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Abstract—Designing a safe decision-making system for end-to-
end urban driving is still challenging. Numerous contributions
based on Deep Reinforcement Learning (DRL) were developed.
However, they all suffer from the cold start issue and require
extensive convergence training. Recent solutions for urban driv-
ing have emerged based on both Hierarchical Reinforcement
Learning (HRL) and imitation learning to overcome these lim-
itations. Nevertheless, they do not guarantee a safe exploration
for an autonomous vehicle. In the literature, rule-based systems
played a pivotal role in ensuring the safety of self-driving cars,
but they require manual rule encoding. This paper introduces
GHRL, a decision-making framework for vision-based urban
driving that benefits from HRL, and a rule-based system for
safe urban driving. The HRL algorithm learns the high-level
policies, whereas the low-level policies are guided by the expert
demonstration rules modeled with the Answer Set Programming
(ASP) formalism. When a critical situation occurs, the system
will shift to rely on ASP rules. The state of each policy includes
visual features extracted by a convolutional neural network from
a monocular camera, information on localization, and waypoints.
GHRL is evaluated on the Carla NoCrash benchmark. The
results show that by incorporating logical rules, GHRL achieved
better performance over state-of-the-art HRL algorithms.

Index Terms—Hierarchical Reinforcement Learning, Self Driv-
ing Car, Safe Urban Driving

I. INTRODUCTION

Today, most autonomous vehicle (AV) systems use a hand-
crafted modular architecture [4]. However, the modular ar-
chitecture is criticized for showing poor accuracy in highly
interactive environments, such as urban driving. These mod-
els are tightly interconnected, which makes them expensive
to scale and maintain. These limitations are bypassed by
adopting end-to-end architectures, in which a driving policy
is learned and generalized without human intervention [4].
The learned driving policy can also be continuously tuned
with each driving attempt to achieve human-level performance.
A safe driving policy remains an open challenge where the
complexity surpasses a few well-defined tasks (e.g., moving
box robot). The three main categories of end-to-end AV driving
policy are: rule-based methods [16], imitation learning (IL) [5]
[4] [6] and reinforcement learning (RL) [7]. The rule-based
methods are human-designed predetermined rules structured
to achieve the best driving policy by selecting maneuvers and
then planning the trajectory [16]. Despite the popularity of
rule-based systems, manual rule encoding can put a strain on

system engineers as they must anticipate all the crucial and
possible rules for each driving scenario [7]. IL-based methods
are an effective alternative where the driving policy is learned
directly and supervised by mimicking expert demonstrations
as training sets. However, these methods require large amounts
of labeled training data.

To limit the time-consuming hand-labeled data, solutions
that use deep RL (DRL) for end-to-end driver policy learning
have been applied to simple driving scenarios, like lane
keeping, steering control, and managing the acceleration [15].
However, a primary challenge in DRL lies in guaranteeing
the safety of autonomous driving (AD) systems, especially
during the exploration phase [32]. In urban driving scenarios,
when AVs engage in exploratory behavior, they risk taking
actions that could result in catastrophic consequences, poten-
tially jeopardizing passengers’ lives. Moreover, DRL typically
demands a substantial volume of training data [44]. Also,
acquiring such extensive datasets for AD can be exceedingly
challenging [33]. These combined difficulties confine the train-
ing of AVs primarily to simulation environments and make
their transition to real-world driving situations practically
unfeasible.

Several distinct approaches exist to achieve safety in DRL
[34]. One approach entails restricting the expected cost [35].
Alternatively, using the loss function, another method maxi-
mizes the safety constraints [36]. These approaches consol-
idate safety concerns into a complex loss function, making
the optimization more challenging. In contrast, the shielding
technique [37] deploys a shield to directly forestall the agent
from taking actions that might potentially breach safety regula-
tions during the exploration phase of DRL [38]. However, the
shield’s strictness may sometimes hinder the learning agent’s
ability to effectively explore the environment and discover its
optimal policy [43].

