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Abstract—Nowadays, large amounts of data are generated
by a wide range of data streams. This data contains valuable
knowledge to support decision-making processes in a variety of
application domains, such as smart cities, social media analysis,
and the Internet of Things. To address the constantly changing
data, stream reasoning has emerged as a crucial method for
performing logical reasoning on streams of data. This paper
focuses on the limitations of existing stream reasoning systems
based on Answer Set Programming (ASP). It proposes a novel
solution based on Deep Reinforcement Learning (DRL) to handle
continuous data streams efficiently. Existing ASP-based stream
reasoning systems face challenges in managing their internal state
and effectively handling data streams over extended periods.
To overcome these limitations, we propose an approach that
integrates cache management techniques with DRL and ideas
from heuristics developed for the Conflict-Driven Constraint
Learning (CDCL) algorithm. DRL is chosen for its ability to
outperform traditional Reinforcement Learning (RL) algorithms
in managing complex tasks and generalizing learned policies to
unseen situations. The research contributions include a DRL-
based framework that efficiently manages learned constraints in
ASP-based stream reasoning engines. The proposed approach
is compared to recent work in the literature, and the results
demonstrate its benefits in terms of average cache utilization.
The findings showcase the potential of the proposed DRL-based
solution for improving the performance and widespread imple-
mentation of stream reasoning with ASP engines. By effectively
handling the dynamic and continuous nature of data streams.

Index Terms—Data Streams, Stream Reasoning, Reinforce-
ment Learning, ASP, Constraint Learning

I. INTRODUCTION

The explosion of data worldwide poses new challenges and
opportunities for research, business, and society in general.
According to the International Data Corporation (IDC), the
amount of global data is set to grow from 33 zettabytes (Zb) in
2018 to 175 Zb in 2025. This data is generated by technologies
such as autonomous vehicles, IoT devices, augmented reality,
and 5G communications.

The Web and the Internet of Things are dynamic environ-
ments where data streams are a valuable source of knowledge
for many use cases, such as social media analytics, smart cities,
safety, and autonomous vehicle control. Stream reasoning is
an approach that studies how to perform logical reasoning on
constantly changing data. Since this data has a limited validity
period and needs to be processed quickly to produce relevant
results, reasoning about the data must be done in near-real
time.

Stream reasoning can be used to extract implicit knowledge
from data flows. For example, it can be used to detect anoma-
lies in a data stream and provide clear explanations to quickly
understand the situation. Answer Set Programming (ASP) is a
declarative programming paradigm. It is a powerful rule-based
language for knowledge representation and reasoning. The
Logic-based framework for Analytic Reasoning over Streams
(LARS) extends ASP to specify complex decision problems on
streaming data. Several specific stream reasoners supporting
LARS, e.g., Ticker [11] or Laser [24], have recently been
proposed. The limitations of these modern stream reasoning
systems in terms of expressivity of the LARS formalism
they support pushed some researchers to focus on stream
reasoning systems based on ASP. The effectiveness of ASP
solvers, which utilize Conflict-Driven Constraint Learning
(CDCL), has been demonstrated in modeling and solving
a wide range of problems in stream reasoning. However, a
significant drawback arises from their algorithmic limitations
when operating continuously over extended periods. These
solvers lack an efficient mechanism to manage their internal
state while sequentially handling instances from an input
stream. Their current design mainly focuses on finding one or
more solutions for individual problem instances during each
execution, making them unsuitable for continuous, real-time
applications. In the context of CDCL algorithm, the constraint
learning module plays a crucial role. It aims to derive a
concise constraint that explains the cause of a conflict when
encountered during the search process, which helps in pruning
the search space. The effectiveness of CDCL implementations
heavily relies on how learned constraints are managed, as the
size of the constraints database (DB) grows exponentially with
each conflict.

