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ORTHOGONALITY OF INVARIANT MEASURES
FOR WEIGHTED SHIFTS

by

Sophie Grivaux, Etienne Matheron & Quentin Menet

Abstract. — We introduce and study the notion of orthogonality for two operators in the
context of weighted backward shifts on £,(Z), 1 < p < 0. Two continuous linear operators
T1 and T> acting on a Polish topological vector space X are said to be orthogonal if any two
Borel probability measures m1 and ms2 on X which are respectively Ti -invariant and 75 -
invariant and satisfy mi({0}) = m2({0}) = 0 must be orthogonal. In this note, we provide
several conditions on the weights u and v implying orthogonality or non-orthogonality of the
associated weighted shifts B, and B,, and we investigate in some detail the case where the
invariant measures are product measures.

To Gilles Godefroy, with affection and admiration

1. Introduction

1.1. Weighted shifts. — This note is a contribution to the study of the dynamics of
weighted backward shifts acting on /£, -spaces, 1 < p < 00. More specifically, we will be
concerned with invariant measures for such weighted shifts.

Let X be one of the (real or complex) Banach spaces ¢, = ¢,(Z4), 1 < p < o0, and
denote by (e,)n=0 the canonical basis of X. Let w = (wy),>1 be a weight sequence,
i.e. a bounded sequence of non-zero scalars. The backward shift associated with w is the
operator By, : X — X defined by Byep := 0 and Bye, := wpe,_1 for n = 1. Weighted
shift operators occupy a central place in operator theory. On the one hand, their explicit
form permits a systematic study, so that they are natural “test” operators for any question
that comes to mind. On the other hand, their theory is quite rich, and their behaviour
remains in some aspects rather mysterious. We refer the reader to the classical paper
[22], which proposes a systematic study of weighted shifts including their representations
as multiplication operators on certain Banach spaces of holomorphic functions and their
spectral properties, and to the authoritative book [18|, which deals with the study of cyclic
vectors for the unweighted backward shift B on #5(Z.).

Many important dynamical properties are completely characterized for weighted shifts
By and can be expressed in a simple way in terms of the weights w,,, see e.g [19], [20],
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[12], [7], |8]. For instance, By, is hypercyclic, i.e. it admits a vector with a dense or-
bit, if and only if lim, e w1 ---w,| = o, and it is topologically miving if and only if
|wy + -+ wy,| — 00 as n — 0. See [16] for proofs of these results as well as extensions to a
large class of sequence spaces. Observe that these characterizations are the same on any
¢p. By contrast, chaoticity of a weighted shift on X = ¢, depends explicitely on p (recall
that an operator is chaotic if it is hypercyclic with a dense set of periodic points): By, is
chaotic on £, if and only Zle m < o0. For the class of weighted shift operators of
¢y, chaos is an especially important notion since it turns out to be equivalent to strong
dynamical properties such as frequent hypercyclicity (the existence of a vector whose orbit
visits each non-empty open set along a set of integers having positive lower density) or
U- frequent hypercyclicity (same as frequent hypercyclicity with lower density replaced by
upper density). Indeed, by an important result of Bayart and Ruzsa [6], frequent hyper-
cyclicity and U- frequent hypercyclicity of a weighted shift By, on £, are both equivalent to
the condition > | —L — < c0. We refer the reader to the books [4] and [16] for more

n=1 |”LU1~-~”LUn|p
on frequent hypercyclicity and related questions, and to the paper [11] for a study of the
relation between chaos and frequent hypercyclicity for weighted shifts on a large class of
Fréchet sequence spaces.

The condition Zle m < o0 also turns out to be of special importance in the study
of invariant measures for the weighted backward shift B,,. Recall that a Borel probability
measure m on X is said to be By, -invariant if m(Bg*(A)) = m(A) for every Borel set
A < X. Under the condition Zf;l m < o0, the operator By, acting on X = £, admits
plenty of invariant measures, of quite different kinds: discrete measures associated with
periodic points, Gaussian measures with full support (with respect to some of which By, is
ergodic or even strongly mixing), continuous measures with full support which are very far
from being Gaussian, ... See [2] or |4, Chapter 5| for more information on (shift-invariant)
Gaussian measures; and [15], which testifies of the richness of the class of invariant measures
for backward shifts by showing that under the condition Zle m < o0, the backward
shift By, is universal for ergodic system in the sense of Glasner and Weiss [14]: for every
ergodic transformation 7' on a standard Lebesgue probability space (Z, B, ), there exists
a By, -invariant Borel probability measure m on X = ¢, with full support such that the
two dynamical systems (Z, B, u; T) and (X, Bx, m; By) are isomorphic (where By is the
Borel o-algebra of X).

Invariant measures for weighted backward shifts are thus far from being completely
understood (and in some sense, they will never be). In this note, our aim is to contribute to
their understanding by studying possible links between invariant measures for two different
weighted shifts B, and B,. More specifically, we will be concerned with the notion of
orthogonality of two weighted shifts.

1.2. Orthogonality. — Before giving the definition we will be playing with, we fix some
notation. The scalar field is denoted by K. All measures on X = {,(Z) are understood
to be Borel probability measures. Given a weight sequence w, we denote by Py, (X) the set
of all B, - invariant measures on X. If m and m’ are two measures on X, we write m L m/
to indicate that m and m’ are orthogonal (i.e. mutually singular), and m « m’ to indicate
that m is absolutely continuous with respect to m/. If m « m’ and m’ « m, we say that
m and m’ are equivalent and we write m ~ m/.

We now define orthogonality of two weighted backward shifts.
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Definition 1.1. — Two weighted backward shifts B, and B, on X = /, are said to be
orthogonal if the following holds true: whenever my, € Pyu(X), my € Py(X) and m,,({0}) =
0 = my({0}), it follows that my, L m,.

Removing the dg - parts of the measures, we see that this definition can be reformulated
as follows: B, and B, are orthogonal if and only if whenever m,, € P, (X) and m,, € Py, (X)
are non-orthogonal, it must be that m,({0}) > 0 and m,({0}) > 0. Equivalently: there
exists no (Borel probability) measure on X which is absolutely continuous with respect
to both a B, -invariant measure and a B, - invariant measure, except the Dirac mass dy.
Thus, informally speaking, B, and B, are orthogonal if their invariant measures “have
nothing to say to each other”, unless they charge the singleton {0}. The main question we
want to investigate is the following.

Question 1.2. — Characterize the pairs of weight sequences (u,v) such that the associ-
ated weighted shifts B, and B, acting on X = /,, are orthogonal.

The motivation for looking at this question comes from a recent work of Charpentier,
Ernst, Mestiri and Mouze [10]. Let B be the unweighted backward shift acting on the
complex Hilbert space ¢3(Z, ), and let A < C. In [10], it is shown that the operators AB,
A € A admit a common frequently hypercyclic vector if and only if the set {|A]; A € A} is
a countable relatively compact subset of (1,00). In particular, if a,b € C and |al, |b] > 1,
then the operators aB and bB have a common frequently hypercyclic vector. This is by no
means obvious if |a| # |b|. So it is tempting to ask whether this result could be retrieved in
a “soft” way by measure-theoretic arguments. Indeed, imagine that it were possible to find
two measures m, and my on {9, with full support, invariant and ergodic for aB and bB
respectively, such that one of them is absolutely continuous with respect to the other, say
mg € myp. By the pointwise ergodic theorem, it would follow that m, - almost every x € £
is frequently hypercyclic for aB and my - almost every x € ¢5 is frequently hypercyclic for
bB; hence m, - almost every x would be frequently hypercyclic for both aB and bB since
mg < my, so one could conclude in particular that aB and bB have a common frequently
hypercyclic vector. However, such measures m, and my simply do not exist: we will see
below that the operators aB and bB are in fact orthogonal.

1.3. Organization of the paper. — In Section 2, we complement existing results by
showing that a weighted backward shift By, on X = ¢,(Z) admits a non-trivial invariant
measure if and only if Zzozl m < 00. In Section 3, we define orthogonality in a
very general context, we give a simple condition ensuring orthogonality (Theorem 3.2),
and we use this to show, among other things, that if 7" is any continuous linear operator
acting on a Polish topological vector space X and a,b € K are such that |a| # |b], then the
operators aT and bT are orthogonal (Corollary 3.6). We also deduce from our criterion
that two weighted shifts that are “far from being similar” must be orthogonal (Theorem
3.10). In Section 4, we use periodic vectors to give examples of non-orthogonal weighted
shifts; in particular, we show that there exist non-orthogonal weighted shifts which are not
similar (Example 4.5). Section 5 is devoted to invariant product measures for weighted
shifts acting on ¢,, and their role in our study of orthogonality. We give a necessary
and sufficient condition for two weighted shifts B, and B, to admit equivalent invariant
Gaussian product measures (Corollary 5.8), and then we examine to what extent the
existence of non-orthogonal invariant product measures implies the existence of equivalent
Gaussian product measures (Theorem 5.13 and Proposition 5.22). Section 6 contains some
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additional facts. Some of these facts are actually used in earlier proofs, but we prefered
to postpone them for the sake of fluid reading. We conclude the paper with a few natural
questions.

2. Existence of non-trivial invariant measures

It is, of course, not very interesting to study orthogonality of two weighted shifts if
one does not know at least that each of them admits non-trivial invariant measures, i.e.
invariant measures different from the Dirac mass dg. The following proposition says exactly
when this happens for a weighted shift acting on £,,.

Proposition 2.1. — Let By be a weighted backward shift acting on X = £,. Then By,

< 0.

e}
admits a non-trivial invariant measure if and only if >, m
n:l n

One can give a short proof of Proposition 2.1 by using a (quite non-trivial) lemma
inspired by [6], which can be extracted from the proof of [11, [|Theorem 2.1]. Since this
lemma might be useful in other situations, we state it explicitely. Let us denote by ej the
first coordinate functional on X = ¢,,.

Lemma 2.2. — Let By, be a weighted shift acting on X = €,(Z). Assume that one can
find a vector x € €, and a set of integers N such that

(i) N has positive upper density,
(i) suppen Byl < o,
(ili) inf,ep [<ef, Bpxy| > 0.
ee}
Then, one can conclude that ﬁ < 0.
— 1 wnlp

Sketch of the proof of Lemma 2.2. — Write x = Y " xpen. Let C1 1= sup,cn | Baz|| and
Cy = infpepn [{ef, Bypx)| = infpepn |wy - - - wy zp]. If we let vy, := (wy - wy,) !, we have for
every n € N and every integer M > 0,

1 T T C1
Z Um—n€m—n| < 6 Z ’Um—nim€ Z (% +n C
meN 2 meN Um 0<ksM Uk+n 2
n<m<n+M n<m<n+M k+neN
We then conclude thanks to [11, [|[Lemma 2.5]. O
Proof of Proposition 2.1. — As mentioned in the introduction, it is well-known that if

1
n1|w1 w|P

simplest such measure is the Dirac mass &, at the fixed point z := eg + Y.~

< o0, then B, admits lots of non-trivial invariant measures. Perhaps the

1
nel wrw. n-

Conversely, assume that B,, admits a non-trivial invariant measure m. By the ergodic
decomposition theorem, we may assume that m is an ergodic measure for B,,. Since
m # Jdp, we may choose a point u # 0 in the support of m. Then Bju € supp(m) for all
n = 0 by the By, - invariance of m, so we may assume that (ef,u) # 0. Let a > 0 be such
that |(efj, u)| > «, and consider the open set

U:i={zeX; |z—u| <1 and [e,2)|>a}.

