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ORTHOGONALITY OF INVARIANT MEASURES
FOR WEIGHTED SHIFTS

by

Sophie Grivaux, Étienne Matheron & Quentin Menet

Abstract. — We introduce and study the notion of orthogonality for two operators in the
context of weighted backward shifts on ℓppZ`q, 1 ď p ă 8. Two continuous linear operators
T1 and T2 acting on a Polish topological vector space X are said to be orthogonal if any two
Borel probability measures m1 and m2 on X which are respectively T1 - invariant and T2 -
invariant and satisfy m1pt0uq “ m2pt0uq “ 0 must be orthogonal. In this note, we provide
several conditions on the weights uuu and vvv implying orthogonality or non-orthogonality of the
associated weighted shifts Buuu and Bvvv, and we investigate in some detail the case where the
invariant measures are product measures.

To Gilles Godefroy, with affection and admiration

1. Introduction

1.1. Weighted shifts. — This note is a contribution to the study of the dynamics of
weighted backward shifts acting on ℓp - spaces, 1 ď p ă 8. More specifically, we will be
concerned with invariant measures for such weighted shifts.

Let X be one of the (real or complex) Banach spaces ℓp “ ℓppZ`q, 1 ď p ă 8, and
denote by penqně0 the canonical basis of X. Let www “ pwnqně1 be a weight sequence,
i.e. a bounded sequence of non-zero scalars.The backward shift associated with www is the
operator Bwww : X Ñ X defined by Bwwwe0 :“ 0 and Bwwwen :“ wnen´1 for n ě 1. Weighted
shift operators occupy a central place in operator theory. On the one hand, their explicit
form permits a systematic study, so that they are natural “test” operators for any question
that comes to mind. On the other hand, their theory is quite rich, and their behaviour
remains in some aspects rather mysterious. We refer the reader to the classical paper
[22], which proposes a systematic study of weighted shifts including their representations
as multiplication operators on certain Banach spaces of holomorphic functions and their
spectral properties, and to the authoritative book [18], which deals with the study of cyclic
vectors for the unweighted backward shift B on ℓ2pZ`q.

Many important dynamical properties are completely characterized for weighted shifts
Bwww and can be expressed in a simple way in terms of the weights wn, see e.g [19], [20],
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[12], [7], [8]. For instance, Bwww is hypercyclic, i.e. it admits a vector with a dense or-
bit, if and only if limnÑ8 |w1 ¨ ¨ ¨wn| “ 8, and it is topologically mixing if and only if
|w1 ¨ ¨ ¨wn| Ñ 8 as n Ñ 8. See [16] for proofs of these results as well as extensions to a
large class of sequence spaces. Observe that these characterizations are the same on any
ℓp. By contrast, chaoticity of a weighted shift on X “ ℓp depends explicitely on p (recall
that an operator is chaotic if it is hypercyclic with a dense set of periodic points): Bwww is
chaotic on ℓp if and only

ř8
n“1

1
|w1¨¨¨wn|p

ă 8. For the class of weighted shift operators of
ℓp, chaos is an especially important notion since it turns out to be equivalent to strong
dynamical properties such as frequent hypercyclicity (the existence of a vector whose orbit
visits each non-empty open set along a set of integers having positive lower density) or
U- frequent hypercyclicity (same as frequent hypercyclicity with lower density replaced by
upper density). Indeed, by an important result of Bayart and Ruzsa [6], frequent hyper-
cyclicity and U- frequent hypercyclicity of a weighted shift Bwww on ℓp are both equivalent to
the condition

ř8
n“1

1
|w1¨¨¨wn|p

ă 8. We refer the reader to the books [4] and [16] for more
on frequent hypercyclicity and related questions, and to the paper [11] for a study of the
relation between chaos and frequent hypercyclicity for weighted shifts on a large class of
Fréchet sequence spaces.

The condition
ř8

n“1
1

|w1¨¨¨wn|p
ă 8 also turns out to be of special importance in the study

of invariant measures for the weighted backward shift Bwww. Recall that a Borel probability
measure m on X is said to be Bwww - invariant if m

`

B´1
www pAq

˘

“ mpAq for every Borel set
A Ď X. Under the condition

ř8
n“1

1
|w1¨¨¨wn|p

ă 8, the operator Bwww acting onX “ ℓp admits
plenty of invariant measures, of quite different kinds: discrete measures associated with
periodic points, Gaussian measures with full support (with respect to some of which Bwww is
ergodic or even strongly mixing), continuous measures with full support which are very far
from being Gaussian, ... See [2] or [4, Chapter 5] for more information on (shift-invariant)
Gaussian measures; and [15], which testifies of the richness of the class of invariant measures
for backward shifts by showing that under the condition

ř8
n“1

1
|w1¨¨¨wn|p

ă 8, the backward
shift Bwww is universal for ergodic system in the sense of Glasner and Weiss [14]: for every
ergodic transformation T on a standard Lebesgue probability space pZ,B, µq, there exists
a Bwww - invariant Borel probability measure m on X “ ℓp with full support such that the
two dynamical systems pZ,B, µ;T q and pX,BX ,m;Bwwwq are isomorphic (where BX is the
Borel σ-algebra of X).

Invariant measures for weighted backward shifts are thus far from being completely
understood (and in some sense, they will never be). In this note, our aim is to contribute to
their understanding by studying possible links between invariant measures for two different
weighted shifts Buuu and Bvvv. More specifically, we will be concerned with the notion of
orthogonality of two weighted shifts.

1.2. Orthogonality. — Before giving the definition we will be playing with, we fix some
notation. The scalar field is denoted by K. All measures on X “ ℓppZ`q are understood
to be Borel probability measures. Given a weight sequence www, we denote by PwwwpXq the set
of all Bwww - invariant measures on X. If m and m1 are two measures on X, we write m K m1

to indicate that m and m1 are orthogonal (i.e. mutually singular), and m ! m1 to indicate
that m is absolutely continuous with respect to m1. If m ! m1 and m1 ! m, we say that
m and m1 are equivalent and we write m „ m1.

We now define orthogonality of two weighted backward shifts.
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Definition 1.1. — Two weighted backward shifts Buuu and Bvvv on X “ ℓp are said to be
orthogonal if the following holds true: whenever muuu P PuuupXq, mvvv P PvvvpXq and muuupt0uq “

0 “ mvvvpt0uq, it follows that muuu K mvvv.

Removing the δ0 - parts of the measures, we see that this definition can be reformulated
as follows: Buuu and Bvvv are orthogonal if and only if whenever muuu P PuuupXq and mvvv P PvvvpXq

are non-orthogonal, it must be that muuupt0uq ą 0 and mvvvpt0uq ą 0. Equivalently: there
exists no (Borel probability) measure on X which is absolutely continuous with respect
to both a Buuu - invariant measure and a Bvvv - invariant measure, except the Dirac mass δ0.
Thus, informally speaking, Buuu and Bvvv are orthogonal if their invariant measures “have
nothing to say to each other”, unless they charge the singleton t0u. The main question we
want to investigate is the following.

Question 1.2. — Characterize the pairs of weight sequences puuu,vvvq such that the associ-
ated weighted shifts Buuu and Bvvv acting on X “ ℓp are orthogonal.

The motivation for looking at this question comes from a recent work of Charpentier,
Ernst, Mestiri and Mouze [10]. Let B be the unweighted backward shift acting on the
complex Hilbert space ℓ2pZ`q, and let Λ Ď C. In [10], it is shown that the operators λB,
λ P Λ admit a common frequently hypercyclic vector if and only if the set t|λ|; λ P Λu is
a countable relatively compact subset of p1,8q. In particular, if a, b P C and |a|, |b| ą 1,
then the operators aB and bB have a common frequently hypercyclic vector. This is by no
means obvious if |a| ‰ |b|. So it is tempting to ask whether this result could be retrieved in
a “soft” way by measure-theoretic arguments. Indeed, imagine that it were possible to find
two measures ma and mb on ℓ2, with full support, invariant and ergodic for aB and bB
respectively, such that one of them is absolutely continuous with respect to the other, say
ma ! mb. By the pointwise ergodic theorem, it would follow that ma - almost every x P ℓ2
is frequently hypercyclic for aB and mb - almost every x P ℓ2 is frequently hypercyclic for
bB; hence ma - almost every x would be frequently hypercyclic for both aB and bB since
ma ! mb, so one could conclude in particular that aB and bB have a common frequently
hypercyclic vector. However, such measures ma and mb simply do not exist: we will see
below that the operators aB and bB are in fact orthogonal.

1.3. Organization of the paper. — In Section 2, we complement existing results by
showing that a weighted backward shift Bwww on X “ ℓppZ`q admits a non-trivial invariant
measure if and only if

ř8
n“1

1
|w1¨¨¨wn|p

ă 8. In Section 3, we define orthogonality in a
very general context, we give a simple condition ensuring orthogonality (Theorem 3.2),
and we use this to show, among other things, that if T is any continuous linear operator
acting on a Polish topological vector space X and a, b P K are such that |a| ‰ |b|, then the
operators aT and bT are orthogonal (Corollary 3.6). We also deduce from our criterion
that two weighted shifts that are “far from being similar” must be orthogonal (Theorem
3.10). In Section 4, we use periodic vectors to give examples of non-orthogonal weighted
shifts; in particular, we show that there exist non-orthogonal weighted shifts which are not
similar (Example 4.5). Section 5 is devoted to invariant product measures for weighted
shifts acting on ℓp, and their role in our study of orthogonality. We give a necessary
and sufficient condition for two weighted shifts Buuu and Bvvv to admit equivalent invariant
Gaussian product measures (Corollary 5.8), and then we examine to what extent the
existence of non-orthogonal invariant product measures implies the existence of equivalent
Gaussian product measures (Theorem 5.13 and Proposition 5.22). Section 6 contains some
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additional facts. Some of these facts are actually used in earlier proofs, but we prefered
to postpone them for the sake of fluid reading. We conclude the paper with a few natural
questions.

2. Existence of non-trivial invariant measures

It is, of course, not very interesting to study orthogonality of two weighted shifts if
one does not know at least that each of them admits non-trivial invariant measures, i.e.
invariant measures different from the Dirac mass δ0. The following proposition says exactly
when this happens for a weighted shift acting on ℓp.

Proposition 2.1. — Let Bwww be a weighted backward shift acting on X “ ℓp. Then Bwww

admits a non-trivial invariant measure if and only if
8
ř

n“1

1
|w1¨¨¨wn|p

ă 8.

One can give a short proof of Proposition 2.1 by using a (quite non-trivial) lemma
inspired by [6], which can be extracted from the proof of [11, []Theorem 2.1]. Since this
lemma might be useful in other situations, we state it explicitely. Let us denote by e˚

0 the
first coordinate functional on X “ ℓp.

Lemma 2.2. — Let Bwww be a weighted shift acting on X “ ℓppZ`q. Assume that one can
find a vector x P ℓp and a set of integers N such that

(i) N has positive upper density,
(ii) supnPN }Bn

wwwx} ă 8,
(iii) infnPN |xe˚

0 , B
n
wwwxy| ą 0.

Then, one can conclude that
8
ř

n“1

1
|w1¨¨¨wn|p

ă 8.

Sketch of the proof of Lemma 2.2. — Write x “
ř8

n“0 xnen. Let C1 :“ supnPN }Bn
wwwx} and

C2 :“ infnPN |xe˚
0 , B

n
wwwxy| “ infnPN |w1 ¨ ¨ ¨wn xn|. If we let vn :“ pw1 ¨ ¨ ¨wnq´1, we have for

every n P N and every integer M ě 0,
›

›

›

›

›

ÿ

mPN
nďmďn`M

vm´nem´n

›

›

›

›

›

ď
1

C2

›

›

›

›

›

ÿ

mPN
nďmďn`M

vm´n
xm
vm

em´n

›

›

›

›

›

“
1

C2

›

›

›

›

›

ÿ

0ďkďM
k`nPN

vk
xk`n

vk`n
ek

›

›

›

›

›

ď
C1

C2
¨

We then conclude thanks to [11, []Lemma 2.5].

Proof of Proposition 2.1. — As mentioned in the introduction, it is well-known that if
ř8

n“1
1

|w1¨¨¨wn|p
ă 8, then Bwww admits lots of non-trivial invariant measures. Perhaps the

simplest such measure is the Dirac mass δx at the fixed point x :“ e0 `
ř8

n“1
1

w1¨¨¨wn
en.

Conversely, assume that Bwww admits a non-trivial invariant measure m. By the ergodic
decomposition theorem, we may assume that m is an ergodic measure for Bwww. Since
m ‰ δ0, we may choose a point u ‰ 0 in the support of m. Then Bn

wwwu P supppmq for all
n ě 0 by the Bwww - invariance of m, so we may assume that xe˚

0 , uy ‰ 0. Let α ą 0 be such
that |xe˚

0 , uy| ą α, and consider the open set

U :“
␣

z P X; }z ´ u} ă 1 and |xe˚
0 , zy| ą α

(

.

Since U is a neighbourhood of u, we have mpUq ą 0. By the pointwise ergodic theorem,
it follows that one can find x P X such that the set NBwwwpx, Uq :“ tn P Z`; B

n
wwwx P Uu
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admits a positive density, i.e. limNÑ8
1

N`1#
`

J0, NK X NBwwwpx, Uq
˘

exists and is (strictly)
positive; in particular, NBwwwpx, Uq has positive upper density. So we have found a vector
x P ℓp and a set of integers N with positive upper density such that }Bn

wwwx} ă 1 ` }u} and
|xe˚

0 , B
n
wwwxy| ą α for all n P N . By Lemma 2.2, this concludes the proof.

Remark 2.3. — Proposition 2.1 is valid in a more general setting: the same proof shows
that if X is a Banach sequence space for which penqně0 is a boundedly complete uncondi-
tional basis, then a weighted shift Bwww acting on X admits a non-trivial invariant measure
if and only if the series

ř 1
w1¨¨¨wn

en is convergent in X. We do not know if the analogous
result holds for weighted shifts acting on c0pZ`q.

3. A general criterion for orthogonality

Although the definition of orthogonality was given in the introduction for pairs of
weighted shifts only, it makes sense in a much more general context. If T is any con-
tinuous self-map of a Polish (i.e. separable and completely metrizable) space X, let us
denote by PT pXq the set of all T - invariant (Borel probability) measures on X.

Definition 3.1. — Let X be a Polish space, and let (P) be any property of measures
on X. We say that two continuous self-maps T1, T2 of X are orthogonal with respect to
measures satisfying (P) if the following holds true: whenever m1 P PT1pXq and m2 P

PT2pXq satisfy (P), it follows that m1 K m2.

In accordance with Definition 1.1, if X is a Polish topological vector space and T1, T2
are continuous linear operators on X, we will say that T1 and T2 are orthogonal if they are
orthogonal with respect to measures not charging the singleton t0u.

We now present a general sufficient condition for orthogonality. Recall that if pAnqnPN
is a sequence of subsets of X, then lim An denotes the set of all x P X that belong to
infinitely many An’s.

Theorem 3.2. — Let X be a Polish space, and let Λ be a Borel subset of X. Let also T1
and T2 be two continuous self-maps of X. Assume that for any compact set K Ď X with
K X Λ “ H, there exists an infinite set I Ď N such that

(3.1) lim
nPI

T´n
1 pKq X T´n

2 pKq “ H.

