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SUMMARY

Seismic gradient measurements from distributed acoustic sensors, rotational sensors and other

instruments are becoming increasingly available for field surveys. Such measurements provide

a wealth of information and are currently being considered for many applications. In this work,

using a simple 2-D numerical approach, we tackle the implications of such wavefield gradient

measurements on full waveform inversion (FWI) techniques using a simple two-dimensional

numerical test. In particular, we study the impact of the wavefield gradient measurement sen-

sitivity to heterogeneities that are much smaller than the minimum wavelength. Indeed, as

shown previously through the homogenization method, small scale heterogeneities induce an

unexpected coupling of the strain components to the wavefield gradient measurement. We fur-

ther show that this coupling introduces a potential limitation to the FWI results if it is not

taken into account. We demonstrate that a gradient measurement-based FWI can only reach

the accuracy of a classical displacement field-based FWI if the coupling coefficients are also

inverted. Furthermore, there appears to be no specific gain in using gradient measurements

instead of conventional displacement (or velocity, acceleration) measurements to image struc-

tures. Nevertheless, the inverted correctors contain fine-scale heterogeneities information that

could be exploited to reach an unprecedented resolution, particularly if an array of receivers is

used.
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1 INTRODUCTION

Recent advances in seismic instrumentation have enabled the use of wavefield gradient measure-

ments to more comprehensively characterise ground motions and further constrain various seismic

phenomena, including earthquake mechanisms, the directionality of seismic waves and anisotropic

structures. However, it is important to carefully examine the feasibility of directly applying seismic

methods that have been used for translational measurements to wavefield gradient measurements.

The ability to acquire seismic wavefield gradient measurements has existed for decades. Tilt-

meters, which measure the tilt of the ground surface (spatial derivatives of displacement), have

traditionally been used to investigate tidal tilt (Nishimura 1950; Melchior 1966). Seismic observa-

tions have also been made using tilt meters (Sassa & Nishimura 1951); however, measurements of

seismic rotational motion have been a long-standing challenge due to their much smaller ampli-

tudes compared with the translational motions that are excited by earthquakes. Recent advances in

sensor technologies, such as ring laser gyroscopes (McLeod et al. 1998), have enabled rotational

motion measurements, and subsequent studies have shown the benefits of using rotational sen-

sors in various geological settings. For example, collocated measurements of rotation and trans-

lational motions have been analysed to retrieve the local phase velocity (Mikumo & Aki 1964;

Igel et al. 2005; Fichtner & Igel 2009). Recently, the theory to measure the dispersion relation us-

ing both translational and wavefield gradient measurements at single observation point in weakly

anisotropic media has been introduced (Tang et al. 2023). Detailed strain measurements from

distributed acoustic sensing (DAS) arrays have led to a significant increase in the number of geo-

physical studies that implement dynamic subsurface strains (Willis et al. 2016; Zhan 2020). These

recent advances in sensor technology and the increased use of rotational sensors and DAS ar-

rays have enabled a transition towards actively observing and utilising measurements of seismic

wavefield gradients.

Many seismic analyses based on rotational sensor and DAS observations have been conducted.

Phase-velocity and polarisation analyses using rotational sensors (Wassermann et al. 2016; Keil

et al. 2021), and structural imaging (Parker et al. 2018), seismic-wave monitoring (Dou et al.

2017) and earthquake studies (Ajo-Franklin et al. 2019) using DAS cables have made important
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advances in seismology. These studies have demonstrated the potential of using wavefield gradient

measurements to address fundamental seismological questions; however, it is important to pay

attention to the distinct nature of the wavefield gradients compared with translational motions

when analysing wavefield gradient measurements.

Wavefield gradients can be significantly influenced by local small-scale heterogeneities in the

subsurface that distort both the phase and amplitudes of the wavefield gradients (King & Bilham

1973; Harrison 1976; van Driel et al. 2012; Singh et al. 2020; Muir & Zhan 2022). This issue

has been acknowledged as a critical problem in tilt measurements (Melchior 1966; Lennon &

Baker 1973; Goulty 1976). A previous study reported sudden changes in tilt values due to lo-

cal subsurface heterogeneities at the sensor, such as cavities, discontinuities and elastic contrasts,

and also the local topography, and noted discrepancies between the theoretical and observed tilt

values (Meertens et al. 1989). Similar effects have been observed in rotational sensor and DAS

measurements (Singh et al. 2020; Muir & Zhan 2022). Singh et al. (2020) obtained a strong fit be-

tween the observed and synthetic displacement waveforms using a smooth Earth model whereas

the observed rotational waveforms from the same locations did not fit the synthetic waveforms

well; they attributed these findings to the effects of small-scale heterogeneities on measurements

of the wavefield gradients. Two-scale homogenisation theory, which has recently been introduced

in seismology, can mathematically explain the effects of small-scale heterogeneities on wavefield

gradient measurements (Capdeville et al. 2010a; Capdeville et al. 2010b; Cupillard & Capdev-

ille 2018). This theory shows that coupling of the effective strain to gradient measurements can

result in the effects of small-scale heterogeneities. Singh et al. (2020) proposed a method for

inverting the coupling-term coefficients to address the discrepancies between the observed and

simulated rotational data. These coefficients can then be used to correct the simulated data and ex-

plain the observed wavefield gradients (Singh et al. 2020; Muir & Zhan 2022). Therefore, both the

coupling-term coefficients (hereafter “correctors”) and a smooth tomographic model are required

to accurately simulate wavefield gradient observations, as the ability to obtain high-resolution to-

mographic models with small-scale structures is generally challenging.

Methods have been developed to account for the effects of small-scale heterogeneities when
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forward modelling wavefield gradients. However, few studies have investigated the effects of

small-scale heterogeneities on wavefield gradients in seismic inverse problems, such as full wave-

form inversion (FWI). Although it may be straightforward to assume that a FWI using wavefield

gradients can recover the small-scale structures around the receivers, thereby generating higher-

resolution images than those obtained using translational motions, the impacts of small-scale het-

erogeneities on wavefield gradient-based FWI have not been thoroughly investigated. This study

aims to investigate the effects of wavefield gradient measurements on FWI results and address the

impact of small-scale heterogeneities. Our findings demonstrate that small-scale heterogeneities

can strongly affect the FWI inversion results. Given the sensitivity of FWI frameworks to these

small-scale effects, we propose a new FWI framework that can account for small-scale hetero-

geneities and improve the accuracy of FWI results.

2 FULL WAVEFORM INVERSION AND HOMOGENIZATION THEORY

2.1 Context

We consider a two-dimensional (2D) elastic domain Ω with absorbing boundary conditions on its

boundary ∂Ω. We use a Cartesian coordinate system in Ω, where the x-axis is the horisontal axis

and the z-axis is the vertical axis. The particle displacement vector u(x, t) in Ω is driven by the

elastic wave equation:

ρ∂ttu−∇ · σ = f s , (1)

σ = c : ϵ(u) , (2)

where ϵkl(u) =
1
2
(∂kul + ∂luk) is the strain operator, (k, l) ∈ {x, z}2, ρ(x) is the density, c(x) is

the elastic tensor, σ(x, t) is the stress tensor, f is the source term and x = (x, z) is the position

vector in Ω. We use point sources, such that:

f s(x, t) = Fs δ(x− xs)g(t) (3)

for a point force, or:

f s(x, t) = −Ms ·∇δ(x− xs)g(t) (4)
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for a point moment tensor, where Fs is the force vector, Ms is the moment tensor, xs is the source

location and g(t) is the source time wavelet.

The mechanical properties (ρ(x), c(x)) are considered heterogeneous at all spatial scales, as

expected in geological media. The two-scale homogenisation mathematical framework is therefore

appropriate to deal with such heterogeneities.

2.2 Two-scale homogenisation

Two-scale homogenisation is a mathematical framework that can deal with multiscale problems.

It was originally developed for periodic and stochastic elastostatic and elastodynamic problems

(Sanchez-Palencia 1980; Bensoussan et al. 1978) before being extended to deterministic multi-

scale heterogeneous media with no scale separation for wave propagation (Capdeville et al. 2010a;

Capdeville et al. 2010b; Cupillard & Capdeville 2018).

Homogenisation theory considers scales of heterogeneities as either small-scale (microscopic

scale) or large-scale (macroscopic scale) features. Small-scale heterogeneities are meant to be

homogenised and replaced by effective properties. For periodic heterogeneities, the small scale is

the periodic structure, and the large scale is the constant background. In seismology, there is no

periodicity in the media and we rely on an arbitrary scale λ0 to separate small for large scales.

Homogenisation is an asymptotic method based on a small parameter ε0, which is defined as

follows:

ε0 =
λ0

λmin

. (5)

ε0 measures the position of the separation between the small and large scales with respect to the

minimum wavelength λmin. Note that any value can be chosen for ε0. However, ε0 = 0.5 (meaning

that heterogeneities half the size of the minimum wavelength and smaller are considered small-

scale heterogeneities) is a good approximation that has generally been employed for most cases.