Since U is a neighbourhood of u, we have m(U) > 0. By the pointwise ergodic theorem,
it follows that one can find x € X such that the set Np, (z,U) := {n € Z4; Bjx € U}
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admits a positive density, i.e. limy_ o ﬁ#([[O, N] n N, (z, U)) exists and is (strictly)
positive; in particular, N, (x,U) has positive upper density. So we have found a vector
x € ¢, and a set of integers N with positive upper density such that |Bjz| < 1+ ||u] and
|<efy, Bpyxy| > a for all n € N. By Lemma 2.2, this concludes the proof. O

Remark 2.3. — Proposition 2.1 is valid in a more general setting: the same proof shows
that if X is a Banach sequence space for which (ey,),>0 is a boundedly complete uncondi-
tional basis, then a weighted shift B,, acting on X admits a non-trivial invariant measure
if and only if the series )’ oo €n 1s convergent in X. We do not know if the analogous
result holds for weighted shifts acting on c¢o(Z).

3. A general criterion for orthogonality

Although the definition of orthogonality was given in the introduction for pairs of
weighted shifts only, it makes sense in a much more general context. If T is any con-
tinuous self-map of a Polish (i.e. separable and completely metrizable) space X, let us
denote by Pr(X) the set of all T'-invariant (Borel probability) measures on X.

Definition 3.1. — Let X be a Polish space, and let (P) be any property of measures
on X. We say that two continuous self-maps T7,7> of X are orthogonal with respect to
measures satisfying (P) if the following holds true: whenever m; € Pr,(X) and mg €
Pr, (X) satisfy (P), it follows that mq L mo.

In accordance with Definition 1.1, if X is a Polish topological vector space and 11,75
are continuous linear operators on X, we will say that 77 and T5 are orthogonal if they are
orthogonal with respect to measures not charging the singleton {0}.

We now present a general sufficient condition for orthogonality. Recall that if (A;)nen
is a sequence of subsets of X, then lim A4, denotes the set of all z € X that belong to
infinitely many A,’s.

Theorem 3.2. — Let X be a Polish space, and let A be a Borel subset of X. Let also T}
and Ty be two continuous self-maps of X. Assume that for any compact set K < X with
K n A=, there exists an infinite set I = N such that

(3.1) i 7777(K) A T3 (K) = &
Then, T1 and T are orthogonal with respect to measures not charging A.

Proof. — Let my € Pp, (X) and mg € Pp,(X) be such that m;(A) = 0 = ma(A). We have
to show that mi 1 ms, and this will be an easy consequence of the following fact.

Fact 3.3. — For any € > 0, one can find a Borel set F. € X such that m;(E.) < ¢ and
TTLQ(Eg) >1—ce.

Proof of Fact 3.3. — By regularity of the measures m; and mo and since m; and ms do
not charge A, there exists a compact set K < X\A such that m;(K) > 1 — ¢/2 and
ma(K) > 1 —¢/2. Let I be an infinite subset of N such that (3.1) holds true. Then
my (T7 " (K) n T, "(K)) — 0 as n — oo along I by Fatou’s Lemma; so one can find an
integer n > 1 such that my (T "(K)nTy "(K)) < &/2. Since my (T "(K)) = my(K) > 1—
£/2, it follows that my (T, "(K)) < e. On the other hand, mo(T; "(K)) = ma(K) > 1 —¢;
so we may take £ := T, " (K). O
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If we now define E := | Jpn ()

nen Ea—n , we see that m(E) = 0 and mo(E) = 1, which

k
shows that mi L mas. O
Remark 3.4. — The assumption in Theorem 3.2 is here to ensure that for any compact

set K € X\A and any measure m on X, it holds that inf,>1 m (T} "(K) n Ty "(K)) = 0.
However, it is very likely that (3.1) is a too strong assumption. More generally, it would be
nice to have a “measure-free” characterization of the sequences of Borel sets (4, )n>1 € X
such that inf,>1 m(4,) = 0 for every measure m on X. Note that there is a very simple
characterization if “inf” is replaced by “lim”: we have lim,,_,o, m(A,) = 0 for every measure
m on X if and only if lim A,, = ¢#. On the other hand, for a sequence (A, ),>1 of non-empty
Borel subsets of X, consider the following statements.

(i) There exists an infinite set I < N such that lim,e; A4, = .

ii) inf,>1 m(A,) = 0 for every measure m on X.

(iii) infp>1 m(Ay) = 0 for every discrete measure m on X.

(iv) inf,>1 m(A,) = 0 for every finitely supported measure m on X.

v) For any finite set F' € X, there exist infinitely many n such that A, n F' = (.

)
) i
)i
)

Then (i) = (ii) = (iii) <= (iv) <= (v), but (v) does not imply (ii) and (ii) does
not imply (i).
Proof. — (i) = (ii) by Fatou’s Lemma, and obviously (ii) = (iii) = (iv). Moreover,
it is rather clear that in fact (iii) <= (iv), and that (v) = (iv).

To prove that (iv) = (v), assume that for some finite set F' € X and some integer N,
we have A, n F # J for all n > N. Choose a point a; € A; for ¢ = 1,..., N. Then, the

N
finitely supported measure m := % <]{, > g, + # > 53;) is such that inf,,>; m(4,) > 0.
i=1 zeF

To show that (v) does not imply (ii), let X := [0, 1], and define
Ay = {t€[0,1]; |sin(2mnt)| = 1/7}.
By Dirichlet’s theorem, for any finite set F' < [0, 1] one can find an increasing sequence
of integers (ny) such that sin(27rngt) — 0 on F; so (v) is satisfied. However, we have
Sé |sin(27nt)|dt = 2/7 for all n = 1. Hence m(A,) = 1/7 for all n > 1, where m is
Lebesgue measure on [0, 1].

Let us now show that (ii) does not imply (i). This example is due to N. de Rancourt.
Consider the Cantor space A = {0, 1} identified with the power set of N. Let

Xzz{JQN; Ziél},

neJ

which is a closed subset of A and hence a (compact) Polish space. For each n € N, let
A, :={JeX; nelJ}.

It is clear that the sequence (A,) does not satisfy (i): indeed, for any infinite set I < N,
one can find an infinite set J < I such that ZneJ% < 1, and this J belongs to lim A4,, by
definition.

However, (A,) satisfies (ii); in fact, for any measure m on X, we have > »_,
Indeed, we have

= m(A, 31 1
Z (n ):JX (anAn(J)>dm(J):fX (Zn>dm(J)<1.

n=1 n=1 neJ

m(Ayn)

< Q0.
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Here is yet another example showing that (ii) does not imply (i), which is a kind of twin
of the previous one. Let

X = {xE[O,W]; i M < 1},
n=1 "
which is a closed subset of [0, 7]. For each n > 1, let
Ay = {x e X; |sin(2"z)| = 1/2}.

With some effort, one can prove the following: if (m;);>1 is a sufficiently fast increasing
sequence of integers and if we define

T 1
x:_2i_212mi’

then x € Ay, for every k = 1. Tt follows imediately that the sequence (A4;) does not satisfy
(i). However, one shows in the same way as above that (A,,) satisfies (ii). O

Remark 3.5. — With the notation of Theorem 3.2, consider the following statements.
(1) For any compact set K < X\A, it holds that lim T}, "(K) n Ty, "(K) = &.
(2) It is not possible to find z € X and an increasing sequence of integers (ny) such that
the sequences (77" ) and (Ty*z) both converge to a limit not belonging to A.

Then (2) = (1), and (1) <= (2) if A is a closed subset of X.

Proof. — 1t should be rather clear that (2) implies (1). Indeed, let K be a compact subset
of X\A, and assume that lim T, "(K) n T, "(K) # &. Then, there exists z € X and an
increasing sequence of integers (ny)r=o such that 77"z € K and T,*z € K for all k > 0.
Since K is compact, we may assume, upon extracting subsequences, that both sequences
(T7"z) and (Ty*x) converge, T1"*x — u € K and Ty*z — v € K; and since K € X\A,
this shows that (2) is not satisfied.

Conversely, assume that A is closed and that (2) is not satisfied, i.e. there exist x € X
and an increasing sequence of integers (ny)g=o such that 77"z — u and T5*x — v, where
u,v € X\A. Since X\A is open, one can find kg such that 77"*z, T3z € X\A for all k > k.
Then the set K := {T{"*x; k = ko} v {Ty*z; k = ko} U {u, v} is a compact subset of X\A
and z € T] " (K) nT, " (K) for all k > ko, so that (1) is not satisfied. O

Here is a first application of Theorem 3.2.

Corollary 3.6. — Let X be a Polish topological vector space, and let T € L(X). Let also
a,be K, and assume that aT' and b1 admit non-trivial invariant measures. Then, a1 and
bT' are orthogonal if and only if |a| # |b|. More precisely: aT and bT are orthogonal if
la| # |b|; and they share a non-trivial invariant measure if |a| = |b|.

Proof. — To prove that aT and bT are orthogonal if |a| # |b|, we use Theorem 3.2 and
Remark 3.5 with A = {0}. Assume that there exists 2 € X and an increasing sequence of
integers (ny) such that a™T" 2 — u € X and V" T"zx — v € X. We must show that
u = 0 or v = 0; and this follows from the continuity of the map (A, z) — Az: indeed,
assuming for example that |a| > |b| and writing b"*T" x = (b/a)™ a™*T" x, we see that
b T — 0.

The converse will follow from Proposition 6.1 below. O
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Remark 3.7. — If B, is a weighted shift acting on X = ¢,(Z) and a,b € K are such
that |a| = |b| =: 7 with Y}° | 71— < o0, then the operators aB, and bB,, admit

n=1 (r*|wy-wn|)P
equivalent ergodic Gaussian measures with full support. This will follow from Theorem

5.7 below.

Corollary 3.6 leads to naive speculations regarding orthogonality of weighted shifts.
Recall that two operators 17,75 acting on X are said to be similar if there exists an
invertible operator J such that Ty = JT»J 1. By [22, [|p. 54, Th. 2(a)], two weighted
shifts B, and B, acting on ¢, are similar if and only if

ul.un

>0 and lim [———2

(3.2) lim < .

fUl.fUn ful...fun

When u and v have the form 4 = aw and v = bw for some weight sequence w and
a,b € K, then {l=e = (4)", and hence (3.2) holds true if and only if |a| = [b. So
it is tempting to “conjecture” that two weighted shifts B, and B, are orthogonal if and
only if they are not similar. This is however not true, as will be seen in Section 4 below.
Nevertheless, we now present two results showing that this is not that far from being true.

In what follows we denote by e7, j > 0 the coordinate functionals on X = £,(Z+). And

if v € X, we write x = Z;OZO zje; where x; = (€}, z).
Proposition 3.8. — Let By and By be two weighted shifts acting on X = £,. Assume
that By and By are not similar, i.e. that

ul...un
vl.--vn

ul...un
’Ul...'vn

(3.3) either lim =0 or lim = 0.

Then, By and By, are orthogonal with respect to measures not charging A63< := ker(eg).

Proof. — We apply Theorem 3.2 with A := Aeak. So let K be a compact subset of

X\ ker(ej). Choose some constants M < oo and v > 0 such that |z| < M and |{ef, 2)| = v
forall ze K. If x = Z?:o xje; € X then, for every n > 1, we have

lef, Byxy = uy -+ up Tn and (ef, Byx)y = v1 Uy Tp;
so we see that
B,"(K) € {z e X; |xg| - ur---up| = v}
and
By"(K) < {z € X; |zn| |1+ vp| < M},
Hence, the following implication holds :

ure | oy

By"(K) A By"(K) + & —> > T

u

'U1...'Un

UL-Un

It follows that if lim |7 = 0, then B, "(K) n B, "(K) = ¢ for infinitely many n;

n

and symmetrically, if lim ‘%‘ = oo then B, "(K) n B,"(K) = ¢ for infinitely many

v1

n. By Theorem 3.2, this concludes the proof. O

Remark 3.9. — One may observe that for any weight sequence w and every n > 1, we
have BE”(Ae;’;) = A.x. Hence, a measure m € Py (X) does not charge Ax if and only if
it does not charge A x. Therefore, m does not charge Aeg‘; if and only if it is supported on
the set {x € X; (e, x) # 0 for all n > 0}.
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The next theorem shows that “full” orthogonality of B, and B, can be deduced from
stronger assumptions on the weights u and v.