To mitigate this combinatorial explosion, various strategies
have been proposed to maintain a reasonable-sized learned
constraints DB [1] [2] [3] [4]. These strategies involve selec-
tive constraint filtering, activity heuristics to delete irrelevant
constraints, quantifying the quality of constraints based on
certain criteria, and dynamic freezing and activation of learned
constraints. Researchers have also explored the use of Re-
inforcement Learning (RL) to generate a constraint removal
policy [5] aimed at improving the execution time of the
CDCL algorithm. This approach has proved to be promising
in achieving better performance.

However, these approaches are primarily designed for iso-



lated problems and may not be suitable for scenarios that
involve continuous data streams, such as stream reasoning.
Stream reasoning requires adapting and enhancing the es-
tablished approaches to handle streaming data effectively
while maintaining accuracy and effectiveness. In this context,
the authors in [6] propose an RL-based solution specifically
tailored for stream reasoners using ASP. Their objective is
to identify valuable constraints that enhance the reasoning
process for a data stream. They introduce an efficient data
caching mechanism for storing computed constraints in the
context of stream reasoning.

Positive aspects of the proposed approach include intelli-
gent management of learned constraints for stream reasoning,
leading to improved solver and ASP-based stream reasoning
engine performances. However, there are also concerns related
to the RL agent’s dependence on the learning rate set by
the user, which could affect the performance. Another issue
is the need to store a maximum number of constraints in
the RL agent’s cache, which can become a limitation if the
number of generated constraints per instance exceeds the cache
capacity. Addressing these limitations is essential for practical
application and broader adoption of the proposed RL-based
solution for stream reasoning with ASP engines.

This research paper aims to address the existing limitations
in stream reasoning based on ASP and enhance its efficiency
and effectiveness by adopting a novel solution based on Deep
Reinforcement Learning (DRL). The choice of DRL stems
from its ability to outperform traditional RL algorithms in
handling complex tasks and its ability to generalize learned
policies to previously unseen situations through representation
learning capabilities. To accommodate the relatively large
discrete action space required by our approach, we have opted
for the Wolpertinger architecture [14]. This decision choice
ensures that the agent’s performance remains unaffected even
as it encounters increasingly complex problems. This paper
presents a significant advancement in the domain of stream
reasoning with ASP, showing great potential for enhancing
performance and widespread implementation across diverse
practical applications. The study introduces the following
contributions:

• A novel approach that adapts the CDCL algorithm to
cope with data streams. It combines methodologies de-
rived from cache management with DRL and heuristics
employed in the CDCL algorithm.

• A DRL framework called CLOSER, short for Con-
straint Learning fOr StrEam Reasoning, to effectively
manage learned constraints in stream reasoning engines.
This framework seamlessly integrates with ASP solvers,
making it compatible with ASP-based stream reasoning
systems.

• An experiment based on a Gym environment that com-
pares our proposed approach with recent work in the
literature on the average cache utilization revealed the
benefits of our approach

The rest of the paper is organized as follows. Section

II presents the preliminaries, and Section III discusses the
literature review. Then, Sections IV and V present the system
model and the problem formulation, respectively. In section
VI, we present the proposed approach. The experiments and
the results are detailed in Section VII. Finally, Section VIII
concludes and gives some perspectives.

II. PRELIMINARIES

LARS is a logic-based framework for stream reasoning that
extends ASP with generic window operators and additional
controls to specify complex decision problems on streaming
data [8]. LARS enables reasoning about continuous data
streams in real-time, and provides constructs for representing
temporal data, including time intervals and duration. LARS
uses window functions to access parts of the data stream. It also
offers temporal modalities : the at operator @t, the somewhere
operator ♢ and the everywhere operator □ . We focus in this
work on stream reasoning based on translating Plain LARS
programs into ASP programs. This technique was extensively
studied in [10] and [11].

An ASP program is a set of rules of the form:

a← l1, ..., ln (1)

where a is an atom and l1, ..., ln are literals for n ≥ 0.
An atom is an expression of the form p(t1, ..., tk), where p
is a predicate symbol and t1, ..., tk are terms, i.e., either a
variable or a constant (a function could be represented using
predicates). A literal l is either an atom ai (positive) or its
negation not ai (negative), where not is negation as failure;
the complement (opposite) of l is denoted by l, and we let
L = {l|l ∈ L}. An atom, a literal, or a rule is ground, if no
variables appear in it. The grounding of a program Π is the
set ΠG of all ground rules constructible from rules r ∈ Π by
substituting each variable in r with some constant appearing
in Π.