The two-scale homogenisation method relies on two space variables: the regular space variable x

(also called the large- or macroscopic-scale variable) and a new space variable y = x
ε0

(also called

the small- or microscopic-scale variable). A new mathematical problem is derived, whereby all
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of the physical quantities depend on both the macro-scale spatial variable x and the micro-scale

spatial variable y. The details of the derivation of this homogenisation problem can be found in

Capdeville et al. (2020).

The displacement u, which is a solution of the wave equation (equations (1)-(2)), is a power-

series approximation in ε0:

uε0(x,y, t) = u∗(x,y, t) + ε0u
1(x,y, t) + ε20u

2(x,y, t) + ... , (6)

where the homogenised coefficients ui need to be determined. Similarly, the strain can also be

expanded as a power-series approximation in ε:

ϵε0(x,y, t) = ϵ0(x,y, t) + ε0ϵ
1(x,y, t) + ε20ϵ

2(x,y, t) + ... (7)

where ϵi are the strain homogenised expansion coefficients. Note that the exponent i is the power

for ε0 and an index for ui and ϵi in equations (6) and (7). We can also define a homogenised

expansion for the rotational field ω = 1
2
∇× u:

ωε0(x,y, t) = ω0(x,y, t) + ε0ω
1(x,y, t) + ε20ω

2(x,y, t) + ... . (8)

The true u, ϵ and ω values are then found via:

u(x, t) = uε0(x,y =
x

ε0
, t) , (9)

ϵ(x, t) = ϵε0(x,y =
x

ε0
, t) and (10)

ω(x, t) = ωε0(x,y =
x

ε0
, t) . (11)

The main results of the homogenisation development are the following:

• The displacement of the leading-order approximation (in ε0) is independent of the small-scale

variable y:

u∗(x,y, t) = u∗(x, t) . (12)

• u∗ is the solution of the effective wave equation:

ρ∗∂ttu
∗ −∇ · σ∗ = f ∗

s , (13)

σ∗ = c∗ : ϵ∗ , (14)
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where ϵ∗ = ϵ(u∗) and (ρ∗, c∗) are the effective mechanical properties (see below), and f ∗
s is the

effective source (Burgos et al. 2016; Capdeville 2021).

• The first-order homogenised coefficient can be written as follows:

u1(x,y, t) = χ(x,y) : ϵ∗(x, t) +
〈
u1

〉
(x, t) , (15)

where χ is the first-order corrector (a third-order tensor) and ⟨u1⟩ can generally be neglected.

• The strain of the leading-order approximation depends on the small-scale variable y:

ϵ0(x,y, t) = (I+ ϵy(χ)(x,y)) : ϵ
∗(x, t) , (16)

where I is the fourth-order identity tensor and [ϵy]ij(v) =
1
2
(∂yivj + ∂yjvi) for any v.

• Similarly, the leading-order rotational coefficient can be written as:

ω0(x,y, t) = ω∗(x, t) +
1

2
(∇y × χ(x,y)) : ϵ∗(x, t) , (17)

where ω∗ = 1
2
∇× u∗. Note that ω∗ and ω0 are generally different.

• The homogenised quantities of ρ∗(x) and c∗(x), as well as the corrector χ(x,y), can be

computed through the homogenised operator H:

(ρ∗, c∗, χ) = H(ρ, c) . (18)

H implies solving a set of equations known as the ”cell problem,” which is a set of static elasticity

equations with a set of source terms (Capdeville et al. 2010b; Capdeville et al. 2015). The solution

only depends on ε0 and the elastic model; neither the time nor the seismic source incluence H.

The presence of normal stress-free boundary conditions requires the use of effective boundary

conditions (Capdeville & Marigo 2008; Capdeville et al. 2013) to homogenise the small-scale

variations in both the local topography and structures just beneath the subsurface. However, we

omit the effective boundary condition in this study for simplicity. H is a non-linear operator that

often yields non-intuitive homogenisation results. For example, the effective properties are almost

always anisotropic, even if the true model is isotropic. Solving the cell problem and then finding

the effective mechanical properties generally involve a numerical solver, with the layered-medium

case being the only case that leads to an analytical solution. Homogenisation theory yields the

well-known results of Backus (1962) for the layered-medium case. We do not expand further on
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this aspect because it is not required for our discussion; see Capdeville et al. (2020) for a complete

discussion. ε0 ≤ 0.5 is considered a reasonable choice to obtain homogenised quantities and

preserve the solution accuracy for most geological media (Capdeville et al. 2010b).

Finally, we can also find the relationship between the effective fields, and the true rotational

and gradient of the wavefield. The leading-order approximation of the wavefield gradient is:

∇u(x, t) = ∇u∗(x, t) +G(x) : ϵ∗(x, t) +O(ε0) ,

where: G(x) = ∇yχ(x,y)|y= x
ε0
,

(19)

and ∇y is the gradient operator that is applied to the y variable.

The leading-order approximation of the rotational field is:

ω(x, t) = ω∗(x, t) + J(x) : ϵ∗(x, t) +O(ε0) ,

where: J(x) =
1

2
∇y × χ(x,y)|y= x

ε0
.

(20)

In practice, once the effective medium (ρ∗, c∗) is obtained, the effective wave equation (equa-

tions (13)–(14)), which is the standard wave equation, can be then solved to obtain the effective

displacement u∗ and its derivative ϵ∗, ∇u∗ and ω∗. Nevertheless, if using u∗ we obtain directly

the true displacement with a good approximation via equation (12), this is not the case for the

strain and rotational wavefields respectively. Equations (19) and (20) show that an extra term is

needed to obtain the correct leading-order approximations for the effective strain and rotational

fields. This extra term depends on y, thereby suggesting that the waveforms of the wavefield gra-

dients are affected by the small-scale structures of the medium. It also implies that the gradient and

rotational field are sensitive to small-scale structures, whereas the displacement is not. In practice,

this small-scale heterogeneity causes the strain components to couple to the expected gradient of

the rotational components. This effect has already been observed in both synthetic and real data

(van Driel et al. 2012; Singh et al. 2020; Muir & Zhan 2022).

2.3 Earth models and associated spaces

We first define the space of possible Earth models prior to introducing the inverse problem. An

Earth model m is defined by its mechanical properties (ρ(x), c(x)) at any location x in the domain
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Ω. We define the admissible model space M, which contains all of the physically admissible Earth

models. If we assume that Ω is heterogeneous at all scales (similar to the real Earth), then M is

infinite-dimensional.

We can define the homogenised counterpart of each model m ∈ M at a given frequency

band as p∗ = H(m). Equation (18) shows that p∗ is more than just the effective mechanical

properties m∗ = (ρ∗, c∗), as it generally contains the corrector χ. m∗ is the restriction of p∗

to the mechanical properties: m∗ = p∗|m. Note that the actual definition of the effective model

generally depends on the receiver geometry, type of observation and homogenisation order. If there

are only displacement observations and the homogenisation order is 0, then there is no need for

correctors. However, if the observations are rational, even for zeroth-order homogenisation, then

the corrector curl is needed at the receiver locations (see equation (20)). We therefore define the

effective model space M∗, which contains all of the possible effective models p∗. Symbolically,

we have M∗ = H(M), where M∗ is finite-dimensional.

2.4 Full waveform inversion based on displacement data

We consider an idealised FWI problem whose objective is to recover the true mechanical properties

(ρt, ct) of the elastic domain Ω using seismic waveforms. We assume that the true model mt =

(ρt, ct) belongs to M. We consider Ω with Nr receivers located at xr, r ∈ {1, ..., Nr} and Ns

sources located at xs, s ∈ {1, ..., Ns}. The signal from each source is recorded for a time duration

T at each receiver. We assume that the displacement data set is accurately modelled by solving

the wave equation (equations (1)–(2)). We define the least-squares misfit function and associated

minimisation problem as:

E(m) =
∑
r,s

∫ T

0

(ds(xr, t)− u(xr, t;xs,m))2dt ,

m̄ = argmin
m∈M

E(m) ,

(21)

where ds(xr, t) represents the displacement data generated by source number s and recorded by re-

ceiver number r. Under perfect conditions, the inverse problem has a unique solution and m̄ = mt

(Nachman 1988; Nakamura & Uhlmann 1994). However, equation (21) is generally an unsolvable
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problem because M is an infinite-dimensional space and the numerical cost of solving the wave

equation is not bounded.

The classical strategy to obtain a solvable inverse problem is to limit the data frequency band.