Recent studies have shown that Hierarchical Reinforcement
Learning (HRL) is more suitable for urban driving [17]. HRL
helps by breaking the task into smaller sub-tasks with more
straightforward state space, thus reducing the required explo-
ration [22]. On the other hand, IL can help with the cold start
issue by providing a pre-trained expert policy, which helps
guide the agent’s actions. Instead of providing the expert’s
demonstrations as action recommendations, modeling them as



humanlike reasoning using symbolic logical rules increases
the information per interaction and does not limit it to the
current state [39]. This more informationally-rich interaction
method improves the agent’s performance compared to exist-
ing methods. Combining HRL and IL in urban driving can be
a powerful approach to improve the efficiency of the driving
task. However, HRL may suffer from the same safety issues
as RL, such as exploration of unsafe actions and failure to
generalize to new situations [6].

Integrating a rule-based system as a safety mechanism to
represent human background knowledge (BK) can be a po-
tential solution to address safety concerns in critical situations
when using an HRL approach for urban driving. Guided by
the rules, the agent can converge faster by following specific
guidelines or constraints during decision-making, reducing the
risk of accidents or dangerous maneuvers. Moreover, the rule-
based system can provide a fallback option to ensure the safety
of the driver, passengers, and other road users. However, it is
essential to note that incorporating a rule-based system may
limit the agent’s adaptability to new situations and may require
additional engineering effort to define the rules accurately.
Therefore, it is crucial to balance the trade-off between safety
and adaptability when designing an HRL-based autonomous
driving system.

In that respect, this paper proposes a Guided Hierarchical
Reinforcement Learning (GHRL) approach based on vision
and localization for end-to-end urban driving. To safeguard
the integrity of actions taken during the exploration phase,
we inject expert demonstrations expressed in the Answer
Set Programming (ASP) [19] formalism into the learning
process, guiding the Proximal Policy Optimization (PPO)
exploration policy. This fusion of GHRL with ASP offers
several noteworthy advantages over alternative methodologies.
Firstly, it contrasts the intricacies of calculating complex loss
functions, which often exacerbates the optimization process’s
challenges [34] [35]. Moreover, it circumvents the pitfalls
associated with cumbersome shielding techniques, which can
lead to exponential complexity in both state and action di-
mensions. Additionally, unlike methods requiring extensive
computational time, our approach offers a more efficient and
real-time decision-making process [43].

In dangerous situations, exploration by the agent to learn
the best policy might not be feasible and could even result in
catastrophic consequences. Therefore, the system relies solely
on ASP rules to ensure safety. This approach guarantees the
system adheres to predefined safety constraints, preventing
potential pedestrian harm. By incorporating a rule-based sys-
tem in the agent’s decision-making process, the agent can
benefit from both the exploration of the learned policy and
the safety of the rule-based system. Specific situations or
events, such as detecting an obstacle or predicting a dangerous
situation, trigger the switch from one system to another. We
evaluated our method on urban driving scenarios using Carla’s
simulator [11] and demonstrated its effectiveness in handling
various challenges, such as traffic lights and static and dynamic
obstacles.

Hence, the main contributions of this paper can be summa-
rized as follows:
• We proposed GHRL, a model-free on-policy RL algo-

rithm. The algorithm employs PPO and is guided by
expert demonstration rules expressed in ASP.

• In situations where safety is of utmost importance, the
system automatically switches to ASP rules integrated
into the agent’s decision-making process to take the
appropriate action in critical situations.

• We have studied extensive parameters and performed
ablation studies on reward shaping.

• The agents can learn efficient driving policies in the
CARLA simulator that exhibits a wide range of urban
behaviors like lane-following, handling intersections or
traffic lights, and avoiding static or dynamic obstacles.
The framework is adequately justified using the Carla
NoCrash benchmark.

The rest of the paper is organized as follows: Section
II discusses the literature review, Section III is dedicated
to the contribution of this paper, Section IV details all the
experiments and finally, Section V concludes and gives some
perspectives.

II. RELATED WORK

Safe end-to-end autonomous driving has been an active re-
search topic in recent years. Most end-to-end systems now fall
under one of three paradigms: rule-based, imitation learning,
and deep reinforcement learning. Despite much research on
end-to-end urban driving, this paper is concerned explicitly
with safe end-to-end urban driving. While many previous stud-
ies have explored various aspects of urban driving automation,
the safety of passengers and other road users must remain a
top priority.