Given a rule r of the form (1), the set H(r) = {a} is the
head and the set B(r) = B+(r) ∪ B−(r) = {l1, ..., ln} is
the body of r, where B+(r) and B−(r) contain the positive
and negative body literals, respectively. A rule r is a fact if
B(r) = ∅ and a constraint if H(r) = ∅.

The semantics of an ASP program Π is given for its ground
instantiation ΠG. Let A be the set of all ground literals
occurring in ΠG. An interpretation is a set I ⊆ A∪A of literals
that is consistent, i.e., I ∩ I = ∅; each literal l ∈ I is true,
each literal l ∈ I is false, and any other literal is undefined.
An interpretation I is total, if A ⊆ I ∪ I . An interpretation I
satisfies a rule r ∈ ΠG, if H(r) ⊆ I whenever B(r) ⊆ I . A
model of ΠG is a total interpretation I satisfying each r ∈ ΠG.
Moreover, I is stable (an answer set), if I is a ⊆-minimal
model of the reduct {H(r)← B+(r)|r ∈ ΠG, B−(r)∩I = ∅}
[12]. Any answer set of ΠG is also an answer set of Π.

Modern implementations of ASP solvers, including Wasp
[19], are based on the CDCL algorithm [13]. Wasp computes
an answer set for a given propositional program P using the



Algorithm 1 [18]. The process begins with an empty interpreta-
tion I as input. The Propagate function extends I with deduced
literals (line 1) while keeping track of the reasons for each
deduction by constructing an implication graph representation.
This function is similar to unit propagation used in SAT solvers
[21] but also leverages the characteristics of ASP to perform
other inferences (e.g., utilizing the knowledge that each answer
set is a minimal model). Propagate returns false if an inconsis-
tency or conflict is detected and true otherwise. If Propagate
returns true and I is a total interpretation (line 2), CheckModel
is invoked (line 3) to verify if I constitutes an answer set.
If the stability check succeeds, I is returned; otherwise, it is
further analyzed by the AnalyzeConflictAndLearnConstraints
procedure. Alternatively, if there are undefined literals in I,
a heuristic criterion is employed to choose one (denoted
as l). The computation continues with a recursive call to
ComputeAnswerSet on I∪{l} (lines 8-9). If the recursive call
returns an answer set, the computation terminates by returning
it (line 11). Otherwise, the algorithm backtracks and unwinds
choices until the consistency of I is restored, while propagating
the consequences of learned constraints derived from conflict
analysis. Conflicts detected during propagation are analyzed by
the AnalyzeConflictAndLearnConstraints procedure (line 17).

This procedure is typically complemented with heuristic
techniques that control the number of generated constraints
(which can be exponential) and potentially restart the compu-
tation to explore different branches of the search tree.

Algorithm 1 Compute Answer Set
Input: Interpretation I for program P
Output: Answer set or INCOHERENT

1: while Propagate(I) do
2: if I is total then
3: if CheckModel(I) then
4: return I;
5: break;
6: end if
7: end if
8: l← ChooseUndefinedLiteral();
9: l′ ← ComputeAnswerSet(I ∪ {l})

10: if l′ ̸= INCOHERENT then
11: return I ′;
12: end if
13: if there are violated constraints then
14: return INCOHERENT ;
15: end if
16: end while
17: AnalyzeConflictAndLearnConstraints(I);
18: return INCOHERENT ;

III. RELATED WORK

In current implementations of the CDCL algorithm, the
constraint learning module is recognized as one of the most
important components. This importance stems from the role

that constraints play in the CDCL algorithm. Constraint learn-
ing is initiated when the current branch of the search tree
leads to a conflict, and its aim is to derive a constraint that
succinctly expresses the causes of the conflict. This learned
constraint is then used to prune the search space. In practice,
the effectiveness of CDCL implementations depends heavily
on the strategy used to manage the learned constraints DB.
Indeed, as each conflict adds a new constraint to the learned
constraints DB, its size grows exponentially. To limit the
impact of this combinatorial explosion, several strategies have
been proposed. The aim of these strategies is to maintain a
reasonable-sized learned constraints DB by eliminating con-
straints deemed irrelevant for subsequent searches.