Therefore, a low-pass filter Ffm is introduced, such that the filtered data dfm
s = Ffm(ds) have no

signal beyond the maximum frequency fm in the frequency domain. A new misfit is then defined

from this filtered data set as follows:

Efm(m) =
∑
r,s

∫ T

0

(dfm
s (xr, t)− ufm(xr, t;xs,m))2dt , (22)

where ufm are the synthetic data, which are computed with a low-pass-filtered source time function

gfm
s = Ffm(gs). The maximum frequency fm ensures that the wavefield has a minimum wavelength

λmin for most media (see Zhao et al. (2016) and Capdeville et al. (2020) for exceptions). Based

on the common assumption that displacement wavefields are insensitive to spatial heterogeneities

that are smaller than λmin, it is assumed that it is possible to introduce a finite-dimensional model

space Mh, whereby at least one model that minimises (22) can be found. Furthermore, Mh can

be designed in such a way that the wave equation (equations (1)–(2)) can be solved in a bounded

time for every one of its models. This assumption and model design yield the following inverse

problem:

m̄h = argmin
m∈Mh

Efm(m) (23)

that can be solved in practice, where h is a ‘resolution’ parameter, which is a number that charac-

terises the discretisation made in the finite-dimensional approximation. For example, if the elastic

model is spatially represented by constant velocity blocks, then h can be the size of these blocks.

h is generally directly related to λmin; however, other information, such as the illumination angles,

offset ranges or data coverage, can influence the choice of h.

One serious drawback arises when the introduction of frequency-limited data and Mh make

the inverse problem solvable: the relation between the true model mt and the inverse problem

solution m̄h is unknown. Furthermore, there are many different ways to design Mh for a given

experiment geometry and λmin, with a different m̄h for each of them.

Capdeville & Métivier (2018) outlined an approach to solve this problem as follows. For a
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given signal maximum frequency fm, we search for a solution in M∗, as defined in the previous

section. We therefore define a new inverse problem for a fixed fm:

E∗(m∗) =
∑
r,s

∫ T

0

(dfm
s (xr, t)− u∗(xr, t;xs,m

∗))2dt ,

m̄∗ = argmin
m∗∈M∗

E∗(m∗) ,

(24)

where u∗ is the leading-order homogenised displacement, which is defined in equation (6). Here,

we only use the displacement observations and zeroth-order homogenisation, which implies that

no corrector is needed in the definition of M∗. This simplifies u∗ to the displacement obtained in

the effective media m∗, such that u∗ = ufm(m∗). As shown in equation (12), u∗ is insensitive to

small-scale heterogeneities.

For any model m and its homogenised version m∗ = H(m), it can be shown that:

Efm(m) = E∗(m∗) +O(ε0) . (25)

The true mt minimises E and also Efm; therefore, m∗
t = H(mt) is a solution of the homogenisa-

tion FWI (HFWI) problem (24). If we assume this solution is unique (this a strong assumption; see

the discussion in Capdeville & Métivier (2018)), then the solution of the HFWI problem is related

to the true model as follows:

m̄∗ = H(mt) . (26)

This important result shows we can access the effective true model by solving (24), which is a

solvable inverse problem. In practice, we can only set up an explicit parametrisation of M∗ in

the layered model case. We need to rely on an approximate space model M∗h for the general

case and use the homogenisation operator H to project the solution into M∗. In practice, the

construction of M∗h is very similar to a classical construction of Mh. However, we need to

have M∗ ⊂ H(M∗h), which often implies that M∗h is fully anisotropic. The numerical tests

shown in Capdeville & Métivier (2018) show that the solution of the HFWI problem is indeed the

homogenised true model.
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2.5 Full waveform inversion based on rotational waveforms

We now consider the case where the observations d are rotational waveforms. The FWI inverse

problem is very similar to the displacement case, and it also needs to be based on limited frequency

band data to be solvable:

Efm(m) =
∑
r,s

∫ T

0

(dfm
s (xr, t)− ωfm(xr, t;xs,m))2dt ,

m̄h = argmin
m∈Mh

Efm(m) .

(27)

Although this problem is solvable, the relationship between the solution m̄h and true model mt is

lost.

Following what was done for the displacement case in the previous section, we can define a

homogenised inverse problem based on rotational data as follows:

E∗(m∗) =
∑
r,s

∫ T

0

(dfm
s (xr, t)− ω∗(xr, t;xs,m

∗))2dt ,

m̄∗ = argmin
m∗∈M∗

E∗(m∗) .

(28)

However, ωfm ̸= ω∗ for the leading-order approximation, which means that Efm(m) ̸= E∗(m∗).

This implies that we cannot relate the solution m̄∗ of the inverse problem to the true model mt.

In practice, a solution to the above problem can be found, but it contains errors and/or differences

compared with the homogenised true model m∗
t that cannot be controlled. We can correct this

problem by relying on ω0 instead of ω∗:

E∗(p∗) =
∑
r,s

∫ T

0

(dfm
s (xr, t)− ω0(xr, t;xs,p

∗))2dt ,

p̄∗ = argmin
p∗∈M∗

E∗(p∗) ,

(29)

where ω0(xr, t;xs,p
∗) = ω∗(xr, t;xs,p

∗|m) + Jr : ϵ
∗(u∗), with Jr = J(xr), from equation (20).

Here M∗ contains all of the possible models p∗ = ((ρ∗, c∗),Jr, r ∈ {1, ..., Nr}). The last inverse

problem definition leads to Efm(m) = E∗(p∗) + O(ε0), which makes sure that we can relate the

inverse problem solution m̄∗ = p̄∗|m to the effective true model m∗
t .
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3 INVERSION SCHEME

We use the same inversion framework as in Capdeville & Métivier (2018), whereby we spatially

parametrise M∗h by dividing the squared inversion domain I ∈ Ω into non-overlapping n ×

n square elements: I = ∪n2

e=1In
e . An example of inversion domain I with 22 × 22 elements

(I22
e ) is shown in Fig. 1. A N × N degree polynomial basis is then used for each element In

e ,

and each inverted mechanical property is expanded within each element. Here we name such

a parametrisation PN
n (I). We use a fully anisotropic parametrisation for M∗h, thereby implying

that each cij and ρ is inverted. Therefore, we have 7×n2×(N+1)2 free parameters to characterise

M∗h if no correctors are inverted.

3.1 Gauss–Newton iterative inversion

We iteratively update the model parameters using a Gauss–Newton inversion scheme to minimise

the misfit function. The i-th iteration model mi for the rotational wavefields is updated as follows:

mi+1 = mi + ((Fi)T · Fi + λi)−1[(Fi)T · (d− ω(mi))] , (30)

where Fi is the partial derivative matrix and λi is the damping parameter, which is used to stabilise

the inversion. The damping parameter λi is optimised in each numerical test. The partial derivative

matrix Fi with respect to the model parameters were evaluated using the adjoint technique (Taran-

tola 1984; Tarantola 1988; Pratt et al. 1998). The detailed calculations of the partial derivatives for

both the displacement and rotational wavefields are provided in appendix A.

We set up two criteria for convergence:

• A 98% decrease in the misfit between the observed and synthetic data, where the initial model

in the inversion is a homogeneous model.

• A <1% decrease in the misfit from the previous iteration.

3.2 FWI with correctors

The model space for a rotational-based FWI includes both the effective mechanical properties and

correctors. Adding the corrector parameters to the inverted parameters can be done via the same
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framework that was used for the elastic parameters alone. The Gauss–Newton scheme remains the

same for this case; the main modifications are an increase in the size of the partial Hessian matrix to

be inverted and slightly more complex programming to keep track of the inverted parameters. The

adjoint sources for the rotational data are moment tensors, as explained in appendix A. Therefore,

moment tensors of the adjoint sources for the rotational data should be corrected with inverted

correctors (Burgos et al. 2016; Capdeville 2021).

Here we rely on a two-stage approach to simplify the computations. During each Gauss–

Newton iteration, the mechanical parameters are inverted to obtain the current model mi in the

first stage, and the correctors are then independently inverted following Singh et al. (2020) in

the second stage. We minimise the squared error by summing over all of the sources for a given

rotational receiver location xr as follows:

E(Jr) =
∑
s

∫ T

0

(ds(xr, t)− ω0(xr, t;xs,p
∗))2dt ,

where:ω0(xr, t;xs,p
∗) = ω∗(xr, t;xs,p

∗|m) + Jr : ϵ
∗(u∗) ,

(31)

and ω∗ and ϵ∗ are the synthetic data and strain computed in the current mechanical model mi,

respectively. The misfit is simple quadratic with respect to Jr and can be inverted via a simple

least-squares approach:

Jr = (Ft
rFr)

−1Ft
rb, (32)

where Fr is the partial derivative matrix that is limited to specific receiver, and b is the residual

between the target and synthetic data. This calculation is a small computation (three and six free

parameters for 2D and three-dimensional (3D) problems, respectively) and under-parameterised,

which implies that damping is not needed to obtain a stable result. Fig.2 shows the overview of the

FWI with correctors employed in this study.