A. Rule-based Methods

In [27], the authors presented an AV decision-making
system that respects safety considerations and traffic laws
following ISO/PAS 21448 [26]. [28] developed a system that
imposes the safety of AV by validating the rule priority
structure for each decision. [24] proposed a common sense
reasoner using ASP for AV end-to-end decision-making by
simulating the mind of a human driver. The rule-based system
played a pivotal role in ensuring the safety of an AV decision-
making system. However, all the possible scenarios must be
manually anticipated and encoded. Indeed [27], [26], [28] and
[24] presented end-to-end systems while emphasizing safety
features. However, such a system relies on a fixed set of rules
and needs more flexibility to adapt to unexpected scenarios.
Also, this can result in reduced performance and even failure
in complex and dynamic driving situations. Additionally, rule-
based systems can be challenging to maintain and update as
they require manual adjustments for each new scenario.

B. Imitation Learning

IL immediately learns the driving decision model by imi-
tating the expert’s demonstrations using supervised learning



techniques. [2] proposed CIL, capable of executing high-
level navigation commands and its extension CILRS [13] that
introduces a speed prediction head. [5] presented ChauffeurNet
that augments the imitation loss to penalize undesirable events
in urban driving. [23] proposed LBC by training an agent
with privileged information, then using this agent as a monitor
for a second agent without access to privileged information.
[29] applied DAGGER [30] with essential state sampling to
CILRS. The presented approaches effectiveness is restricted
as they rely heavily on hand-labeled data, mostly gathered
from expert-operated vehicles. The system gathers images
and steering angles under different driving conditions with
numerous drivers and complex traffic. However, acquiring
sufficient naturalistic driving data can be challenging in real-
world settings. Additionally, different human drivers may
make vastly different decisions in the same situation, which is
challenging during training.

C. Reinforcement Learning

Recently, several techniques have advocated using DRL for
autonomous urban driving. [15] took a few episodes and a
single monocular front-facing camera to employ a pre-trained
variational autoencoder (VAE) and encode the visual data with
convolutional layers to train a DRL agent to follow a rural road
successfully. IARL [14] was the first DRL work capable of
completing complex end-to-end urban driving by introducing
implicit affordance.

Learning-based methods aim to learn the driving policies
without human intervention. However, ensuring their safety
is a significant concern. Several works tried to overcome
this issue by bypassing the functional requirements of the
neural network [3] or verifying the safety of each action
in post-hoc methods [10]. In [37], a shield is employed to
proactively prevent the agent from taking actions that could
potentially result in safety breaches during the exploration
phases of both model-based DRL [38] [40] and model-free
DRL [41]. This shield is a logical component designed to
carefully consider safety constraints, thereby ensuring safety
during the exploration of an environment [38]. [41] proposed a
shielding technique based on logical neural networks (LNNs)
[42] recommends safe actions and avoids unnecessary ones.
However, synthesizing an offline shield for discrete-event
systems demands an exhaustive, upfront safety analysis for
all potential state-action combinations, resulting in exponential
complexity in state and action dimensions [37] and becoming
over-restrictive [40]. Online shielding lacks worst-case compu-
tation time guarantees, potentially allowing the agent to reach
the next decision state before the shield determines which
action to block. It is suitable in scenarios where alternative
actions, like ”waiting,” can be taken if safety analysis is not
completed promptly [43].

Some works designed hierarchical methods that learn high-
level policies and extract low-level policies by imitating an
expert with an additional layer of safety for each option. [9]
and [8] proposed HRL with safety constraints. However, it
has only been tested on roundabouts and did not include other

features of urban driving that we have considered in our study.
To overcome these limitations, we propose combining HRL
with rule-based systems in this paper. HRL can provide the
flexibility and adaptability to navigate complex and dynamic
urban environments. In contrast, rule-based systems provide a
set of predefined rules that can be applied in critical situations
to ensure safety. By combining both approaches, an AV can
learn from its experiences in a hierarchical manner and make
decisions based on its learned policies. However, in a dan-
gerous or unpredictable situation, the vehicle can switch to a
rule-based system to reduce exploration and ensure safety. This
hybrid approach can balance exploration and safety, making
autonomous urban driving safer and more efficient.

III. GUIDED HIERARCHICAL REINFORCEMENT LEARNING

In GHRL, the agent learns to solve the hierarchically struc-
tured subtasks, with higher-level policies determining which
subtasks to focus on and lower-level policies determining
how to solve each subtask. We used the option-critic (OC)
framework that provides an end-to-end learning method to
construct options [21]. It is a popular approach used in HRL to
model decision-making at different levels of abstraction. For
high-level policies, options represent actions or subtasks that
achieve a specific goal or a subgoal according to waypoints.