In the literature, two main approaches are currently available
to delete learned constraints:

• Static approaches, where a numerical value is assigned
to the learned constraint during the conflict processing.
This value represents the constraint’s activity score and is
used to weigh each constraint according to its relevance
to the search process.

• Dynamic approaches where the activity values associated
with the learned constraints change throughout the CDCL
algorithm execution. Constraints deemed irrelevant (inac-
tive) are eliminated from the DB.

In order to reduce the number of constraints to be stored
during the execution of the CDCL algorithm, many approaches
were developed in the field of satisfiability testing (SAT) [21].
In what follows, we present a non-exhaustive list of the main
approaches based on a review of the literature we conducted.
One of the first works to explore clause deletion strategies
is GRASP [1]. It uses a constraint filtering strategy with a
selective approach for controlling the size of the constraint
DB, where constraints resulting from conflicts below a certain
size threshold are added to the DB, while larger constraints
are retained as long as they remain unit constraints. In [2], the
authors suggest an aggressive constraint suppression method
utilizing an activity heuristic, where constraints with low
activity or limited contribution to recent conflict analysis are
deemed irrelevant, and the constraint limit is progressively
expanded after each restart. In [3], the authors use the num-
ber of different levels of Literals Blocks Distance (LBD) 1

involved in a given learned constraint to quantify the quality
of the learned constraints. Constraints with a smaller LBD
are considered more relevant. In [4], the authors proposed
an approach based on dynamic freezing and activation of
learned constraints. At a given search state, using a relevant
selection function based on progress saving, it activates the
most promising learned constraints while freezing irrelevant
ones.

These works embody extensive human experience and rigor-
ous experimentation, resulting in the development and success-
ful application of highly effective heuristics. These achieve-

1The term ”Literal Block Distance” (LBD) is used to denote the number
of decision levels in a learned constraint. This value serves as an indicator
used to assess the significance of a learned constraint.



ments represent significant progress in the field. Nevertheless,
an intriguing question arises: Could alternative heuristics hold
the promise of achieving even higher levels of performance?
As a consequence, the pursuit of improved heuristics remains
an ongoing challenge.

In an effort to address this challenge, the authors in [5]
present an approach based on RL that generates a heuristic
specifically designed to handle constraint deletions within the
CDCL algorithm. The aim of this work is to use machine
learning to automatically learn this heuristic. The authors
employ RL techniques to develop a constraint removal policy
aimed at improving the execution time of the CDCL algorithm.
The problem is formulated as an episodic RL task, where
an agent interacts with an environment over discrete and
finite time steps. During each time step, which corresponds
to a garbage collection event, the agent receives observations
from the environment, takes actions, and accumulates rewards.
To make decisions about which constraints to retain, the
agent uses a policy gradient algorithm to directly optimize
a stochastic policy. At each time step, the agent determines
which constraints, out of a total of N , should be preserved
or discarded. This is achieved by generating an integer LBD
threshold as an action. Any constraint with an LBD value
greater than this threshold is selected for deletion.

The previously presented studies has made significant con-
tributions to the field. However, these initial approaches were
mainly designed for isolated problems and are not well-
suited for scenarios that demand the processing of continuous
data streams, especially in the context of stream reasoning
where modern stream reasoners like TICKER [11] or the dis-
tributed reasoner [10] utilize ASP solvers to generate answer
streams for newly incoming data. This approach, referred to
as RESTART [6], involves creating a fresh instance of an ASP
solver each time reasoning is invoked, thereby utilizing learned
constraints for a single reasoning cycle. The existing methods
fall short when it comes to efficiently addressing stream-based
problems. Hence, the primary challenge in this area is to adapt
and enhance these established approaches to effectively handle
streaming data while maintaining accuracy and effectiveness.