This two-step inversion process is expected to slow down the Gauss–Newton inversion con-

vergence compared with a single-step inversion scheme. However, we generally do not observe a

significant difference in the number of iterations compared with the cases where correctors are not

needed.
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4 NUMERICAL EXPERIMENTS

4.1 Experiment design

4.1.1 Target model

The target model that the FWI tries to estimate is a 2D elastic medium, such as that shown in

figure 1. The Ω domain is a 40×40 km region that consists of a homogeneous background with

a 16 × 16 km heterogeneous area embedded at the centre. This heterogeneous area is made of

40 × 40 square anomalies, with each square possessing constant mechanical properties that are

randomly generated. The background model is isotropic with shear and compressional velocities

(VS and VP , respectively), and a density of 2.8 km/s, 5.0 km/s and 3.0 t.m−3, respectively. The

random mechanical properties of the heterogeneous region are generated using a flat probability

distribution that is within 60% of the elastic tensor and density of the homogeneous background

values.

4.1.2 Spectral element simulation setup

We use the spectral element method (Komatitsch & Vilotte 1998) to solve the wave equations

(equations (1)-(2)) for both generating the data to be inverted and solving the inverse problem.

The absorbing boundaries for each of our experimental cases are based on perfectly matched

layers (Festa & Vilotte 2005) that are used all edges of the domain. Two different spectral element

meshes are used:

• We rely on a square 100 × 100 element mesh to generate the data to be inverted. We use a

polynomial degree of 10 in each tensorial direction of each element. The mesh is designed such

that all of the material discontinuities are honoured by an element boundary, which is important to

obtain good accuracy.

• A different spectral element mesh than the previous one is used when computing the full

wavefields from the sources and adjoint sources to compute the partial derivatives. This mesh

consists of 50 × 50 elements with a polynomial degree of 4.

The different spatial meshes for generating the target and synthetic data sets during the inversion
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process allows us to avoid an ”inverse crime” because the numerical errors due to spatial discreti-

sation are different. Furthermore, we do not introduce any a priori knowledge of the heterogeneity

geometry in the inversion modelling mesh.

4.1.3 FWI acquisition geometry

The source and receiver geometries used in our numerical experiments are shown in Fig. 3. The

sources are located all around the inverted area, with each consisting of a single vector force

that produces a Ricker wavelet. This wavelet possesses a 0.25-Hz central frequency and 0.7-Hz

maximum source frequency. The associated minimum wavelength in the background medium is 4

km, which is 10 times larger than the lengths of the small anomalies in the target model.

We use two different geometries for the receivers:

• Configuration A (Fig. 3): The receivers are located around the inverted area and are far from

the heterogeneities.

• Configuration B (Fig. 3): The receivers are located within the inverted area and are in contact

with the heterogeneities.

This setup is designed to investigate the impact of small-scale heterogeneities on FWI using

rotational wavefields recorded using two receiver configurations: closely located receivers (con-

figuration B) or not (configuration A).

4.1.4 Representation and evaluation of the FWI results

We first need to define what will be presented and how the results will be assessed prior to con-

ducting the numerical experiments.

The FWI results are always a full elastic tensor c after homogenization. We present the results

by first projecting the anisotropic elastic tensor c∗ to the nearest isotropic tensor c*,iso following

Browaeys & Chevrot (2004). The compressional- and shear-wave velocities are defined as follows:

V ∗
P (x) =

√
(c*,iso

1111(x)/ρ(x)) , (33)
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and:

V ∗
S (x) =

√
(c*,iso

1212(x)/ρ(x)) , (34)

respectively, and the total anisotropy is defined as:

aniso(x) =

√∑
ijkl(c

iso
ijkl(x)− cijkl(x))2√∑
ijkl(c

iso
ijkl(x))

2
. (35)

One objective of our work is to compare the rotational-based FWI results to the displacement-

based FWI results, particularly to assess the accuracy and resolution of the two approaches. A

classical way to perform this analysis is to analyse the diagonal of the partial Hessian and compute

the point spread functions (Fichtner & Trampert 2011). However, our use of a homogenisation

step in the FWI, which is a non-linear step, makes it impossible for us to work directly on the

partial Hessian. We overcome this difficulty by performing a brute force statistical analysis. We

generate 200 different data sets for both the displacement and rotational receiver configuration

cases by adding random noise to the data. This added noise possesses a standard deviation of 10%

of the original data set and spans the same frequency band as the original data set. Two hundred

inversions are then performed, one for each data set. We define the inversion error as follows:

E2
m(ε0,x) =

∑n=N
n=1

∑
ij(c

∗,n
ij (x)− c∗,tij (x))

2

N
∑

ij(c
∗,t
ij (x))

2
, (36)

where c∗,n and c∗,t are the homogenised FWI model results for noise number n and the true ho-

mogenised elastic tensor, respectively, for a given ε0. We finally define the inverted area-averaged

inversion error as:

Ē2
m(ε0) =

∫
I
∑n=N

n=1

∑
ij(c

∗,n
ij (x)− c∗,tij (x))

2dx

N
∫
I
∑

ij(c
∗,t
ij (x))

2dx
, (37)

Analysing Ē2
m(ε0) as a function of ε0 allows us to find an estimate of the smallest ε0 that can be

used. This smallest ε0 can be seen as the overall resolution limit of the inversion. Constraining ε0

in this manner highlights the compromise between the resolution and error in the inversion: using

a smaller ε0 would generate higher-resolution images with larger error, whereas using a larger ε0

instils good confidence in the accuracy of the imaged structures at a lower spatial resolution.

We also assess the inversion results using three statistical measures: the standard deviations,
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mean values and resolutions (correlations) of V ∗
S and V ∗

P (obtained from equations (33) and (34),

respectively), and density. The mean values are the same as the noise-free inversion results and

are used to compare the inversion results and target model for a given ε0. We note that the mean

values and noise-free inversion results are not exactly the same, but it does not change the point of

the paper and we ignore this differences. For a given ε0, the covariance of mechanical property p∗

(V ∗
P , V ∗

S or the effective density) is written as:

Covε0(x,y) =

∑N
n=1(p

∗
n(x)− µp(x))(p

∗
n(y)− µp(y))

N
, (38)

where µp is the mean value of p, and N is the number of samples. The deviation σε0 can be derived

in terms of the covariance as follows:

σε0(x) =
√

Covε0(x,x) , (39)

such that the resolutions Rε0 are then written as follows:

Rε0(x,y) =
Covε0(x,y)

σε0(x)σε0(y)
. (40)

Here we provide the V ∗
S results for our presented inversion and statistical analyses. Comprehensive

results, which include the V ∗
P and effective density results, are provided in the appendix. Note

that both σε0 and Rε0 depend on ε0. This co-dependence introduces a trade-off between σε0 and

Rε0 . Therefore, the resolution limit and overall error cannot be measured independently for this

inversion process.

4.2 A simple forward modelling example of a small-scale heterogeneity effect on the data

We first illustrate the different impacts of small-scale heterogeneities on displacement and rota-

tional measurements prior to introducing the FWI results. Example of rotational and displacement

waveforms for the two source—receiver configurations are shown in Fig.4. Here, four receivers are

located in close proximity to each other at two distant locations, A and B, whereby they are spaced

at 100-m horizontal and vertical intervals from each other. We acquired both the displacement and

rotational waveforms using a source that generates a Ricker wavelet with a 0.7-Hz maximum fre-

quency and 4-km minimum wavelength. It should be noted that station intervals and lengths of the
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anomalies are much smaller than the 4-km minimum wavelength. The displacement waveforms

from the four receivers at location A, which is within the heterogeneous area, are the same, as

expected, whereas there are observable differences among the rotational waveforms. These dif-

ferences in the rotational waveforms are due to the corrector in equation (20). Conversely, the

rotational waveforms from the four receivers at location B, which is ∼2 km from the heteroge-

neous area, are the same. This is because the effect of the corrector is limited to the heterogeneous

area, with no small-scale effects propagating outside of the heterogeneous area.

This example clearly highlights that a smooth tomographic model would have a hard time

explaining data that are contaminated by small-scale heterogeneities. It also underscores why it is

necessary introduce correctors to account for such effects.

4.3 FWI results without correctors

4.3.1 Receivers outside of the heterogeneous area

Here we present displacement and rotational inversion results for receivers positioned outside the

heterogeneous area (”configuration A” in Fig. 3).

The displacement-based inversion results, which are presented in Fig. 5, show that the misfit

decreases steadily throughout all of the Gauss–Newtown iterations and satisfies the convergence

criteria at iteration 19. The strong fit between the target and synthetic data indicates that the final

model can adequately explain the target data. We have used ε0 = 1.0 to compute the homogenised

models, which is a good compromise between resolution and accuracy, as we will discuss later.

The residual is calculated as the deviation from a background VS value of 2.8 km/s. A comparison

of the modelled V ∗
S structures shows that the final model exhibits a broadly similar pattern to that

in the target model, with the exception of some high-velocity anomalies in the target model that

are not well-recovered in our final inverted model.