Theorem 3.10. — Let By, and By be two weighted shifts acting on X = £,,. Assume that
either

(3.4) lim max |——— 4 — for all N >0
noow 0<ASN | U1+ Uptd

or
= . |uew

(3.5) im min |[——— — o for all N = 0.
n—0 0<d<N | U] Upiq

Then, By and By, are orthogonal.

Proof. — We apply Theorem 3.2 once again, with A := {0}. So, let K be a compact subset
of X\{0}.

We first note that there exists an integer N such that [nax. |z4| > 0 for every z € K.
<d<

Indeed, the compact set K is covered by the open sets Oy := {z € X |z4| > 0}.
Choose v > 0 such that [ax |zq| = 7 for every z € K, and M < oo such that |z| < M
<d<

for every z € K. As in the proof of Proposition 3.8, we get that for every n > 1,

B,"(K) ¢ {fﬁ € X; OgbiXN|U1+d"'un+d| NTnpal = ’Y}

0=

and
B "K) < e X; e . <My,
v ( ) {x ) Og}iaiXN ‘U1+d Un+d’ |xn+d| }
so that
_ _ Ul4d " Unid vy
B "(K B K e —_— > —
u ( ) a v ( ) . @ Oir}iaé}%\f Vi4+d " " Untd M

for some constant C).

Now, we have maxgcgen |-td—ntd %

Vi+d ""Un+d Upgd

Hence, if (3.4) is satisfied, then one can find an infinite set I < N such that

< CN maxo<d<N

Ul+d " Un+d
max |———

-0 as n — o along I;
0<d<N

V14d " Un+d

and it follows that B, " (K)n B, "(K) = & for all n € I sufficiently large. Symmetrically, if
(3.5) is satisfied, then one can find an infinite set I < N such that By "(K)n B, "(K) = &
for all n € I sufficiently large. So Theorem 3.2 applies. O

Corollary 3.11. — Assume that the weight sequences u ad v are bounded below, i.e.
inf,>1 |up| > 0 and inf,>1 |u,| > 0. If By and B, are not similar, then they are or-
thogonal.

Proof. — The assumption on w and v implies that for every N > 0, there are con-
UL Ungd |
VI Upgd |

UL Up
o and

stants ¢y > 0 and Cny < o such that maxgcicn Cn

. UL-Unp4d U] "Un
ming<d<N 7”1"'Un+d 1Un |

or (3.5) is satisfied. N

=

Hence, if B, and B, are not similar then (3.4)

Remark 3.12. — Theorem 3.10 can be reformulated in the following way: if
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- either, for every € > 0, the set Aype := {n €l 27:]‘" < E} contains arbitrarily
1Y e Un
long intervals,
UL "Un

- or, for every M < oo, the set A;;,v,M = {n €Ly,

> M } contains arbitrarily

V] Un
long intervals,

then B, and B, are orthogonal.

4. Non-orthogonality via periodic points

In this section, our aim is to present some examples of non-orthogonal weighted shifts
using measures supported by periodic orbits. We first note the following easy fact.

Fact 4.1. — Let X be a Polish topological vector space, and let Ty, T € £(X). If T7 and
T5 share a non-zero periodic point, then they are not orthogonal.

Proof. — Let & # 0 be a common periodic point for Ty and Ty; so Tz = x = T%g

for some dy,ds € N. For i = 1,2, the measure m; := d%_z,flj;ol 5Tin1. is T; - invariant, and
m;({0}) = 0 since = # 0. Moreover, m; and my are not orthogonal since m;({z}) > 0 and
ma({z}) > 0. O

Theorem 4.2. — Let By and B, be two weighted shifts on X = {,(Z,). Assume that

® 1 0 1 . .
D et T < © and Y, 4 oo < ©- The following are equivalent.

(1) By and B, share a non-zero periodic point;

(2) there erist de N and 0 < j < d —1 such that uiyj - Udmij = Vi4j - Vam+j for all
m>=1;

(3) there existd e N and 0 < j < d—1, and a non-zero scalar C' such that uy - - - Ugm+; =
Cv1--Vamaj for all m = 0 (where an empty product is declared to be equal to 1).

Proof. — (1) = (2) Assume that B, and B, share a non-zero periodic point z. Let d; be
the period of = as a periodic point of 77, and let do be the period of x as a periodic point
of Ty. Setting d := dida, we then have Bdzx = 2 = Blz (and hence Bz = z = Bz for
all m > 1.) Writing « = >}, z;€;, we have
1 1 .
Tjymd = —————Tj = —————— T for all j > 0.
Uj+1 - Ujtmd Vj+1 - Vj+md

Since x # 0, one can find 0 < j < d — 1 such that x; # 0, and then ;g ujr1 =

Vjtmd * " Vj+1 for all m > 1.

(2) = (3) This is clear: if (2) is satisfied for some d and 0 < j < d — 1, then (3) is
satisfied with the same d and j and C := “4 (50 C' = 1 if j = 0).

V104

(3) = (1) Assume that (3) holds true for some d,j,C. Since >)° , —L — < o0, the

n=1 Tay—un|?

vector
o0 0
1 1 1
P Y g = 5 Y el
0 W1 Umd+j me0 V1" Umd+j

is well-defined, and clearly B,l‘f:c =zx= B,f,lx. Thus, x is a non-zero common periodic point
for B, and B,. O
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Corollary 4.3. — Let By and By be two weighted shifts on £,(Z..), with Y, m
o and Zf;l m < 0. Assume that there exist d € N, 0 < j < d—1 and a scalar
C # 0 such that uy - Ugmyj = Cv1---Vgmyj for all m = 0. Then By, and B, are not
orthogonal.

Exzample 4.4. — Assume that u; = 2 for all j > 1, v1 = 3 and v; = 2 for all j > 2. Then
B, and B, acting on ¢, share a non-zero fixed point, and hence they are not orthogonal.

In this example, the operators B, and B, are obviously similar. We now give an example
of non-orthogonal weighted shifts which are not similar.

Example 4.5. — Let (ry)r=1 be an increasing sequence of integers, and let 4 and v be
the two weight sequences defined as follows:

w2 e {5+ Lo+ 45 k> 1)
T % if j=5r,+1orj=>5r;,+4 forsomek>1

and

% if j=5rr+2o0rj=>5r;+3 for some k > 1.

v~'—{2 if jé¢{5ry+2,5r; +3; k> 1}
J=
If (ry) is sufficiently fast increasing, then B, and B, acting on ¢, share a non-zero
periodic point and hence they are not orthogonal. However, we have
ul DR un ul e un

lim " —0  and  lim 4" = o,
/l}l--./l)n vlo--vn

so that, in particular, B, and B, are not similar.

0 1

n=0 m < o0 and

Proof. — Tt is clear that if (ry) is sufficiently fast increasing, then >’

1
Yoo o < %

Observe that if m is a positive integer and if we consider the largest k such that rp < m,
then either r, = m or 5r; + 4 < 5m. Since u; ---us,, = v1--- Vs, by definition of the

weights, it follows that
UL Usm = V1 Usm for all m > 1.

Hence, B, and B, share a non-zero periodic point by Theorem 4.2.
However, for any k > 1 we have

up - Usp41 1 Ul - Uspy 43
21 Poretl 2 and 7“#:%’

vy vse 41 2k U1t Usry 43

so that lim ¥%n — () and lim % — oo,
== V1Un V1 Un

O

Remark 4.6. — In the above example, the weights are not bounded below. This is not
accidental: indeed, if two weighted shifts B, and B, share a non-zero periodic point and
if inf,,>1 |u,| > 0 and inf,>1 |v,| > 0, then B, and B, are necessarily similar by Corollary
3.11. (Alternatively, this follows easily from Theorem 4.2.)
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5. Non-orthogonality via product measures

5.1. Invariant product measures for weighted shifts. — The question we consider
in this section is the following: given two weighted shifts B, and B, on X = (,(Z,),
when is it possible to find invariant measures m,, and m,, (for B, and B, respectively) not
charging {0} which are not orthogonal and are also product measures?

The terminology requires some explanation since product measures should be defined
on products of measurable spaces and X = ¢, is not such a product space. However, £,
is contained in the product space  := K%+. It is well-known that the Borel o-algebra
of © (induced by the product topology) is identical with the product o-algebra ®;,>0Bxk.
Moreover, ¢, is a Borel subset of € when 2 is endowed with the product topology, and a
subset of ¢, is Borel in (¢, | - |p) if and only if is Borel in . It follows that if x is a Borel
probability measure on €2, then the restriction of ;1 to £, is a Borel measure on £, endowed
with its usual topology (but not a probability measure unless f1(¢,) = 1); and conversely,
any Borel probability measure on £, can be considered as a Borel probability measure on
Q (supported on ¢,). We will say that a Borel probability measure m on ¢, is a product
measure on £, if m is the restriction to ¢, of a (probability) product measure p on , i.e.
= &y,=0 Hn Where each p, is a Borel probability measure on K, such that x(£,) = 1. In
this case, the measure y is uniquely determined by m since p(B) = m(B n £,,) for every
Borel set B < €, so we identify m and p and simply write m = ®n>0/in-

The following essentially obvious remark will be used repeatedly.

Fact 5.1. — Let X be a Borel subset of Q = K?+, and let u be a Borel (probability)
measure on (2 such that u(X) = 1. Set m := px. Let also T':  — Q be a Borel map
such that T'(X) € X.Then y is T'-invariant if and only if m is (7|x) - invariant.

Proof. — The measure y is T - invariant if and only if u(7(B)) = u(B) for every Borel
set B € Q. Now, we have pu(B) = m(X n B) and u(T"YB)) = m(X n T7YB)) =
m((Tx) "' (X n B)) because T(X) = X. So p is T - invariant if and only if m(X n B) =
m((T)x) (X n B)) for every Borel set B = Q, which means exactly that m is (T)x)-
invariant. C

From this observation, it follows that if m is a product measure on X = ¢, and if we
denote by p the measure m considered as a measure on = K%+, then m is invariant
under some weighted shift B,, if and only if u is invariant under the natural extension of
By to © (defined by the same formula and also denoted by B,). The next lemma says
precisely when this happens.

Lemma 5.2. — Let i = @p>oin be a product measure on Q = K%+, and let w be a weight
sequence. Then, i is By, -invariant if and only if, for each n = 1, the measure p, is the
image of po under the map t — w1--1-wn t, i.e. pp(A) = po(wy---wyA) for every Borel set
Ac K.

Proof. — For any Borel sets Ay ..., Ay € K, denote by [Ao,...,An] S Q the “cylinder
set” defined as follows:
[Ao,...,AN] = {t: (tj)jz()EQ; tj GAj fOI'j:O,...,N}.

Since the cylinder sets generate the Borel o-algebra of €2, the measure p is By, - invariant
if and only if

1(Bg'([Ao, ..., AN])) = u([Ao, - .., AN])
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for all Borel sets Ay, ..., Ay < K. Now, by definition of By, we have
1;1([140,.. ) —{t— ]>0€Q w]+1tj+1€A fOI‘jZO,...,N},
so that
B,;l([AQ, N ,AN]) = [K, (l/wl)Ao, ceey (1/wN+1)AN] .
Since p = ®j=oftj, it follows that p is By, - invariant if and only if

N N
H pi(Aj) = H 11 ((1/wj 1) A;)
j=0

j=0

for every N = 0 and all Borel sets Ag,..., Ay € K. This is clearly equivalent to the fact
that

pit1((1/wjs1)A) = p;(A) for all 7 = 0 and every Borel set A € K,

which proves the lemma. O

Corollary 5.3. — Let i = Qu=o/tn be a product measure on Q@ = K%+, and let w be a
weight sequence. Assume that pg has a density p with respect to Lebesgue measure on K.
Then v is By - tnvariant if and only if, for each n = 1, the measure p, has a density py
given by pp(t) := |wy - - wp|?p(wy - - wpt), where d =1 if K=R and d = 2 if K = C.