Overcoming this challenge is crucial as it lays the ground-
work for advancing stream reasoning applications and unlock-
ing its full potential across various domains and industries. In
their research paper, the authors of [6] suggest an innovative
approach to address this problem. They propose an RL-based
solution that is specifically tailored for stream reasoners using
ASP. The objective is to identify the most valuable constraints
that can enhance the overall reasoning process for a data
stream. They propose an efficient data caching mechanism
for storing the computed constraints in the context of stream
reasoning. Additionally, the article presents an extension to the
WASP [19] ASP solver, allowing for data exchange with an
external cache. The effectiveness of the learned constraints is
influenced by the learning rate. When the learning rate is high,
the system assumes strong interdependence among the data in
the stream, enabling previously cached data to assist in solving
subsequent problems. Conversely, with a low learning rate,

the system becomes more skeptical and adjusts its estimates
gradually. In this approach, the constraint learning problem is
transformed into a multi-armed bandit problem with multiple
plays [7], which can be formulated as follows: given a set
N = {n1, ..., nk} of random variables of unknown mean
Θ = {θi = E[ni]|ni ∈ N} which are i.i.d. in time, at each
instant t, a set Nt ⊆ N is selected according to the weights
Wt−1 associated with the variables in N. The selected variables
Nt are observed at t, and a reward vector Rt is determined
for them, allowing to calculate a new set of weights Wt that
better approximates Θ.

The authors consider the following reward function:

Rt = a · [1− 2 · LBDt(c) + uat(c)− uft(c)− 0.25 · nft(c)]
(2)

Where LBDt(c) is the value of the LBD heuristic calculated
for a generated constraint c, a is a coefficient chosen in relation
to the number of decision levels of a basic program, uft(c) =
1 if c has been frozen, i.e. it was not initially supplied to
the solution algorithm, but rediscovered during its execution,
uat(c) = 1 if a constraint was supplied to and used by the
solution algorithm and nft(c) = 1 if the constraint was frozen
and not rediscovered. The coefficient nf allows the algorithm
to penalize and subsequently remove constraints that have been
frozen for a long time.

In the previous work, several positive aspects and advance-
ments are evident. Notably, it introduces intelligent manage-
ment of learned constraints in the context of stream reasoning,
a significant update to traditional solutions. This innovation
proves to enhance the performance of modern solvers and
ASP-based stream reasoning engines by efficiently reusing
data from previous instances. By leveraging this learned
knowledge, subsequent instances are solved more effectively,
leading to improved overall performance. This work represents
a notable step forward in the field of stream reasoning with
ASP engines.

However, certain shortcomings must also be considered.
One notable concern arises from the dependence of the RL
agent’s behavior on the learning rate set by the user. Inap-
propriate settings of the learning rate could potentially lead
to suboptimal performance and hinder the agent’s ability to
achieve desirable results. Another critical issue lies in the need
for the RL agent to store a maximum number of constraints
in its cache. This requirement could become a significant
limitation, particularly if the solver generates an excessive
number of constraints that surpass the cache’s capacity. When
the cache cannot accommodate all generated constraints, the
agent’s action values will not be properly updated, which can
negatively impact the overall efficiency and accuracy of the
system.

Addressing the limitations mentioned above is of utmost
importance to ensure the practical application and widespread
acceptance of the proposed solution. To achieve this objec-
tive, our research paper makes several significant contribu-
tions. Firstly, we propose a novel approach that modifies



the CDCL algorithm to handle data streams by incorporating
techniques from cache management, DRL, and heuristics from
the CDCL algorithm. Secondly, we introduce CLOSER (Con-
straint Learning fOr StrEam Reasoning), a DRL framework
to effectively manage learned constraints in stream reasoning
engines, seamlessly integrating it with ASP solvers, thereby
ensuring compatibility with all ASP-based stream reasoning
systems. Lastly, we conduct an experiment comparing our pro-
posed approach to recent work in the field concerning average
cache utilization. The results demonstrate the clear advantages
and benefits of their approach over existing methodologies.