The rotational inversion results are shown in Fig. 6. The chosen receiver configuration makes it

possible to conduct a rotational-based FWI without any expected small-scale heterogeneity effects

because the rotational waveforms are only influenced by small-scale heterogeneities that are in

close proximity to the receiver locations, as explained in equation (20) and demonstrated in Fig.
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4. The presented waveform comparisons show a strong fit between the waveforms for the target

and final models, which indicates that the rotational- and displacement-based FWI models are

comparable in their abilities to explain the target data. The VS residuals between the target and

final models for the rotational waveform case are also comparable to those for the displacement

case.

Our assessment of the optimal ε0 value, which is based on equations (37) and (37), is shown in

Fig. 7. We used the mean model from 200 samples, as opposed to a single solution, for the model

error Ēm, which was computed for models that used ε0 in the 0.3—2.9 range. The model error

Ēm increases exponentially as ε0 decreases, with the transition to a rapid increase in Ēm occurring

around ε0 = 1.0 for both the displacement- and rotation-based FWI. This result suggests that the

displacement- and rotation-based FWI have almost the same resolution limit. We therefore select

ε0 = 1.0 as the optimal choice that provides the best overall resolution and accuracy of the final

model results.

Our statistical comparisons between the displacement and rotational cases, which consist of the

error of mean values, standard deviation, and resolution between the target and final models, are

based on ε0 = 1.0 and shown in Fig. 8. The resolutions were computed by selecting a single grid

point yi and computing the correlations against all of the x points based on equation (40). Strong

correlations (approaching unity) indicate that these points cannot be determined separately; there-

fore, the areas with strong correlations correspond to the spatial resolution of the final model. All

of the statistical quantities exhibit comparable V ∗
S trends between the displacement and rotational

cases.

4.3.2 Receivers within the heterogeneous area

Here we present the displacement- and rotational-based inversion results using receivers positioned

within the heterogeneous area (”configuration B” in Fig. 3). The forward modelling test presented

in section 4.2 indicates that it is necessary to invert for the corrector to obtain good results. Never-

theless, we ignore this fact here and perform the displacement- and rotational-based FWI without

correctors. The displacement-based inversion results, which are presented in Fig. 9, show that the
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misfit steadily decreased throughout all of the iterations and satisfied the convergence criteria at

iteration 11. A strong fit between the target and synthetic data is confirmed, thereby indicating

that the final model can explain the target data. Our model comparisons reveal that the errors

between the target and final models for the receivers within the heterogeneous area are slightly

better than the model comparisons when all of the receivers are positioned outside of the hetero-

geneous area. The nearby heterogeneities have a small effect on the displacement measurements,

and subsequently the FWI process, as theoretically expected (equation 12).

The rotational-based inversion results are presented in Fig.10. The misfit reductions satisfied

the convergence criteria at iteration 46, despite a temporary increase in the misfit at iteration 13.

The comparison between the target and synthetic models suggests that the final model is unable

to fully explain the target model, which indicates that the inversion did not converge to the best

solution in this case. Furthermore, the VS residuals in the rotational case are larger than those

in the displacement case, despite having the same source and receiver configurations. We did

not observe significant misfits in the waveforms and model parameters when the receivers were

positioned outside of the heterogeneous area. The larger residuals between the target and final

models and larger misfits between the waveforms are likely associated with the presence of small-

scale heterogeneities in close proximity to the receiver locations, as theoretically expected.

The trade-off between the error of the mean model Ēm and ε0 are shown in Fig.11. The over-

all trend of Ēm is similar to that when the receivers are placed within the heterogeneous area.

However, the Ēm results show that errors from the rotational-based FWI are consistently larger

than those from the displacement-based FWI, regardless of the ε0 value. The effects of small-scale

heterogeneities can be clearly seen, even if the scale is limited to very large scales.

Fig.12 presents our statistical comparison of the displacement- and rotational-based FWI re-

sults for ε0 = 1.0. The error of the mean value of VS for the rotational case indicates that the

inversion could not determine the model parameters as accurately as in the other cases. The devi-

ations and resolutions also show peculiar results for the rotational case. Unlike the displacement

case, the deviations for the rotational case are not uniform, and the largest anomalies are dis-
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tributed. Furthermore, the spatial resolutions for the rotational case are no longer valid, as there

are strong correlations at distant locations.

4.4 FWI results with correctors

Here we present the rotational-based FWI results, with correctors, for receivers located within

the heterogeneous area (”configuration B” in Figure 3). The correctors are obtained during the

inversion based on equation (32). Incorporating correctors in the rotational-based FWI procedure is

theoretically expected to enhance the results compared with the FWI procedure without correctors.

The inversion results, which are presented in Fig.13, show that the misfit decreased in all of the

iterations and met the convergence criteria at iteration 12. The strong fit between the waveforms

for the target and synthetic models indicates that the final model with correctors can adequately

explain the target data, whereas the final model without correctors is unable to achieve such a fit.

Our model comparisons yield smaller residuals between the models with correctors than those

without, thereby suggesting that including correctors led to improvements in the final model.

Fig.14 shows relationship between the error of the mean model Ēm and ε0. A larger error

Ēm than that for the displacement case was observed when correctors were not included in the

rotational-based FWI (Fig.11). However, the rotational-based FWI with correctors possesses an

error that is almost the same as that for the displacement case. The resolution limits for both the

rotational and displacement cases can be chosen to be 1.0 based on the Ēm results, which indicates

that there is no difference in the resolution limit between the rotational and displacement cases.

Fig.15 presents the statistical results based on ε0 = 1. As discussed in the previous section,

the FWI without correctors resulted in large errors in the mean values and peculiar outcomes for

the deviations and resolutions. However, we obtained similar statistical results to those in the case

for receivers positioned outside of the heterogeneous area when correctors were included in the

inversion process. This indicates that the inclusion of correctors in the FWI procedure mitigates

the effects of small-scale heterogeneities.

Table 1 provides a summary of the misfits, which are defined by equation (37) for a single

model, in each case. Here we use single solution, as opposed to the mean model, to compute
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Table 1. Model misfits, which are based on equation (37), for the numerical FWI results using displacement

and rotational data.

Case Ēm(ε0 = 1)

FWI without correctors

Displacement and receivers outside of the heterogeneous area 0.041

Rotational and receivers outside of the heterogeneous area 0.045

Displacement and receivers within the heterogeneous area 0.042

Rotational and receivers within the heterogeneous area 0.095

FWI with correctors

Rotational and receivers within the heterogeneous area 0.049

the model error Ēm. The misfits for the FWI without correctors indicate that the misfit is largest

when rotational data are used and all of the receivers are located within the heterogeneous area.

However, incorporating correctors in the inversion process significantly reduces the misfit, with a

reduction from 0.095 (without correctors) to 0.049 (with correctors) observed. The misfit of 4.86

for the rotational-based FWI with correctors is comparable to the FWI results when receivers are

placed outside of the heterogeneous area.

We present comprehensive inversion and statistical results, including the V ∗
P , density∗ and

anisotropy∗ results for three cases (FWI using displacement receivers positioned within the het-

erogeneous area; FWI, without correctors, using rotational receivers positioned within the hetero-

geneous area; and FWI, with correctors, using rotational receivers positioned within the heteroge-

neous area), in the appendix.

A short investigation of additional FWI results using strain receivers is also presented in ap-

pendix. The conclusion of the strain-based FWI results is same as that for the rotational case:

the FWI does not converge to the best model when the effects of small-scale heterogeneities are

present. It is therefore necessary to include correctors in strain-based FWI to effectively mitigate

any small-scale effects.
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Table 2. Model misfit based on equation (37) for the FWI results of the joint displacement and rotational

data experiments.

Case Ēm(ε0 = 1)

FWI without correctors

Joint displacement and rotational data 0.066

FWI with correctors

Joint displacement and rotational data 0.038

5 JOINT DISPLACEMENT- AND ROTATIONAL-BASED FWI

Gradient sensors are often collocated with seismometers for more comprehensive field studies.

Here we perform a numerical experiment where both displacement and rotational sensors are

used. We used the same receiver and source configurations as in the previous section, whereby

the receivers are positioned within the heterogeneous area, and assume that both displacement

and rotational data are recorded at each receiver location. We therefore incorporated data from 52

sensors (26 rotational and 26 displacement sensors) for the inversion. We utilised a least-squares

misfit function by combining equations (22) and (29) in this numerical experiment. A data covari-

ance matrix that is different from the identity matrix is used to balance the significant amplitude

differences between the displacement and rotational data to ensure that both data types are equally

weighted in the inversion (Tarantola & Valette 1982). The results are evaluated using the model

misfit (equation (37)), which are based on ε0 = 1, and presented in table 2. The results show that

the misfits in the model parameters are minimised when correctors are incorporated. These misfits

are even smaller than those in the case when only displacement data are used; this is likely related

to the inclusion of additional data in the joint displacement and rotational data case. This numeri-

cal experiment indicates that the inclusion of correctors in the inversion process is necessary, even

when translational motions are used with wavefield gradients.

