
 S2 ). The results show that the misfits in the model parameters are
inimized when correctors are incorporated. These misfits are even

maller than those in the case when only displacement data are used;
his is likely related to the inclusion of additional data in the joint
isplacement and rotational data case. This numerical experiment
ndicates that the inclusion of correctors in the inversion process is
ecessary, even when translational motions are used with wavefield
radients. 

 U S I N G  C O R R E C T O R S  T O  O B S E RV E  

U B - WAV E L E N G T H  H E T E RO G E N E I T I E S  

e have demonstrated that the rotational-based FWI is hampered by
he sensitivity of the rotational wavefield to small-scale structures
ather than improving the spatial resolution. Although incorporat-
ng correctors in the FWI process can help mitigate the effects of
mall-scale heterogeneities, it can only produce tomographic images
hat are at the same resolution as displacement-based FWI results,
s shown in the statistical e v aluations. Therefore, rotational-based
WI can only estimate the effective mechanical properties at best
nd are therefore unable to capture fine-scale heterogeneities in
he tomographic images, despite the sensitivity of the rotational
avefield to small-scale heterogeneities. Ho wever , the in verted cor-

ectors in our new FWI framework may contain information about
ny small-scale structures that may be present. Here we demon-
trate how small-scale structures can be observed in the inverted
orrectors. 

We randomly place 500 rotational receivers within a 1.8 km ×
.8 km area (Fig. 16 ) for this numerical test; the absolute values of
he inverted correctors at the final iteration for each component are
llustrated in Fig. 16 . The diagonal components of the correctors
ppear to only possess high values in the vicinity of the vertices
f the small-scale anomalies, whereas the off-diagonal components
f the correctors more clearly show the defined boundaries of the
mall-scale anomalies. Therefore, the inverted correctors in our new
WI framework can provide indications of the presence of strong
mall-scale discontinuities in the subsurface that are difficult to
mage using conventional seismic tomography methods. 

 D I S C U S S I O N S  A N D  C O N C LU S I O N S  

e have first shown the necessary difference in model parametriza-
ion between displacement- and wavefield gradient-based FWI.
he leading-order approximation in the two-scale homogenization
athematical framework highlights that the displacement-based
WI only requires effective elastic mechanical properties to ex-
lain the data, whereas the wavefield gradient-based FWI also re-
uires the corrector in the model space to explain the data. Current
WI applications implicitl y rel y on the FWI solution space be-

ng within the M 

∗ subspace, such that the solution space is only
epresented by the effective elastic mechanical properties. How-
ver, FWI applications that are based on wavefield gradients, such
s rotational and strain wavefields, require the solution space to
xtend to the entire M 

∗, thereby including the effective elastic me-
hanical properties and correctors, as theoretically expected. Our
umerical e xperiments hav e confirmed that this e xtension of the
olution space is necessary, as the ef fecti ve true model was only re-
rieved in the wavefield gradient-based FWI when correctors were
ncluded. 

In this study, we have focused solely on a one target model and
 specific frequency, thereby using a specific single ratio between
eterogeneity size and wa velength. How ever, in real field scenar-
os, the power spectrum and heterogeneity size within the medium
ave variations, making the existence of small-scale effects in FWI
ependent on the actual medium’s heterogeneities. While the con-
entional FWI method ef fecti vel y works with wavefield gradient
easurements in a homogeneous medium, its efficiency diminishes
hen confronted with strong heterogeneities and sharp boundaries

n the medium, struggling to accurately reconstruct the true ho-
o genized model. Ne vertheless, our study’s findings emphasize

he necessity of acknowledging the potential impact of small-scale
eterogeneities on FWI when using wavefield gradients. 