Proof. — This follows immediately from Lemma 5.2 OJ

Corollary 5.4. — Let 1 = Qusopin be a product measure on Q = K%+, and let w be a
weight sequence such that Y, 0 W < 0. If p is By -tnvariant and if the measure

po is such that i [t[Pduo(t) < o, then u(€y) = 1.

Proof. — By Lemma 5.2, we have

| <2|t \p> ) = 3 Of P ()
_ <JKS\PdMO(s)> (1 + 2 o wn|p> < o0,

In particular, we see that Y, |t,|P < oo for u-almost every t € Q, i.e. u(f,) =1. O

To conclude this section, we point out the following general fact.
Fact 5.5. — Let By, be a weighted shift on £, where w satisfies >, W < 00, and
let m = ®u>oftn be a By, -invariant product measure on ¢,. If the measure ;o has full
support, then m is an ergodic measure with full support for By,.

Proof. — Let (&,)n>0 be a sequence of independent K - valued random variables with law
to. As a measure on K%+, m is the distribution of the K%+- valued random variable £ :=
&oeo + Zn 1 w1 o En- Since m(¢,) = 1, we have £ € ¢, almost surely, which means that
the series defining & is almost surely convergent with respect to the ¢,-norm. Moreover,
since o has full support, the measure m has full support. By [1, [|Proposition 2.5], it
follows that m is an ergodic measure (in fact, a strongly mixing measure) for By,. O]
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5.2. Non-orthogonality of product measures. — A basic tool in the study of prod-
uct measures is a famous classical result of Kakutani [17] giving a necessary and sufficient
condition for the equivalence of two infinite product probability measures v = ®,>ov, and
V' = ®nsov,, defined on a product of measurable spaces (Q, B) = ®p=0(Qn, By)-

Let us first recall the definition of the so-called Hellinger integral H(c, ) of two prob-
ability measures «, 8 on some measurable space (T, 7):

where 7 is any sigma-finite positive measure on (T, T) such that o and § are absolutely con-

tinuous with respect to 7. If we write a = B + v the Lebesgue-Nikodym decomposition
of v with respect to 5, then (Z—i‘ — g—g %) illf =0r7-a.e. sincerv L 3, so 3‘: zf dﬂ (Cw)
and hence

da
a6)=Lq/d5dﬂ;

which shows that H(«, ) is indeed independent of the choice of 7. Note that we always
have 0 < H(«, ) < 1 by the Cauchy-Schwarz inequality; and that H(«, 5) = 1 if and only
if « = 8, whereas H(«, ) = 0 if and only if o L 3.

Kakutani’s Theorem as we will need it can now be stated as follows.

Theorem 5.6. — Let v = Qu>ovyn and V' = Qupsov), be two product probability measures
n (2, B) = ®n=0(Qn, By). The measures v and v' are non-orthogonal if and only if

0
H H(vy,,v),) > 0.

Moreover, under the assumption that v, ~ v, for each n = 0, the measures v and V' are
either orthogonal or equivalent.

Note that this is not exactly what is proved in [17]: the main result of [17] states that
under the assumption that v, ~ v/, for all n, the measures v and v/ are equivalent if
[1,-_o H(vn,v),) > 0 and orthogonal otherwise. However, the above version of the theorem
is certainly well-known (it is stated for example in [21]), and it can be obtained by slight
modifications of Kakutani’s original proof; see Section 6 for more details.

5.3. Gaussian product measures. — A particularly interesting class of product mea-
sures is that of Gaussian product measures. Our definition will be very restrictive: we will
say that a product measure i = ®p>optn on Q = K2+ is a Gaussian product measure if
for each n > 0, the measure p,, is a Gaussian measure on K of the form A(0,02) for some
on >0, i.e. py, is a centered Gaussian measure with covariance matrix o2 Ix. Accordingly,
we say that a measure m on X = ¢, is a Gaussian product measure if m is the restriction
to £, of a Gaussian product measure p on €2 such that p(¢,) = 1.

By Fernique’s integrability theorem (see e.g. [9]), if m is a Gaussian measure on X = ¢,
then m admits moments of all orders and in particular { |z[Pdm < oo. It follows that if
1 = ®n=0/in is a Gaussian product measure on Q = K%+, then y is supported on ¢y if and
only if {, (ZZO:O \tn]p) du(t) < o. Moreover, if p is invariant under some weighted shift
By, then {, [t,[Pdu(t) = m §ic |[t[Pdpo(t) for all n > 1 by Lemma 5.2. Altogether, we
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see that a weighted shift B, acting on ¢, admits an invariant Gaussian product measure

if and only if ZZO:O m < o0, and that if this holds, then any B, - invariant Gaussian

product measure on K%+ is supported on ¢,. (For the “only if” part, one could also have
used Proposition 2.1 rather than Fernique’s integrability theorem.) We refer the reader
to [2], [3], [5] and |4, Chapter 5| for an in-depth study of invariant Gaussian measures for
operators on Hilbert or Banach spaces. We just point out here that if w is a weight sequence
such that Zf:o W < o and if m is a By, -invariant Gaussian product measure on
¢,, then m is an ergodic measure with full support for B, (see Fact 5.5).

The next theorem will provide a necessary and sufficient condition for two weighted
backward shifts B, and B, on X = /, to admit equivalent invariant Gaussian product
measures.

Theorem 5.7. — Let u and v be two weight sequences, and let py = Qnzofiun and
Ho = @nzoly,n be two Gaussian product measures on KZ+ invariant under By and By
respectively, with pyo = N(0,02) and py o0 = N(0,0"). Then py, and p, are either equiv-
alent or orthogonal, and they are equivalent if and only if

0 / 2
(5.1) Z(l—("““”“"'> < .

= o [ v

From this result, we immediately deduce

Corollary 5.8. — Let By and B, be two weighted shifts on X = {,, where the weight
sequences u and v are such that ZZO:O m < o0 and Zfzo m < 0. The following
are equivalent.

(a) By and By admit equivalent invariant Gaussian product measures.

@0 2
(b) There exists a constant k > 0 such that ), (1 —K M) < 0.

PR
n=1 [vr-+-vn]

Here is another consequence of Theorem 5.7.

Corollary 5.9. — Let A be a countable family of weight sequences. Assume that

0 0 2
> m < for allwe A and Y, (1—M> < 0 for any u,v € A. Then, there
n=1 " n=1

v1-+vn|
exists a Gaussian measure with full support m on X = £, with the following property:
given any sequence of Borel sets (A;)is=o € X with m(A;) > 0, there exists x € X such that
for everyw € A and all i = 0, the set Np,(x,A;) := {n € N; Blixz € A;} has a positive
density.

Proof. — For each w € A, let mqy = ®p>ottw,n be the By, -invariant Gaussian product
measure on £, defined by puy 0 := N (0,1). This is an ergodic measure with full support for
B,,. Since the measures my,, w € A are pairwise equivalent by Theorem 5.7 and since A
is countable, the result follows from the pointwise ergodic theorem, taking m := my,, for
any wg € A. O

Remark 5.10. — Taking as (A;);>0 a countable basis of open sets for X in Corollary
5.9, we get a vector x € X which is frequently hypercyclic for all operators By, w € A.
However, it turns out that something much stronger holds true: if 4 and v are two weight
sequences such that % has a non-zero limit as n — o, then B, and B, have in fact
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the same frequently hypercyclic vectors. This result, which is due to S. Charpentier and
the third author, will be proved in Section 6.

Before proving Theorem 5.7, we use Corollary 5.8 to give an example of two non-
orthogonal weighted shifts sharing no non-zero periodic points.

FExample 5.11. — Let u and v be the weight sequences defined as follows:

1+e,
14+en1 ’
where €g = 0 and (g,),>1 is a decreasing sequence of positive real numbers such that
220:1 €2 < w. Then B, and B, acting on X = ¢, share no non-zero periodic point,
but they admit equivalent invariant Gaussian product measures (and hence they are not
orthogonal).

Uy = 2 and v, =

Proof. — We have uy -+ u, = 2" and vy ---v, = 2"(1 + &,) for all n > 1. In particular,
1 1 . Uy P .

Sy Gy < © and Y, ooy < Since Zi;ljn = ({17s I8 increasing, the

conditions of Theorem 4.2 cannot be satisfied, so B, and B, do not share any non-zero

periodic point. However

1
1_’U,1 unZl—
V1 Up, 1+¢€,

so By, and B, admit equivalent invariant Gaussian product measures by Corollary 5.8. [

~ €n as n — oo,

It is now time to prove Theorem 5.7.

Proof of Theorem 5.7. — In what follows, weset d:=1if K=R and d:=2if K=C.
By Kakutani’s Theorem, we just have to show that [["_; H (pun, tw,n) > 0 if and only
if (5.1) is satisfied.
By Lemma 5.2, the measures [, , and piy , are uniquely determined by fi,0 = N(0, 02)
and fiy0 = N(0,0"%). Explicitely,

2
. 2 g
pun =N(0,07)  with o = Tur - wn?
and o
) o
pon =N(0,077)  with o = [or -2

The computation of H (py n, ftv,n) now relies on the following fact.

Fact 5.12. — If p and 4/ are two Gaussian measures on K of the form p = N(0,0?) and
@ = N(0,0%), then

200’ )d/2_< 2(0’ /o) )d/‘{

02 + o2 1+ (0'/0)?

H(p,p') = (

Proof of Fact 5.12. — The measures i and ' are absolutely continuous with respect to

. .. —_ |42 2 _|+12 12
Lebesgue measure on K with densities e~ t7/29° and e~ It17/29  Hence,

1 1
(27ra'2)d/2 (27ra"2)d/2

d/2
1 11,1 1 4
H(Mvﬂl):fRe HE x( il ) :

(2moo’)d/2 (2moo’)d/2 % + 71,2
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Going back to the measures my = Qnzoftu,n and My = Qp>0ftvn, let us set for each
n=1:
/ /
ol o fure el

Ap 1= — =
On 0 |vr-c-vp)
By Fact 5.12, we have
H(M,M,)-( ”) :
u,n v,n 1+A%

Since 0 < H (ftun; fw,n) < 1 for all n > 1, it follows that

o0 0 2\ d/2
1:[ (Hun, o) > 0 if and only if Z 1—<1+K> < 0.

n=1

S

This can be satisfied only if 12+’\A"2 — 1 as n — o0; and an examination of the function

U(N) = % shows that this is equivalent to the fact that A\, — 1. In this case, writing
An = 1+ u, and using Taylor’s formula, we see that

22 \Y? d , d )
1‘@+g> ~ gt = g0 )

So we get that

a0 0

H (Hany fo,n) > 0 if and only if Z (1-— )\n)2 < 0,

n=1 n=1
which is (5.1). Theorem 5.7 is proved. O
5.4. Products of absolutely continuous measures. — It is natural to believe that

some condition strictly weaker than (b) of Corollary 5.8 might still yield the existence of
(non-Gaussian) equivalent non-trivial invariant product measures for the backward shifts
B, and B,. The next theorem shows that this is in fact not the case, at least for product
measures whose marginals are absolutely continuous with respect to Lebesgue measure.

We point out that it is possible to deduce parts (1ii) and (2) of this theorem from a
Theorem of Shepp [21] concerning (non-)orthogonality of translates of a product measure
on R?+ namely [21, Theorem 1]. However, we are going to give here a self-contained proof
which looks rather different from what is done in [21] (except, of course, for the use of
Kakutani’s Theorem), and we will indicate in Section 6 how Shepp’s result can be used in
our context; see Theorem 6.11.

For simplicity, we will assume that K = R and that all the weights are positive.