A. State

We aim to make the agent’s training more efficient and
effective in completing the navigation task with dynamic
actors by defining the state space S to include sufficient
environmental knowledge as features. In our approach, the
inputs fed to the VAE consist of all objects detected by
Carla’s semantic segmentation and traffic light states. The
VAE encoder’s CNN creates a vector z from a Gaussian
distribution. To augment the vector z, we have added external
state variables such as waypoint features w. We have also
included accurate localization by fusing GPS and IMU [18],
speed, and orientation as a matrix m, which predicts additional
features to aid training, such as the distance to impact and
distance to an incoming event (such as entering an intersection
or stopping at a traffic light). Furthermore, augmenting the data
variety includes lateral distance and angle with the optimal
trajectory. This approach results in a more disentangled agent
training process.

B. Reward Shaping

We developed quadratic rewards with a quadratic decrease
for each sub-policy. This reward function incentivizes the
agent to take actions closer to the optimal one whilst pe-
nalizing actions that deviate farther from it. In addition, we
integrated speed, deviation, and angle factors into the reward
function to evaluate the agent’s actions. To ensure that the
agent learns effectively, we have demonstrated through various
experiments that it is better to multiply the rewards than
to add them. For instance, if the agent controls a vehicle,
the reward function may reward target speeds and penalize
high deviations from the desired path. Similarly, actions that



result in the vehicle maintaining a specific angle or trajectory
may also be rewarded. The reward function encourages the
vehicle to maintain a target speed, stay centered in the lane,
and align with the road. However, it offers high rewards
only when several requirements are partially completed. By
logically formulating the reward function, the agent can learn
more effectively and optimize critical factors such as safety
and efficiency. These rewards are defined as follows:

R = f(rv) ∗ f(rd) ∗ f(rα) (1)

where f is a quadratic function, rv is the velocity reward
function defined by:

rv =


−10 on infraction
v

vmin
v < vmin

1 vmin ≤ v < vtarget(
1− v−vtarget

vmax−vtarget

)
v ≥ vtarget

(2)

where vmin and vmax are the minimum and maximum allowed
velocity (speed) according to the law, and vtarget is the identi-
fied target velocity, rd is the deviation distance reward function
defined by:

rd =

{
0 d >= 3

1− d
dmax

else
(3)

where d is the route deviation distance and dmax is the
maximum threshold set to 3 meteres. It indicates that rd
decreases with the increase of d. If d is larger than the
maximum allowed value, then the agent will get a minimum
reward of 0, and the deviation degree reward rα is calculated
as follows:

rα =

{
1−

∣∣∣ αdiff
αmax

∣∣∣ |αdiff | < αmax

0 else
(4)

where αmaxis the maximum threshold set to 90◦ and αdiff is
the angle difference between the vehicle’s forward vector and
the current way-points forward vector.

C. GHRL Learning

Designing a single end-to-end policy for urban driving with
numerous behaviors can be challenging and may lead to poor
performance in completing the driving task. To address this
issue, we propose an OC framework where high-level and
low-level policies are trained synchronously. This framework
allows for the incorporation of expert demonstrations by
injecting rules into the learning process, which guide the
agent’s behavior.

1) Low-Level Policies: We train low-level policies using
PPO while incorporating expert demonstrations through ASP
rules injected by a well-defined hyperparameter p. These rules
are considered ”on-policy,” indicating that the agent generates
them during training. By integrating these expert demonstra-
tions into the learning process, the agent can converge faster,
reducing the time spent on exploration. Also, this integration
allows the agent to benefit from the expert’s demonstrations
and valuable knowledge for handling various driving scenarios
effectively. We represent the set E of expert trajectories as

τ = (s0, R0, a0, s1, R1, a1, ...), where each state si has a
corresponding ASP rule Ri that determines the appropriate
action ai (explained in the following sub-section). Hence, the
agent can effectively incorporate the expert’s knowledge into
decision-making as a pair (si,ai) while having a single source
of reward. The new modified policy πϕ

θ is used in the clipping
function defined in [31] as follows:

πϕ
θ =

{
πθ sampled from Environment with probability 1-p
πE sampled from Expert E with probability p

(5)
In Algorithm 1, we have modified the PPO by including

expert demonstrations in the training data and updating the
policy to maximize the probability of taking actions guided
by the expert. The hyperparameter p controls the probability
of selecting an expert action rather than relying solely on the
policy’s output, and it can be gradually decreased as the policy
improves during training. By utilizing expert demonstrations,
we provide the learning algorithm with a set of constraints
that steer it toward the desired behavior while allowing for
exploring and discovering new approaches. This hybridization
enables the algorithm to learn from the expert’s knowledge
and experiences, leading to more effective decision-making
and better overall performance in handling various tasks.