6 USING CORRECTORS TO OBSERVE SUB-WAVELENGTH HETEROGENEITIES

We have demonstrated that the rotational-based FWI is hampered by the sensitivity of the rota-

tional wavefield to small-scale structures rather than improving the spatial resolution. Although
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incorporating correctors in the FWI process can help mitigate the effects of small-scale hetero-

geneities, it can only produce tomographic images that are at the same resolution as displacement-

based FWI results, as shown in the statistical evaluations. Therefore, rotational-based FWI can

only estimate the effective mechanical properties at best, and are therefore unable to capture fine-

scale heterogeneities in the tomographic images, despite the sensitivity of the rotational wavefield

to small-scale heterogeneities. However, the inverted correctors in our new FWI framework may

contain information about any small-scale structures that may be present. Here we demonstrate

how small-scale structures can be observed in the inverted correctors.

We randomly place 500 rotational receivers within a 1.8 × 1.8 km area (Fig. 16) for this

numerical test; the absolute values of the inverted correctors at the final iteration for each compo-

nent are illustrated in Fig. 16. The diagonal components of the correctors appear to only possess

high values in the vicinity of the vertices of the small-scale anomalies, whereas the off-diagonal

components of the correctors more clearly show the defined boundaries of the small-scale anoma-

lies. Therefore, the inverted correctors in our new FWI framework can provide indications of the

presence of strong small-scale discontinuities in the subsurface that are difficult to image using

conventional seismic tomography methods.

7 DISCUSSIONS AND CONCLUSIONS

We have first shown the necessary difference in model parametrisation between displacement- and

wavefield gradient-based FWI. The leading-order approximation in the two-scale homogenisa-

tion mathematical framework highlights that the displacement-based FWI only requires effective

elastic mechanical properties to explain the data, whereas the wavefield gradient-based FWI also

requires the corrector in the model space to explain the data. Current FWI applications implicitly

rely on the FWI solution space being within the M∗ subspace, such that the solution space is only

represented by the effective elastic mechanical properties. However, FWI applications that are

based on wavefield gradients, such as rotational and strain wavefields, require the solution space

to extend to the entire M∗, thereby including the effective elastic mechanical properties and cor-

rectors, as theoretically expected. Our numerical experiments have confirmed that this extension
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of the solution space is necessary, as the effective true model was only retrieved in the wavefield

gradient-based FWI when correctors were included.

Another important result is that the resolution limit is close to ε0 = 1 for both the displacement-

and rotational-based FWI, such that there is no difference in terms of resolution. The model error

exponentially increases as ε0 decreases, with a rapid increase observed when ε0 < 1. The resolu-

tion images that were obtained for different ε0 values are also helpful for assessing the resolution

limit. Fig.17 shows the resolution images for all of the cases and ε0 = 0.5 , 1 , 1.5. The size of the

area with a strong correlation is almost same between ε0 = 0.5 and ε0 = 1 for all of the cases, and

then increases when ε0 = 1.5. We therefore suggest that the resolution limit is around ε0 = 1 for

both the displacement- and rotational-based FWI. Finally, we note that ε0 = 1 is generally not a

valid value. Other configurations, such as either more receivers or more scattering, may allow this

value to be lowered to around ε0 = 0.5. ε0 = 0.5 is sufficient to model data in most geological

media, such that it is unnecessary to lower ε0 below this limit.

We have found no advantage of using wavefield gradients instead of displacement data during

the FWI process in terms of accuracy and resolution. We note that this conclusion is only true for

excellent data coverage. We have not investigated cases with partial data coverage; therefore, it is

still possible that gradient data could make a significant difference in such contexts.

We have shown that the inverted correctors can serve as indicators of small-scale hetero-

geneities, which can lead to high-resolution mapping of complex geological structures, as long

as such features are in the vicinity of the receivers. Therefore, we may be able to use arrays of

many receivers to locate abrupt subsurface discontinuities, such as faults, if they are located near

the sensors. DAS cables may be a viable option since they can easily obtain a significant number of

very short interval strain data, which can assist in imaging small, abrupt, subsurface discontinuities

via the corrector.

It is important to note that we have only inverted part of the correctors in this study. Indeed, the

parametrisations of M∗h that we have been using contain small-scale heterogeneities (continuity

between elements is not enforced). Therefore, the correctors shown in Fig. 16 cannot be directly

compared with the corrector that would be obtained from the direct homogenisation problem. Such
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a comparison requires the correctors that are derived from the inversion process to be combined

with those obtained from applying the homogenisation operator H to the inverse solution.

Although the FWI with correctors can mitigate the effects of small-scale heterogeneities, it

cannot completely eliminate these effects. Our approach assumes that evaluating up to the first-

order term in equation (6) is sufficient, such that the effect of the higher-order terms are negligible

and can be ignored. However, it should be noted that the effects of these higher-order terms become

more pronounced as the elastic contrasts increase. Therefore, our method is still considered to be

affected by small-scale heterogeneities to some extent. Nevertheless, all of the synthetic tests in

this study show that a better solution is obtained using correctors.

This study demonstrates that there is no intrinsic gain in using gradient sensors instead of

conventional seismometers for FWI studies, as rotational-based FWI results can only recover in-

formation of the same quality as translation-based FWI results if receiver-coupling correctors are

included in the inversion process. Nevertheless, these correctors contain sub-wavelength hetero-

geneities that can potentially be exploited to obtain a resolution at the sensor array scale.
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Appendix

Appendix A: Adjoint partial derivative calculations

A.1 Preliminary remarks

Here we use elastic wave equation in the frequency domain for simplicity:

−ω2ρ(x)ui(x, ω)− ∂jcijkl(x)∂kul(x, ω) = fi(x, ω) . (A.1)

The Green’s function for a single point force at xs is described by fp
i (x, ω) = δ(x−xs)δip, which

satisfies the equation:

−ω2ρ(x)Gp
i (x, ω;xs)− ∂jcijkl(x)∂kG

p
l (x, ω;xs) = δ(x− xs)δip . (A.2)

The Green’s function for a moment component point source fpq
i (x, ω) = −δipδjq∂jδ(x − xs)

satisfies the equation:

−ω2ρ(x)Gpq
i (x, ω;xs)− ∂jcijkl(x)∂kG

pq
l (x, ω;xs) = −δipδjq∂jδ(x− xs) . (A.3)

Finally, we note that GM
i for the moment tensor force described in equation (4) can be written as:

−ω2ρ(x)GM
i (x, ω;xs)− ∂jcijkl(x)∂kG

M
l (x, ω;xs) = −Mij∂jδ(x− xs) . (A.4)

We then omit ω to denote the reciprocity theorem as follows:

Gj
i (xr;xs) = Gi

j(xs;xr) (A.5)

and:

∂r
jG

pq
i (xr;xs) = ∂s

pG
ij
q (xs;xr) (A.6)

where ∂r
j = ∂/∂xr,j

∂s
j = ∂/∂xs,j

.

We also have:

Gpq
i (xr;xs) = ∂s

pG
q
i (xr;xs) . (A.7)
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A.2 Partial derivatives for a single scattering point in x

The Born approximation reads:

δui(xr) = −ω2δρGm
i (xr;x)G

M
m (x;xs)−Gm

i (xr;x)∂jδcmjkl∂kG
M
l (x;xs) . (A.8)

Equation (A.8) can be reformulated via integration by parts and the reciprocity principle as fol-

lows:

δui(xr) = −ω2δρGi
m(x;xr)G

M
m (x;xs) + ∂jG

i
m(x;xr)δcmjkl∂kG

M
l (x;xs) . (A.9)

We can then deduce the equation for a gradient component:

∂r
pδui(xr) = −ω2δρ∂r

qG
i
m(x;xr)G

M
m (x;xs) + ∂j∂

r
qG

i
m(x;xr)δcmjkl∂kG

M
l (x;xs) . (A.10)

We substitute equation (A.7) into equation (A.11) to obtain:

∂r
qδui(xr) = −ω2δρGiq

m(x;xr)G
M
m (x;xs) + ∂jG

iq
m(x;xr)δcmjkl∂kG

M
l (x;xs) . (A.11)

The coupling tensor J, with [Kqi]pn = Jqipn, can be written as:

Jqipn∂
r
pδun(xr) = −ω2δρGKqi

m (x;xr)G
M
m (x;xs) + ∂jG

Kqi

m (x;xr)δcmjkl∂kG
M
l (x;xs) . (A.12)

We can utilise the coupling tensor J and Levi-Civita symbol θ to derive the adjoint source of the

moment tensor for rotational wavefields as:

Jqipn = θipn/2 (in 3D) ,

Jqipn = θpn/2 (in 2D) .
(A.13)

Furthermore, we can derive the adjoint source of the moment tensor for the strain wavefields as

follows:

Jqipn = (δqpδin + δqnδip)/2 . (A.14)

We stored the calculated full wavefields for both sources and adjoint sources on disk and

computed the partial derivatives by convolving each source–receiver pair.
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Appendix B: Supplementary inversion results

We present comprehensive inversion and statistical results for three different cases: displacement-

based FWI using receivers positioned within the heterogeneous area; rotational-based FWI, with-

out correctors, using receivers positioned within the heterogeneous area; and rotational-based FWI,

with correctors, using receivers positioned within the heterogeneous area. We show the target

model and FWI solutions for each case, with ε0 = 1, in Fig. A.1. The inversion fails to converge

to the homogenised target model when correctors are not included in the FWI process. We present

the statistical results in Figs. A.2–A.4 to confirm the importance of including correctors to improve

the FWI solution.