Then, T1 and T2 are orthogonal with respect to measures not charging Λ.

Proof. — Let m1 P PT1pXq and m2 P PT2pXq be such that m1pΛq “ 0 “ m2pΛq. We have
to show that m1 K m2, and this will be an easy consequence of the following fact.

Fact 3.3. — For any ε ą 0, one can find a Borel set Eε Ď X such that m1pEεq ă ε and
m2pEεq ą 1 ´ ε.

Proof of Fact 3.3. — By regularity of the measures m1 and m2 and since m1 and m2 do
not charge Λ, there exists a compact set K Ď XzΛ such that m1pKq ą 1 ´ ε{2 and
m2pKq ą 1 ´ ε{2. Let I be an infinite subset of N such that (3.1) holds true. Then
m1

`

T´n
1 pKq X T´n

2 pKq
˘

Ñ 0 as n Ñ 8 along I by Fatou’s Lemma; so one can find an
integer n ě 1 such thatm1

`

T´n
1 pKqXT´n

2 pKq
˘

ă ε{2. Sincem1

`

T´n
1 pKq

˘

“ m1pKq ą 1´

ε{2, it follows that m1

`

T´n
2 pKq

˘

ă ε. On the other hand, m2

`

T´n
2 pKq

˘

“ m2pKq ą 1´ ε;
so we may take E :“ T´n

2 pKq.
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If we now define E :“
Ť

kPN
Ş

nPNE 2´n

k

, we see that m1pEq “ 0 and m2pEq “ 1, which
shows that m1 K m2.

Remark 3.4. — The assumption in Theorem 3.2 is here to ensure that for any compact
set K Ď XzΛ and any measure m on X, it holds that infně1m

`

T´n
1 pKq X T´n

2 pKq
˘

“ 0.
However, it is very likely that (3.1) is a too strong assumption. More generally, it would be
nice to have a “measure-free” characterization of the sequences of Borel sets pAnqně1 Ď X
such that infně1mpAnq “ 0 for every measure m on X. Note that there is a very simple
characterization if “inf” is replaced by “lim”: we have limnÑ8 mpAnq “ 0 for every measure
m onX if and only if limAn “ H. On the other hand, for a sequence pAnqně1 of non-empty
Borel subsets of X, consider the following statements.

(i) There exists an infinite set I Ď N such that limnPI An “ H.
(ii) infně1mpAnq “ 0 for every measure m on X.
(iii) infně1mpAnq “ 0 for every discrete measure m on X.
(iv) infně1mpAnq “ 0 for every finitely supported measure m on X.
(v) For any finite set F Ď X, there exist infinitely many n such that An X F “ H.
Then (i) ùñ (ii) ùñ (iii) ðñ (iv) ðñ (v), but (v) does not imply (ii) and (ii) does

not imply (i).

Proof. — (i) ùñ (ii) by Fatou’s Lemma, and obviously (ii) ùñ (iii) ùñ (iv). Moreover,
it is rather clear that in fact (iii) ðñ (iv), and that (v) ùñ (iv).

To prove that (iv) ùñ (v), assume that for some finite set F Ď X and some integer N ,
we have An X F ‰ H for all n ą N . Choose a point ai P Ai for i “ 1, . . . , N . Then, the

finitely supported measure m :“ 1
2

ˆ

1
N

N
ř

i“1
δai ` 1

#F

ř

xPF

δx

˙

is such that infně1mpAnq ą 0.

To show that (v) does not imply (ii), let X :“ r0, 1s, and define

An :“ tt P r0, 1s; | sinp2πntq| ě 1{πu.

By Dirichlet’s theorem, for any finite set F Ď r0, 1s one can find an increasing sequence
of integers pnkq such that sinp2πnktq Ñ 0 on F ; so (v) is satisfied. However, we have
ş1
0 | sinp2πntq| dt “ 2{π for all n ě 1. Hence mpAnq ě 1{π for all n ě 1, where m is

Lebesgue measure on r0, 1s.
Let us now show that (ii) does not imply (i). This example is due to N. de Rancourt.

Consider the Cantor space ∆ “ t0, 1uN identified with the power set of N. Let

X :“

#

J Ď N;
ÿ

nPJ

1

n
ď 1

+

,

which is a closed subset of ∆ and hence a (compact) Polish space. For each n P N, let

An :“ tJ P X; n P Ju.

It is clear that the sequence pAnq does not satisfy (i): indeed, for any infinite set I Ď N,
one can find an infinite set J Ď I such that

ř

nPJ
1
n ď 1, and this J belongs to limAn by

definition.
However, pAnq satisfies (ii); in fact, for any measure m on X, we have

ř8
n“1

mpAnq

n ă 8.
Indeed, we have

8
ÿ

n“1

mpAnq

n
“

ż

X

˜

8
ÿ

n“1

1

n
1AnpJq

¸

dmpJq “

ż

X

˜

ÿ

nPJ

1

n

¸

dmpJq ď 1.
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Here is yet another example showing that (ii) does not imply (i), which is a kind of twin
of the previous one. Let

X :“

#

x P r0, πs;
8
ÿ

n“1

| sinp2nxq|

n
ď 1

+

,

which is a closed subset of r0, πs. For each n ě 1, let

An :“ tx P X; | sinp2nxq| ě 1{2u.

With some effort, one can prove the following: if pmiqiě1 is a sufficiently fast increasing
sequence of integers and if we define

x :“
π

2

8
ÿ

i“1

1

2mi
,

then x P Amk
for every k ě 1. It follows imediately that the sequence pAnq does not satisfy

(i). However, one shows in the same way as above that pAnq satisfies (ii).

Remark 3.5. — With the notation of Theorem 3.2, consider the following statements.
(1) For any compact set K Ď XzΛ, it holds that lim T´n

1 pKq X T´n
2 pKq “ H.

(2) It is not possible to find x P X and an increasing sequence of integers pnkq such that
the sequences pTnk

1 xq and pTnk
2 xq both converge to a limit not belonging to Λ.

Then (2) ùñ (1), and (1) ðñ (2) if Λ is a closed subset of X.

Proof. — It should be rather clear that (2) implies (1). Indeed, let K be a compact subset
of XzΛ, and assume that lim T´n

1 pKq X T´n
2 pKq ‰ H. Then, there exists x P X and an

increasing sequence of integers pnkqkě0 such that Tnk
1 x P K and Tnk

2 x P K for all k ě 0.
Since K is compact, we may assume, upon extracting subsequences, that both sequences
pTnk

1 xq and pTnk
2 xq converge, Tnk

1 x Ñ u P K and Tnk
2 x Ñ v P K; and since K Ď XzΛ,

this shows that (2) is not satisfied.
Conversely, assume that Λ is closed and that (2) is not satisfied, i.e. there exist x P X

and an increasing sequence of integers pnkqkě0 such that Tnk
1 x Ñ u and Tnk

2 x Ñ v, where
u, v P XzΛ. Since XzΛ is open, one can find k0 such that Tnk

1 x, Tnk
2 x P XzΛ for all k ě k0.

Then the set K :“ tTnk
1 x; k ě k0u Y tTnk

2 x; k ě k0u Y tu, vu is a compact subset of XzΛ

and x P T´nk
1 pKq X T´nk

2 pKq for all k ě k0, so that (1) is not satisfied.

Here is a first application of Theorem 3.2.

Corollary 3.6. — Let X be a Polish topological vector space, and let T P LpXq. Let also
a, b P K, and assume that aT and bT admit non-trivial invariant measures. Then, aT and
bT are orthogonal if and only if |a| ‰ |b|. More precisely: aT and bT are orthogonal if
|a| ‰ |b|; and they share a non-trivial invariant measure if |a| “ |b|.

Proof. — To prove that aT and bT are orthogonal if |a| ‰ |b|, we use Theorem 3.2 and
Remark 3.5 with Λ “ t0u. Assume that there exists x P X and an increasing sequence of
integers pnkq such that ankTnkx Ñ u P X and bnkTnkx Ñ v P X. We must show that
u “ 0 or v “ 0; and this follows from the continuity of the map pλ, zq ÞÑ λz: indeed,
assuming for example that |a| ą |b| and writing bnkTnkx “ pb{aqnk ankTnkx, we see that
bnkTnkx Ñ 0.

The converse will follow from Proposition 6.1 below.
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Remark 3.7. — If Bwww is a weighted shift acting on X “ ℓppZ`q and a, b P K are such
that |a| “ |b| “: r with

ř8
n“1

1
prn|w1¨¨¨wn|qp

ă 8, then the operators aBwww and bBwww admit
equivalent ergodic Gaussian measures with full support. This will follow from Theorem
5.7 below.

Corollary 3.6 leads to naive speculations regarding orthogonality of weighted shifts.
Recall that two operators T1, T2 acting on X are said to be similar if there exists an
invertible operator J such that T1 “ JT2J

´1. By [22, []p. 54, Th. 2(a)], two weighted
shifts Buuu and Bvvv acting on ℓp are similar if and only if

(3.2) lim

ˇ

ˇ

ˇ

ˇ

u1 ¨ ¨ ¨un
v1 ¨ ¨ ¨ vn

ˇ

ˇ

ˇ

ˇ

ą 0 and lim

ˇ

ˇ

ˇ

ˇ

u1 ¨ ¨ ¨un
v1 ¨ ¨ ¨ vn

ˇ

ˇ

ˇ

ˇ

ă 8.

When uuu and vvv have the form uuu “ awww and vvv “ bwww for some weight sequence www and
a, b P K, then u1¨¨¨un

v1¨¨¨vn
“

`

a
b

˘n, and hence (3.2) holds true if and only if |a| “ |b|. So
it is tempting to “conjecture” that two weighted shifts Buuu and Bvvv are orthogonal if and
only if they are not similar. This is however not true, as will be seen in Section 4 below.
Nevertheless, we now present two results showing that this is not that far from being true.

In what follows we denote by e˚
j , j ě 0 the coordinate functionals on X “ ℓppZ`q. And

if x P X, we write x “
ř8

j“0 xjej where xj “ xe˚
j , xy.

Proposition 3.8. — Let Buuu and Bvvv be two weighted shifts acting on X “ ℓp. Assume
that Buuu and Bvvv are not similar, i.e. that

(3.3) either lim

ˇ

ˇ

ˇ

ˇ

u1 ¨ ¨ ¨un
v1 ¨ ¨ ¨ vn

ˇ

ˇ

ˇ

ˇ

“ 0 or lim

ˇ

ˇ

ˇ

ˇ

u1 ¨ ¨ ¨un
v1 ¨ ¨ ¨ vn

ˇ

ˇ

ˇ

ˇ

“ 8.

Then, Buuu and Bvvv are orthogonal with respect to measures not charging Λe˚
0
:“ kerpe˚

0q.

Proof. — We apply Theorem 3.2 with Λ :“ Λe˚
0
. So let K be a compact subset of

Xz kerpe˚
0q. Choose some constants M ă 8 and γ ą 0 such that }z} ď M and |xe˚

0 , zy| ě γ
for all z P K. If x “

ř8
j“0 xjej P X then, for every n ě 1, we have

xe˚
0 , B

n
uuuxy “ u1 ¨ ¨ ¨un xn and xe˚

0 , B
n
vvv xy “ v1 ¨ ¨ ¨ vn xn;

so we see that
B´n
uuu pKq Ď

␣

x P X; |xn| ¨ |u1 ¨ ¨ ¨un| ě γ
(

and
B´n
vvv pKq Ď

␣

x P X; |xn| ¨ |v1 ¨ ¨ ¨ vn| ď M
(

.

Hence, the following implication holds :

B´n
uuu pKq XB´n

vvv pKq ‰ H ùñ

ˇ

ˇ

ˇ

ˇ

u1 ¨ ¨ ¨un
v1 ¨ ¨ ¨ vn

ˇ

ˇ

ˇ

ˇ

ě
γ

M
¨

It follows that if lim
ˇ

ˇ

ˇ

u1¨¨¨un
v1¨¨¨vn

ˇ

ˇ

ˇ
“ 0, then B´n

uuu pKq X B´n
uuu pKq “ H for infinitely many n;

and symmetrically, if lim
ˇ

ˇ

ˇ

u1¨¨¨un
v1¨¨¨vn

ˇ

ˇ

ˇ
“ 8 then B´n

vvv pKq X B´n
uuu pKq “ H for infinitely many

n. By Theorem 3.2, this concludes the proof.

Remark 3.9. — One may observe that for any weight sequence www and every n ě 1, we
have B´n

www pΛe˚
0

q “ Λe˚
n
. Hence, a measure m P PwwwpXq does not charge Λe˚

0
if and only if

it does not charge Λe˚
n
. Therefore, m does not charge Λe˚

0
if and only if it is supported on

the set tx P X; xe˚
n, xy ‰ 0 for all n ě 0u.
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The next theorem shows that “full” orthogonality of Buuu and Bvvv can be deduced from
stronger assumptions on the weights uuu and vvv.

Theorem 3.10. — Let Buuu and Bvvv be two weighted shifts acting on X “ ℓp. Assume that
either

(3.4) lim
nÑ8

max
0ďdďN

ˇ

ˇ

ˇ

ˇ

u1 ¨ ¨ ¨un`d

v1 ¨ ¨ ¨ vn`d

ˇ

ˇ

ˇ

ˇ

“ 0 for all N ě 0

or

(3.5) lim
nÑ8

min
0ďdďN

ˇ

ˇ

ˇ

ˇ

u1 ¨ ¨ ¨un`d

v1 ¨ ¨ ¨ vn`d

ˇ

ˇ

ˇ

ˇ

“ 8 for all N ě 0.

Then, Buuu and Bvvv are orthogonal.

Proof. — We apply Theorem 3.2 once again, with Λ :“ t0u. So, let K be a compact subset
of Xzt0u.

We first note that there exists an integer N such that max
0ďdďN

|zd| ą 0 for every z P K.

Indeed, the compact set K is covered by the open sets Od :“ tz P X; |zd| ą 0u.
Choose γ ą 0 such that max

0ďdďN
|zd| ě γ for every z P K, and M ă 8 such that }z} ď M

for every z P K. As in the proof of Proposition 3.8, we get that for every n ě 1,

B´n
uuu pKq Ď

"

x P X; max
0ďdďN

|u1`d ¨ ¨ ¨un`d| ¨ |xn`d| ě γ

*

and

B´n
vvv pKq Ď

"

x P X; max
0ďdďN

|v1`d ¨ ¨ ¨ vn`d| ¨ |xn`d| ď M

*

;

so that

B´n
uuu pKq XB´n

vvv pKq ‰ H ùñ max
0ďdďN

ˇ

ˇ

ˇ

ˇ

u1`d ¨ ¨ ¨un`d

v1`d ¨ ¨ ¨ vn`d

ˇ

ˇ

ˇ

ˇ

ě
γ

M
¨

Now, we have max0ďdďN

ˇ

ˇ

ˇ

u1`d¨¨¨un`d

v1`d¨¨¨vn`d

ˇ

ˇ

ˇ
ď CN max0ďdďN

ˇ

ˇ

ˇ

u1¨¨¨un`d

v1¨¨¨vn`d

ˇ

ˇ

ˇ
for some constant CN .