IV. CLOSER ARCHITECTURE

CLOSER involves two separate systems, namely the WASP
reasoner and the DRL agent, which work collaboratively to
optimize the management of learned constraints. The com-
munication between both systems is facilitated thanks to the
use of sockets, allowing seamless data exchange. The key
components and interactions are presented in Fig.1.

The WASP system is responsible for executing Algorithm1
which involves constraint learning. Whenever WASP learns
a new constraint during the learning process, it sends this
information to the DRL agent. Each time the solver deletes a
constraint from the set of constraints being considered, it sends
a message to the DRL agent to inform about this event. The
DRL agent takes up the responsibility of managing the cache
where constraints are stored. To facilitate efficient communica-
tion and tracking, the communication between the two systems
utilizes the unique IDs generated for constraints when they
were initially generated. These IDs serve as reference points
for identifying specific constraints during data exchange.

Before executing Algorithm1 the solver retrieves all the
constraints stored in the cache. This step ensures that the solver
has access to the most up-to-date and relevant set of constraints
for constraint learning and problem-solving. After executing
Algorithm1 the solver generates a reward that reflects the
quality of the constraints stored in the cache. This reward is
then sent back to the DRL agent, providing valuable feedback
to the agent about the effectiveness of the constraint set and
the overall problem-solving process.

V. PROBLEM FORMULATION

This section addresses the constraint caching problem
within the framework of stream reasoning using ASP. Our
primary objective is to optimize cache performance by maxi-
mizing the number of cached constraints that are accessed by
the ASP system while solving the instance.

The performance of the cache is computed using the for-
mula:

P = ΣM
n=11n (3)

Where :

Fig. 1. Architecture of CLOSER

1n =

 1, if the cached constraint Cn

is accessed by the solver,
0, otherwise

(4)

The value we are trying to maximize can be expressed using
the maximization problem :

Problem: Maximize
ϕ

P (5)

Subject to Σn=1ϕn ≤M (6)

where ϕ is the vector that records the states of all constraints
(describing whether they are cached or not), and each element
ϕn in the vector is an indicator to show if the constraint is
cached :

ϕn =

{
1, if the constraint Cn is cached,
0, otherwise (7)

We opt for formula (3) as it gives precedence to the
cached constraints, rather than the conventional cache hit rate
formula that focuses on requests. This choice is based on the
appropriateness of formula (3) for our specific use case.

VI. THE PROPOSED APPROACH

In this section, we present our DRL-based approach to
constraint caching for stream reasoning. Our approach for
managing learned constraints is based on the Wolpertinger
architecture 2 [14], shown in Algorithm 2 which is an exten-
sion of the actor-critic framework [20]. Within this approach,
we find an efficient action-generating actor and a critic to
enhance the actor’s decisions. The architecture was selected
due to its remarkable capability in handling large discrete
action spaces, which is particularly relevant for our research,
as we encounter a significantly large number of potential
actions. Specifically, our DRL agent generates the LBD value,
representing constraints it deems most effective in addressing
forthcoming instances in the data stream. The LBD value

2Our implementation of the wolpertigner architecture is based on the github
repository at the address: https://github.com/ChangyWen/wolpertinger ddpg

https://github.com/ChangyWen/wolpertinger_ddpg


Fig. 2. The DRL Agent Architecture [14]

ranges from 2 to the size of the largest constraint acquired
by the solver. Given that the size of learned constraints is
beyond our control, the sheer magnitude of possible actions
becomes even more pronounced.

The DRL agent, as shown in Fig. 2, consists of three main
parts: actor network, K-Nearest Neighbors (KNN) and critic
network. The actor network takes as input statistics about the
LBD values of cached constraints, and outputs a proto action
â. The KNN receives the proto action â and calculates the L2
distance between every valid action (that is part of our action
space) and then returns the K-nearest possible actions. The
critic network then receives the K actions and refines the actor
network on the basis of the Q value. The Deep Deterministic
Policy Gradient (DDPG) [23] is applied to update both critic
and actor networks.

