
HAL Id: hal-04359945
https://hal.science/hal-04359945v1

Submitted on 21 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-context incremental reasoning over data streams
Wafaa Mebrek, Amel Bouzeghoub

To cite this version:
Wafaa Mebrek, Amel Bouzeghoub. Multi-context incremental reasoning over data streams. Interna-
tional Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Oct 2023, Venice,
France. pp.150-157, �10.1109/WI-IAT59888.2023.00026�. �hal-04359945�

https://hal.science/hal-04359945v1
https://hal.archives-ouvertes.fr

Multi-Context Incremental Reasoning over Data
Streams

Wafaa Mebrek1,2 and Amel Bouzeghoub1

1Samovar, Télécom SudParis, Institut Polytechnique de Paris, Palaiseau, France
2LabRI-SBA Laboratory, Ecole Supérieure en Informatique, Sidi Bel Abbes, Algeria
{Wafaa.Mebrek, Amel.Bouzeghoub}@telecom-sudparis.eu, w.mebrek@esi-sba.dz

Abstract—Data streams are generally generated on-the-fly and
contain valuable knowledge to support the decision process in
many use cases, such as smart cities or traffic monitoring. To this
end, reasoning over streaming data suggests a reconsideration of
the concept of a solution to a problem, and how to obtain it. As
data in streams change continuously, all the conclusions based on
expired data must be retracted, and additional or new information
might also arrive and output additional derivations. Multiple
works have investigated the use of Answer Set Programming (ASP)
for streaming data. However, they generally do not provide window
mechanisms, which are key factors in stream processing. Ticker is
one of the recent solutions provided to tackle this issue. It is based
on LARS, a Logic-based Framework for Analytic Reasoning over
Streams, and has two reasoning strategies. One relies on Clingo for
repeated solving, and the other uses a Truth Maintenance System
to perform model updates. Despite the significant achievements
that have been made, there is still room for improvement, especially
when considering real-life applications. In this paper, we propose
a new stream reasoning engine based on Ticker that overcomes its
limitations. The proposed framework has been implemented and
evaluated with a real-world benchmark, and a use-case scenario
implementation shows promising results.

Index Terms—Incremental Reasoning, Multi-context,Truth
Maintenance System.

I. INTRODUCTION

Today’s world can be seen as an ocean composed of many
different sources of data streams holding valuable knowledge
and insights that can be leveraged to support decision-making
in a wide range of use cases, such as smart cities, traffic mon-
itoring, social media analysis and the Internet of Things (IoT).
Stream reasoning is recognized as one of the most significant
research areas supporting the aforementioned use cases by
providing meaning to multiple, heterogeneous, massive, and
inevitably noisy data streams to support the decision-making
process of a very large number of simultaneous users [1].

Reasoning over streaming data suggests reconsidering the
concept of a solution to a problem and how to obtain it. In
contrast to static data, streams are constantly changing, as
are their evaluations: conclusions based on out-of-date data
need to be withdrawn, additional information may come in,
giving rise to new derivations or even challenging previous
ones, and so forth. How to manage dynamic environments in
which incremental reasoning over heterogeneous knowledge
sources with constantly arriving data streams remains largely
unexplored in the literature. The main recent contribution
is the Logic-based framework for Analytic Reasoning over