Algorithm 1 GPPO Low-Level Policies
Initialize parameters θ, p
Initialize storage ε← {}
for every update do

for actor 1,2,...,N do
Sample τ from expert trajectories E
if p then

for steps 1, 2, . . . , T do
st, Rt, at, rt, st+1 ∼ πE (at | st)
Store transition E ← E ∪ {(st, at, rt)}

end for
else

for steps 1, 2, . . . , T do
Execute an action in the environment
st, at, rt, st+1 ∼ πθ (at | st)
Store transition E ← E ∪ {(st, at, rt)}

end for
end if

end for
Optimize LGPPO wrt θ, with K epochs and
minibatches size M ≤ NT
θ ← θ − η∇θL

GPPO

Empty storage E ← {}
end for

2) High-Level Policies: The high-level master policy πhigh

is trained after completing all low-policies training. Algorithm
2 is an OC algorithm responsible for learning the different
high-level intra-option policies πot (at | st, ot) and the ter-
mination condition βot (st, ot) for the option ot at state st.
In dangerous situations, φ, the agent will rely solely on the
ASP rule set to make safe decisions. This rule set will guide
the AV in executing appropriate actions to address the short-
term goal, detailed in the upcoming sub-section. The high-
level policy over options is a ϵ-greedy form on approximating
the option-value function QΩ(St, Ot), where Ω is the specific



value function to a particular option ot at state st. OC trains
the intra-option policies as follows (see [22] for more details):

∂L(θ)

∂θπ
= E

[
∂ log π (at | st, ot)

∂θπ
QU (st, ot, at)

]
, (6)

where θπ is the parameter of low-policies, and QU (st, ot, at)
is the the option-value function. The gradient is calculated as
follows:

∂L(θ)

∂θβ
= E

[
−∂β (st, ot)

∂θβ
(AΩ (st, ot) + η)

]
, (7)

where θβ is the high-level policy termination parameter, and
η is the deliberation cost. AΩ(st, ot) is the termination advan-
tage. To update the option-value function is as follows:

Qk+1
Ω (s, o) = Qk

Ω(s, o) + αΩ (8)

3) Safety Specification: Pre-defined rules are designed to
make safe decisions in longitudinal and lateral critical situa-
tions φ (explained in the following sub-section). A critical time
interval in self-driving cars refers to a situation where the car’s
autonomous system fails to perceive or appropriately respond
to a potential hazard in the surrounding environment, such as
a pedestrian crossing the street or another vehicle suddenly
changing lanes. During this interval, the ego vehicle cego will
solely apply safety ASP rule-based policy to guarantee safe
longitudinal decision-making.

ASP is a declarative programming language for knowl-
edge representation and reasoning that adds negation-as-
failure to logic programming. ASP first-order language com-
prises atoms χ and negative atoms notχ, where notχ repre-
sents negation as failure [20]. Typical normal rules R con-
tain an atom h, the head, and a list of atoms b1, ..., bn,
not bn+1, ..., not bm,m,n ≥ 0 as the body. When m = n = 0,
R is referred to as fact. The basic idea behind ASP is to express
a given problem in the form of a logic program, for which we
need to search for stable models representing the solutions to
the original problem. To obtain a concise expression of the
problem, we first use rules in first-order logic. Consequently,
the problem will be expressed by a logic program, often
referred to as a non-terminal program, containing predicates
with variables. To find stable models, the most efficient solvers
adopt a two-phase approach. The first phase is the instantiation
of the variables, generally referred to as grounding. It involves
transforming a logic program expressed in first-order logic into
a propositional program. The resulting program will no longer
contain any variables but will keep stable patterns identical
to the original program. The second phase is the resolution,
which calculates the program’s stable models of the program.