Hence, if (3.4) is satisfied, then one can find an infinite set I Ď N such that

max
0ďdďN

ˇ

ˇ

ˇ

ˇ

u1`d ¨ ¨ ¨un`d

v1`d ¨ ¨ ¨ vn`d

ˇ

ˇ

ˇ

ˇ

Ñ 0 as n Ñ 8 along I;

and it follows that B´n
uuu pKqXB´n

vvv pKq “ H for all n P I sufficiently large. Symmetrically, if
(3.5) is satisfied, then one can find an infinite set I Ď N such that B´n

vvv pKq XB´n
uuu pKq “ H

for all n P I sufficiently large. So Theorem 3.2 applies.

Corollary 3.11. — Assume that the weight sequences uuu ad vvv are bounded below, i.e.
infně1 |un| ą 0 and infně1 |un| ą 0. If Buuu and Bvvv are not similar, then they are or-
thogonal.

Proof. — The assumption on uuu and vvv implies that for every N ě 0, there are con-
stants cN ą 0 and CN ă 8 such that max0ďdďN

ˇ

ˇ

ˇ

u1¨¨¨un`d

v1¨¨¨vn`d

ˇ

ˇ

ˇ
ď CN

ˇ

ˇ

ˇ

u1¨¨¨un
v1¨¨¨vn

ˇ

ˇ

ˇ
and

min0ďdďN

ˇ

ˇ

ˇ

u1¨¨¨un`d

v1¨¨¨vn`d

ˇ

ˇ

ˇ
ě cN

ˇ

ˇ

ˇ

u1¨¨¨un
v1¨¨¨vn

ˇ

ˇ

ˇ
. Hence, if Buuu and Bvvv are not similar then (3.4)

or (3.5) is satisfied.

Remark 3.12. — Theorem 3.10 can be reformulated in the following way: if



10 S. GRIVAUX, É. MATHERON & Q. MENET

- either, for every ε ą 0, the set Auuu,vvv,ε :“
!

n P Z`;
ˇ

ˇ

ˇ

u1¨¨¨un
v1¨¨¨vn

ˇ

ˇ

ˇ
ă ε

)

contains arbitrarily
long intervals,

- or, for every M ă 8, the set A1
uuu,vvv,M :“

!

n P Z`;
ˇ

ˇ

ˇ

u1¨¨¨un
v1¨¨¨vn

ˇ

ˇ

ˇ
ą M

)

contains arbitrarily
long intervals,

then Buuu and Bvvv are orthogonal.

4. Non-orthogonality via periodic points

In this section, our aim is to present some examples of non-orthogonal weighted shifts
using measures supported by periodic orbits. We first note the following easy fact.

Fact 4.1. — Let X be a Polish topological vector space, and let T1, T2 P LpXq. If T1 and
T2 share a non-zero periodic point, then they are not orthogonal.

Proof. — Let x ‰ 0 be a common periodic point for T1 and T2; so T d1x “ x “ T d2x

for some d1, d2 P N. For i “ 1, 2, the measure mi :“
1
di

řdi´1
n“0 δTn

i x is Ti - invariant, and
mipt0uq “ 0 since x ‰ 0. Moreover, m1 and m2 are not orthogonal since m1ptxuq ą 0 and
m2ptxuq ą 0.

Theorem 4.2. — Let Buuu and Bvvv be two weighted shifts on X “ ℓppZ`q. Assume that
ř8

n“1
1

|u1¨¨¨un|p
ă 8 and

ř8
n“1

1
|v1¨¨¨vn|p

ă 8. The following are equivalent.

(1) Buuu and Bvvv share a non-zero periodic point;
(2) there exist d P N and 0 ď j ď d ´ 1 such that u1`j ¨ ¨ ¨udm`j “ v1`j ¨ ¨ ¨ vdm`j for all

m ě 1;
(3) there exist d P N and 0 ď j ď d´1, and a non-zero scalar C such that u1 ¨ ¨ ¨udm`j “

C v1 ¨ ¨ ¨ vdm`j for all m ě 0 (where an empty product is declared to be equal to 1).

Proof. — (1) ùñ (2) Assume that Buuu and Bvvv share a non-zero periodic point x. Let d1 be
the period of x as a periodic point of T1, and let d2 be the period of x as a periodic point
of T2. Setting d :“ d1d2, we then have Bd

uuux “ x “ Bd
vvvx (and hence Bmd

uuu x “ x “ Bmd
vvv x for

all m ě 1.) Writing x “
ř

jě0 xjej , we have

xj`md “
1

uj`1 ¨ ¨ ¨uj`md
xj “

1

vj`1 ¨ ¨ ¨ vj`md
xj for all j ě 0.

Since x ‰ 0, one can find 0 ď j ď d ´ 1 such that xj ‰ 0, and then uj`md ¨ ¨ ¨uj`1 “

vj`md ¨ ¨ ¨ vj`1 for all m ě 1.
(2) ùñ (3) This is clear: if (2) is satisfied for some d and 0 ď j ď d ´ 1, then (3) is

satisfied with the same d and j and C :“
u1¨¨¨uj

v1¨¨¨vj
(so C “ 1 if j “ 0).

(3) ùñ (1) Assume that (3) holds true for some d, j, C. Since
ř8

n“1
1

|u1¨¨¨un|p
ă 8, the

vector

x :“
8
ÿ

m“0

1

u1 ¨ ¨ ¨umd`j
emd`j “

1

C

8
ÿ

m“0

1

v1 ¨ ¨ ¨ vmd`j
emd`j P ℓp

is well-defined, and clearly Bd
uuux “ x “ Bd

vvvx. Thus, x is a non-zero common periodic point
for Buuu and Bvvv.
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Corollary 4.3. — Let Buuu and Bvvv be two weighted shifts on ℓppZ`q, with
ř8

n“1
1

|u1¨¨¨un|p
ă

8 and
ř8

n“1
1

|v1¨¨¨vn|p
ă 8. Assume that there exist d P N, 0 ď j ď d ´ 1 and a scalar

C ‰ 0 such that u1 ¨ ¨ ¨udm`j “ C v1 ¨ ¨ ¨ vdm`j for all m ě 0. Then Buuu and Bvvv are not
orthogonal.

Example 4.4. — Assume that uj “ 2 for all j ě 1, v1 “ 3 and vj “ 2 for all j ě 2. Then
Buuu and Bvvv acting on ℓp share a non-zero fixed point, and hence they are not orthogonal.

In this example, the operators Buuu and Bvvv are obviously similar. We now give an example
of non-orthogonal weighted shifts which are not similar.

Example 4.5. — Let prkqkě1 be an increasing sequence of integers, and let uuu and vvv be
the two weight sequences defined as follows:

uj :“

"

2 if j R t5rk ` 1, 5rk ` 4; k ě 1u
1
k if j “ 5rk ` 1 or j “ 5rk ` 4 for some k ě 1

and

vj :“

"

2 if j R t5rk ` 2, 5rk ` 3; k ě 1u
1
k if j “ 5rk ` 2 or j “ 5rk ` 3 for some k ě 1.

If prkq is sufficiently fast increasing, then Buuu and Bvvv acting on ℓp share a non-zero
periodic point and hence they are not orthogonal. However, we have

lim
u1 ¨ ¨ ¨un
v1 ¨ ¨ ¨ vn

“ 0 and lim
u1 ¨ ¨ ¨un
v1 ¨ ¨ ¨ vn

“ 8,

so that, in particular, Buuu and Bvvv are not similar.

Proof. — It is clear that if prkq is sufficiently fast increasing, then
ř8

n“0
1

|u1¨¨¨un|p
ă 8 and

ř8
n“0

1
|v1¨¨¨vn|p

ă 8.
Observe that if m is a positive integer and if we consider the largest k such that rk ď m,

then either rk “ m or 5rk ` 4 ă 5m. Since u1 ¨ ¨ ¨u5rk “ v1 ¨ ¨ ¨ v5rk by definition of the
weights, it follows that

u1 ¨ ¨ ¨u5m “ v1 ¨ ¨ ¨ v5m for all m ě 1.

Hence, Buuu and Bvvv share a non-zero periodic point by Theorem 4.2.
However, for any k ě 1 we have

u1 ¨ ¨ ¨u5rk`1

v1 ¨ ¨ ¨ v5rk`1
“

1

2k
and

u1 ¨ ¨ ¨u5rk`3

v1 ¨ ¨ ¨ v5rk`3
“ 2k,

so that lim u1¨¨¨un
v1¨¨¨vn

“ 0 and lim u1¨¨¨un
v1¨¨¨vn

“ 8.

Remark 4.6. — In the above example, the weights are not bounded below. This is not
accidental: indeed, if two weighted shifts Buuu and Bvvv share a non-zero periodic point and
if infně1 |un| ą 0 and infně1 |vn| ą 0, then Buuu and Bvvv are necessarily similar by Corollary
3.11. (Alternatively, this follows easily from Theorem 4.2.)
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5. Non-orthogonality via product measures

5.1. Invariant product measures for weighted shifts. — The question we consider
in this section is the following: given two weighted shifts Buuu and Bvvv on X “ ℓppZ`q,
when is it possible to find invariant measures muuu and mvvv (for Buuu and Bvvv respectively) not
charging t0u which are not orthogonal and are also product measures?

The terminology requires some explanation since product measures should be defined
on products of measurable spaces and X “ ℓp is not such a product space. However, ℓp
is contained in the product space Ω :“ KZ` . It is well-known that the Borel σ-algebra
of Ω (induced by the product topology) is identical with the product σ-algebra bně0BK.
Moreover, ℓp is a Borel subset of Ω when Ω is endowed with the product topology, and a
subset of ℓp is Borel in pℓp, } ¨ }pq if and only if is Borel in Ω. It follows that if µ is a Borel
probability measure on Ω, then the restriction of µ to ℓp is a Borel measure on ℓp endowed
with its usual topology (but not a probability measure unless µpℓpq “ 1); and conversely,
any Borel probability measure on ℓp can be considered as a Borel probability measure on
Ω (supported on ℓp). We will say that a Borel probability measure m on ℓp is a product
measure on ℓp if m is the restriction to ℓp of a (probability) product measure µ on Ω, i.e.
µ “

Â

ně0 µn where each µn is a Borel probability measure on K, such that µpℓpq “ 1. In
this case, the measure µ is uniquely determined by m since µpBq “ mpB X ℓpq for every
Borel set B Ď Ω, so we identify m and µ and simply write m “ bně0µn.

The following essentially obvious remark will be used repeatedly.

Fact 5.1. — Let X be a Borel subset of Ω “ KZ` , and let µ be a Borel (probability)
measure on Ω such that µpXq “ 1. Set m :“ µ|X . Let also T : Ω Ñ Ω be a Borel map
such that T pXq Ď X.Then µ is T - invariant if and only if m is pT|Xq - invariant.

Proof. — The measure µ is T - invariant if and only if µpT´1pBqq “ µpBq for every Borel
set B Ď Ω. Now, we have µpBq “ mpX X Bq and µpT´1pBqq “ mpX X T´1pBqq “

m
`

pT|Xq´1pX X Bq
˘

because T pXq Ď X. So µ is T - invariant if and only if mpX X Bq “

m
`

pT|Xq´1pX X Bq
˘

for every Borel set B Ď Ω, which means exactly that m is pT|Xq -
invariant.

From this observation, it follows that if m is a product measure on X “ ℓp and if we
denote by µ the measure m considered as a measure on Ω “ KZ` , then m is invariant
under some weighted shift Bwww if and only if µ is invariant under the natural extension of
Bwww to Ω (defined by the same formula and also denoted by Bwww). The next lemma says
precisely when this happens.

Lemma 5.2. — Let µ “ bně0µn be a product measure on Ω “ KZ`, and let www be a weight
sequence. Then, µ is Bwww - invariant if and only if, for each n ě 1, the measure µn is the
image of µ0 under the map t ÞÑ 1

w1¨¨¨wn
t, i.e. µnpAq “ µ0pw1 ¨ ¨ ¨wnAq for every Borel set

A Ď K.

Proof. — For any Borel sets A0 . . . , AN Ď K, denote by rA0, . . . , AN s Ď Ω the “cylinder
set” defined as follows:

rA0, . . . , AN s “
␣

t “ ptjqjě0 P Ω; tj P Aj for j “ 0, . . . , N
(

.

Since the cylinder sets generate the Borel σ-algebra of Ω, the measure µ is Bwww - invariant
if and only if

µ
`

B´1
www prA0, . . . , AN sq

˘

“ µ
`

rA0, . . . , AN s
˘
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for all Borel sets A0, . . . , AN Ď K. Now, by definition of Bwww we have

B´1
www prA0, . . . , AN s

˘

“
␣

t “ ptjqjě0 P Ω; wj`1tj`1 P Aj for j “ 0, . . . , N
(

,

so that
B´1
www prA0, . . . , AN s

˘

“ rK, p1{w1qA0, . . . , p1{wN`1qAN s .

Since µ “ bjě0µj , it follows that µ is Bwww - invariant if and only if

N
ź

j“0

µjpAjq “

N
ź

j“0

µj`1

`

p1{wj`1qAj

˘

for every N ě 0 and all Borel sets A0, . . . , AN Ď K. This is clearly equivalent to the fact
that

µj`1pp1{wj`1qAq “ µjpAq for all j ě 0 and every Borel set A Ď K,
which proves the lemma.

Corollary 5.3. — Let µ “ bně0µn be a product measure on Ω “ KZ`, and let www be a
weight sequence. Assume that µ0 has a density p with respect to Lebesgue measure on K.
Then µ is Bwww - invariant if and only if, for each n ě 1, the measure µn has a density pn
given by pnptq :“ |w1 ¨ ¨ ¨wn|d ppw1 ¨ ¨ ¨wntq, where d “ 1 if K “ R and d “ 2 if K “ C.

Proof. — This follows immediately from Lemma 5.2

Corollary 5.4. — Let µ “ bně0µn be a product measure on Ω “ KZ`, and let www be a
weight sequence such that

ř8
n“0

1
|w1¨¨¨wn|p

ă 8. If µ is Bwww - invariant and if the measure
µ0 is such that

ş

K |t|pdµ0ptq ă 8, then µpℓpq “ 1.

Proof. — By Lemma 5.2, we have
ż

Ω

˜

8
ÿ

n“0

|tn|p

¸

dµptq “

8
ÿ

n“0

ż

K
|tn|pdµnptnq

“

ˆ
ż

K
|s|pdµ0psq

˙

ˆ

˜

1 `

8
ÿ

n“1

1

|w1 ¨ ¨ ¨wn|p

¸

ă 8.

In particular, we see that
ř8

n“0 |tn|p ă 8 for µ - almost every t P Ω, i.e. µpℓpq “ 1.

To conclude this section, we point out the following general fact.

Fact 5.5. — Let Bwww be a weighted shift on ℓp where www satisfies
ř8

n“1
1

|w1¨¨¨wn|p
ă 8, and

let m “ bně0µn be a Bwww - invariant product measure on ℓp. If the measure µ0 has full
support, then m is an ergodic measure with full support for Bwww.