Streams (LARS) [2], which is an extension of Answer Set
Programming (ASP). It introduces window operators and time
modalities, allowing for declarative specification of intricate
decision problems involving streaming data. Ticker [3] and
LASER [4] are the main implementations of LARS. Ticker, is
a prototypical engine for well-defined logical reasoning over
streaming data. It comes with two reasoning strategies, the ASP
solver Clingo [5] and JTMS [6] [3], a Justification-based Truth
Maintenance System [7], to maintain the model continuously.
Despite the fact that this is a fully incremental stream reasoning
system, we have identified a range of limitations : (i) neither
Ticker nor JTMS can cope with contradictions; (ii) for each
rule, it is mandatory to indicate the facts in the LARS file,
which is in contradiction to a real-life application where facts
occur on-the-fly. This makes it difficult for the incremental
process to run correctly; (iii) variables in the scope of a window
atom are grounded upstream in the pre-grounding phase by
some standard atoms. As a consequence, some executions do
not yield any results since the variables are replaced by the
number of facts; (iv) JTMS works in only one context at a
time and becomes increasingly costly as the volume of data
grows. It is also challenging to determine whether a datum is
derivable or not from a particular set of enabled assumptions.
LASER is a system that updates models efficiently by applying
a semi-naive evaluation of Datalog programs based on LARS
instead of ASP. It restricts programs to positive and stratified
ASP rules, limiting its expressiveness compared to Ticker. As
a result, Ticker is currently the leading ASP-based stream
reasoning engine that supports window operators and provides
an incremental model update mechanism. However, there is
still room for improvement in order to overcome some of the
aforementioned shortcomings. In that respect, we propose in
this paper LEA, a novel incrementaL strEam reAsoning engine
based on Ticker.

A. Motivating Example

This example is extracted from CityBench [8], a comprehen-
sive benchmarking suite to evaluate RDF Stream Reasoning
engines within smart cities applications. The scenario is
dedicated to public safety during a large event. The city
is hosting a large cultural event at a popular venue in the
city center that is expected to attract a large number of
visitors. To manage the event and ensure public safety, the
organizers have put several rules in place. During the event,

public safety is a top priority, and the city could implement
increased security measures, such as increased police presence
and surveillance cameras. Additionally, the city may need to
restrict access to certain areas during the event to prevent
overcrowding and congested roads and to maintain a safe
environment, leading to limited parking capacity. Moreover,
if a cultural event occurs in an area, and the roads are
congested with activities, this will increase pollution. When
the pollution level exceeds 50, the air quality is low, and
the area is declared a high-emission zone. The authorities
will either prohibit cars from entering the zone or limit the
number of vehicles allowed there. This decision is expected to
mitigate the negative effects of high pollution levels on public
health and the environment. When it came to expressing these
rules in LARS, we were confronted with several difficulties.
For instance, to express the average speed V in a specific
location L, we want to use the atom averageSpeed(L, V).
Unfortunately, using more than one argument in LARS is
actually impossible. Moreover, the contradiction cannot be
expressed with LARS. We cannot express, for instance, that
both freeRoadActivity and congestedRoadActivity facts
cannot occur simultaneously in the same location L and are,
therefore, contradictory. Furthermore, we are constrained to
indicate all the associated facts for each rule. But this is
obviously impossible in a real-time application where the events
arrive progressively.

Based on the aforementioned observations in our real
scenario, an extended LARS shall be designed to meet the
following requirements: (R1) Increase the expressiveness of
logic rules to support multi-argument atoms and string types;
(R2) Cope with conflicting rules; (R3) Processing the facts on
the fly, rather than hard-coded in the rules file at initialization;
(R4) Multi-context should be addressed.

B. Contributions and Novelty

In a nutshell, the novelty and the originality of our approach
lies in the following main contributions:
• Extended-LARS: We propose an extended formula of

LARS to express contradictory rules (denoted by the
symbol ”⊥”) in a time window. Table I provides an
example of program of this scenario expressed with the
extended LARS.

• On-the-fly Grounding of plain LARS Program: We pro-
pose LEA, (short name for incrementaL strEam reA-
soning), a new grounding technique that addresses the
aforementioned shortcomings.

• Extended-ATMS Algorithm: We propose to use ATMS
(Assumption-based Truth-Maintenance System) instead
of JTMS. Indeed, JTMS is not applicable for programs
with odd loops i.e., an odd number of negations, and
is also far less efficient than modern ASP solving tech-
niques; in particular when a model needs to be computed
from scratch. It is also limited to ground programs.
Consequently, providing other incremental model update
techniques based on changing programs would be not
only of interest for stream reasoning with LARS but also

for ASP without an explicit timeline. Furthermore, we
optimize the propagation function of the original version
of ATMS. We have also added negative assumptions that
are not supported by ATMS.