Theorem 5.13. — Let u and v be two positive weight sequences. Assume that the back-
ward shifts By and By acting on the real space X = £, admit invariant product measures
My = Qnz=0ltun and My = Qpx0flwn such that i, o and o are absolutely continuous with
respect to Lebesgue measure on R, py 0 = p(t)dt and p, o = q(t)dt.
(1) If my and my, are not orthogonal, then:
(i) the quotient 12 has a limit a € (0,0) as n — , and q(t) = ap(at) almost
everywhere;

w0 2
(ii) we have ), <1 -1 M) < 0.

a v1-Up
n=1
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(2) Assume that the function f := /p is continuous on R\{0} and C'- smooth except at a
finite number of points with tf'(t) € L2(R), and that q(t) = ap(at) for some a € (0, ).

0 2
Then, my, and my, are non-orthogonal if and only if )| (1 — % 1“}173”) < 0.
n=1 "

(3) Assume that f = ./p is C'-smooth except at a finite number of points with
tf'(t) € La(R), that p has at least one discontinuity point in R\{0}, and that
q(t) = ap(at) for some a € (0,00). Then, my, and m, are non-orthogonal if and only

o0
. 1
if 21 -2 723: < 0.
n=

From part (1) of this theorem and Theorem 5.7, we immediately deduce

Corollary 5.14. — Let By and By be two shifts with positive weights acting on the real
space £y. The following are equivalent.

(a) By and By are not orthogonal with respect to product measures whose marginals are
absolutely continuous with respect to Lebesgue measure on R.

2
(b) There exists k > 0 such that Y, (1 —K M) < .

V1V

(¢) By and By admit equivalent invariant Gaussian product measures.

We point out that Corollary 5.14 is also valid in the complex case and for not necessarily
positive weights; see Corollary 6.12.

For the proof of Theorem 5.13, we will need the following lemma.

Lemma 5.15. — Let h € Ly(R) be non-zero and real-valued, and let Ph : R — R be the
function defined by
Ph(a) := J h(z)h(x + o) dz.
R

(a) The function Ph is continuous and even, with Ph(a) < |h|3 for avery a € R and
Ph(0) = A3,

(b) If h belongs to the Sobolev space WH2(R), then Ph is C?-smooth on R, with
(Ph)'(0) = 0 and (Ph)"(0) < 0. In particular, |h|3 — Ph(a) ~ ca® as a — 0, for
some constant ¢ > 0.

(c) If h¢ WH2(R), then (|h|3 — Ph(a))/a? — o0 as a — 0.

(d) Assume that h is C'-smooth except at finitely many points, with h' € La(R), and
that h has at least one discontinuity point. Then Ph is left-differentiable and right-
differentiable at 0, with (Ph) (07) > 0 and (Ph)'(0") < 0.

This lemma has the following immediate consequence.

Corollary 5.16. — For any non-zero real-valued h € Lo(R), there exists a constant ¢ > 0
such that ||h|3 — Ph(a) = ca? for a sufficiently close to 0.

Note that using Plancherel’s formula, it can be seen that this can be stated equivalently
as follows: for any g € La(R)\{0} with real-valued Fourier transform, there exists a constant
c such that {; |g(t)]?(1 — cos(at)) dt > ca? for « sufficiently close to 0.

Proof of Lemma 5.15. — For notational brevity, let us set F' := Ph.

(a) We have F(a) = (h,Tah)r,®), Where Toh(x) := h(x + a), so F' is continuous by
continuity of the map a — 7,h from R into Lo(R). It is clear that F' is even and that
F(0) = |h|3. Finally, F(a) < |h|? by the Cauchy-Schwarz inequality.
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(b) Since h € WH2(R), the map a ~— T,k is C'-smooth from R into L?(R), with
derivative a — 7,h'. Since F(a) = (h, Tah)p,(w), it follows that F is C'-smooth on R,
with

F'(a) = Chy ol D, m) = J h(u)h'(u + a) du = J h(u — )b (u) du.
R R
Hence, the same argument shows that F is in fact C?-smooth on R, with

F'(a) = —f B (u — )b (u) du.
R
We have F’(0) = 0 because F' is even; and

F"(0) = —J W? <.
R

The strict inequality holds because if we had F”(0) = 0, then 2’ would be equal to 0 almost
everywhere, so h would be 0 since it belongs to W1H2(R).

(c) Note that
1 1
F(0) = (i malyrym) = 5 (1Pl + [7ahl* = [h = 7ahll3) = [2]3 = 51h = 7abl3,

so that [|h|3 — F(a) = §|h—7oh[3. Now since h ¢ WH2(R), we have limq_ || Tah— hH =
Indeed, otherwise one could find a sequence (ay,) tending to 0 such that T(“}lihh has a weak
limit v € La(R), and this would give that h € W12(R) with &’ = u. This proves (c).

(d) Since F'is an even function, it is enough to show that F is right-differentiable at 0
with F/(07) < 0.

Let ug < --- < uy be the discontinuity points of h. Also, let Iy := (—o0,ug), Ins1 =
(up,0) and Iy := (ug_1,ug) for 1 < k < N. Note that by assumption on h, the restriction
of h to each interval I} belongs to the Sobolev space W12(I}). In particular, h has a left
limit h(u; ) and a right limit h(u;") at each point uy.

For every o > 0, we have

N+1

ZJ h(u + ) u=:ZFk(a)
k=0

We consider separately the functions Fy, Fyyq and Fy for 1 <k < N.
Let us start with Fy, 1 < k< N. For 0 < a < up — ug_1, we write
U —Q Uk
Fi(a) = f h(uw)h(u + o) du + f h(u)h(u + o) du =: Fy, 1 (o) + Fj2(a).
U1 U —Q
Consider the open triangle € : {(a,ﬁ); uk 1 < B < uk and 0 < a < u, — B},
and the function G : Q@ — R defined by G = Sﬂ h(u + ) du. Since the
restriction of h to Iy = (ug_1,ug) belongs to the Sobolev space I/V1 2(I1,), the map G is
C'-smooth on 2, with 0,G(a, ) = S w)h/ (v + o) du and 0sG (e, B) = h(B)h(S + ).
Moreover, G is continuous on 2 and 1ts partlal derivatives extend continuously to €2, with
0aG(a,up — ) = SZ:;& h(u)h'(u + a) du and J3G(a, up — ) = h(ur, — a)h(uy ) for 0 <
a < up —ug—1. It follows that Fj (o) = G(o, up — o) is C'-smooth on (0, uy, —ug_1), with
Fy (@) = SZ:;O‘ h(u)h'(u+ o) du — h(uy, — a)h(u,; ). To see this, observe that for any ag €

(0, up, — ug—1), the function Gy () := G(a,u, — o — 1) is well-defined in a neighbourhood
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of oy if n is large enough, that G, (a) — Fj1(c) uniformly in a neighbourhood of ag
as n — oo, and that G} (a) — SZ::IQ h(uw)h/(u + o) du — h(up — o)h(u, ) uniformly in a
neighbourhood of ap. Since Fy | (a) — 52:71 h(u)k (v) du — h(u, )? as 0, we deduce that
F}. 1 is right-differentiable at 0 with

Fa07) = [ b)) du b
_ [;h(u)QLkl ~ h(ug)?

= (B + Bt ,)?).

Similar arguments show that Fys(a) = {**_ h(u)h(u+ «) du is C'-smooth on (0, ¢) for

U —Q

some ¢ > 0, with Fy () = §.*_ h(u) (u+a) du+h(ug—a)h(uf); and it follows that F

is right-differentiable at 0 with I} ,(0") = h(uy, )h(u)). Hence, F}, is right-differentiable
at 0, with
_ 1 _
FL0%) = hu () — & ((up)? + has,)?)
One shows in the same way that Fy(a) = §*° h(u)h(u + a)du and Fyiq(o) =
SZON h(u)h(u + a) du are right-differentiable at 0, with

1 1
F3(0%) = hug h(ui) = S h(ug? and  Fly oy (0%) = =3 h(ud)*
Altogether, we see that F' = Zivjol Fy, is right-differentiable at 0, with
1
F'(07) = h(ug)h(ug) = 5 h(ug)*
o 1
+ ) (h(uk)h(uk) = (h(ug)? + h(u 1)2)> h(u})?
k=1
N 1 N
=" h(uy)h(w)) — 5 D7 (A ) + h(uf)?)
k=0 k=0
1Y 2
= —5 2, (k) = b)) <0
k=0

We can now give the proof of Theorem 5.13.

Proof of Theorem 5.13. — In what follows, we set f := ,/p and g := ,/q. Also, for each

n =1, let
ul..-u
Ap 1= — =
vl..-vn

The following simple computation will be essential for the proof.

Fact 5.17. — For every n = 1, we have

H(H'u,,na Mv,n) = \Ij()\n)y
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where ¥ : (0,00) — R is the function defined by
T(N) = \FAJ F(At)g(t) dt.
R

Proof of Fact 5.17. — Denoting by 7 the Lebesgue measure on R, we have

dpn dpbwn
7 (t) = uy - up plug - upt) and — (t) = vy v, qv1 - URt).
Hence

H (tuns fon) =J VU Uy fug e upt) X A/v1 v g(vg - opt) dt
R
ZQ/UI“.U”J f<u1mu” s> g(s)ds
vl...vn R ’l)ln--fl)n
_w(n,).
O

By Fact 5.17 and Kakutani’s Theorem, we know that m,, and m, are not orthogonal if
and only if

(5.2) S 1= 00n) <
n=1

and in that case, we have in particular that

(5.3) VU(A\,) —1 asn— .

Proof of (1i) in Theorem 5.13. — We first note that we must have lim \,, > 0 and lim \,, <
00. Indeed, otherwise B, and B, are orthogonal with respect to measures not charging
ker(ef) by Proposition 3.8. The measures p, and ji, have this property since i, 0 and jiy 0
do not charge {0}, so this cannot happen.

Now, the key point is the following fact.

Fact 5.18. — The function ¥ is continuous on (0, 00) with 0 < ¥(A) < 1, there is at most
one A € (0,00) such that ¥(A) = 1, and if U(\) = 1 then q(t) = Ap(At) almost everywhere..

Proof of Fact 5.18. — 1t is clear that W(A) = 0. Moreover, by the Cauchy-Schwarz in-

equality, we have
1/2 1/2
T(N) < < f )\p()\t)dt> < J q(t)dt) _ 1.
R R

If U(\) =1 then, by the equality case in Cauchy-Schwarz’s inequality and since SRp =
§ga = 1, we must have q(t) = Ap(\t) almost everywhere. It follows easily that there can
be at most one A such that ¥(\) = 1. Indeed, assume that U(\) = 1 = ¥(X) for some
0 < A < ). Then Ap(At) = Np(N't) almost everywhere. Setting ¢ := X/\ > 1, it follows
that p(xz) = cp(cx) almost everywhere. Hence p(x) = ¢"p(c"z) almost everywhere for
every n € Z. So, with I, := (¢, c¢"*1], we obtain that

J p(z)dx = f "p(c"z) dx = J p(z) dx for all n € Z.
n IO IO
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Since the intervals I,, form a partition of (0,00) and SSO p(z)dx < oo, this implies that
p(z) = 0 almost everywhere on (0,00). Similarly p(z) = 0 almost everywhere on (—o0,0),
hence p(z) = 0 almost everywhere on R, which is a contradiction since SRp =1.

Finally, to prove that ¥ is continuous, we note that ¥(\) = ﬁ(f,\,g>Lz(R), where
fr(t) := f(At). Since f e L?(R), the map A\ — fy is continuous from (0, 00) into L?(R); so
¥ is indeed continuous. O

It is now easy to conclude the proof of (1i). Since ¥()\,) — 1 and ¥ is continuous on
(0, 00), any cluster point A € (0, ) of the sequence (A, ) must be such that ¥(\) = 1; hence,
(An) has at most one cluster point in (0, 00) by Fact 5.18. Since 0 < lim \,, < lim \,, < o0,
it follows that () has a limit a € (0, 0); and by Fact 5.18 again, we have (¥(a) = 1 and)
q(t) = ap(at) almost everywhere. O

Proof of (1ii) in Theorem 5.13. — Let ® : (0,00) — R and © : (0,0) — R be defined by
A) = fR FOFO At and  ON) := VAD(N).
Since g(t) = v/af(at) almost everywhere by (1i), we have
\) = ﬁij(At) x vJaf(at)dt = \/Na®(Na) = O(N\a).