Proof. — Let pξnqně0 be a sequence of independent K - valued random variables with law
µ0. As a measure on KZ` , m is the distribution of the KZ`- valued random variable ξ :“
ξ0e0 `

ř8
n“1

ξn
w1¨¨¨wn

en. Since mpℓpq “ 1, we have ξ P ℓp almost surely, which means that
the series defining ξ is almost surely convergent with respect to the ℓp - norm. Moreover,
since µ0 has full support, the measure m has full support. By [1, []Proposition 2.5], it
follows that m is an ergodic measure (in fact, a strongly mixing measure) for Bwww.
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5.2. Non-orthogonality of product measures. — A basic tool in the study of prod-
uct measures is a famous classical result of Kakutani [17] giving a necessary and sufficient
condition for the equivalence of two infinite product probability measures ν “ bně0νn and
ν 1 “ bně0ν

1
n defined on a product of measurable spaces pΩ,Bq “ bně0pΩn,Bnq.

Let us first recall the definition of the so-called Hellinger integral Hpα, βq of two prob-
ability measures α, β on some measurable space pT, T q:

Hpα, βq “

ż

T

c

dα

dτ

c

dβ

dτ
dτ,

where τ is any sigma-finite positive measure on pT, T q such that α and β are absolutely con-
tinuous with respect to τ . If we write α “ dα

dβ β ` ν the Lebesgue-Nikodym decomposition

of α with respect to β, then
´

dα
dτ ´ dα

dβ
dβ
dτ

¯

dβ
dτ “ 0 τ - a.e. since ν K β, so dα

dτ
dβ
dτ “ dα

dβ

´

dβ
dτ

¯2

and hence

Hpα, βq “

ż

T

d

dα

dβ
dβ;

which shows that Hpα, βq is indeed independent of the choice of τ . Note that we always
have 0 ď Hpα, βq ď 1 by the Cauchy-Schwarz inequality; and that Hpα, βq “ 1 if and only
if α “ β, whereas Hpα, βq “ 0 if and only if α K β.

Kakutani’s Theorem as we will need it can now be stated as follows.

Theorem 5.6. — Let ν “ bně0νn and ν 1 “ bně0ν
1
n be two product probability measures

on pΩ,Bq “ bně0pΩn,Bnq. The measures ν and ν 1 are non-orthogonal if and only if
8
ź

n“0

Hpνn, ν
1
nq ą 0.

Moreover, under the assumption that νn „ ν 1
n for each n ě 0, the measures ν and ν 1 are

either orthogonal or equivalent.

Note that this is not exactly what is proved in [17]: the main result of [17] states that
under the assumption that νn „ ν 1

n for all n, the measures ν and ν 1 are equivalent if
ś8

n“0Hpνn, ν
1
nq ą 0 and orthogonal otherwise. However, the above version of the theorem

is certainly well-known (it is stated for example in [21]), and it can be obtained by slight
modifications of Kakutani’s original proof; see Section 6 for more details.

5.3. Gaussian product measures. — A particularly interesting class of product mea-
sures is that of Gaussian product measures. Our definition will be very restrictive: we will
say that a product measure µ “ bně0µn on Ω “ KZ` is a Gaussian product measure if
for each n ě 0, the measure µn is a Gaussian measure on K of the form N p0, σ2nq for some
σn ą 0, i.e. µn is a centered Gaussian measure with covariance matrix σ2nIK. Accordingly,
we say that a measure m on X “ ℓp is a Gaussian product measure if m is the restriction
to ℓp of a Gaussian product measure µ on Ω such that µpℓpq “ 1.

By Fernique’s integrability theorem (see e.g. [9]), if m is a Gaussian measure on X “ ℓp,
then m admits moments of all orders and in particular

ş

X }x}pdm ă 8. It follows that if
µ “ bně0µn is a Gaussian product measure on Ω “ KZ` , then µ is supported on ℓp if and
only if

ş

Ω

`
ř8

n“0 |tn|p
˘

dµptq ă 8. Moreover, if µ is invariant under some weighted shift
Bwww, then

ş

Ω |tn|pdµptq “ 1
|w1¨¨¨wn|p

ş

K |t|pdµ0ptq for all n ě 1 by Lemma 5.2. Altogether, we



INVARIANT MEASURES FOR WEIGHTED SHIFTS 15

see that a weighted shift Bwww acting on ℓp admits an invariant Gaussian product measure
if and only if

ř8
n“0

1
|w1¨¨¨wn|p

ă 8, and that if this holds, then any Bwww - invariant Gaussian
product measure on KZ` is supported on ℓp. (For the “only if” part, one could also have
used Proposition 2.1 rather than Fernique’s integrability theorem.) We refer the reader
to [2], [3], [5] and [4, Chapter 5] for an in-depth study of invariant Gaussian measures for
operators on Hilbert or Banach spaces. We just point out here that ifwww is a weight sequence
such that

ř8
n“0

1
|w1¨¨¨wn|p

ă 8 and if m is a Bwww - invariant Gaussian product measure on
ℓp, then m is an ergodic measure with full support for Bwww (see Fact 5.5).

The next theorem will provide a necessary and sufficient condition for two weighted
backward shifts Buuu and Bvvv on X “ ℓp to admit equivalent invariant Gaussian product
measures.

Theorem 5.7. — Let uuu and vvv be two weight sequences, and let µuuu “ bně0µuuu,n and
µvvv “ bně0µvvv,n be two Gaussian product measures on KZ` invariant under Buuu and Bvvv

respectively, with µuuu,0 “ N p0, σ2q and µvvv,0 “ N p0, σ12q. Then µuuu and µvvv are either equiv-
alent or orthogonal, and they are equivalent if and only if

(5.1)
8
ÿ

n“1

ˆ

1 ´
σ1

σ

|u1 ¨ ¨ ¨un|

|v1 ¨ ¨ ¨ vn|

˙2

ă 8.

From this result, we immediately deduce

Corollary 5.8. — Let Buuu and Bvvv be two weighted shifts on X “ ℓp, where the weight
sequences uuu and vvv are such that

ř8
n“0

1
|u1¨¨¨un|p

ă 8 and
ř8

n“0
1

|v1¨¨¨vn|p
ă 8. The following

are equivalent.
(a) Buuu and Bvvv admit equivalent invariant Gaussian product measures.

(b) There exists a constant κ ą 0 such that
8
ř

n“1

´

1 ´ κ |u1¨¨¨un|

|v1¨¨¨vn|

¯2
ă 8.

Here is another consequence of Theorem 5.7.

Corollary 5.9. — Let ΛΛΛ be a countable family of weight sequences. Assume that
8
ř

n“1

1
|w1¨¨¨wn|p

ă 8 for all www P ΛΛΛ and
8
ř

n“1

´

1 ´
|u1¨¨¨un|

|v1¨¨¨vn|

¯2
ă 8 for any u,v P ΛΛΛ. Then, there

exists a Gaussian measure with full support m on X “ ℓp with the following property:
given any sequence of Borel sets pAiqiě0 Ď X with mpAiq ą 0, there exists x P X such that
for every www P Λ and all i ě 0, the set NBwwwpx,Aiq :“ tn P N; Bn

wwwx P Aiu has a positive
density.

Proof. — For each www P ΛΛΛ, let mwww “ bně0µwww,n be the Bwww - invariant Gaussian product
measure on ℓp defined by µwww,0 :“ N p0, 1q. This is an ergodic measure with full support for
Bwww. Since the measures mwww, www P ΛΛΛ are pairwise equivalent by Theorem 5.7 and since Λ
is countable, the result follows from the pointwise ergodic theorem, taking m :“ mwww0 for
any www0 P Λ.

Remark 5.10. — Taking as pAiqiě0 a countable basis of open sets for X in Corollary
5.9, we get a vector x P X which is frequently hypercyclic for all operators Bwww, www P Λ.
However, it turns out that something much stronger holds true: if uuu and vvv are two weight
sequences such that u1¨¨¨un

v1¨¨¨vn
has a non-zero limit as n Ñ 8, then Buuu and Bvvv have in fact
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the same frequently hypercyclic vectors. This result, which is due to S. Charpentier and
the third author, will be proved in Section 6.

Before proving Theorem 5.7, we use Corollary 5.8 to give an example of two non-
orthogonal weighted shifts sharing no non-zero periodic points.

Example 5.11. — Let uuu and vvv be the weight sequences defined as follows:

uuun :“ 2 and vvvn :“ 2
1 ` εn
1 ` εn´1

,

where ε0 “ 0 and pεnqně1 is a decreasing sequence of positive real numbers such that
ř8

n“1 ε
2
n ă 8. Then Buuu and Bvvv acting on X “ ℓp share no non-zero periodic point,

but they admit equivalent invariant Gaussian product measures (and hence they are not
orthogonal).

Proof. — We have u1 ¨ ¨ ¨un “ 2n and v1 ¨ ¨ ¨ vn “ 2np1 ` εnq for all n ě 1. In particular,
ř8

n“1
1

pu1¨¨¨unqp
ă 8 and

ř8
n“1

1
pv1¨¨¨vnqp

ă 8. Since u1¨¨¨un
v1¨¨¨vn

“ 1
p1`εnq

is increasing, the
conditions of Theorem 4.2 cannot be satisfied, so Buuu and Bvvv do not share any non-zero
periodic point. However

1 ´
u1 ¨ ¨ ¨un
v1 ¨ ¨ ¨ vn

“ 1 ´
1

1 ` εn
„ εn as n Ñ 8,

so Buuu and Bvvv admit equivalent invariant Gaussian product measures by Corollary 5.8.

It is now time to prove Theorem 5.7.

Proof of Theorem 5.7. — In what follows, we set d :“ 1 if K “ R and d :“ 2 if K “ C.
By Kakutani’s Theorem, we just have to show that

ś8
n“1Hpµuuu,n, µvvv,nq ą 0 if and only

if (5.1) is satisfied.
By Lemma 5.2, the measures µuuu,n and µvvv,n are uniquely determined by µuuu,0 “ N p0, σ2q

and µvvv,0 “ N p0, σ12q. Explicitely,

µuuu,n “ N p0, σ2nq with σ2n “
σ2

|u1 ¨ ¨ ¨un|2

and

µvvv,n “ N p0, σ12
n q with σ12

n “
σ12

|v1 ¨ ¨ ¨ vn|2
¨

The computation of Hpµuuu,n, µvvv,nq now relies on the following fact.

Fact 5.12. — If µ and µ1 are two Gaussian measures on K of the form µ “ N p0, σ2q and
µ1 “ N p0, σ12q, then

Hpµ, µ1q “

ˆ

2σσ1

σ2 ` σ12

˙d{2

“

ˆ

2pσ1{σq

1 ` pσ1{σq2

˙d{2

¨

Proof of Fact 5.12. — The measures µ and µ1 are absolutely continuous with respect to
Lebesgue measure on K with densities 1

p2πσ2qd{2 e
´|t|2{2σ2 and 1

p2πσ12qd{2 e
´|t|2{2σ12 . Hence,

Hpµ, µ1q “
1

p2πσσ1qd{2

ż

R
e

´ 1
4

´

1
σ2 ` 1

σ12

¯

|t|2
dt “

1

p2πσσ1qd{2
ˆ

˜

4π
1
σ2 ` 1

σ12

¸d{2

¨
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Going back to the measures muuu “ bně0µuuu,n and mvvv “ bně0µvvv,n, let us set for each
n ě 1:

λn :“
σ1
n

σn
“
σ1

σ

|u1 ¨ ¨ ¨un|

|v1 ¨ ¨ ¨ vn|
¨

By Fact 5.12, we have

Hpµuuu,n, µvvv,nq “

ˆ

2λn
1 ` λ2n

˙d{2

¨

Since 0 ď Hpµuuu,n, µvvv,nq ď 1 for all n ě 1, it follows that
8
ź

n“1

Hpµuuu,n, µvvv,nq ą 0 if and only if
8
ÿ

n“1

˜

1 ´

ˆ

2λn
1 ` λ2n

˙d{2
¸

ă 8.

This can be satisfied only if 2λn
1`λ2

n
Ñ 1 as n Ñ 8; and an examination of the function

Ψpλq :“ 2λ
1`λ2 shows that this is equivalent to the fact that λn Ñ 1. In this case, writing

λn “ 1 ` un and using Taylor’s formula, we see that

1 ´

ˆ

2λn
1 ` λ2n

˙d{2

„
d

4
u2n “

d

4
p1 ´ λnq2.

So we get that
8
ź

n“1

Hpµuuu,n, µvvv,nq ą 0 if and only if
8
ÿ

n“1

p1 ´ λnq2 ă 8,

which is (5.1). Theorem 5.7 is proved.

5.4. Products of absolutely continuous measures. — It is natural to believe that
some condition strictly weaker than (b) of Corollary 5.8 might still yield the existence of
(non-Gaussian) equivalent non-trivial invariant product measures for the backward shifts
Buuu and Bvvv. The next theorem shows that this is in fact not the case, at least for product
measures whose marginals are absolutely continuous with respect to Lebesgue measure.

We point out that it is possible to deduce parts (1ii) and (2) of this theorem from a
Theorem of Shepp [21] concerning (non-)orthogonality of translates of a product measure
on RZ` , namely [21, Theorem 1]. However, we are going to give here a self-contained proof
which looks rather different from what is done in [21] (except, of course, for the use of
Kakutani’s Theorem), and we will indicate in Section 6 how Shepp’s result can be used in
our context; see Theorem 6.11.

For simplicity, we will assume that K “ R and that all the weights are positive.

Theorem 5.13. — Let uuu and vvv be two positive weight sequences. Assume that the back-
ward shifts Buuu and Bvvv acting on the real space X “ ℓp admit invariant product measures
muuu “ bně0µuuu,n and mvvv “ bně0µvvv,n such that µuuu,0 and µvvv,0 are absolutely continuous with
respect to Lebesgue measure on R, µuuu,0 “ pptqdt and µvvv,0 “ qptqdt.
(1) If muuu and mvvv are not orthogonal, then:

(i) the quotient u1¨¨¨un
v1¨¨¨vn

has a limit a P p0,8q as n Ñ 8, and qptq “ appatq almost
everywhere;

(ii) we have
8
ř

n“1

´

1 ´ 1
a

u1¨¨¨un
v1¨¨¨vn

¯2
ă 8.
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(2) Assume that the function f :“
?
p is continuous on Rzt0u and C1- smooth except at a

finite number of points with tf 1ptq P L2pRq, and that qptq “ appatq for some a P p0,8q.

Then, muuu and mvvv are non-orthogonal if and only if
8
ř

n“1

´

1 ´ 1
a

u1¨¨¨un
v1¨¨¨vn

¯2
ă 8.

(3) Assume that f “
?
p is C1- smooth except at a finite number of points with

tf 1ptq P L2pRq, that p has at least one discontinuity point in Rzt0u, and that
qptq “ appatq for some a P p0,8q. Then, muuu and mvvv are non-orthogonal if and only

if
8
ř

n“1

ˇ

ˇ

ˇ
1 ´ 1

a
u1¨¨¨un
v1¨¨¨vn

ˇ

ˇ

ˇ
ă 8.

From part (1) of this theorem and Theorem 5.7, we immediately deduce

Corollary 5.14. — Let Buuu and Bvvv be two shifts with positive weights acting on the real
space ℓp. The following are equivalent.
(a) Buuu and Bvvv are not orthogonal with respect to product measures whose marginals are

absolutely continuous with respect to Lebesgue measure on R.