• We conduct extensive experiments on real datasets and
compare our framework with Tiker and Laser. The results
demonstrate promising results in terms of expressivity
while maintaining fairly similar performances

The remainder of this paper is organized as follows: Section
II introduces the formal extended-LARS definitions. Section
III outlines the proposed framework, Section IV discusses
the literature review, and Section V details the experimental
evaluation. Finally, Section VI concludes the paper.

II. EXTENDED-LARS

Adding Contradiction. JTMS cannot deal with inconsis-
tency. Authors of Ticker, chose not to address the issue of this
procedure. We introduce hereafter the contradiction concept
and define the notion of conflicting rules. We use plain LARS
programs syntax proposed in [3].
A ground plain LARS program P is a set of rules of the form
α← β1, ...βj , not βj+1, ..., not βn,

where the head α is of form a or @ta, a ∈ A, a set of atoms
and β1....βn is the body.

Definition 1: Formulas: The set of formulas F in LARS
is defined by the following grammar to which we add the
contradiction:
α : : = a | ¬ α | α ∨ α | α ∧ α | α → α | ⋄ α | □ α | @t

α | ⊞i α | ⊥
where ⊞i is a type of window operator, a ∈ A is an atom

and t ∈ N.
If the contradiction formula, denoted ⊥, is an atom in A,

it can be treated as logically equivalent to any inconsistent
formula. So if a ⊢ ⊥ (where ⊢ is the classical consequence
relation), then a is inconsistent.

Definition 2: Structure: A structure M is a tuple
M(T, v,W,B) where S = (T, v) is a stream, W a set of
window functions, and B a set of facts.

Definition 3: Entailment: When formulas hold in a structure,
an entailment relation |= is defined between (M,S, t) and
formulas as follows: Let a ∈ A, w ∈W and α, β ∈ Fg be the
set of ground formulas where each term is ground. Then,

M,S,t |= a iff a ∈ v(t) or a ∈ B,
M,S,t |= ¬ α iff M,S,t ̸|= α,
M,S,t |= α ∧ β iff M,S,t |= α and M,S,t |= β,
M,S,t |= α ∨ β iff M,S,t |= α or M,S,t |= β,
M,S,t |= α → β iff M,S,t ̸|= α or M,S,t |= β,
M,S,t |= ⋄ α iff M,S,t’ for Some t’ ∈ T,
M,S,t |= □ α iff M,S,t’ |= α for all t’ ∈ T,
M,S,t |= @t’α iff M,S,t’ |= α for all t’ ∈ T,
M,S,t |= ⊞w α iff M,S’,t |= α where S’ is a substream of S,
M,S,t |= ⊥ iff M,S,t |= α and M,S,t |= ¬ α.
If M,S,t |= α holds, we say that (M,S,t) entails α. Moreover,
M satisfies α at time t. Let I = (T, v) be a stream such that
S ⊆ I . If at every time point in T, all atoms that occur in I
but not in S have intensional predicates, then we call I an

TABLE I
EXTENDED LARS PROGRAM FOR THE MOTIVATING EXAMPLE

r1 : @TlimitedParking(L) ← ⊞60
@T , culturalEvent(L), parkingCapacity(L,C), C ≤ 20, area(L)

r2 : @TcongestionRoad(L) ← ⊞60
@T , averageSpeed(L, V), V ≤ 20, area(L)

r3 : @TcongestedRoadActivity(L) ← ⊞60
@T limitedParking(L),⊞60

@T congestionRoad(L)
r4 : @TfreeRoadActivity(L) ← closedRoad(L), area(L)
r5 : ⊥ ← @TfreeRoadActivity(L),@TcongestedRoadActivity(L)

r6 : @TpoorAirQuality(L) ← congestedRoadActivity(L), pollution(P), P ≥ 50
r7 : @TlimitedAccessArea(L) ← congestedRoadActivity(L)
r8 : @TincreaseSecurity(L) ← ⊞60

@T congestedRoadActivity(L), limitedArea(L), crowdedEvent(L), highEmissionZone(P)

interpretation stream for S and a structure M = <T, v,W,B>
an interpretation (for S).