So, we see that 0 < ©(\) < 1 for every A € (0,0), and by (5.2):

0

(5.4) D (1 =0(\n/a) <

n=1

From that, we have to deduce that

(5.5) i (1 — i)\n>2 < 0.

n=1

To do this, we perform a change of variable in order to apply Lemma 5.15. If we set

A = e, then
+00 0
et ([ sosena | wsena)
_ ea/QJ f a+u udu+ea/2f f f(_6a+u) evdu

:J h+(u)h+(u+a)du+f h—(w)h—(u + a) du,
R R

where hy and h_ are the functions defined on R by

hy(z) := f(e%)e"/? and h_(z) := f(—e")e®?.
Note that the functions Ay and h_ belong to Lo(R), and that
sl + -3 = [ 72 =1,
So, with the notation of Lemma 5.15, we have

(5.6) O(A) = Phy (log(N)) + Ph—(log(X)).



INVARIANT MEASURES FOR WEIGHTED SHIFTS 23

Since at least one of hy is non-zero, it follows that there exists a constant ¢ > 0 such
that 1 — ©()\) = clog(\)? for A sufficiently close to 1. Hence 1 — ©()\) = c(A — 1)? for
A sufficiently close to 1 (and some other constant ¢ > 0), so that (5.5) is indeed a direct
consequence of (5.4) since we already know that A, — a. This concludes the proof of

(1ii). 0

Proof of (2) in Theorem 5.13. — By Kakutani’s Theorem and with the notation of the
proof of (1ii), we have to show that

0 e¢) 1 Uy 2
Z (1-0O(\p/a)) < oo if and only if Z (1 - n) < 0.
n=1

= a V- Up

By (1ii), the “only if” implication is already known. To prove the converse, we keep the
notation of the proof of (1ii). So we have as above

O(A) = Phs (log()\)) + Ph_ (log()\)),
where the functions hy and h_ are defined by
he(z) = f(£e)e™?,

Note that by assumption on f, the functions h, and h_ are continuous on R and
C'-smooth except at a finite number of points. Moreover, h. € Ly(R). Indeed, we have
W, (z) = £f'(£e®)e/2 + 1 f(+e®)e™/? almost everywhere, and both terms belong to Lo(R)
since

J fl(+e®) %3 dx = f 2 (t)%dt < oo and
R +(0,00)

[ reerera= |  sera<
R +(0,00)

So h4 belongs to the Sobolev space W12(R). Hence, by Lemma 5.15 and since ||h |3 +
|h% ||z = 1, we know that the function F := Phy +Ph_ is C%-smooth on R, with F(0) = 1,
F'(0) = 0 and F”(0) < 0. It follows that there is a constant ¢ > 0 such that 1 — () ~
c(A—1)%? as A — 1; and this concludes the proof of the “if” implication in (2). O

Proof of (3) in Theorem 5.13. — We keep the notation of the proofs of (1ii) and (2). This
time, we have to show that
0 0

(5.7) Y (1=6(n/a)) <o ifand only if )]

n=1 n=1

1
1— -\, < oo.
a

As above, let F' := Phy + Ph_, so that ©(\) = F(log()\)). By assumption on p, the
functions h (z) = f(e®)e®? and h_(z) = f(—e®)e*? are C'-smooth except at finitely
many points, with A/, € Ly(R), and at least one of them has a discontinuity point. By
Lemma 5.15, it follows that there exists two constants ¢ > 0 and ¢ < oo such that
clal < 1= F(a) < ¢ |al for a sufficiently close to 0. Hence ¢|1 =\ < 1—0(\) < |1 - )]
for A sufficiently close to 1, and (5.7) follows. O

The proof of Theorem 5.13 is now complete. O

Remark 5.19. — The proofs of parts (2) and (3) of Theorem 5.13 rely on the local
properties of the function O(\) = ﬁSR f(&)f(At)dt at X = 1. It is perhaps worth noticing
that if © happens to be differentiable at A = 1, then we necessarily have ©’(1) = 0. This
is because O is “symmetric with respect to 17, i.e. O(1/X) = O(\).
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Remark 5.20. — Part (3) of Theorem 5.13 may be applied for example if ji, is the
uniform distribution over some bounded interval I € R and i o is the uniform distribution
1
over - 1.
a

Remark 5.21. — Part (2) of Theorem 5.7 remains valid under the following assumption
on f = ,/p: the restrictions of f to the intervals (0, 0) and (—o0,0) have locally integrable
derivatives (in the distribution sense), and tf’(t) € La(R).

Proof. — Looking back at the proof of (2), we see that the only thing to check is that the
functions h; and h_ belong to the Sobolev space W12(R). We do this for hy and, for
notational simplicity, we set h := h; and we denote by f the restriction of f to (0,00). So
we have to show that if f € Ly(0,00) has a distributional derivative f’ € L¢(0,o0) such
that tf(t) € L2(0,0), then h(z) = f(e*)e®/? e WL2(R).

Since f € L9(0,00), it is clear that h € Ly(R). To find the distributional derivative of h,
let us fix a test function ¢ € D(R). Let ¢ € D(0, 00) be the function defined by the relation
o(x) = P(e®)e®?, ie. P(t) = %Lp(log(t)). Writing ¢/ (z) = €37/2¢/(e) + e*/24(e®) and
using the change of variable z = log(t), an elementary computation reveals that

®© 1
[ re@ae = [ (271 + i) ol
R 0
This means that h has a distributional derivative k' € LI°°(R) given (as expected) by
W(z) = e37/2f'(e®) + $e™/2f(e%). Since f € Ly(0,00) and tf'(t) € L(0,%0), we see that
h' € Ly(R), hence h € WH2(R).
O

5.5. Products of discrete measures. — Theorem 5.13 (3) shows that for weighted
shifts acting on £,, to admit non-orthogonal invariant measures which are products of
absolutely continuous measures having some “singularities” is in fact a strictly stronger
requirement on the weights than to admit equivalent invariant Gaussian product measures.
The next proposition goes along the same lines, in an even more dramatic way.

Proposition 5.22. — Let u and v be two weight sequences.

(a) If By and By admit non-orthogonal invariant product measures My = Qp>0fu,n ond
My = Qnx=0fv,n sSuch that o and pyo have non-zero discrete parts and do not

charge {0}, then
invariant Gaussian product measures).

(b) Assume that By and By admit equivalent non-trivial invariant product measures or,
more generally, non-trivial invariant product measures My = Qpzoflun Gnd My =
Onz0lw,n such that iy, and [, , have the same support for each n > 0. Let S :=

=1 for all

1;17;‘: is eventually constant (and hence By, and By admit equivalent

ugUn
ViU

supp(ftu,0) = sSupp(iw,0). If either S is compact or 0 ¢ S, then ’

n = 1; and hence u = v if u and v are positive weight sequences.
UL Un |
V1 Un

(a) Since the measures fiy , and py , do not charge {0}, one can find a countable mul-
tiplicative subgroup S of K\{0} such that the discrete parts of all measures ji » and fiy p
are supported on S and S contains the set {un; n = 1} U {vy; n = 1}. Denote by 75
the counting measure on §. Let also 7. be a continuous measure such that the continuous

Proof. — For each n > 1, let us set as usual A\, :=
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parts of all measures ji, , and (i, are absolutely continuous with respect to 7.. Then, one
can take 7 := 7, + 7s to compute H (fiyn, flvn), for every n = 0.
For each n > 0, write
Pun = OnTe + PnTS and Hy,n = BnTe + QnTs
for some non-negative measurable functions «a,, pn, On, qn. Without loss of generality, we
may assume that a,ls = 6,1s = 0 and Prlrs = dnlk\s = 0, so that we also have
Hun = (an + pn)T and Hyn = (571 + qn)T-

Hence,

H(,u'u,,naﬂ'u,n) = j]K VOn + Pn oy Bn + qndT = <mv V Br + an >L2(T)‘

Now, by Kakutani’s Theorem we know that H(ftyn,ftvn) — 1 as n — 0. Since

Iy + Pull Loty = [v/Br + anllar) = 1 it follows that
[Van+Pn = /B +an |,y = 0

Moreover, by assumption on ay, Bn, Pn, dn, We have

NCTE TR/ R N N/ PN N i

Hence, we have in particular that |,/p, — 4 /anQLQ(TS) — 0 as n — o0; and since 75 is the
counting measure on S, this means that

(5.8) 2<\/pn(s)—\/qn(s))2—>0 as n — 0.

seS

So far, we have not used the fact that the measures m, and m, are invariant under
By and B,. Set p := pg and q := qo. Then, the discrete parts of p 0 and pyo are
respectively > . sp(s)ds and D . sq(s)ds. So, by the invariance properties and since S is
a multiplicative group containing u1 - - - u, and vy - - - vy, the discrete parts of fiy , and pi p
(for n > 1) are respectively >, g p(ui---ups)ds and >, . s q(v1 - vys) ds; in other words,
we have pp(s) = p(ur---u,s) and q,(s) = q(v1---v,s) for all s € S. Hence, if we set
f:= /P and g :=,/q, (5.8) can be re-written as follows:

Z(f(ul---uns)—g(vl---vns))2—>O as n —
seS

or, equivalently,

2 (Fns) = g(s))” = 0.

seS

It follows in particular, f(A,s) — g(s) for all s € S. So, taking any s such that g(s) > 0

(such an s exists since the discrete part of ju, o is non-zero), we see that one can find
e >0, eg. e:= g(s)/2, such that f(\,s) = e for all n sufficiently large. It follows that
the sequence (\,) can take only finitely many distinct values: indeed, otherwise f(s') > ¢
for infinitely many s’ € S, a contradiction since f € f2(S). Now, assume that |\,| is
not eventually constant. Then, since A, takes only finitely many values, A\, € S and
f(Ans) — g(s) for all s € S, we see that one can find A\, N € § with |A| # |\| such that
f(As) = f(XNs) for all s € S. Setting a := /X, we then have f(a¥s) = f(s) for any s € S
and all k& € N; and taking any s such that f(s) > 0 (again, such an s exists), we obtain a
contradiction since f € fo(S) and the o, k € N are pairwise distinct. This concludes the
proof of (a).
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(b) Let us fix n > 1 and, towards a contradiction, assume that |\,| # 1, say |A\,| < 1.

By the invariance properties, we have supp(pyn) = u1 S and supp(,uv n) = o lvn S,
so that A\, S = S. Hence AS = S for all r € Z. If S is compact, it follows that S = {0}
by letting » — +00; hence py0 = 0o = [ty,0, Which is the required contradiction. If 0 ¢ S,
then we get S = J by letting » — —o0, which is another contradiction. O

D S
1 (ul---un)P

and Y7, m < . The weighted shifts By and By acting on £, are not orthogonal
with respect to product measures whose marginals have non-zero discrete parts and do not
charge {0} if and only 1 "1 Z: is eventually constant; and in that case they admit equivalent
mvariant product measures with purely discrete marginals not charging {0}.