The environment mapping in the scene is transformed into
predicates describing the objects present and their positions.
These predicates are represented as facts F in ASP that form
the input for the driving decision-making process. F contains,
among other information, the speed, the lane, the relative dis-
tance, the AV predicted trajectory, lane structure, intersection
information, visible traffic signs, lights, and other detected
objects. Depending on the facts F , the rules R are applied to

produce decisions Y such as accelerating, braking, cruising,
changing lanes, and turning left or right. In the following
example, the sensors detect a pedestrian while the ego vehicle
initiates a right turn. The system should identify this situation
as critical, requiring longitudinal and lateral safety measures.
Let’s consider the following logical program P and F =
{intent(merge right lane, 3 : 05), ego path(30.215, 3 :
05), obj path(Pedst1, 30.215, 3 : 05} a set of atoms:

r1 :turn right conditions(T) :- intent(merge right lane, T).
r2 :abort select action(turn right, T) :-
ego path(EPath, T),
obj path(Oid, OPath, T),
path intersects(EPath, Oid).
r3 :path intersects(EPath, Oid) :- ego path(EPath, T),
obj path(Oid,OPath, T’), T=T’, EPath = OPath.
r4 :brake conditions(T) :- intent(merge right lane, T),
path intersects(EPath, Oid).

(9)
In this scenario, the logical program P defines a set of rules

describing the behavior of an AV intending to merge into the
right lane at time ”T=3:05”. These rules consider the presence
of pedestrians and intersections to make appropriate decisions.
Rule 1 states that the AV’s ”turn right conditions” are met at a
time ”T” if there is an ”intent(merge right lane, T)” predicate.
This rule implies that the AV’s short-term goal is to merge into
the right lane, indicating the desired action based on the intent
of the navigation system. Rule 2 aborts the action ”turn right”
at time ”T” under certain conditions. The rule checks explicitly
if the ego vehicle’s path and the pedestrian’s path intersect at
a time ”T” using the ‘path intersects(EPath, Oid)‘predicate.
If an intersection is detected, the AV avoids selecting the
”turn right” action to ensure pedestrian safety. Rule 3 defines
the predicate ‘path intersects(EPath, Oid)‘ responsible for
checking whether the ego vehicle’s path (‘EPath‘) and the
pedestrian’s path (‘Opath‘)intersect at time ”3:05”. The rule
unifies ‘ego path(EPath, T)‘ and ‘obj path(Oid, OPath, T’)‘
to determine if the paths intersect, enabling the AV to make
informed decisions based on spatial relationships. Lastly, Rule
4 specifies the ”brake conditions” that are met at a time ”T” if
there is an ”intent(merge right lane, T)” and the ego vehicle’s
path and the pedestrian’s path intersect at that time. This rule
ensures that the AV applies the brakes when necessary to avoid
collisions and adhere to the intent to merge into the right lane
while ensuring pedestrian safety.

4) Longitudinal Critical Situations: Let cego and cfwd be
two cars such as cfwd is followed by cego with a distance
d. A longitudinal critical situation occurs when cfwd brakes
with action amax,brake whilst cego accelerates with amax,acc

then it brakes with amin,brake until a collide with cfwd during
a response time τres. Otherwise, the longitudinal situation
is safe. Let td be a period during which the situation is
critical and d ≤ dmin. The interval [td, td + τres] becomes
a critical interval where the ASP safety rules are applied. The
mathematical proof of dmin computation can be found in [1].



Algorithm 2 Learning High-Level Policies
Initialize external options oi from low-policies
Initialize master policy πΩ, option library Ω
Initialize the facts F
Initialize dangerous situations φ
add all pre-trained low policies oi into Ω
for every update do

if φ then
Execute the logical program (P,F)

else
Choose ot according to s and πΩ

Execute ot according to low-policy πot and βot
get s′ and Rt+1, add

(
s, ot, s

′, Rt+1

)
into buffer

Update with SMDP Q-Learning
Qk+1

Ω (s, o) = Qk
Ω(s, o) + αΩ

end if
end for

5) Lateral Critical Situations: Let cego be a car driving at
a velocity vego and c a sideways moving car with a velocity
vc during a time interval [0, τres] distant from each other with
a distance d. A lateral critical situation occurs when both cars
(or one of them) apply a lateral acceleration alatmax,acc and
then brake alatmin,brake until colliding laterally. Otherwise, the
lateral situation is safe. The interval [tdlat, t] is a critical lateral
interval time, where tdlat is a lateral danger threshold time. The
mathematical proof of dmin can be found in [1].