(b) There exists κ ą 0 such that
ř8

n“1

´

1 ´ κ u1¨¨¨un
v1¨¨¨vn

¯2
ă 8.

(c) Buuu and Bvvv admit equivalent invariant Gaussian product measures.

We point out that Corollary 5.14 is also valid in the complex case and for not necessarily
positive weights; see Corollary 6.12.

For the proof of Theorem 5.13, we will need the following lemma.

Lemma 5.15. — Let h P L2pRq be non-zero and real-valued, and let Ph : R Ñ R be the
function defined by

Phpαq :“

ż

R
hpxqhpx` αq dx.

(a) The function Ph is continuous and even, with Phpαq ď }h}22 for avery α P R and
Php0q “ }h}22.

(b) If h belongs to the Sobolev space W 1,2pRq, then Ph is C2- smooth on R, with
pPhq1p0q “ 0 and pPhq2p0q ă 0. In particular, }h}22 ´ Phpαq „ cα2 as α Ñ 0, for
some constant c ą 0.

(c) If h R W 1,2pRq, then p}h}22 ´ Phpαqq{α2 Ñ 8 as α Ñ 0.
(d) Assume that h is C1- smooth except at finitely many points, with h1 P L2pRq, and

that h has at least one discontinuity point. Then Ph is left-differentiable and right-
differentiable at 0, with pPhq1p0´q ą 0 and pPhq1p0`q ă 0.

This lemma has the following immediate consequence.

Corollary 5.16. — For any non-zero real-valued h P L2pRq, there exists a constant c ą 0
such that }h}22 ´ Phpαq ě cα2 for α sufficiently close to 0.

Note that using Plancherel’s formula, it can be seen that this can be stated equivalently
as follows: for any g P L2pRqzt0u with real-valued Fourier transform, there exists a constant
c such that

ş

R |gptq|2
`

1 ´ cospαtq
˘

dt ě cα2 for α sufficiently close to 0.

Proof of Lemma 5.15. — For notational brevity, let us set F :“ Ph.
(a) We have F pαq “ xh, ταhyL2pRq, where ταhpxq :“ hpx ` αq, so F is continuous by

continuity of the map α ÞÑ ταh from R into L2pRq. It is clear that F is even and that
F p0q “ }h}22. Finally, F pαq ď }h}22 by the Cauchy-Schwarz inequality.



INVARIANT MEASURES FOR WEIGHTED SHIFTS 19

(b) Since h P W 1,2pRq, the map α ÞÑ ταh is C1 - smooth from R into L2pRq, with
derivative α ÞÑ ταh

1. Since F pαq “ xh, ταhyL2pRq, it follows that F is C1 - smooth on R,
with

F 1pαq “ xh, ταh
1yL2pRq “

ż

R
hpuqh1pu` αq du “

ż

R
hpu´ αqh1puq du.

Hence, the same argument shows that F is in fact C2 - smooth on R, with

F 2pαq “ ´

ż

R
h1pu´ αqh1puq du.

We have F 1p0q “ 0 because F is even; and

F 2p0q “ ´

ż

R
h12 ă 0.

The strict inequality holds because if we had F 2p0q “ 0, then h1 would be equal to 0 almost
everywhere, so h would be 0 since it belongs to W 1,2pRq.

(c) Note that

F pαq “ xh, ταhyL2pRq “
1

2

`

}h}22 ` }ταh}2 ´ }h´ ταh}22

˘

“ }h}22 ´
1

2
}h´ ταh}22,

so that }h}22 ´F pαq “ 1
2}h´ ταh}22. Now since h R W 1,2pRq, we have limαÑ0

›

›

ταh´h
α

›

› “ 8.
Indeed, otherwise one could find a sequence pαnq tending to 0 such that ταnh´h

αn
has a weak

limit u P L2pRq, and this would give that h P W 1,2pRq with h1 “ u. This proves (c).
(d) Since F is an even function, it is enough to show that F is right-differentiable at 0

with F 1p0`q ă 0.
Let u0 ă ¨ ¨ ¨ ă uN be the discontinuity points of h. Also, let I0 :“ p´8, u0q, IN`1 :“

pun,8q and Ik :“ puk´1, ukq for 1 ď k ď N . Note that by assumption on h, the restriction
of h to each interval Ik belongs to the Sobolev space W 1,2pIkq. In particular, h has a left
limit hpu´

k q and a right limit hpu`
k q at each point uk.

For every α ą 0, we have

F pαq “

N
ÿ

k“0

ż

Ik

hpuqhpu` αq du “:
N`1
ÿ

k“0

Fkpαq.

We consider separately the functions F0, FN`1 and Fk for 1 ď k ď N .
Let us start with Fk, 1 ď k ď N . For 0 ă α ă uk ´ uk´1, we write

Fkpαq “

ż uk´α

uk´1

hpuqhpu` αq du`

ż uk

uk´α
hpuqhpu` αq du “: Fk,1pαq ` Fk,2pαq.

Consider the open triangle Ω :“ tpα, βq; uk´1 ă β ă uk and 0 ă α ă uk ´ βu,
and the function G : Ω Ñ R defined by Gpα, βq :“

şβ
uk´1

hpuqhpu ` αq du. Since the
restriction of h to Ik “ puk´1, ukq belongs to the Sobolev space W 1,2pIkq, the map G is
C1- smooth on Ω, with BαGpα, βq “

şβ
uk´1

hpuqh1pu` αq du and BβGpα, βq “ hpβqhpβ ` αq.
Moreover, G is continuous on Ω and its partial derivatives extend continuously to Ω, with
BαGpα, uk ´ αq “

şuk´α
uk´1

hpuqh1pu ` αq du and BβGpα, uk ´ αq “ hpuk ´ αqhpu´
k q for 0 ă

α ă uk ´uk´1. It follows that Fk,1pαq “ Gpα, uk ´αq is C1- smooth on p0, uk ´uk´1q, with
F 1
k,1pαq “

şuk´α
uk´1

hpuqh1pu`αq du´ hpuk ´αqhpu´
k q. To see this, observe that for any α0 P

p0, uk ´ uk´1q, the function Gnpαq :“ Gpα, uk ´ α´ 1
nq is well-defined in a neighbourhood
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of α0 if n is large enough, that Gnpαq Ñ Fk,1pαq uniformly in a neighbourhood of α0

as n Ñ 8, and that G1
npαq Ñ

şuk´α
uk´1

hpuqh1pu ` αq du ´ hpuk ´ αqhpu´
k q uniformly in a

neighbourhood of α0. Since F 1
k,1pαq Ñ

şuk

uk´1
hpuqh1puq du ´ hpu´

k q2 as 0`, we deduce that
Fk,1 is right-differentiable at 0 with

F 1
k,1p0`q “

ż uk

uk´1

hpuqh1puq du´ hpu´
k q2

“

„

1

2
hpuq2

ȷuk

uk´1

´ hpu´
k q2

“ ´
1

2

`

hpu´
k q2 ` hpu`

k´1q2
˘

.

Similar arguments show that Fk,2pαq “
şuk

uk´α hpuqhpu`αq du is C1- smooth on p0, cq for
some c ą 0, with F 1

k,2pαq “
şuk

uk´α hpuqh1pu`αq du`hpuk´αqhpu`
k q; and it follows that Fk,2

is right-differentiable at 0 with F 1
k,2p0`q “ hpu´

k qhpu`
k q. Hence, Fk is right-differentiable

at 0, with

F 1
kp0`q “ hpu´

k qhpu`
k q ´

1

2

`

hpu´
k q2 ` hpu`

k´1q2
˘

.

One shows in the same way that F0pαq “
şu0

´8
hpuqhpu ` αq du and FN`1pαq “

ş8

uN
hpuqhpu` αq du are right-differentiable at 0, with

F 1
0p0`q “ hpu´

0 qhpu`
0 q ´

1

2
hpu´

0 q2 and F 1
N`1p0`q “ ´

1

2
hpu`

N q2.

Altogether, we see that F “
řN`1

k“0 Fk is right-differentiable at 0, with

F 1p0`q “ hpu´
0 qhpu`

0 q ´
1

2
hpu´

0 q2

`

N
ÿ

k“1

ˆ

hpu´
k qhpu`

k q ´
1

2

`

hpu´
k q2 ` hpu`

k´1q2
˘

˙

´
1

2
hpu`

N q2

“

N
ÿ

k“0

hpu´
k qhpu`

k q ´
1

2

N
ÿ

k“0

`

hpu´
k q2 ` hpu`

k q2
˘

“ ´
1

2

N
ÿ

k“0

`

hpu`
k q ´ hpu´

k q
˘2

ă 0.

We can now give the proof of Theorem 5.13.

Proof of Theorem 5.13. — In what follows, we set f :“
?
p and g :“

?
q. Also, for each

n ě 1, let

λn :“
u1 ¨ ¨ ¨un
v1 ¨ ¨ ¨ vn

¨

The following simple computation will be essential for the proof.

Fact 5.17. — For every n ě 1, we have

Hpµuuu,n, µvvv,nq “ Ψpλnq,
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where Ψ : p0,8q Ñ R is the function defined by

Ψpλq :“
?
λ

ż

R
fpλtqgptq dt.

Proof of Fact 5.17. — Denoting by τ the Lebesgue measure on R, we have

dµuuu,n
dτ

ptq “ u1 ¨ ¨ ¨un ppu1 ¨ ¨ ¨untq and
dµvvv,n
dτ

ptq “ v1 ¨ ¨ ¨ vn qpv1 ¨ ¨ ¨ vntq.

Hence

Hpµuuu,n, µvvv,nq “

ż

R

?
u1 ¨ ¨ ¨un fpu1 ¨ ¨ ¨untq ˆ

?
v1 ¨ ¨ ¨ vn gpv1 ¨ ¨ ¨ vntq dt

“

c

u1 ¨ ¨ ¨un
v1 ¨ ¨ ¨ vn

ż

R
f

ˆ

u1 ¨ ¨ ¨un
v1 ¨ ¨ ¨ vn

s

˙

gpsq ds

“ Ψpλnq.

By Fact 5.17 and Kakutani’s Theorem, we know that muuu and mvvv are not orthogonal if
and only if

(5.2)
8
ÿ

n“1

p1 ´ Ψpλnqq ă 8;

and in that case, we have in particular that

(5.3) Ψpλnq Ñ 1 as n Ñ 8.

Proof of (1i) in Theorem 5.13. — We first note that we must have limλn ą 0 and limλn ă

8. Indeed, otherwise Buuu and Bvvv are orthogonal with respect to measures not charging
kerpe˚

0q by Proposition 3.8. The measures µuuu and µvvv have this property since µuuu,0 and µvvv,0
do not charge t0u, so this cannot happen.

Now, the key point is the following fact.

Fact 5.18. — The function Ψ is continuous on p0,8q with 0 ď Ψpλq ď 1, there is at most
one λ P p0,8q such that Ψpλq “ 1, and if Ψpλq “ 1 then qptq “ λppλtq almost everywhere..

Proof of Fact 5.18. — It is clear that Ψpλq ě 0. Moreover, by the Cauchy-Schwarz in-
equality, we have

Ψpλq ď

ˆ
ż

R
λppλtq dt

˙1{2ˆż

R
qptq dt

˙1{2

“ 1.

If Ψpλq “ 1 then, by the equality case in Cauchy-Schwarz’s inequality and since
ş

R p “
ş

R q “ 1, we must have qptq “ λppλtq almost everywhere. It follows easily that there can
be at most one λ such that Ψpλq “ 1. Indeed, assume that Ψpλq “ 1 “ Ψpλ1q for some
0 ă λ ă λ1. Then λppλtq “ λ1ppλ1tq almost everywhere. Setting c :“ λ1{λ ą 1, it follows
that ppxq “ c ppcxq almost everywhere. Hence ppxq “ cnppcnxq almost everywhere for
every n P Z. So, with In :“ pcn, cn`1s, we obtain that

ż

In

ppxq dx “

ż

I0

cnppcnxq dx “

ż

I0

ppxq dx for all n P Z.
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Since the intervals In form a partition of p0,8q and
ş8

0 ppxq dx ă 8, this implies that
ppxq “ 0 almost everywhere on p0,8q. Similarly ppxq “ 0 almost everywhere on p´8, 0q,
hence ppxq “ 0 almost everywhere on R, which is a contradiction since

ş

R p “ 1.
Finally, to prove that Ψ is continuous, we note that Ψpλq “

?
λ xfλ, gyL2pRq, where

fλptq :“ fpλtq. Since f P L2pRq, the map λ ÞÑ fλ is continuous from p0,8q into L2pRq; so
Ψ is indeed continuous.

It is now easy to conclude the proof of (1i). Since Ψpλnq Ñ 1 and Ψ is continuous on
p0,8q, any cluster point λ P p0,8q of the sequence pλnq must be such that Ψpλq “ 1; hence,
pλnq has at most one cluster point in p0,8q by Fact 5.18. Since 0 ă limλn ď lim λn ă 8,
it follows that pλnq has a limit a P p0,8q; and by Fact 5.18 again, we have (Ψpaq “ 1 and)
qptq “ appatq almost everywhere.

Proof of (1ii) in Theorem 5.13. — Let Φ : p0,8q Ñ R and Θ : p0,8q Ñ R be defined by

Φpλq :“

ż

R
fptqfpλtq dt and Θpλq :“

?
λΦpλq.

Since gptq “
?
afpatq almost everywhere by (1i), we have

Ψpλq “
?
λ

ż

R
fpλtq ˆ

?
afpatq dt “

a

λ{aΦpλ{aq “ Θpλ{aq.

So, we see that 0 ď Θpλq ď 1 for every λ P p0,8q, and by (5.2):

(5.4)
8
ÿ

n“1

`

1 ´ Θpλn{aq
˘

ă 8.

From that, we have to deduce that

(5.5)
8
ÿ

n“1

ˆ

1 ´
1

a
λn

˙2

ă 8.

To do this, we perform a change of variable in order to apply Lemma 5.15. If we set
λ “ eα, then

Θpλq “ eα{2

ˆ
ż `8

0
fptqfpeαtq dt`

ż 0

´8

fptqfpeαtq dt

˙

“ eα{2

ż

R
fpeuqfpeα`uq eudu` eα{2

ż

R
fp´euqfp´eα`uq eudu

“

ż

R
h`puqh`pu` αq du`

ż

R
h´puqh´pu` αq du,

where h` and h´ are the functions defined on R by

h`pxq :“ fpexqex{2 and h´pxq :“ fp´exqex{2.

Note that the functions h` and h´ belong to L2pRq, and that

}h`}22 ` }h´}22 “

ż

R
f2 “ 1.

So, with the notation of Lemma 5.15, we have

(5.6) Θpλq “ Ph`

`

logpλq
˘

` Ph´

`

logpλq
˘

.



INVARIANT MEASURES FOR WEIGHTED SHIFTS 23

Since at least one of h˘ is non-zero, it follows that there exists a constant c ą 0 such
that 1 ´ Θpλq ě c logpλq2 for λ sufficiently close to 1. Hence 1 ´ Θpλq ě cpλ ´ 1q2 for
λ sufficiently close to 1 (and some other constant c ą 0), so that (5.5) is indeed a direct
consequence of (5.4) since we already know that λn Ñ a. This concludes the proof of
(1ii).