Corollary 5.23. — Letu and v be positive weight sequences such that Z;‘LO: <

Proof. — The “only if” part follows from Proposition 5.22 (a). Conversely, assume that
Ap 1= % is eventually constant, say A, = A for n > ng. Let S be the multiplicative
subgroup of (0,00) generated by the set {u,; n = 1} U {v,; > 1}. Let p: § — Ry
be a strictly positive probability density function such that } . s p(s)s? < o0, and let
q: S — R, be the probability density function defined by q(s) := p(As). Finally, let
P = Des P(8)0s and py0 1= > . 5d(5)ds, and denote by my = @pzopu,n and my =
@n>0lv,n the associated B, -invariant and B, - invariant measures on KZ+. By Corollary
5.4 and the assumption on u, v and p, the measures m,, and m, are supported on ¢,, and
they have purely discrete marginals not charging {0}. Finally, by the proof of Proposition
5.22 (a), we have H (ftun, ton) = 2ses VP(Ans)a(s) for all n > 0, so that H (pn, fto,n) =
DesAl(s) = 1 for all n > ng. Since pypn ~ pwn for all n > 0, it follows that my ~ my.
This concludes the proof. O

Remark 5.24. — In Proposition 5.22 (b), one cannot replace “equivalent” by “non-
orthogonal”. For example, let 4 and v be defined as follows: u, =2 foralln > 1, v; =1,
ve =4 and v, = 2 for all n > 3. Then u # v (!), and yet B, and B, admit non-orthogonal
product measure my = Qp>0ftu,n and My = @p>olty,n for which ju, 0 = 1y0 has a compact
support not containing 0; for example, (0 = fty,0 could be the uniform distribution on
the interval [1, 3].

6. Additional facts

6.1. Invariant measures with symmetry properties. — It is clear that if an opera-
tor 1" acting on a Polish topological vector space X admits a non-trivial invariant measure
m, then the measure m defined by Mm(A) := £(m(A) + m(—A)) is a non-trivial invariant

measure for both 7" and —7', and that m is additionally symmetric, i.e. m(—A) = m(A)
for every Borel set A € X. The next proposition goes along the same lines.

Proposition 6.1. — Let X be a Polish space, and let T be a continuous self-map of X
admitting an tnvariant measure m. Let also G be a compact abelian group acting continu-
ously on X, and assume that Tg = B(g)T for all g € G, where B : G — G is a continuous
map invariant under the Haar measure of G. Let m be the measure on X defined by

f m(g~"A)dg,

where dg denotes integration with respect to the Haar measure of G. Then m is G-
mwvariant and both gT -invariant and Tg - invariant for every g € G.
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Proof. — 1Tt is clear that m is G-invariant. Moreover, if h € G then, for any bounded
Borel function f : X — R, we have

| se@wman- | ( | remre) dg) dm(z)

[l
a—
—
=
=
=
=N
=
=
&
QL
Ne}
~
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&

Since f3 is necessarily onto (because the Haar measure of G has full support), it follows that
m if gT - invariant for every g € G; and hence also T'g - invariant since T'g = ((g)T . O]

Corollary 6.2. — Let X be a Polish space, and let T1,Ty be two continuous self-maps
of X. Let also G be a compact abelian group acting continuously on X, and assume that
T;g = gT1; for all ge G and i = 1,2. Finally, let xo € X be a fized point for the action of
G. If Th and Ty admit equivalent (resp. non-orthogonal) invariant measures mi,ma not
charging {xo}, then they also admit equivalent (resp. non-orthogonal) invariant measures
not charging {xo} which are additionally G - invariant.

Proof. — Let my and my be defined as in Proposition 6.1. It is clear that my, ms do not
charge {zo}. So we just have to check that if m; ~ mgy then mj ~ my, and that if my L my
then mq L mo.

Assume that m; ~ mg. Let A € X be a Borel set such that mi(A) = 0. Then
mi1(gA) = 0 for almost every g € G; hence ma(gA) = 0 for almost every g € G since
ma < my, and hence ma(A) = 0. This shows that ma « my; and similarly m; < ma.

Assume that ma L m7. Let A € X be a Borel set such that m;(A) = 0 and ma(X\A) =
0. Then m;(gA) = 0 for almost every g € G and ma(X\gA) = ma(g(X\A)) = 0 for almost
every g € G. So one can find at least one g such that mi(gA4) = 0 = ma(X\gA), which
shows that mq L ms. 0

Corollary 6.3. — Let X be a Polish topological vector space, and let T € L(X). Assume
that kT admits a non-trivial invariant measure for some k € K. Then, there exists a
non-trivial measure which is aT -invariant for all a € K such that |a| = |k].

Proof. — Apply Proposition 6.1 with the group G := {w € K; |w| = 1} acting by multi-
plication on X. O

Corollary 6.4. — Let By be a backward shift acting on €,. If B, admits a non-trivial
invariant measure, then there exists a measure m on £, with full support which is invariant
for all backward shifts By, such that |v,| = |uy| for alln = 1.
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Proof. — Since ZZO=1 m < 0, we know that B, admit an invariant measure m with
full support (which can even be taken to be Gaussian and ergodic for By,). Let

G 1= {(wn)nzo € K73 fun| = 1 for all n > 0}

This is a compact abelian group acting continuously on X := K%+ by coordinatewise
multiplication. Moreover, if we set T' := B, acting on X, we have Byg = o0(g)B, for
every g € G, where 0 : G — G is (the restriction to G of) the canonical backward shift.
Hence, considering m as a Borel measure on X, we may apply Proposition 6.1. This gives a
measure m on K%+ which is B, - invariant for every weight sequence v such that |v,| = |u,|
for all n > 1. Moreover, since By, is supported on ¢, and ¢, is G - invariant, m is supported
on /£p; and since m has full support, it is readily checked that m has full support. O

Remark 6.5. — It is well-known (see [22]) that two weight sequences w and v are such
that |u,| = |v,| for all n > 1 if and only if the backward shifts B,, and B, (acting on any
¢,) are unitarily similar, i.e. there exists an isometry J of ¢, such that B, = JByJ -1

6.2. Product measures charging small subspaces. — The following proposition
says in essence that whether or not a product measure K%+ invariant under a weighted
shift By, is supported on some “small” subspace of K%+ depends on the rate of growth of
the products wy - - - wy,.

Proposition 6.6. — Let ug be a Borel probability measure on K, let w be a sequence of
non-zero scalars, and let py = Qp>opn be the By, - invariant measure on KZ+ defined by

fo, i.e. pin(A) = po(wy - wyA) for each n =1 and every Borel set A < K.
(a) Letpe [1,00). If i [t[Pdpo(t) < o0 and X, m < 0, then puy(l,) = 1.
(b) If there exists a summable sequence of positive real numbers () such that

o0
Z uo(]t] > ]wl---wn|5n) < 0,
n=1

then iy (€1) = 1.
(¢) If |wy - - - wy| b 00 and po # 0o, then puy(co) = 0. If |wy -+ - wy| 4 0 and po does not
have compact support, then iy (ls) = 0.

Proof. — (a) This is Corollary 5.4.

(b) Since #; is a tail subset of K?+, we have iy(¢1) = 0 or 1, by Kolmogorov’s 0-1 law.
Let

A= {x € KZ+§ |z, | < e, foralln > 1},

Obviously A € ¢1, and we have

Since > (1 — po(|t] < |wy -+~ wp|&,)) < 0 by assumption, it follows that p,(A) > 0,
and hence fi,,y(¢1) = 1.
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(c) Assume that py(co) > 0. Then, there exists a compact set K < ¢ such that
ty(K) > 0. By the well-known description of the compact subsets of ¢y, one can find a
sequence of positive real numbers (g,) tending to 0 such that

K c{zeK?; |z,| <e, foralln >0}

As in the proof of (b), it follows that
0
D no(jtl > Jwy - wplen) < 0.
n=1

In particular, po(|t| > |wy---wy|en) — 0 as n — oo. If py # o, this implies that no
subsequence of (|wy -+ wy|ey,) can tend to 0; and hence |wy - - - wy,| — o0.

The second part of (c) is proved in a similar way. O

Corollary 6.7. — For any probability measure py on K, one can find a sequence of posi-
tive real numbers w such that i, (¢1) = 1.

Proof. — This is clear by (b): choose a sequence of positive numbers (X,,) such that
> wo([t] > Xy) < oo, and then take w such that 27wy -+ w, > X, foralln > 1. O

Corollary 6.8. — If the measure p is such that Y puo([t| > C™) < o0 for some con-
stant C, then i, (€1) = 1 for any weight sequence w such that lim |wy - - - w,|Y" > C. In
particular, if po(|t] > X) = O(log(X)™®) as X — o for some constant o > 1, then

to(£1) = 1 for any weight sequence w such that lim |wy,|'/™ > 1.
Proof. — Take &, := (C/p)™ in (b), where p := lim |w,|"/". O
6.3. When frequently hypercyclic vectors are the same. — As mentioned in Re-

mark 5.10, the following result is due to S. Charpentier and the third author. We thank
S. Charpentier for allowing us to include it here.

Proposition 6.9. — Let u and v be two weight sequences such that By and B, are fre-
quently hypercyclic on £y. If H has a non-zero limit as n — o0, then By and B, have
the same frequently hypercyclic vectors.

Proof. — In what follows, we set a := nlgrgo e e K\{0}.

Let x be a frequently vector for B,; we want to show that x is also a frequenty hypercyclic
vector for B,. So, we fix y = ZZ=0 Yrer € coo and € > 0, and our task is to show that the
set N, (a:, By, 5)) has positive lower density.

Since x is a frequently hypercyclic vector for By, it is enough to find a vector z € £, and
a > 0 such that any sufficiently large n € N, (x, B(z, a)) belongs to N, (m, By, 5)) We
consider

d
’L)l.--vk
Z = Zaiykekecoo
k_o ul.--uk

and
Vk+1 """ Uk+n

Uk4+1 " Uk4n

ul DY um
_ sup
U1 Unm m>1

a:=¢/2K where K := sup

n,k=0

Note that K < oo since for every n, k = 0, we have

U1 Vk4n
U Ukn

Vk+1 """ Vk+n
Uk+1 " " Uk+n

ul...uk

Ul-..v
< ( sup i Um
ulo.-um

V1 Vg m>1



30 S. GRIVAUX, E. MATHERON & Q. MENET

Let us show that if n € N, (=,

B, 5)) s large enongh, then n € N, (2, B(y.)). We

have
d 0
|Byz —y|” = Z |(Vk+1*+ Vkn ) Thotn — Yiel” + 2 |(Vk+1 " * k) Thotn|”
k=0 k=d+1
d
Vk+1 " Vk+n P Upg1 " Ukpn ||
<)) (Wkt1* Ukn) T —
o | Wk+1 """ Uktn Vk+1 """ Vk+n
Vk+1 UV
+ * (k1 W) Thogn [P
kg1 | Wk+1 Uktn
< K| Bjx — 20|
where .
SR 3 =S LU=
o Uk+1""Vk+n
Therefore, if n € N, (z, B(z, 5% )), we get
€
|Byz —yl < K[ Byz — 2| + K|z — 2™ < 5 T Klz - 2
and the desired result follows because
u PEEEEY u
”Z _ Z(n)H < Z 2 — k+1 k+n yk‘
k<d Vk+1 """ Vk+n
.. ’L) u PEEEEY u
< Uy - Uk Vk4+1 " Vk+n
/l) PR /l) u “ e u
< |yl (max M) (sup a—— m’) 0.
k<d |uq---ug m>n U1 Um n—0
O
6.4. Using Shepp’s Theorem. — In this section, we show how results like Shepp’s

theorem from [21] mentioned before Theorem 5.13 can be used in the context of weighted
shifts. Specifically, we will make use of the following theorem. For any measure m on
X = R%+ and a € X, let us denote by mq the translate of m by a, which is the measure
on X defined by

ma(A) == m(A+ a).

Theorem 6.10. — Let i and [i’ be two measures on R, and let m and m' be the product
measures on RZ+ with marginals iy, := [i and [i, := [i'. Let also a = (ap)pn=0 € R%+, and
assume that the measures m and m,, are not orthogonal.

s < o0.

(1) 1f i =, then 7. )
(2) If i and [i' have a moment of order 2, then Y _,(an

Proof. — (1) is (the first third of) [21, Theorem 1].