Conflicting rules may occur when two (or more) rules can
be simultaneously applied but their conclusions are in conflict.
In other words, both outputs cannot be correct with respect
to the intended interpretation I . Let us consider two rules r
and r′ of the form ψ → c and ψ′ → c′ respectively. We define
conflicting rules as follows:

Definition 4: Conflicting Rules: r and r′ are conflicting
if there exists a state described by formula ϕ, such that
simultaneously ϕ |= ψ and ϕ |= ψ′ but ⊭ c ∧ c′ under the
assumed interpretation I (i.e. c and c′ cannot be simultaneously
true, for example c = ¬c′ which cannot be true under any
interpretation).

Example 1: In the motivating example presented
above in Table I, r3 and r4 are conflicting since
@TcongestedRoadActivity(L) = ¬@TfreeRoadActivity(L)

III. MULTI-CONTEXTS INCREMENTAL REASONING FOR
PLAIN LARS PROGRAM

Through this section, we explain in detail the two key com-
ponents of our proposed approach, LEA. The first component
involves the generation of incremental rules based on incoming
facts from a signal set, referred to as On-the-fly Grounding. The
second component is an extension of ATMS implementation. By
separating the On-the-fly Grounding process from the ATMS,
a modular and flexible approach to knowledge base updates is
achieved.

A. On-the-fly Grounding of plain LARS Program
On-the-fly Grounding operates independently from ATMS

and forwards its results to ATMS for further processing
and integration into the overall knowledge base. Algorithm
1 describes the mechanism for dynamically processing and
annotating LARS rules based on the current tick time, tick
count, and signal set, enabling efficient and accurate reasoning
in the context of temporal logic-based systems.

It takes as input the current tick time t, the tick count c,
and a signal set Sig with at most one input signal, which is
empty if (t, c) is a time increment. In Lines 1 and 2, a rule
body composed of a set of atoms is defined, and a set of valid
rules is initialized. F in line 3 is a set of annotated rules with
tick t and count c. These rules expire neither based on time
nor count, hence the duration annotation is (∞,∞).

In Line 4, auxiliary facts with time-pinned atom a@(x, t)
or counts a#(x, t, c) are added to a fresh set F due to the

translation of a LARS program P to an ASP program P̂ (see
Algorithm 1 in [3]). Every time a signal a(x) is found, the
groundingRulesWithVariables function (Line 5) is called to
identify the rules in the LARS program P that match the
signal a(x) in the signal set Sig. This function (detailed below
in Algorithm 2) takes as input the set of rules that match
the received facts and the signal a(x), and returns a set of
rules that match the signal a(x). These matching rules are
grounded using the current tick time t and the received facts.
This grounding process replaces variables in the rule with their
corresponding values from the received facts and replaces the
time variable with its current value. The output of this step is
a set of grounded rules that are specific to the current tick time
t and received facts. The pinRules function is used to pin the
grounded rules generated in Line 5, with the corresponding tick
count c. The pinned rules are added to the set of incremental
rules R in Line 6. By pinning the rules, Algorithm 1 ensures
that the rules remain active and are not removed from the
program until their expiration time, which is determined by
the tick count c. The set of incremental rules R (Line 8)
represents the set of rules that need to be added to the program
to accommodate the changes in the current state. This step is
crucial for maintaining the program’s consistency with respect
to the current state and enables efficient processing of the
LARS program. The algorithm also creates the set of window
rules Q (Line 9) for each predicate in the LARS program P .
These window rules are used to capture the current state of
the system and are updated as new facts arrive. Note that the
window rules have a duration of infinity, meaning that they
remain valid until they are explicitly retracted. After processing
all the signals, the algorithm generates the incremental rules
for every rule in the LARS program P . First, a base rule r̂
for each rule r is created (Line 11). Then, for every encoding
e in the body of r, a set of incremental window rules I is
created by incrementalWindowRules function (Line 12). The
aim of generating these rules is to improve the accuracy and
efficiency of the LARS program by providing incremental
updates to the existing rules. This allows the system to react
to new information and make adjustments in real time, which
is particularly useful in dynamic environments where the input
data is constantly changing. The last step is to return the
incremental rules annotated with duration until expiration in
Line 15. These rules serve as inputs in the ATMS algorithm 7,
that construct the justification graph.