Proof of (2) in Theorem 5.13. — By Kakutani’s Theorem and with the notation of the
proof of (1ii), we have to show that

8
ÿ

n“1

`

1 ´ Θpλn{aq
˘

ă 8 if and only if
8
ÿ

n“1

ˆ

1 ´
1

a

u1 ¨ ¨ ¨un
v1 ¨ ¨ ¨ vn

˙2

ă 8.

By (1ii), the “only if” implication is already known. To prove the converse, we keep the
notation of the proof of (1ii). So we have as above

Θpλq “ Ph`

`

logpλq
˘

` Ph´

`

logpλq
˘

,

where the functions h` and h´ are defined by

h˘pxq “ fp˘exqex{2.

Note that by assumption on f , the functions h` and h´ are continuous on R and
C1 - smooth except at a finite number of points. Moreover, h1

˘ P L2pRq. Indeed, we have
h1

˘pxq “ ˘f 1p˘exqe3x{2` 1
2fp˘exqex{2 almost everywhere, and both terms belong to L2pRq

since
ż

R
f 1p˘exq2e3xdx “

ż

˘p0,8q

t2f 1ptq2dt ă 8 and

ż

R
fp˘exq2ex dx “

ż

˘p0,8q

fptq2dt ă 8.

So h˘ belongs to the Sobolev space W 1,2pRq. Hence, by Lemma 5.15 and since }h`}22 `

}h2´}2 “ 1, we know that the function F :“ Ph` `Ph´ is C2- smooth on R, with F p0q “ 1,
F 1p0q “ 0 and F 2p0q ă 0. It follows that there is a constant c ą 0 such that 1 ´ Θpλq „

cpλ´ 1q2 as λ Ñ 1; and this concludes the proof of the “if” implication in (2).

Proof of (3) in Theorem 5.13. — We keep the notation of the proofs of (1ii) and (2). This
time, we have to show that

(5.7)
8
ÿ

n“1

`

1 ´ Θpλn{aq
˘

ă 8 if and only if
8
ÿ

n“1

ˇ

ˇ

ˇ

ˇ

1 ´
1

a
λn

ˇ

ˇ

ˇ

ˇ

ă 8.

As above, let F :“ Ph` ` Ph´, so that Θpλq “ F
`

logpλq
˘

. By assumption on p, the
functions h`pxq “ fpexqex{2 and h´pxq “ fp´exqex{2 are C1- smooth except at finitely
many points, with h1

˘ P L2pRq, and at least one of them has a discontinuity point. By
Lemma 5.15, it follows that there exists two constants c ą 0 and c1 ă 8 such that
c |α| ď 1´F pαq ď c1 |α| for α sufficiently close to 0. Hence c |1´λ| ď 1´Θpλq ď c1 |1´λ|

for λ sufficiently close to 1, and (5.7) follows.

The proof of Theorem 5.13 is now complete.

Remark 5.19. — The proofs of parts (2) and (3) of Theorem 5.13 rely on the local
properties of the function Θpλq “

?
λ
ş

R fptqfpλtq dt at λ “ 1. It is perhaps worth noticing
that if Θ happens to be differentiable at λ “ 1, then we necessarily have Θ1p1q “ 0. This
is because Θ is “symmetric with respect to 1”, i.e. Θp1{λq “ Θpλq.
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Remark 5.20. — Part (3) of Theorem 5.13 may be applied for example if µuuu,0 is the
uniform distribution over some bounded interval I Ď R and µvvv,0 is the uniform distribution
over 1

a I.

Remark 5.21. — Part (2) of Theorem 5.7 remains valid under the following assumption
on f “

?
p: the restrictions of f to the intervals p0,8q and p´8, 0q have locally integrable

derivatives (in the distribution sense), and tf 1ptq P L2pRq.

Proof. — Looking back at the proof of (2), we see that the only thing to check is that the
functions h` and h´ belong to the Sobolev space W 1,2pRq. We do this for h` and, for
notational simplicity, we set h :“ h` and we denote by f the restriction of f to p0,8q. So
we have to show that if f P L2p0,8q has a distributional derivative f 1 P Lloc

1 p0,8q such
that tfptq P L2p0,8q, then hpxq “ fpexqex{2 P W 1,2pRq.

Since f P L2p0,8q, it is clear that h P L2pRq. To find the distributional derivative of h,
let us fix a test function φ P DpRq. Let ψ P Dp0,8q be the function defined by the relation
φpxq “ ψpexqex{2, i.e. ψptq “ 1?

t
φplogptqq. Writing φ1pxq “ e3x{2ψ1pexq ` 1

2e
x{2ψpexq and

using the change of variable x “ logptq, an elementary computation reveals that
ż

R
hpxqφ1pxq dx “ ´

ż 8

0

ˆ

e3x{2f 1pexq `
1

2
ex{2fpexq

˙

φpxq dx.

This means that h has a distributional derivative h1 P Lloc
1 pRq given (as expected) by

h1pxq “ e3x{2f 1pexq ` 1
2e

x{2fpexq. Since f P L2p0,8q and tf 1ptq P L2p0,8q, we see that
h1 P L2pRq, hence h P W 1,2pRq.

5.5. Products of discrete measures. — Theorem 5.13 (3) shows that for weighted
shifts acting on ℓp, to admit non-orthogonal invariant measures which are products of
absolutely continuous measures having some “singularities” is in fact a strictly stronger
requirement on the weights than to admit equivalent invariant Gaussian product measures.
The next proposition goes along the same lines, in an even more dramatic way.

Proposition 5.22. — Let uuu and vvv be two weight sequences.
(a) If Buuu and Bvvv admit non-orthogonal invariant product measures muuu “ bně0µuuu,n and

mvvv “ bně0µvvv,n such that µuuu,0 and µvvv,0 have non-zero discrete parts and do not
charge t0u, then

ˇ

ˇ

ˇ

u1¨¨¨un
v1¨¨¨vn

ˇ

ˇ

ˇ
is eventually constant (and hence Buuu and Bvvv admit equivalent

invariant Gaussian product measures).
(b) Assume that Buuu and Bvvv admit equivalent non-trivial invariant product measures or,

more generally, non-trivial invariant product measures muuu “ bně0µuuu,n and mvvv “

bně0µvvv,n such that µuuu,n and µvvv,n have the same support for each n ě 0. Let S :“

supppµuuu,0q “ supppµvvv,0q. If either S is compact or 0 R S, then
ˇ

ˇ

ˇ

u1¨¨¨un
v1¨¨¨vn

ˇ

ˇ

ˇ
“ 1 for all

n ě 1; and hence uuu “ vvv if uuu and vvv are positive weight sequences.

Proof. — For each n ě 1, let us set as usual λn :“ u1¨¨¨un
v1¨¨¨vn

¨

(a) Since the measures µuuu,n and µvvv,n do not charge t0u, one can find a countable mul-
tiplicative subgroup S of Kzt0u such that the discrete parts of all measures µuuu,n and µvvv,n
are supported on S and S contains the set tun; n ě 1u Y tvn; n ě 1u. Denote by τS
the counting measure on S. Let also τc be a continuous measure such that the continuous
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parts of all measures µuuu,n and µvvv,n are absolutely continuous with respect to τc. Then, one
can take τ :“ τc ` τS to compute Hpµuuu,n, µvvv,nq, for every n ě 0.

For each n ě 0, write

µuuu,n “ αnτc ` pnτS and µvvv,n “ βnτc ` qnτS

for some non-negative measurable functions αn, pn, βn, qn. Without loss of generality, we
may assume that αn1S “ βn1S “ 0 and pn1KzS “ qn1KzS “ 0, so that we also have

µuuu,n “ pαn ` pnqτ and µvvv,n “ pβn ` qnqτ.

Hence,

Hpµuuu,n, µvvv,nq “

ż

K

?
αn ` pn

a

βn ` qn dτ “ x
?
αn ` pn,

a

βn ` qn yL2pτq.

Now, by Kakutani’s Theorem we know that Hpµuuu,n, µvvv,nq Ñ 1 as n Ñ 8. Since
}
?
αn ` pn}L2pτq “ }

a

βn ` qn}L2pτq “ 1, it follows that
›

›

?
αn ` pn ´

a

βn ` qn
›

›

L2pτq
Ñ 0.

Moreover, by assumption on αn, βn, pn, qn, we have
›

›

?
αn ` pn ´

a

βn ` qn
›

›

2

L2pτq
“
›

›

?
αn ´

a

βn
›

›

2

L2pτcq
`
›

›

?
pn ´

?
qn
›

›

2

L2pτSq
.

Hence, we have in particular that }
?
pn ´

?
qn}2L2pτSq

Ñ 0 as n Ñ 8; and since τS is the
counting measure on S, this means that

(5.8)
ÿ

sPS

´

a

pnpsq ´
a

qnpsq
¯2

Ñ 0 as n Ñ 8.

So far, we have not used the fact that the measures muuu and mvvv are invariant under
Buuu and Bvvv. Set p :“ p0 and q :“ q0. Then, the discrete parts of µuuu,0 and µvvv,0 are
respectively

ř

sPS ppsq δs and
ř

sPS qpsq δs. So, by the invariance properties and since S is
a multiplicative group containing u1 ¨ ¨ ¨un and v1 ¨ ¨ ¨ vn, the discrete parts of µuuu,n and µvvv,n
(for n ě 1) are respectively

ř

sPS ppu1 ¨ ¨ ¨unsq δs and
ř

sPS qpv1 ¨ ¨ ¨ vnsq δs; in other words,
we have pnpsq “ ppu1 ¨ ¨ ¨unsq and qnpsq “ qpv1 ¨ ¨ ¨ vnsq for all s P S. Hence, if we set
f :“

?
p and g :“

?
q, (5.8) can be re-written as follows:

ÿ

sPS

`

fpu1 ¨ ¨ ¨unsq ´ gpv1 ¨ ¨ ¨ vnsq
˘2

Ñ 0 as n Ñ 8

or, equivalently,
ÿ

sPS

`

fpλnsq ´ gpsq
˘2

Ñ 0.

It follows in particular, fpλnsq Ñ gpsq for all s P S. So, taking any s such that gpsq ą 0
(such an s exists since the discrete part of µvvv,0 is non-zero), we see that one can find
ε ą 0, e.g. ε :“ gpsq{2, such that fpλnsq ě ε for all n sufficiently large. It follows that
the sequence pλnq can take only finitely many distinct values: indeed, otherwise fps1q ě ε
for infinitely many s1 P S, a contradiction since f P ℓ2pSq. Now, assume that |λn| is
not eventually constant. Then, since λn takes only finitely many values, λn P S and
fpλnsq Ñ gpsq for all s P S, we see that one can find λ, λ1 P S with |λ| ‰ |λ1| such that
fpλsq “ fpλ1sq for all s P S. Setting α :“ λ{λ1, we then have fpαksq “ fpsq for any s P S
and all k P N; and taking any s such that fpsq ą 0 (again, such an s exists), we obtain a
contradiction since f P ℓ2pSq and the αk, k P N are pairwise distinct. This concludes the
proof of (a).



26 S. GRIVAUX, É. MATHERON & Q. MENET

(b) Let us fix n ě 1 and, towards a contradiction, assume that |λn| ‰ 1, say |λn| ă 1.
By the invariance properties, we have supppµuuu,nq “ 1

u1¨¨¨un
S and supppµvvv,nq “ 1

v1¨¨¨vn
S,

so that λnS “ S. Hence λrnS “ S for all r P Z. If S is compact, it follows that S “ t0u

by letting r Ñ `8; hence µuuu,0 “ δ0 “ µvvv,0, which is the required contradiction. If 0 R S,
then we get S “ H by letting r Ñ ´8, which is another contradiction.

Corollary 5.23. — Let uuu and vvv be positive weight sequences such that
ř8

n“1
1

pu1¨¨¨unqp
ă 8

and
ř8

n“1
1

pv1¨¨¨vnqp
ă 8. The weighted shifts Buuu and Bvvv acting on ℓp are not orthogonal

with respect to product measures whose marginals have non-zero discrete parts and do not
charge t0u if and only if u1¨¨¨un

v1¨¨¨vn
is eventually constant; and in that case they admit equivalent

invariant product measures with purely discrete marginals not charging t0u.

Proof. — The “only if” part follows from Proposition 5.22 (a). Conversely, assume that
λn :“ u1¨¨¨un

v1¨¨¨vn
is eventually constant, say λn “ λ for n ą n0. Let S be the multiplicative

subgroup of p0,8q generated by the set tun; n ě 1u Y tvn; ě 1u. Let p : S Ñ R`

be a strictly positive probability density function such that
ř

sPS ppsq sp ă 8, and let
q : S Ñ R` be the probability density function defined by qpsq :“ ppλsq. Finally, let
µuuu,0 :“

ř

sPS ppsqδs and µvvv,0 :“
ř

sPS qpsqδs, and denote by muuu “ ‘ně0µuuu,n and mvvv “

‘ně0µvvv,n the associated Buuu - invariant and Bvvv - invariant measures on KZ` . By Corollary
5.4 and the assumption on uuu, vvv and p, the measures muuu and mvvv are supported on ℓp, and
they have purely discrete marginals not charging t0u. Finally, by the proof of Proposition
5.22 (a), we have Hpµuuu,n, µvvv,nq “

ř

sPS
a

ppλnsqqpsq for all n ě 0, so that Hpµuuu,n, µvvv,nq “
ř

sPS qpsq “ 1 for all n ą n0. Since µuuu,n „ µvvv,n for all n ě 0, it follows that muuu „ mvvv.
This concludes the proof.

Remark 5.24. — In Proposition 5.22 (b), one cannot replace “equivalent” by “non-
orthogonal”. For example, let uuu and vvv be defined as follows: un “ 2 for all n ě 1, v1 “ 1,
v2 “ 4 and vn “ 2 for all n ě 3. Then uuu ‰ vvv (!), and yet Buuu and Bvvv admit non-orthogonal
product measure muuu “ bně0µuuu,n and mvvv “ bně0µvvv,n for which µuuu,0 “ µvvv,0 has a compact
support not containing 0; for example, µuuu,0 “ µvvv,0 could be the uniform distribution on
the interval r1, 3s.

6. Additional facts

6.1. Invariant measures with symmetry properties. — It is clear that if an opera-
tor T acting on a Polish topological vector space X admits a non-trivial invariant measure
m, then the measure rm defined by rmpAq :“ 1

2pmpAq ` mp´Aqq is a non-trivial invariant
measure for both T and ´T , and that rm is additionally symmetric, i.e. rmp´Aq “ rmpAq

for every Borel set A Ď X. The next proposition goes along the same lines.