Another important result is that the resolution limit is close to
 0 = 1 for both the displacement- and rotational-based FWI, such
hat there is no difference in terms of resolution. The model er-
or exponentially increases as ε 0 decreases, with a rapid increase
bserved when ε 0 < 1. The resolution images that were obtained
or dif ferent ε 0 v alues are also helpful for assessing the resolution
imit. Fig. 17 shows the resolution images for all of the cases and
 0 = 0 . 5 , 1 , 1 . 5 . The size of the area with a strong correlation is
lmost the same between ε 0 = 0.5 and ε 0 = 1 for all of the cases,
nd then increases when ε 0 = 1.5. We therefore suggest that the

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae158#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae158#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae158#supplementary-data
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resolution limit is around ε 0 = 1 for both the displacement- and 
rotational-based FWI. Finally, we note that ε 0 = 1 is generally not 
a valid value. Other configurations, such as either more receivers or 
more scattering, may allow this value to be lowered to around ε 0 = 

0.5. ε 0 = 0.5 is sufficient to model data in most geological media, 
such that it is unnecessary to lower ε 0 below this limit. 

We have found no advantage of using wavefield gradients instead 
of displacement data during the FWI process in terms of accuracy 
and resolution. We note that this conclusion is only true for excellent 
data cov erage. We hav e not inv estigated cases with partial data 
coverage; therefore, it is still possible that gradient data could make 
a significant difference in such contexts. 

We have shown that the inverted correctors can serve as indicators 
of small-scale heterogeneities, which can lead to high-resolution 
mapping of complex geological structures, as long as such features 
are in the vicinity of the receivers. Therefore, we may be able to use 
arrays of man y recei vers to locate abrupt subsurface discontinuities, 
such as faults, if they are located near the sensors. DAS cables may 
be a viable option since they can easily obtain a significant number 
of very short interval strain data, which can assist in imaging small, 
abrupt, subsurface discontinuities via the corrector. 

It is important to note that w e ha ve only inverted part of the 
correctors in this study. Indeed, the parametrizations of M 

∗h that 
w e ha ve been using contain small-scale heterogeneities (continu- 
ity between elements is not enforced). Therefore, the correctors 
shown in Fig. 16 cannot be directly compared with the corrector 
that would be obtained from the direct homogenization problem. 
Such a comparison requires the correctors that are derived from the 
inversion process to be combined with those obtained from applying 
the homogenization operator H to the inverse solution. 

Although the FWI with correctors can mitigate the effects of 
small-scale heterogeneities, it cannot completely eliminate these 
effects. Our approach assumes that evaluating up to the first-order 
term in eq. ( 8 ) is sufficient, such that the effect of the higher-order 
terms are negligible and can be ignored. Ho wever , it should be 
noted that the effects of these higher-order terms become more 
pronounced as the elastic contrasts increase. Therefore, our method 
is still considered to be affected by small-scale heterogeneities to 
some e xtent. Nev ertheless, all of the synthetic tests in this study 
show that a better solution is obtained using correctors. 

This study demonstrates that there is no intrinsic gain in using gra- 
dient sensors instead of conventional seismometers for FWI studies, 
as rotational-based FWI results can only recover information of the 
same quality as translation-based FWI results if receiver-coupling 
correctors are included in the inversion process. Nevertheless, these 
correctors contain subwavelength heterogeneities that can poten- 
tially be exploited to obtain a resolution at the sensor array scale. 
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We substitute eq. ( A7 ) into eq. ( A10 ) to obtain: 
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The coupling tensor J , with [ K 

qi ] pn = J qipn , can be written as: 
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We can utilize the coupling tensor J and Le vi-Ci vita symbol θ to derive the adjoint source of the moment tensor for rotational wavefields as: 

J qipn = θi pn / 2 (in 3-D) , 

J qipn = θpn / 2 (in 2-D) . 
(A13) 

Fur ther more, we can derive the adjoint source of the moment tensor for the strain wavefields as follows: 

J qipn = ( δqp δin + δqn δi p ) / 2 . (A14) 

We stored the calculated full wavefields for both sources and adjoint sources on disk and computed the partial deri v ati ves b y convolving 
each source–receiver pair. 
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