Appendix C: Strain-based FWI

Here we present numerical FWI experiments using strain data. We followed the inversion scheme

that is explained in section 3 for this numerical experiment. We performed numerical tests with two

different receiver configurations. One configuration involved placing all of the receivers outside

of the heterogeneous area (”Receivers outside” in Fig. A.5), and the other configuration involved

placing all of the receivers within the heterogeneous area (”Receivers inside” in Fig. A.5). We only

used the vertical component along the vertical axis of the strain data at each receiver location in

these numerical experiments. This setup was designed to simulate a DAS-based FWI; however,

we did not consider the gauge length and strain rate of DAS measurements in our numerical

experiments.

C1. Receivers outside of the inversion area

Fig. A.6 presents the misfit reduction results and waveform comparisons using receivers positioned

outside of the heterogeneous area. A steady misfit reduction is observed throughout the iterative

process, with the final misfit satisfying the convergence criteria at iteration number 41. There

is a strong agreement between the synthetic and target waveforms, which demonstrates that the

final model can adequately explain the target data. The final V ∗
S , V ∗

P , and density∗ models, and
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the corresponding residuals between the target and final models are shown in Fig. A.7, with the

residual values being comparable to those obtained via the displacement-based FWI.

C2. Receivers within the inversion area for the FWI without correctors

Figures A.8 and A.9 illustrate the inversion results when the receivers are positioned within the

heterogeneous area and correctors are not included. The misfit decreased until iteration 2, but

then increased in subsequent iterations. Furthermore, there is a large degree of misfit between

the synthetic and target waveforms, as well as large residuals between the target and final models.

Similar to the rotational-based FWI case, the strain-based FWI without correctors fails to converge

to the best model and is therefore incapable of explaining the target data when the effects of small-

scale heterogeneities are present in the target data.

C3. Receivers within inversion area for the FWI with correctors

We then performed the FWI with correctors using receivers that were positioned within the hetero-

geneous area. Fig. A.10 shows the misfit reduction and waveform comparisons. The misfit steadily

decreased throughout the iterative process, and a strong fit between the synthetic and target wave-

forms was observed, thereby indicating that FWI with correctors can adequately explain the target

data. Fig.A.11 presents the model comparisons and residuals for each parameter, whereby the

residuals show improvements in all of the parameters compared to the results without correctors.

Table 3 provides the misfits in the elastic tensors based on equation (37) for a single model in

each case, with the incorporation of correctors leading to an improvement in the accuracy of the

inverted elastic parameters. Therefore, it is necessary to incorporate correctors in the FWI process

to obtain accurate results when the strain observations are used.
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Table 3. Model misfit based on equation (37) for results of numerical experiment using strain data.

Case Ēm(ε0 = 1)

FWI without correctors

Strain data and receivers outside heterogeneous area 0.041

Strain data and receivers inside heterogeneous area 0.078

FWI with correctors

Strain data and receivers inside heterogeneous area 0.057
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Figure 1. (A) Schematic diagram of the I22
e mesh structure. The shaded grey area shows the target area

to be inverted. Black lines define the element boundaries. (B) VS (left), VP (centre) and density (right)

structures of the target model.
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Starting model

Forward modelling Synthetic data

Inversion of correctors

CorrectionsGauss-Newton update

Convergence?

Final model

Yes
No

Figure 2. Flowchart of the FWI process, with correctors. The process begins with forwarding modelling to

generate synthetic data. The correctors are inverted, and the synthetic data are corrected using the inverted

correctors. Then, the inversion of the elastic mechanical properties is performed. If convergence is not

obtained, the process is repeated.



Gradient FWI and subwavelength heterogeneities 39

Configuration A

0 km

20 km

40 km

0 km 20 km 40 km

Configuration B

0 km

20 km

40 km

0 km 20 km 40 km

18 km

20 km

22 km

18 km 20 km 22 km

19.8 km

20.4 km

19.8 km 20.4 km

(A) (B)

(B1) (B2)

Figure 3. Source (red stars) and receiver (black diamonds) configurations employed for the synthetic tests.

(A) Configuration A: All sources and receivers are positioned outside of the heterogeneous area. (B) Config-

uration B: All sources are positioned outside of the heterogeneous area, whereas all receivers are positioned

within the heterogeneous area. (B1,B2) Close-up views of the receiver arrangement in Configuration B for

the areas indicated by the dashed green squares.
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Figure 4. Numerically derived example of the impact of small-scale heterogeneities on displacement and

rotational waveforms. (A) Source–receiver positions. Close-up views of the location (A1) A and (A2) B

receiver positions, and their local VS structures. Location A is within the heterogeneous area, whereas

location B is outside of the heterogeneous area. Displacement waveforms for the (B) location A and (C)

location B receivers. Rotational waveforms for the (D) location A and (E) location B receivers.
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Figure 5. Displacement-based FWI results using receivers positioned outside of the heterogeneous area.

(A) Misfit reduction. (B) Waveform comparisons between the target and synthetic data. Source–receiver

positions are shown in the left panel, with the green source (star) and receiver (diamond) positions indi-

cating the source–receiver pair that was used to generate the presented target (black) and synthetic (red)

waveforms in the right panel. The waveforms are normalised by the maximum amplitude of the selected

receivers. (C) Target and final V ∗
S models and their corresponding residuals. Both the target and final mod-

els are homogenised using ε0 = 1.0. The residuals between the target and final models are represented as

fluctuations from a background value of 2.8 km/s.
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Figure 6. Rotational-based FWI results using receivers positioned outside of the heterogeneous area. (A)

Misfit reduction. (B) Waveform comparisons between the target and synthetic data. Source–receiver posi-

tions are shown in the left panel, with the green source (star) and receiver (diamonds) positions indicating

the source–receiver pairs that were used to generate the presented target (black) and synthetic (red) wave-

forms in the right panel. The waveforms are normalised by the maximum amplitude of the selected receivers.

(C) Target and final V ∗
S models and their corresponding residuals. Both the target and final models are ho-

mogenised using ε0 = 1.0. The residuals between the target and final models are represented as fluctuations

from a background value of 2.8 km/s.
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Figure 7. Error Ēm as a function of ε0 for V ∗
S , which is derived using displacement (red) and rotational

(black) receivers positioned outside of the heterogeneous area.
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Figure 8. Statistics of the displacement- and rotational-based FWI results using receivers positioned outside

of the heterogeneous area. (A) Error of the mean models of V ∗
S . (B) Standard deviation of V ∗

S . (C) Resolution

of V ∗
S . The error and standard deviation values are presented as fluctuations from a background value of 2.8

km/s.
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Figure 9. Displacement-based FWI results using receivers positioned within the heterogeneous area. (A)

Misfit reduction. (B) Waveform comparisons between the target and synthetic data. Source–receiver posi-

tions are shown in the left panel, with the green source (star) and receiver (diamond) positions indicating the

source–receiver pair that was used to generate the presented target (black) and synthetic (red) waveforms

in the right panel. The waveforms are normalised by the maximum amplitude of the selected receivers.

(C) Target and final V ∗
S models and their corresponding residuals. Both the target and final models are ho-

mogenised using ε0 = 1.0. The residuals between the target and final models are represented as fluctuations

from a background value of 2.8 km/s.
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Figure 10. Rotational-based FWI results, without correctors, using receivers positioned within the het-

erogeneous area. (A) Misfit reduction. (B) Waveform comparisons between the target and synthetic data.