Proposition 6.1. — Let X be a Polish space, and let T be a continuous self-map of X
admitting an invariant measure m. Let also G be a compact abelian group acting continu-
ously on X, and assume that Tg “ βpgqT for all g P G, where β : G Ñ G is a continuous
map invariant under the Haar measure of G. Let rm be the measure on X defined by

rmpAq :“

ż

G
mpg´1Aq dg,

where dg denotes integration with respect to the Haar measure of G. Then rm is G -
invariant and both gT - invariant and Tg - invariant for every g P G.
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Proof. — It is clear that rm is G - invariant. Moreover, if h P G then, for any bounded
Borel function f : X Ñ R`, we have

ż

X
f ˝ pβphqT q drm “

ż

X

ˆ
ż

G
fpβphqT pgxqq dg

˙

dmpxq

“

ż

X

ˆ
ż

G
fpβphqβpgqT pxqq dg

˙

dmpxq

“

ż

X

ˆ
ż

G
fpβphqgT pxqq dg

˙

dmpxq

“

ż

X

ˆ
ż

G
fpgT pxqq dg

˙

dmpxq

“

ż

G

ˆ
ż

X
fpguq dmpuq

˙

dg

“

ż

X
f drm.

Since β is necessarily onto (because the Haar measure of G has full support), it follows that
rm if gT - invariant for every g P G; and hence also Tg - invariant since Tg “ βpgqT .

Corollary 6.2. — Let X be a Polish space, and let T1, T2 be two continuous self-maps
of X. Let also G be a compact abelian group acting continuously on X, and assume that
Tig “ gTi for all g P G and i “ 1, 2. Finally, let x0 P X be a fixed point for the action of
G. If T1 and T2 admit equivalent (resp. non-orthogonal) invariant measures m1,m2 not
charging tx0u, then they also admit equivalent (resp. non-orthogonal) invariant measures
not charging tx0u which are additionally G - invariant.

Proof. — Let Ăm1 and Ăm2 be defined as in Proposition 6.1. It is clear that Ăm1, Ăm2 do not
charge tx0u. So we just have to check that if m1 „ m2 then Ăm1 „ Ăm2, and that if Ăm1 K Ăm2

then m1 K m2.
Assume that m1 „ m2. Let A Ď X be a Borel set such that Ăm1pAq “ 0. Then

m1pgAq “ 0 for almost every g P G; hence m2pgAq “ 0 for almost every g P G since
m2 ! m1, and hence Ăm2pAq “ 0. This shows that Ăm2 ! Ăm1; and similarly Ăm1 ! Ăm2.

Assume that Ăm2 K Ăm1. Let A Ď X be a Borel set such that Ăm1pAq “ 0 and Ăm2pXzAq “

0. Then m1pgAq “ 0 for almost every g P G and m2pXzgAq “ m2pgpXzAqq “ 0 for almost
every g P G. So one can find at least one g such that m1pgAq “ 0 “ m2pXzgAq, which
shows that m1 K m2.

Corollary 6.3. — Let X be a Polish topological vector space, and let T P LpXq. Assume
that κT admits a non-trivial invariant measure for some κ P K. Then, there exists a
non-trivial measure which is aT - invariant for all a P K such that |a| “ |κ|.

Proof. — Apply Proposition 6.1 with the group G :“ tω P K; |ω| “ 1u acting by multi-
plication on X.

Corollary 6.4. — Let Buuu be a backward shift acting on ℓp. If Buuu admits a non-trivial
invariant measure, then there exists a measure m on ℓp with full support which is invariant
for all backward shifts Bvvv such that |vn| “ |un| for all n ě 1.
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Proof. — Since
ř8

n“1
1

|u1¨¨¨un|p
ă 8, we know that Buuu admit an invariant measure m with

full support (which can even be taken to be Gaussian and ergodic for Buuu). Let

G :“
!

pωnqně0 P KZ` ; |ωn| “ 1 for all n ě 0
)

.

This is a compact abelian group acting continuously on X :“ KZ` by coordinatewise
multiplication. Moreover, if we set T :“ Buuu acting on X, we have Buuug “ σpgqBuuu for
every g P G, where σ : G Ñ G is (the restriction to G of) the canonical backward shift.
Hence, considering m as a Borel measure on X, we may apply Proposition 6.1. This gives a
measure rm on KZ` which is Bvvv - invariant for every weight sequence vvv such that |vn| “ |un|

for all n ě 1. Moreover, since Buuu is supported on ℓp and ℓp is G - invariant, rm is supported
on ℓp; and since m has full support, it is readily checked that rm has full support.

Remark 6.5. — It is well-known (see [22]) that two weight sequences uuu and vvv are such
that |un| “ |vn| for all n ě 1 if and only if the backward shifts Buuu and Bvvv (acting on any
ℓp) are unitarily similar, i.e. there exists an isometry J of ℓp such that Bvvv “ JBuuuJ

´1.

6.2. Product measures charging small subspaces. — The following proposition
says in essence that whether or not a product measure KZ` invariant under a weighted
shift Bwww is supported on some “small” subspace of KZ` depends on the rate of growth of
the products w1 ¨ ¨ ¨wn.

Proposition 6.6. — Let µ0 be a Borel probability measure on K, let www be a sequence of
non-zero scalars, and let µwww “ bně0µn be the Bwww- invariant measure on KZ` defined by
µ0, i.e. µnpAq “ µ0pw1 ¨ ¨ ¨wnAq for each n ě 1 and every Borel set A Ď K.
(a) Let p P r1,8q. If

ş

K |t|pdµ0ptq ă 8 and
ř8

n“1
1

|w1¨¨¨wn|p
ă 8, then µwwwpℓpq “ 1.

(b) If there exists a summable sequence of positive real numbers pεnq such that
8
ÿ

n“1

µ0
`

|t| ą |w1 ¨ ¨ ¨wn| εn
˘

ă 8,

then µwwwpℓ1q “ 1.
(c) If |w1 ¨ ¨ ¨wn| Ñ 8 and µ0 ‰ δ0, then µwwwpc0q “ 0. If |w1 ¨ ¨ ¨wn| Ñ 8 and µ0 does not

have compact support, then µwwwpℓ8q “ 0.

Proof. — (a) This is Corollary 5.4.
(b) Since ℓ1 is a tail subset of KZ` , we have µwwwpℓ1q “ 0 or 1, by Kolmogorov’s 0 - 1 law.

Let
A :“

␣

x P KZ` ; |xn| ď εn for all n ě 1
(

.

Obviously A Ď ℓ1, and we have

µwwwpAq “

8
ź

n“1

µn
`

|t| ď εn
˘

“

8
ź

n“1

µ0
`

|t| ď |w1 ¨ ¨ ¨wn| εn
˘

.

Since
ř8

n“1

`

1 ´ µ0p|t| ď |w1 ¨ ¨ ¨wn| εnq
˘

ă 8 by assumption, it follows that µwwwpAq ą 0,
and hence µwwwpℓ1q “ 1.
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(c) Assume that µwwwpc0q ą 0. Then, there exists a compact set K Ď c0 such that
µwwwpKq ą 0. By the well-known description of the compact subsets of c0, one can find a
sequence of positive real numbers pεnq tending to 0 such that

K Ď
␣

x P KZ` ; |xn| ď εn for all n ě 0
(

.

As in the proof of (b), it follows that
8
ÿ

n“1

µ0
`

|t| ą |w1 ¨ ¨ ¨wn| εn
˘

ă 8.

In particular, µ0p|t| ą |w1 ¨ ¨ ¨wn| εnq Ñ 0 as n Ñ 8. If µ0 ‰ δ0, this implies that no
subsequence of p|w1 ¨ ¨ ¨wn|εnq can tend to 0; and hence |w1 ¨ ¨ ¨wn| Ñ 8.

The second part of (c) is proved in a similar way.

Corollary 6.7. — For any probability measure µ0 on K, one can find a sequence of posi-
tive real numbers www such that µwwwpℓ1q “ 1.

Proof. — This is clear by (b): choose a sequence of positive numbers pXnq such that
ř8

n“1 µ0p|t| ą Xnq ă 8, and then take www such that 2´nw1 ¨ ¨ ¨wn ě Xn for all n ě 1.

Corollary 6.8. — If the measure µ0 is such that
ř8

n“1 µ0p|t| ą Cnq ă 8 for some con-
stant C, then µwwwpℓ1q “ 1 for any weight sequence www such that lim |w1 ¨ ¨ ¨wn|1{n ą C. In
particular, if µ0p|t| ą Xq “ O

`

logpXq´α
˘

as X Ñ 8 for some constant α ą 1, then
µwwwpℓ1q “ 1 for any weight sequence www such that lim |wn|1{n ą 1.

Proof. — Take εn :“ pC{ρqn in (b), where ρ :“ lim |wn|1{n.

6.3. When frequently hypercyclic vectors are the same. — As mentioned in Re-
mark 5.10, the following result is due to S. Charpentier and the third author. We thank
S. Charpentier for allowing us to include it here.

Proposition 6.9. — Let uuu and vvv be two weight sequences such that Buuu and Bvvv are fre-
quently hypercyclic on ℓp. If u1¨¨¨un

v1¨¨¨vn
has a non-zero limit as n Ñ 8, then Buuu and Bvvv have

the same frequently hypercyclic vectors.

Proof. — In what follows, we set a :“ lim
nÑ8

u1¨¨¨un
v1¨¨¨vn

P Kzt0u.

Let x be a frequently vector for Buuu; we want to show that x is also a frequenty hypercyclic
vector for Bvvv. So, we fix y “

řd
k“0 ykek P c00 and ε ą 0, and our task is to show that the

set NBvvv

`

x,Bpy, εq
˘

has positive lower density.
Since x is a frequently hypercyclic vector for Buuu, it is enough to find a vector z P ℓp and

α ą 0 such that any sufficiently large n P NBuuu

`

x,Bpz, αq
˘

belongs to NBvvv

`

x,Bpy, εq
˘

. We
consider

z :“
d
ÿ

k“0

a
v1 ¨ ¨ ¨ vk
u1 ¨ ¨ ¨uk

yk ek P c00

and
α :“ ε{2K where K :“ sup

n,kě0

ˇ

ˇ

ˇ

ˇ

vk`1 ¨ ¨ ¨ vk`n

uk`1 ¨ ¨ ¨uk`n

ˇ

ˇ

ˇ

ˇ

.

Note that K ă 8 since for every n, k ě 0, we have
ˇ

ˇ

ˇ

ˇ

vk`1 ¨ ¨ ¨ vk`n

uk`1 ¨ ¨ ¨uk`n

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

u1 ¨ ¨ ¨uk
v1 ¨ ¨ ¨ vk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

v1 ¨ ¨ ¨ vk`n

u1 ¨ ¨ ¨uk`n

ˇ

ˇ

ˇ

ˇ

ď

ˆ

sup
mě1

ˇ

ˇ

ˇ

ˇ

u1 ¨ ¨ ¨um
v1 ¨ ¨ ¨ vm

ˇ

ˇ

ˇ

ˇ

˙ˆ

sup
mě1

ˇ

ˇ

ˇ

ˇ

v1 ¨ ¨ ¨ vm
u1 ¨ ¨ ¨um

ˇ

ˇ

ˇ

ˇ

˙

.
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Let us show that if n P NBuuu

`

x,Bpz, ε
2K q

˘

is large enough, then n P NBvvv

`

x,Bpy, εq
˘

. We
have

}Bn
vvv x´ y}p “

d
ÿ

k“0

|pvk`1 ¨ ¨ ¨ vk`nqxk`n ´ yk|p `

8
ÿ

k“d`1

|pvk`1 ¨ ¨ ¨ vk`nqxk`n|p

ď

d
ÿ

k“0

ˇ

ˇ

ˇ

ˇ

vk`1 ¨ ¨ ¨ vk`n

uk`1 ¨ ¨ ¨uk`n

ˇ

ˇ

ˇ

ˇ

p ˇ
ˇ

ˇ

ˇ

puk`1 ¨ ¨ ¨uk`nqxk`n ´
uk`1 ¨ ¨ ¨uk`n

vk`1 ¨ ¨ ¨ vk`n
yk

ˇ

ˇ

ˇ

ˇ

p

`

8
ÿ

k“d`1

ˇ

ˇ

ˇ

ˇ

vk`1 ¨ ¨ ¨ vk`n

uk`1 ¨ ¨ ¨uk`n

ˇ

ˇ

ˇ

ˇ

p

|puk`1 ¨ ¨ ¨uk`nqxk`n|p

ď Kp}Bn
uuux´ z̃pnq}p

where

z̃pnq :“
d
ÿ

k“0

uk`1 ¨ ¨ ¨uk`n

vk`1 ¨ ¨ ¨ vk`n
yk ek.

Therefore, if n P NBuuu

`

x,Bpz, ε
2K q

˘

, we get

}Bn
vvv x´ y} ď K}Bn

uuux´ z} `K}z ´ z̃pnq} ď
ε

2
`K}z ´ z̃pnq};

and the desired result follows because

}z ´ z̃pnq} ď
ÿ

kďd

ˇ

ˇ

ˇ

ˇ

zk ´
uk`1 ¨ ¨ ¨uk`n

vk`1 ¨ ¨ ¨ vk`n
yk

ˇ

ˇ

ˇ

ˇ

ď }y}1max
kďd

ˇ

ˇ

ˇ

ˇ

a
v1 ¨ ¨ ¨ vk
u1 ¨ ¨ ¨uk

´
uk`1 ¨ ¨ ¨uk`n

vk`1 ¨ ¨ ¨ vk`n

ˇ

ˇ

ˇ

ˇ

ď }y}1

ˆ

max
kďd

ˇ

ˇ

ˇ

ˇ

v1 ¨ ¨ ¨ vk
u1 ¨ ¨ ¨uk

ˇ

ˇ

ˇ

ˇ

˙ˆ

sup
měn

ˇ

ˇ

ˇ

ˇ

a´
u1 ¨ ¨ ¨um
v1 ¨ ¨ ¨ vm

ˇ

ˇ

ˇ

ˇ

˙

ÝÝÝÑ
nÑ8

0.

6.4. Using Shepp’s Theorem. — In this section, we show how results like Shepp’s
theorem from [21] mentioned before Theorem 5.13 can be used in the context of weighted
shifts. Specifically, we will make use of the following theorem. For any measure m on
X “ RZ` and ααα P X, let us denote by mααα the translate of m by ααα, which is the measure
on X defined by

mαααpAq :“ mpA`αααq.

Theorem 6.10. — Let rµ and rµ1 be two measures on R, and let rm and rm1 be the product
measures on RZ` with marginals rµn :“ rµ and rµ1

n :“ rµ1. Let also ααα “ pαnqně0 P RZ`, and
assume that the measures rm and rm1

ααα are not orthogonal.
(1) If rµ “ rµ1, then

ř8
n“0 α

2
n ă 8.

(2) If rµ and rµ1 have a moment of order 2, then
ř8

n“0pαn ´ αq2 ă 8 for some α P R.

Proof. — (1) is (the first third of) [21, Theorem 1].
To prove (2), we use a method devised by Dudley [13] in order to generalize Shepp’s

theorem. Denote by e˚
n, n ě 0 the coordinate linear functionals on Ω :“ RZ` . The as-

sumption on rµ and rµ1 implies that e˚
n belongs to L2pΩ, rmq X L2pΩ, rm1q with L2 - norms
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respectively equal to
ş

R x
2 drµpxq and

ş

R x
2 drµ1pxq, hence independent of n. Likewise,

ş

Ω e
˚
n drm “

ş

R x drµpxq and
ş

Ω e
˚
n drm

1 “
ş

R x drµ
1pxq do not depend on n.