IV. EXPERIMENTS

A. Environment Setup and Evaluation Metrics

All the experiments were conducted on the Carla simulator.
The environment includes criteria such as high traffic den-
sity or complex intersections (i.e., intersections with multiple
lanes, merging traffic, and pedestrians crossing). It also con-
tains narrow streets, construction zones, inclement weather,
and pedestrian/cyclist interactions, which provide a realistic
urban driving experience.

Training Procedure. We evaluated the training phase and
the testing outcomes in Town10. The goal of an agent is to
complete a trip from point A to point B with no infractions.
Points A and B are randomly chosen from a list of 120
points manually placed on the map, with 7140 possibilities.
Using the search algorithm A∗ [25], a planner calculates the
route between both points. Instead of scoring the completion
rate of a route, an episode is considered successful when the
agent travels a distance of 2500m, for better generalization
[12]. To save time, we defined three termination criteria, 1)
the agent drives at a speed of 1km/h for 5 s, 2) the agent
deviates from the center for more than 2.5m, and 3) an agent
travels a distance of 2500 m. We used 5 metrics to compare
our results; the total rewards, the total distance traveled, the
center lane deviation, the angle deviation, and the average
speed. [2] suggests using the NoCrash benchmark to evaluate
the independent driving policy in various urban settings. This
benchmark has three different traffic situations with varying
degrees of difficulty: empty, regular (mid numbers of people
and cars), and dense (no moving items) (a large number of
pedestrians and vehicles). Besides, it specifies 25 routes in
Town01 for training and 25 in Town02 for testing, along with
six different types of weather. Our autonomous agents are

TABLE I: NoCrash Benchmark

Task Town Weather IARL LBC CADER GHRL
Empty 85 89 95 97
Regular Train Train 86 87 92 100
Dense 63 75 82 96
Empty 60 94 95
Regular Train Test 60 86 90
Dense 54 76 85
Empty 77 85 92 92
Regular Test Train 66 79 78 88
Dense 33 53 61 72
Empty 36 78 78
Regular Test Test 36 72 85
Dense 12 52 65

tested in the testing town and the testing weather to see how
well they operate.

Obstacles Avoidance Scenarios. NoCrash benchmark does
not consider how the appearance of various cars (such as small
cars and big trucks) might affect the agent’s behavior. NoCrash
benchmark tests the agent over a lengthy path. Each scenario
is created using the unpredictable actions of cars and people,
for example, pedestrians crossing the road. Furthermore, there
are 26 types of pedestrians and 27 types of cars in CARLA
0.9.8. We thus created twenty-six different obstacle avoidance
scenarios in Town01 and Town02. Each scenario is a set of
short courses to lessen the unpredictability and assess the
obstacle avoidance performance and inertia problem [2]. It
is worth noting that all the courses are just for testing. We
determine the success rates along all paths, just like in the
NoCrash benchmark.

Vehicles Avoidance Scenarios. Similarly, we created
twenty-seven different obstacle avoidance scenarios. A parked
vehicle is produced at a 30-meter distance to block the ego
vehicle once it reaches the trigger location. The ego vehicle
is required to overtake to avoid a collision.

Pedestrians Avoidance Scenarios. A person appears at a
distance of 30 meters on the sidewalk to cross the road. The
ego vehicle must halt in time and resume motion after the
pedestrian has crossed the street. In the first stage, we gathered
a vast and diverse dataset for training our system using Carla’s
autopilot with additional random noise and 25 training routes
under the three criteria specified in the NoCrash benchmark
from CARLA.

B. Results On NoCrach Benchmark

We compared our framework with state-of-the-art methods
such as CADER, IARL, and LBC. Results of IARL and LBC
are taken from CADER. Besides, IARL does not provide test
results on testing weather, though we have only the results on
the training weather. Table I shows the success rate results
on the NoCrash benchmark. GHRL slightly outperformed
CADER in empty and regular test weather. Still, it improved
20% in dense traffic and training weather, with 14 and 11 suc-
cess rates higher than CADER’s performance. Our framework
carefully completes the urban driving task and performs well
in traffic and weather conditions.