Source–receiver positions are shown in the left panel, with the green source (star) and receiver (diamonds)

positions indicating the source–receiver pairs that were used to generate the presented target (black) and

synthetic (red) waveforms in the right panel. The waveforms are normalised by the maximum amplitude of

the selected receivers. (C) Target and final V ∗
S models, and their corresponding residuals. Both the target

and final models are homogenised using ε0 = 1.0. The residuals between the target and final models are

represented as fluctuations from a background value of 2.8 km/s.
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Figure 11. Error Ēm as a function of ε0 for V ∗
S , which is derived from the FWI results, without correctors,

using displacement (red) and rotational (black) receivers positioned within the heterogeneous area.
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Figure 12. Statistics of the displacement- and rotational-based FWI results, without correctors, using re-

ceivers positioned within the heterogeneous area. (A) Error of the mean models of V ∗
S . (B) Standard devia-

tion of V ∗
S . (C) Resolution of V ∗

S . The error and standard deviation values are presented as fluctuations from

a background value of 2.8 km/s.
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Figure 13. Rotational-based FWI results, with correctors, using receivers positioned within the heteroge-

neous area. (A) Misfit reduction. (B) Waveform comparisons between the target and synthetic data. Source–

receiver positions are shown in the left panel, with the green source (star) and receiver (diamonds) positions

indicating the source–receiver pairs that were used to generate the presented target (black) and synthetic

(red) waveforms in the right panel. The waveforms are normalised by the maximum amplitude of the se-

lected receivers. (C) Target and final V ∗
S models, and their corresponding residuals. Both the target and final

models are homogenised using ε0 = 1.0. The residuals between the target and final models are represented

as fluctuations from a background value of 2.8 km/s.
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Figure 14. Error Ēm as a function of ε0 for V ∗
S , which is derived from the FWI results, with correctors,

using displacement (solid red) and rotational (solid black) receivers positioned within the heterogeneous

area. Results from the other cases (dashed curves) are also shown for comparison.
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Figure 15. Statistics of the displacement- and rotational-based FWI results, with correctors, using receivers

positioned within the heterogeneous area. (A) Error of the mean models of V ∗
S . (B) Standard deviation of

V ∗
S . (C) Resolution of V ∗

S . The error and standard deviation values are presented as fluctuations from a

background value of 2.8 km/s.
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Figure 16. Numerical demonstration to show indications of small-scale structures via the inverted correc-

tors. (A) Source (black stars) and receiver (black diamonds) configuration for the numerical experiment.

Five-hundred rotational receivers are positioned at location A. (B) VS and (C) VP heterogeneities around

location A. Black dots represent the receiver positions. Inverted diagonal components, (D) Jr,11 and (E)

Jr,22. (F) Inverted off-diagonal component, Jr,12.
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Figure 17. Resolution images of V ∗
S for different ε0. The resolutions for ε0 = 0.5, ε0 = 1.0 and ε0 = 1.5

are shown. The presented results are for displacement receivers positioned (A) within and (B) outside of

the heterogeneous area, and rotational receivers positioned (C) within and (D) outside of the heterogeneous

area. We used correctors in the FWI process for (C).



54 K. MUKUMOTO, Y. CAPDEVILLE, S. SIMGH, T.TSUJI

10 km

20 km

30 km

10 km 20 km 30 km

2.4 2.8 3.2

Vs (km/s)

10 km

20 km

30 km

10 km 20 km 30 km
10 km

20 km

30 km

10 km 20 km 30 km
10 km

20 km

30 km

10 km 20 km 30 km

10 km

20 km

30 km

10 km 20 km 30 km

4.8 5.6

Vp (km/s)

10 km

20 km

30 km

10 km 20 km 30 km
10 km

20 km

30 km

10 km 20 km 30 km
10 km

20 km

30 km

10 km 20 km 30 km

10 km

20 km

30 km

10 km 20 km 30 km

2.4 3.2

Density (tonne/m^3)

10 km

20 km

30 km

10 km 20 km 30 km
10 km

20 km

30 km

10 km 20 km 30 km
10 km

20 km

30 km

10 km 20 km 30 km

10 km

20 km

30 km

10 km 20 km 30 km

0 1 2 3 4

Total anisotropy (%)

10 km

20 km

30 km

10 km 20 km 30 km
10 km

20 km

30 km

10 km 20 km 30 km
10 km

20 km

30 km

10 km 20 km 30 km

Vs*

Vp*

Density*

Anisotropy*

Target model Displacement
inside

Rotation inside Rotation inside 
(corrector)

Figure A.1. Comparison of the FWI results. The V ∗
S , V ∗

P , density∗ and anisotropy∗ structures, which are

homogenised using ε0 = 1.0, are shown. Target model (”Target model”). Displacement-based FWI results

using receivers positioned within the heterogeneous area (”Displacement inside”). Rotational-based FWI

results, without correctors, using receivers positioned within the heterogeneous area (”Rotation inside”).

Rotational-based FWI results, with correctors, using receivers positioned within the heterogeneous area

(”Rotation inside (corrector)”).
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Figure A.2. Comparison of the error of mean models of the FWI results: The V ∗
S , V ∗

P and density∗ struc-

tures, which are homogenised using ε0 = 1.0, are shown. Mean model for displacement receivers positioned

within the heterogeneous area (”Displacement inside”). Mean model, without correctors, for rotational re-

ceivers positioned within the heterogeneous area (”Rotation inside”). Mean model, with correctors, for

rotational receivers positioned within the heterogeneous area (”Rotation inside (corrector)”).
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Figure A.3. Comparison of the standard deviations in the FWI results from the target model. The V ∗
S , V ∗

P

and density∗ structures, which are homogenised using ε0 = 1.0, are shown. Deviation for displacement

receivers positioned within the heterogeneous area (”Displacement inside”). Deviation, without correctors,

for rotational receivers positioned within the heterogeneous area (”Rotation inside”). Deviation, with cor-

rectors, for rotational receivers positioned within the heterogeneous area (”Rotation inside (corrector)”).
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Figure A.4. Comparison of the resolutions of the FWI results. The V ∗
S , V ∗

P and density∗ structures, which are

homogenised using ε0 = 1.0, are shown. Resolution for displacement receivers positioned within the het-

erogeneous area (”Displacement inside”). Resolution, without correctors, for rotational receivers positioned

within the heterogeneous area (”Rotation inside”). Resolution, with correctors, for rotational receivers po-

sitioned within the heterogeneous area (”Rotation inside (corrector)”).
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Figure A.5. Source (red stars) and receiver (black diamonds) configurations for the synthetic tests of the

strain-based FWI. (A) Configuration with 8 sources and 26 receivers positioned outside of the heterogeneous

area. (B) Configuration with 8 sources positioned outside of the heterogeneous area and 150 receivers

positioned within the heterogeneous area.
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Figure A.6. Strain-based FWI results using receivers positioned outside of the heterogeneous area. (A) Mis-

fit reduction. (B) Waveform comparisons between the target and synthetic data. Source–receiver positions

are shown in the left panel, with the green source (star) and receiver (diamonds) positions indicating the

source–receiver pairs used to generate the presented target (black) and synthetic (red) waveforms in the

right panel. The waveforms are normalised by the maximum amplitude of the selected receivers.
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Figure A.7. Strain-based FWI results using receivers positioned outside of the heterogeneous area. The V ∗
S ,

V ∗
P and density∗ structures are shown for the target (”Target model”) and final models (”FWI”), and their

corresponding residuals (”Residuals”). Both the target and final models are homogenised using ε0 = 1.0.

The residuals between the target and final models are represented as fluctuations from background VS (2.8

km/s), VP (5.0 km/s) and density (3.0 t.m−3) values.
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Figure A.8. Strain-based FWI results, without correctors, using receivers positioned within the heteroge-

neous area. (A) Misfit reduction. (B) Waveform comparisons between the target and synthetic data. Source–

receiver positions are shown in the left panel, with the green source (star) and receiver (diamonds) positions

indicating the source–receiver pairs used to generate the presented target (black) and synthetic (red) wave-

forms in the right panel. The waveforms are normalised by the maximum amplitude of the selected receivers.
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Figure A.9. Strain-based FWI results, without correctors, using receivers positioned within the heteroge-

neous area. The V ∗
S , V ∗

P and density∗ structures are shown for the target (”Target model”) and final models

(”FWI”), and their corresponding residuals (”Residual”). Both the target and final models are homogenised

using ε0 = 1.0. The residuals between the target and final models are represented as fluctuations from

background VS (2.8 km/s), VP (5.0 km/s) and density (3.0 t.m−3) values.



Gradient FWI and subwavelength heterogeneities 63

(A)
Misfit Reduction

0.0

0.3

0.6

0.9

m
is

fi
t

0 10 20

iteration number

(B)
Waveform comparison

0 km

20 km

40 km

0 km 20 km 40 km

1 2

Receiver 1

−0.5

0.0

0.5

0 s 10 s 20 s 30 s 40 s

Receiver 2

−1

0

1

0 s 10 s 20 s 30 s 40 s

Figure A.10. Strain-based FWI results, with correctors, using receivers positioned within the heteroge-

neous area. (A) Misfit reduction. (B) Waveform comparisons between the target and synthetic data. Source–

receiver positions are shown in the left panel, with the green source (star) and receiver (diamonds) positions

indicating the source–receiver pairs that were used to generate the presented target (black) and synthetic

(red) waveforms in the right panel. The waveforms are normalised by the maximum amplitude of the se-

lected receivers.
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Figure A.11. Strain-based FWI results, with correctors, using receivers positioned within the heteroge-

neous area. The V ∗
S , V ∗

P and density∗ structures are shown for the target (”Target model”) and final models

(”FWI”), and their corresponding residuals (”Residual”). Both the target and final models are homogenised

using ε0 = 1.0. The residuals between the target and final models are represented as fluctuations from

background VS (2.8 km/s), VP (5.0 km/s) and density (3.0 t.m−3) values.