Assume first that
ş

Ω e
˚
n drm “ 0 and

ş

Ω e
˚
n drm

1 “ 0 for all n ě 0. We claim that in this
case, we have

ř8
n“0 α

2
n ă 8. Towards a contradiction, assume that

ř8
n“0 α

2
n “ 8. Then,

one can find a sequence of real numbers pβnq such that
ř8

n“0 β
2
n ă 8, βnαn ě 0 for all n

and
ř8

n“0 βnαn “ 8. Now, consider the measure τ :“ 1
2prm` rm1q. By our assumption, the

sequence pe˚
nqně0 is orthogonal and bounded in L2pΩ, τq. Since

ř8
n“0 β

2
n ă 8, it follows

that the series
ř

βne
˚
n is convergent in L2pΩ, τq. Hence, there is an increasing sequence

of integers pNkqkě0 such that if we define fk :“
řNk

n“0 e
˚
n, then the sequence of linear

functionals pfkq converges τ - a.e. on Ω. So, the linear subspace

E :“
␣

x P Ω; the sequence pfkpxqq is convergent
(

Ď Ω

is such that τpEq “ 1 and hence rmpEq “ 1. On the other hand, we have fkpαααq “
řNk

n“0 βnαn, so the sequence pfkpαααqq is not convergent, i.e. ααα R E; and since E is a linear
subspace of Ω, it follows that E X pE ` αααq “ H. So we have τpE ` αααq “ 0, and hence
rm1
αααpEq “ rm1pE `αααq “ 0. Since rm and rm1

ααα are not orthogonal, this is a contradiction.
Now, let us consider the general case. Let c :“

ş

R x drµpxq and c1 :“
ş

R x drµ
1pxq, so that

ş

Ω e
˚
n drm “ c and

ş

Ω e
˚
n drm

1 “ c1 for all n ě 0. Then
ş

Ω e
˚
n drmc “ 0 and

ş

Ω e
˚
n drm

1
c1 “ 0

for all n ě 0, where c :“ pc, c, . . . q and c1 :“ pc1, c1, . . . q. Since the measures rmc and
`

rm1
c1

˘

ααα`c´c1“
`

rm1
ααα

˘

c
are not orthogonal, it follows that

ř8
n“0pαn ´ pc1 ´ cqq2 ă 8.

From Theorem 6.10, it is essentially a formal matter to deduce the following theorem,
which is not far from saying that if two weighted shifts are not orthogonal with respect to
product measures whose marginals do not charge t0u, then they admit equivalent invariant
Gaussian product measures.

Theorem 6.11. — Let uuu and vvv be two sequences of non-zero scalars, and let muuu “

bně0µn,uuu and mvvv “ bně0µn,vvv be two product measures on KZ`, respectively Buuu - invariant
and Bvvv - invariant, with µ0,uuupt0uq “ 0 “ µ0,vvvpt0uq. Assume that the measures muuu and mvvv

are not orthogonal. Finally, let λn :“ u1¨¨¨un
v1¨¨¨vn

for all n ě 1.

(1) If there exists a P Kzt0u such that µ0,vvvpAq “ µ0,uuupaAq for every Borel set A Ď K,
then

ř8
n“1

`

1 ´ |a´1λn|
˘2

ă 8.
(2) If

ş

Kzt0u

`

log |t|
˘2
dµ0,uuuptq ă 8 and

ş

Kzt0u

`

log |t|
˘2
dµ0,vvvptq ă 8, then there exists a P

Kzt0u such that
ř8

n“1

`

1 ´ |a´1λn|
˘2

ă 8.

Proof. — (1) Since µ0,uuupt0uq “ 0 “ µ0,vvvpt0uq, we view µ0,uuu and µ0,vvv as measures on
G :“ Kzt0u, and hence we view muuu and mvvv as measures on GZ` . Note that GZ` is an
abelian group under entry-wise multiplication.

Consider the measures m “ bně0µn and m1 “ bně0µ
1
n where µn :“ µ0,uuu and µ1

n :“ µ0,vvv
for all n ě 0. If we set U :“ p1, u1, u1u2, . . . q, V :“ p1, v1, v1v2, . . . q and a :“ pa, a, a, . . . q,
then we have for every Borel set B Ď GZ` :

muuupBq “ mpUBq and mvvvpBq “ m1pVBq “ mpaVBq.

Now, consider the map L : GZ` Ñ RZ` defined by Lpt0, t1, . . . q :“
`

log |t0|, log |t1|, . . .
˘

.
Denote by rmuuu, rmvvv, rm and rm1 the images of muuu, mvvv, m and m1 under this map L. Then
rm “ bně0rµn and rm1 “ bně0rµ

1
n, where rµn and rµ1

n are the images of µ0,uuu and µ0,vvv under
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the map t ÞÑ log |t|, for every n ě 0. Moreover, since L is a group homomorphism, we have
for every Borel set B Ď RZ` :

rmuuupBq “ rm
`

B ` LpUq
˘

and rmuuupBq “ rm
`

B ` LpaVq
˘

.

Now, the measures rmuuu “ muuu ˝ L´1 and rmvvv “ mvvv ˝ L´1 are not orthogonal since muuu

and mvvv are not orthogonal. So their translates by ´LpaVq are not orthogonal either. In
other words, if we set

ααα :“ LpUV´1a´1q “ p0, log |a´1λ1|, log |a´1λ2|, . . . q,

then the measure rm and rmααα are not orthogonal. By Theorem 6.10 (1), it follows that
ř8

n“0 α
2
n ă 8, i.e.

8
ÿ

n“1

plog |a´1λn|q2 ă 8;

which concludes the proof.
(2) The proof is similar, using Theorem 6.10 (2).

Corollary 6.12. — Let Buuu and Bvvv be two weighted shifts acting on ℓp. The following are
equivalent.
(a) Buuu and Bvvv are not orthogonal with respect to product measures whose marginals are

absolutely continuous with respect to Lebesgue measure on K.
(b) Buuu and Bvvv are not orthogonal with respect to product measures whose marginals do

not charge t0u and are such that log |t| P L2.

(c) There exists κ ą 0 such that
ř8

n“1

´

1 ´ κ
ˇ

ˇ

ˇ

u1¨¨¨un
v1¨¨¨vn

ˇ

ˇ

ˇ

¯2
ă 8.

(d) Buuu and Bvvv admit equivalent invariant Gaussian product measures.

Proof. — By Theorem 6.11 and keeping the same notation, we just have to check that if
µ0,uuu and µ0,vvv are absolutely continuous with respect to Lebesgue measure on K, then there
exists a P Kzt0u such that µ0,vvvpAq “ µ0,uuupaAq for every Borel set A Ď K. When K “ R this
is done in the proof of (1i) in Theorem 5.13. We repeat the argument here, in a way that
makes it work when K “ C as well. Write µ0,uuu “ pptqdt and µ0,vvv “ qptqdt. Then Ψpλnq Ñ 1

as n Ñ 8, where Ψ : Kzt0u Ñ r0, 1s is the function defined by Ψpλq :“ |λ|d{2
ş

K fpλtqgptq dt
and d “ 1 or 2 depending on whether K “ R or C. Moreover, since Buuu and Bvvv must be
similar by Proposition 3.8, the sequence pλnq has a cluster point a P Kzt0u. Then Ψpaq “ 1
by continuity of Ψ, and it follows that qptq “ |a|d ppatq almost everywhere.

6.5. Kakutani’s Theorem. — In this section, our aim is to prove the following variant
of Kakutani’s Theorem from [17].

Theorem 6.13. — Let ν “ bně0νn and ν 1 “ bně0ν
1
n be two product probability measures

on Ω “
ś

ně0Ωn. The measures ν and ν 1 are orthogonal if and only if
ś8

n“0Hpνn, ν
1
nq “ 0.

Moreover, if
ś8

n“0Hpνn, ν
1
nq ą 0 and νn ! ν 1

n for all n, then ν ! ν 1.

Note that this variant was used in the proofs of Theorem 5.13 and Proposition 5.22. We
give a rather detailed proof since we were not able to locate one in the literature. However,
this is essentially a “copy and paste” of Kakutani’s original proof of his theorem.
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Proof of Theorem 6.13. — For each n ě 0, let us choose a Radon-Nikodym derivative of
νn with respect to ν 1

n, i.e. a measurable function pn : Ωn Ñ R` such that

νn “ pn ν
1
n ` αn,

where αn is a positive measure orthogonal to ν 1
n. Let also fn :“

?
pn. With this notation,

we have
Hpνn, ν

1
nq “

ż

Ωn

?
pn dν

1
n “

ż

Ωn

fn dν
1
n.

(i) Assume that
ś8

n“0Hpνn, ν
1
nq ą 0, and let us show that the measures ν and ν 1 are

not orthogonal, with ν ! ν 1 if νn ! ν 1
n for all n.

For each k ě 0, let Fk :“ bk
n“0fn, i.e. Fk : Ω Ñ R` is the function defined by

Fkpωq :“
k
ź

n“0

fnpωnq.

We claim that Fk converges in L2pΩ, ν1q to some F : Ω Ñ R`. Indeed, if 0 ď p ă q,
then

}Fq ´ Fp}2L2pν1q “ }Fp}2L2pν1q

›

›

›
1 ´ b

q
n“p`1fn

›

›

›

2

L2pν1q

ď

›

›

›
1 ´ b

q
n“p`1fn

›

›

›

2

L2pν1q

ď 2

˜

1 ´

q
ź

n“p`1

Hpνn, ν
1
nq

¸

;

so we see that pFkqkě0 is a Cauchy sequence in L2pΩ, νq.

By L2 - convergence and since
ş

Ωn
f2n dν

1
n ě

´

ş

Ωn
fn dν

1
n

¯2
for all n ě 0, we have

ż

Ω
F 2 dν 1 “ lim

kÑ8

ż

Ω
F 2
k dν

1 ě

8
ź

n“0

Hpνn, ν
1
nq2 ą 0.

Moreover, for any cylinder set A “ rA0, . . . , AN s Ď Ω, we have

νpAq “

N
ź

n“0

νnpAnq

ě

N
ź

n“0

ż

An

pn dν
1
n

“

N
ź

n“0

ż

An

f2n dν
1
n ě

ż

A
F 2 dν 1,

where the last inequality follows from the fact that
ş

Ωn
f2n dν

1
n ď 1 for every n ą N .

Therefore, the positive measure F 2 ν 1 is non-zero and absolutely continuous with respect
to both ν 1 and ν, and hence ν and ν 1 are not orthogonal. Finally, if νn ! ν 1

n for all n, i.e.
αn “ 0, then we see that νpAq “

ş

A F
2 dν 1 for all cylinder sets A, so ν ! ν 1.

(ii) Now, assume that
ś8

n“0Hpνn, ν
1
nq “ 0, and let us show that ν K ν 1. It is enough to

show that for any ε ą 0, one can find a measurable set E Ď Ω such that ν 1pEq ă ε and
νpΩzEq ă ε.
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Let ε ą 0, and let us choose N ě 0 such that
śN

n“0Hpνn, ν
1
nq ă ε, i.e.

ż

Ω
FN dν 1 ă ε.

Let us also choose, for each n P J0, NK, a measurable set An Ď Ωn such that ν 1
npAnq “ 0

and αnpΩnzAnq “ 0, and let

E :“ tω P Ω; FN pωq ě 1u Y tω P Ω; ωn P An for some n P J0, NKu.

We have on the one hand ν 1pEq “ ν 1pFN ě 1q ă ε; and, on the other hand,

νpΩzEq “ b8
n“0ppn ν

1
n ` αnq

`

tFN ă 1u X rΩ0zA0, . . . ,ΩNzAN s
˘

“ bN
n“0ppn ν

1
nq
`

tpω0, . . . , ωN q;
a

p0pω0q ¨ ¨ ¨ pN pωN q ă 1u
˘

“

ż

?
p0b¨¨¨bpNă1

p0 b ¨ ¨ ¨ b pN dν 1

ď

ż

Ω

?
p0 b ¨ ¨ ¨ b pN dν 1 “

ż

Ω
FN dν 1 ă ε.

This concludes the proof.

7. Some questions

Of course, the main open question that remains at the end of this work is the one from
which we started.

Question 7.1. — Find a characterization of the pairs of weight sequences puuu,vvvq such that
the weighted shifts Buuu and Bvvv acting on ℓp are orthogonal.

In Section 3, we saw that orthogonality might be related to non-similarity, in a way
which is not yet clear. In particular, in view of Theorem 3.10, the following question is
natural.

Question 7.2. — Is it true that if Buuu and Bvvv admit non-trivial invariant measures and
are orthogonal, then either

lim
nÑ8

max
0ďdďN

ˇ

ˇ

ˇ

ˇ

u1 ¨ ¨ ¨un`d

v1 ¨ ¨ ¨ vn`d

ˇ

ˇ

ˇ

ˇ

“ 0 for all N ě 0

or

lim
nÑ8

min
0ďdďN

ˇ

ˇ

ˇ

ˇ

u1 ¨ ¨ ¨un`d

v1 ¨ ¨ ¨ vn`d

ˇ

ˇ

ˇ

ˇ

“ 8 for all N ě 0?

In the same spirit, Example 4.5 shows that non-similarity does not imply orthogonal-
ity. Conversely, it would be quite interesting to know whether similarity implies non-
orthogonality.

Question 7.3. — Suppose that Buuu and Bvvv admit non-trivial invariant measures and are
similar, i.e.

0 ă lim

ˇ

ˇ

ˇ

ˇ

u1 ¨ ¨ ¨un
v1 ¨ ¨ ¨ vn

ˇ

ˇ

ˇ

ˇ

ď lim

ˇ

ˇ

ˇ

ˇ

u1 ¨ ¨ ¨un
v1 ¨ ¨ ¨ vn

ˇ

ˇ

ˇ

ˇ

ă 8.

Does it follow that Buuu and Bwww are non-orthogonal?
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Note that a positive answer to Question 7.2 would imply a positive answer to Question
7.3. A very special case of the latter has a positive answer by Corollary 6.4: if Buuu and
Bvvv admit non-trivial invariant measures and are unitarily similar, then they are non-
orthogonal.

Next, in view of Theorem 5.13, Proposition 5.22 and Theorem 6.11, it is natural to ask
whether the existence of equivalent non-trivial invariant product measures always implies
the existence of equivalent invariant Gaussian product measures.

Question 7.4. — Is it true in general that if Buuu and Bvvv admit equivalent non-trivial
invariant product measures muuu “ bně0µuuu,n and mvvv “ bµvvv,n, then they admit equivalent
invariant Gaussian product measures?

From a more general point of view, the following question seems also natural.

Question 7.5. — If T1 and T2 are non-orthogonal operators, does it follow that they
admit equivalent non-trivial invariant measures?

In the same spirit, one may ask

Question 7.6. — When do two weighted shifts Buuu and Bvvv share a common non-trivial
invariant measure?

Finally, the following seems to be unknown.

Question 7.7. — Let Bwww be a weighted shift acting on c0pZ`q. Is it true that Bwww admits
a non-trivial invariant measure if and only if |w1 ¨ ¨ ¨wn| Ñ 8 as n Ñ 8?
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