Actor: The actor network is defined as a function param-
eterized by θµ, It takes as input the state s ∈ RS and outputs
a proto action â ∈ Ra.

K-nearest neighbors: The KNN is used to avoid having
poor decision making due to the reduction of the huge action
space to one action. To achieve that, the KNN expands the
proto action â to a set of valid actions in our action space :

Algorithm 2 Actor-Critic Algorithm for Constraint Caching
1: Initialize actor network µ(s|θµ) and critic network

Q(s, a|θQ) with random weights θµ and θQ.
2: Initialize target networks: θµ

′ ← θµ and θQ
′ ← θQ

3: Initialize empty replay buffer D
4: Initialize features space F
5: for t = 1 to T do
6: Receive Observation st
7: Receive proto action from actor network : ât =

µ(st|θµ)
8: Receive k closest actions Ak = gk(ât)
9: Receive best action : at =

argmaxaj∈AK
Q(st, aj |θQ)

10: Execute action at and observe reward rt and new state
st+1

11: Store transition (st, at, rt, st+1) in D
12: Sample randomly a mini batch of b transitions

(si, ai, ri, si+1) from the replay buffer D
13: Calculate target for every i in b : yi = ri +

γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′

)
14: Update the critic by minimizing the MSE Error : L =

1
bΣi(yi −Q(si, ai|θQ))2

15: Update the actor based on the gardient : ∇θµJ ≈
1
bΣi∇θµµ(si|θµ)∇aQ(si, a|θQ)|a=µ(si)

16: Update the target networks using a soft update based
on τ ≪ 1 : θµ

′ ← τθµ + (1 − τ)θµ
′

and θQ
′ ← τθQ +

(1− τ)θQ
′

17: Update the cache state
18: Update features space F
19: Update cache hit rate
20: end for

Ak = gk(ât)

gk =
k

argmina∈A |a− â| (8)

Critic: The critic refines the choice of action by selecting
the highest-scoring action according to the Q-values :

πθ(s) = argmax
s ∈ RS , â ∈ Ak

Q(s, a|θQ) (9)

The actor policy is updated using the gradient:

∇θµJ ≈ 1

b
Σi∇θµµ(si|θµ)∇aQ(si, a|θQ)|a=µ(si) (10)

The parameters of the actor and critic networks are updated
using the following soft updates :

θQ
′
← τθQ + (1− τ)θQ

′
(11)

θµ
′
← τθµ + (1− τ)θµ

′
(12)



At the beginning of each epoch t, the agent observes the
current state st. Subsequently, the actor network generates a
proto-actor based on the current policy (with some exploration
noise), which is then passed to the KNN module. The ex-
panded action set is evaluated by the critic network to estimate
the potential value of each action. For updating the actor and
critic networks, a minibatch of size b is randomly sampled
from the memory D (replay buffer). This memory allows
the networks to learn from past experiences and refine their
performance. The complete process is outlined in Algorithm
2, providing a step-by-step description of CLOSER.

VII. EVALUATION

A. Dataset

To evaluate our approach, we chose to work on the N-
Queens Completion problem [22]. We chose this problem
because it is a well-known problem in the community and
it was used as a benchmark in many ASP competitions. In
addition, it can only be solved using stream reasoning based
on a translation of LARS program into ASP program. The
N-Queens Completion problem is a combinatorial problem
based on the game of chess that tries to answer thiss question:
“How can N queens, with k queens already on an N × N
chessboard in non-attacking positions, be arranged in such a
way that none of the N queens can attack each other?”. It is
an interesting benchmark for stream reasoning systems as it
allows for adjusting its difficulty using the parameter n. The
dataset employed in our evaluation was originally introduced
in [6]. In this dataset creation process, the authors began with
an initial satisfiable QC instance. They generated a set of
0.4×N queens positioned them on the chessboard in a manner
that ensured they couldn’t attack each other. Subsequently, the
instance underwent various transformations, such as rotations
and configurations with non-attacking queens. Ultimately, the
dataset was composed of 256 QC instances for each of the
test cases N ∈ {14, 18, 22, 26, 30}. In our research study, we
conducted evaluations using two separate streams of data. The
training stream was generated exclusively from the first 150
QC instances, while the testing stream was generated from the
remaining 106 QC instances.