TABLE II: Obstacle Avoidance Benchmark

Vehicle avoidance Pedestrian avoidance
LBC 55 / 81 73 / 78
IARL 69 / 81 57 / 78
CADER 81 / 81 76 / 78
GHRL 81 / 81 77 / 78

C. Results on Obstacle Avoidance

Table II shows the the NoCrash benchmark obstacle avoid-
ance scenarios results. We have executed the evaluation 81
times for vehicle avoidance and 78 times for pedestrian avoid-
ance to be inlined with the tests performed by CADER, LBC,
and IARL. Our framework achieved 81 over 81 in vehicle
avoidance, the same as CADER, and slightly outperformed it
in pedestrians avoidance by achieving 77 over 78.

D. Training Sub-Policies

As mentioned previously, the role of all the driving ASP
rules is to choose one of the possible actions (turn left, turn
right, accelerate, brake) depending on the environment state.
For example, the agent cannot accelerate if it is above the
speed limit, the traffic light is red, or it is facing an obstacle.
[24] provided a list of 35 driving rules, which summarize the
total driving ASP rules. Figure 1 (a) depicts the performance
of PPO, GPPO-5, GPPO-10, GPPO-15, and GPPO-20 in the
case of traffic light management sub-policy. We can see a
clear trend of increasing performance as the percentage of
rules incorporated into the system increases. Specifically, we
observe that GPPO-5, which incorporates 5% rules, performs
better than PPO, whilst GPPO-10, GPPO-15, and GPPO-20
incorporate 10%, 15%, and 20% rules, respectively, achieving
even better results. This trend suggests that incorporating
additional rules into the system can improve its performance,
particularly regarding traffic light management. The results
indicate that as the percentage of rules increases, the system
becomes more efficient at managing traffic lights, leading to
better traffic flow and fewer delays. However, it is essential
to note that there may be trade-offs between incorporating
too many rules and limiting the system’s ability to learn and
generalize, which can lead to overfitting.

E. Safe High-Policies Experiments

We have evaluated urban driving safety using different RL
algorithms with various potential hazards and unpredictable
NHTSA (National Highway Traffic Safety Administration)
pre-crash scenarios. To evaluate the performance, we used a
simulated environment that closely mimics the challenges of
urban driving. Specifically, we compared the performance of
GHRL with safety rules (GHRL-R), GHRL, and HRL in this
environment, focusing on how well they can handle critical
situations and accumulate rewards. Fig. 1 (b) sketches the
performance comparison results. We can see that GHRL-R
outperformed GHRL in critical situations and accumulated
more rewards overall. This suggests that the safety features
incorporated into GHRL-R allowed it to make better decisions
in dangerous situations while achieving high rewards in other

(a) Learning Sub-policy

(b) Safety Comparison

Fig. 1: GHRL Performances on Carla

scenarios. In contrast, HRL performed poorly compared to
GHRL and GHRL-R, achieving lower rewards overall and
struggling in critical situations. Such bad performance is due to
various factors, such as a need for adequate safety mechanisms
or difficulties in learning effective policies.

V. CONCLUSION

This paper presents GHRL, a framework that employs a
VAE to extract visual features from camera images, localiza-
tion, and waypoints as navigation input. An RL algorithm is
used to learn the high-level policy with OC framework and
low-level policies guided by expert demonstration encoded in
ASP rules. We also incorporated safety rules into the decision-
making process in potentially dangerous situations to ensure
that the agent can make safe and responsible decisions, even in
complex and challenging situations. We have evaluated GHRL
on the Carla NoCrash benchmark and conducted an ablation
study to analyze the effect of various network architectures
and RL hyperparameters on the proposed framework’s per-
formance. The results demonstrate that GHRL outperforms
the state-of-the-art methods on Carla’s NoCrash benchmark
by 20%, achieves four times better than traditional RL, and
shows the potential of using HRL for the vision-based con-
trol of autonomous vehicles in urban environments. In the
upcoming work, we will consider the CARLA leaderboard
challenge, a more challenging benchmark than the NoCrash
benchmark, as it includes a broader range of traffic scenarios
and environmental conditions. This research contributes to the
knowledge base of autonomous driving, and future studies can



build on the proposed approach to improve its performance in
real-world scenarios.
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