To prove (2), we use a method devised by Dudley [13] in order to generalize Shepp’s
theorem. Denote by e, n > 0 the coordinate linear functionals on  := R%+. The as-
sumption on i and fi’ implies that e’ belongs to La(2,m) n Lo(2,m') with Ls-norms

—a)? < o for some a € R.
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respectively equal to g 22 dpi(x) and s 22 dji' (z), hence independent of n. Likewise,
So e dim = §p xdfi(x) and §, e dm’ = ( z dji’(x) do not depend on n.

Assume first that { e’ dm = 0 and {, e} dm/ = 0 for all n > 0. We claim that in this
case, we have ZZ):O a? < . Towards a contradiction, assume that Z;‘LO:O a? = . Then,
one can find a sequence of real numbers (3,) such that > 52 < o0, Byay, = 0 for all n
and "o B, = 0. Now, consider the measure 7 := %(TIN”L +m’). By our assumption, the
sequence (e),>o is orthogonal and bounded in Lo(€, 7). Since Y ;32 < 0, it follows
that the series Y. fpek is convergent in Lo(€2, 7). Hence, there is an increasing sequence
of integers (Ng)k>o such that if we define f; := Zgio e, then the sequence of linear
functionals (fx) converges 7-a.e. on . So, the linear subspace

E := {z € ; the sequence (f,(z)) is convergent} = Q

is such that 7(F) = 1 and hence m(F) = 1. On the other hand, we have fx(a) =

Zgio Broum, so the sequence (fx(a)) is not convergent, i.e. @ ¢ E; and since E is a linear
subspace of €, it follows that £ n (F + a) = . So we have 7(E + a) = 0, and hence

~/

mpy(E) =m/(E + a) = 0. Since m and m,, are not orthogonal, this is a contradiction.

Now, let us consider the general case. Let ¢ := {p zdfi(x) and ¢ := §; zdi'(x), so that
S endm = c and § exdm’ = ¢ for all n > 0. Then § e dim. = 0 and §;, e dim,, =
for all n = 0, where ¢ := (¢,¢,...) and ¢ := (¢,c,...). Since the measures m. and
(ﬁ%g,)aﬂzic,: (), are not orthogonal, it follows that Y7 ((ay — (¢ —¢))? < 0. O

From Theorem 6.10, it is essentially a formal matter to deduce the following theorem,
which is not far from saying that if two weighted shifts are not orthogonal with respect to
product measures whose marginals do not charge {0}, then they admit equivalent invariant
Gaussian product measures.

Theorem 6.11. — Let u and v be two sequences of non-zero scalars, and let my, =
Onz=0lnu and My = @px>oliny be two product measures on K%+, respectively By, - tnvariant
and By - invariant, with (104({0}) = 0 = po»({0}). Assume that the measures my, and my
are not orthogonal. Finally, let )\, := % for allm = 1.

(1) If there exists a € K\{0} such that pov(A) = pou(ad) for every Borel set A < K,
then Y7 1 (1— |a*1)\n])2 < 0.

(2) If SK\{O} (log |t|)2duo,u(t) < o and SK\{O} (log |t|)2d,ugﬂ,(t) < 00, then there exists a €
K\{0} such that Y, (1 — \ail)\n\)2 < 0.

Proof. — (1) Since pou({0}) = 0 = pov({0}), we view poy and gy as measures on
G := K\{0}, and hence we view m, and m, as measures on GZ+. Note that GZ+ is an
abelian group under entry-wise multiplication.

Consider the measures m = ®p>opy, and m’ = Qu=oul, where i, 1= poy and pl, == f.0
for all n = 0. If we set U := (1,u1,ujus,...), V:= (1,v1,v1v2,...) and a:= (a,a,a,...),
then we have for every Borel set B € G%+:

my(B) = m(UB) and my(B) = m/'(VB) = m(aVB).
Now, consider the map L : GZ+ — RZ+ defined by L(to, t1,...) = (log|to|,log [ti],...).

Denote by 1y, M, m and m’ the images of my,, My, m and m’ under this map L. Then
m = Quxofin, and M’ = Qy>ofi,, where fi,, and [}, are the images of jig, and 19, under
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the map t — log |t|, for every n = 0. Moreover, since L is a group homomorphism, we have
for every Borel set B < R%+:

my(B) =m(B+ L(U))  and  my(B) =m(B+ L(aV)).

Now, the measures My, = my o L™ and M, = my o L™! are not orthogonal since my,
and m,, are not orthogonal. So their translates by —L(aV) are not orthogonal either. In
other words, if we set

a:= LUV ta™l) = (0,log|a ' A],logla ™t Xaf,...),

then the measure m and m, are not orthogonal. By Theorem 6.10 (1), it follows that

o0 2 .
Do O < 00, i.€.

0
Z (log |a™ Ap|)?

which concludes the proof.

(2) The proof is similar, using Theorem 6.10 (2). O

Corollary 6.12. — Let By, and B, be two weighted shifts acting on £,. The following are
equivalent.

(a) By and By are not orthogonal with respect to product measures whose marginals are
absolutely continuous with respect to Lebesque measure on K.

(b) By and By, are not orthogonal with respect to product measures whose marginals do
not charge {0} and are such that log |t| € Ls.

(c) There exists k > 0 such that >,_, (1 —K

(d) By and By admit equivalent invariant Gaussian product measures.

UL Un

2
) < 0.
V1 Un

Proof. — By Theorem 6.11 and keeping the same notation, we just have to check that if
o and fig , are absolutely continuous with respect to Lebesgue measure on K, then there
exists a € K\{0} such that p(A) = p04(aA) for every Borel set A € K. When K = R this
is done in the proof of (1i) in Theorem 5.13. We repeat the argument here, in a way that
makes it work when K = C as well. Write 19, = p(t)dt and 19, = q(t)dt. Then ¥(\,) — 1
asn — o0, where ¥ : K\{0} — [0, 1] is the function defined by W(\) := |\|%/? S fF(A)g(t) dt
and d = 1 or 2 depending on whether K = R or C. Moreover, since B, and B, must be
similar by Proposition 3.8, the sequence (\,) has a cluster point a € K\{0}. Then ¥(a) =1
by continuity of ¥, and it follows that q(t) = |a|? p(at) almost everywhere. O

6.5. Kakutani’s Theorem. — In this section, our aim is to prove the following variant
of Kakutani’s Theorem from [17].

Theorem 6.13. — Let v = ®u>oVn and V' = Qu=ov), be two product probability measures
on Q= [],20 . The measures v and v' are orthogonal if and only if [Ty H(vp,v) = 0.
Moreover, if [ [_o H(vy,v),) > 0 and v, < V), for all n, then v < V'

Note that this variant was used in the proofs of Theorem 5.13 and Proposition 5.22. We
give a rather detailed proof since we were not able to locate one in the literature. However,
this is essentially a “copy and paste” of Kakutani’s original proof of his theorem.
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Proof of Theorem 6.13. — For each n = 0, let us choose a Radon-Nikodym derivative of
vp, with respect to v,, i.e. a measurable function p, : Q,, — RT such that
Vn = Pn V;L + ap,

where «, is a positive measure orthogonal to v/,. Let also f, := ,/p,. With this notation,
we have

H(vy, V) = J VPn dv, = J fndv),.
Qp Qn
(i) Assume that [[7_ H(vn,v),) > 0, and let us show that the measures v and v/ are

not orthogonal, with v « v/ if v, « v/, for all n.
For each k > 0, let Fy := ®F _ofn, i.e. Fj: Q — RY is the function defined by

k
Fy(w) == [ [ falwn).
n=0

We claim that Fj converges in Lo(2,2) to some F : Q — RT. Indeed, if 0 < p < g,
then

2
q
’]. - ®n:p+1fn LQ(V’)

1Fy = Bpliu) = 1517,

2
N
H Snprrfn Lo (V')
q
<2(1- H H(VTUV;) )
n=p+1
so we see that (F})r>o is a Cauchy sequence in Ly (9, v).
2
By Ls - convergence and since {(, f2dvl, = (Sﬂn fn du,g) for all n > 0, we have

0

f F?d/ = lim | F2dv' = || H(vn,v,)? > 0.
Q kw0 Jo n=0
Moreover, for any cylinder set A = [Ay,..., An] S Q, we have

N

v(A) = ] va(4n)

n=0

N

—0YAn

N

HJ fﬁdu;>f F2dv/,
n=0 An A

where the last inequality follows from the fact that SQn f2dv!, <1 for every n > N.

Therefore, the positive measure F? v/ is non-zero and absolutely continuous with respect
to both v/ and v, and hence v and v/ are not orthogonal. Finally, if v, « v/, for all n, i.e.
oy, = 0, then we see that v(A) = §, F?dv/' for all cylinder sets A, so v < V.

(ii) Now, assume that [[-_, H (v, v,) = 0, and let us show that v L /. It is enough to
show that for any € > 0, one can find a measurable set E < Q such that v/(F) < ¢ and
v(Q\E) <e.
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Let € > 0, and let us choose N > 0 such that H7]1V=0 H(vp,v)) <e, i.e.

J FNdV/ < E.
Q

Let us also choose, for each n € [0, N], a measurable set A,, < €, such that v} (4,) =0
and oy (2,\Ay) = 0, and let

E:={weQ; Fy(w) =1} u{weQ; w, € A, for some n € [0, N]}.
We have on the one hand v/(E) = v/(Fy > 1) < ¢; and, on the other hand,
V(IO\E) = ®p_o(pn vy, + an) ({Fn < 1} 0 [Q0\Ao, ..., An\AN])

= ®30(Pn V) ({(wo, - -, wn); V/Polwo) - pv(wy) < 1})

Po® - @pyd/

J\/Im<1
<f P0®“'®deI/'=JFNdI/<5.
Q Q

This concludes the proof. O

7. Some questions

Of course, the main open question that remains at the end of this work is the one from
which we started.

Question 7.1. — Find a characterization of the pairs of weight sequences (u,v) such that
the weighted shifts B, and B, acting on /,, are orthogonal.

In Section 3, we saw that orthogonality might be related to non-similarity, in a way
which is not yet clear. In particular, in view of Theorem 3.10, the following question is
natural.

Question 7.2. — Is it true that if B, and B, admit non-trivial invariant measures and
are orthogonal, then either

. U Unid
lim max |— 2% =0 forall N >0
n—oo 0<SASN | U1+ Upyq
or
_— . Uy - Un+d
im min |— 2% = o for all N = 07
n—w0 0<d<N | V1 " Vpid

In the same spirit, Example 4.5 shows that non-similarity does not imply orthogonal-
ity. Conversely, it would be quite interesting to know whether similarity implies non-
orthogonality.

Question 7.3. — Suppose that B, and B, admit non-trivial invariant measures and are
similar, i.e.
. 1 .. u - ul DR u
0 < lim "l <lim |[—2| < o0.
Ul .. /l)n vl e Un

Does it follow that B, and B,, are non-orthogonal?
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Note that a positive answer to Question 7.2 would imply a positive answer to Question
7.3. A very special case of the latter has a positive answer by Corollary 6.4: if B, and
B, admit non-trivial invariant measures and are wunitarily similar, then they are non-
orthogonal.

Next, in view of Theorem 5.13, Proposition 5.22 and Theorem 6.11, it is natural to ask
whether the existence of equivalent non-trivial invariant product measures always implies
the existence of equivalent invariant Gaussian product measures.

Question 7.4. — Is it true in general that if B, and B, admit equivalent non-trivial
invariant product measures my = Qn>0ftu,n and My = iy, then they admit equivalent
invariant Gaussian product measures?

From a more general point of view, the following question seems also natural.

Question 7.5. — If T7 and T are non-orthogonal operators, does it follow that they
admit equivalent non-trivial invariant measures?

In the same spirit, one may ask

Question 7.6. — When do two weighted shifts B, and B, share a common non-trivial
invariant measure?

Finally, the following seems to be unknown.

Question 7.7. — Let By, be a weighted shift acting on ¢g(Z4). Is it true that B, admits
a non-trivial invariant measure if and only if |w; - - - wy,| — © as n — 07
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