B. Results

The neural network architecture employed in our exper-
imental tests consists of two components: the actor neural
network and the critic neural network. The actor neural net-
work comprises two hidden layers with 256 and 128 neurons.
Similarly, the critic neural network also consists of two hidden
layers, with 256 and 128 neurons, enabling them to approx-
imate the state-action value function accurately. To ensure
effective learning and long-term rewards, we set the discount
factor to 0.99, which encourages the agent to consider future
rewards when making decisions. Additionally, the number of
neighbors in the k-nearest neighbors (KNN) algorithm was set
to 10 3.

3Implementation and dataset used in evaluation can be found at :
https://anonymous.4open.science/r/CLOSER-B5F5/README.md

TABLE I
AVERAGE NUMBER OF CACHED CONSTRAINTS USED BY THE SOLVER

Methods Datasets
Enc-14 Enc-18 Enc-22 Enc-26 Enc-30

RESTART 1.0997 1.3227 0.3787 0.241 0.0555
CLOSER 1.1417 10.7907 9.8203 8.4603 7.5563

Fig. 3. Plot of cache performance for Enc-14

In this section, we discuss the evaluations conducted in
our research and compare the obtained results with those of
RESTART [6]. The primary focus of our evaluation is to
measure the number of constraints stored in the cache, which
are subsequently used by the solver. The size of the cache is set
to 100 for both approaches. The average number of constraints
stored in the cache, for both approaches is presented in
Table I. The CLOSER’s performances are far superior to those
of the RESTART in all test cases. Our results consistently
show competitive cache utilization compared to RESTART.
However, we observed some degradation in performance for
complex problems. In Fig. 3, we depict the plots representing
the outcomes of the simplest test case: Enc-14. The graph
illustrates that both approaches yield comparable results, and
it is evident that the count of cached constraints utilized
by the solver fluctuates for each approach. In Fig. 4, we
showcase the outcomes achieved for the most challenging
test scenario, Enc-30, with a fixed value of N = 30. The
results indicate that CLOSER outperforms RESTART, yield-
ing superior results across almost all instances within the
data stream. More precisely, in our research methodology,
the solver effectively employs over 20 constraints from the
cache of size 100 for certain instances. On the contrary, the
competing approach struggles to handle the same situations,
as it only utilizes fewer than 3 constraints out of the total
100. This strikingly underscores the remarkable adaptability
of our proposed method in effectively addressing problems of
diverse complexities, . signifying its potential to provide robust
solutions in constraint-solving scenarios.

In summary, our approach demonstrates remarkable results
in terms of average cache memory usage, compared with



Fig. 4. Plot of cache performance for Enc-30

RESTART. Nevertheless, the observed variability in cache
usage across different trials emphasizes the need for further
investigation and fine-tuning. We are confident that our re-
search provides a solid foundation for potential enhancements
in ASP solver efficiency, contributing to the advancement of
constraint-based problem-solving techniques.

VIII. CONCLUSION

We proposed in this paper CLOSER, a novel approach
to address the challenge of managing constraints in stream
reasoning engines. By adapting the CDCL algorithm to handle
data streams and integrating it in a DRL architecture and by us-
ing cache management methodologies, we have developed an
efficient framework for constraint-solving scenarios in ASP-
based stream reasoning systems. The experiment conducted
to compare our proposed approach with recent work in the
literature on average cache utilization clearly demonstrated
the advantages of our approach. The results indicate that our
solution outperforms the existing method, particularly when
dealing with diverse problem complexities. This showcases
the potential of our approach to offer robust solutions in
various constraint-solving scenarios. While we have achieved
remarkable results in terms of average cache utilization, it is
important to acknowledge the observed variability in cache
usage across different trials. This variability emphasizes the
need for further investigation and fine-tuning to optimize the
performance of our approach. The presented work is the
beginning of an ongoing journey to improve and refine our
approach. There is still much room for further exploration.
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