Algorithm 2 plays a crucial role in identifying and extracting

Algorithm 1 On-the-fly Grounding (Sig)
Input: Tick time t, tick count c, signal set Sig with at most one input signal, which is
empty iff (t, c) is a time increment, P : the LARS program.
Output: Pinned incremental rules annotated with duration until expiration.
1: β = atom1, atom2, . . . , atomn ▷ The body of the rule
2: R := ∅ ▷ The valid rule set at t
3: F := ⟨(∞,∞), tick(t, c)←⟩
4: for all a(x) ∈ Sig do

F := F ∪ ⟨(∞,∞), a@(x, t)←⟩, ⟨(∞,∞), a#(x, t, c)←⟩
5: groundedRules := groundingRulesWithVariables (P, a(x), β)
6: pinnedRules := pinRules(groundedRules, c) ▷ The annotated rules with

duration
7: end for
8: R := R∪ pinnedRules
9: Q := ⟨(1,∞), a(x)← a@(x, t)⟩, ⟨(1,∞), a@(x, t)← a(x)⟩

10: for all r ∈ P do
11: r̂ := baseRule(r)
12: I :=

⋃
e∈B(r) incrementalWindowRules(e, t, c)

13: R := R ∪ I ∪ ⟨(∞,∞), r̂⟩
14: end for
15: return F ∪Q ∪ R ▷ The resulted incremental rules

Algorithm 2 groundingRulesWithVariables(P, a(x), β)
Input: Pre-grounded LARS program P , the signal a(x) and the set of atoms β
Output: A set of ASP rules K

1: K := ∅
2: for all r ∈ P do
3: if β ̸= ∅ and a ∈ β then

r′ := replaceArgWithX(x)
K := K ∪ r′

4: end if
5: end for
6: return K

ASP rules from a pre-grounded LARS program P . This
algorithm takes the pre-grounded LARS program P as input
and aims to find rules that contain a specific variable a(x). It
initializes Line 1, an empty set K, to store the identified ASP
rules and iterates (Lines 2-5) through each rule in P . Line 3
checks whether the set of atoms defined by β is not empty,
and the signal a is present. In this case, it creates a new rule
r′ by replacing the argument of the atom a with the variable
x and adds this modified rule to the set K of identified ASP
rules.

Example 2:
Let us consider the following LARS rule:

r = @TcongestionRoad(L) ← ⊞30
@TaverageSpeed(L, V),

V ≤ 20, area(L).

where the predicate averageSpeed(L, V) serves as a guard
that always remains valid. After translation of the LARS
program to ASP rules using the proposed Algorithm 1, we get
the following rule:

r̂ = congestionRoad(L) @(T)← ωeaverageSpeed(L, V, T),

Leq(V, 20), area(L).

where ωe = ⊞30
@TaverageSpeed(L, V). To ground the

rule, we replace the variable V in the window atom
⊞30

@TaverageSpeed(L, V) with the value from the signal
input. For instance, when the program receives the fact
averageSpeed(”StreetA”, 18), the resulted incremental rule
is as follows :

congestionRoad(”StreetA”)@(T)←
ωeaverageSpeed(”StreetA”, 18),

Leq(18, 20), area(”StreetA”).

Unlike Tiker, we propose not to include the averageSpeed
facts in the LARS file but instead receive it gradually from a
stream as a signal.

This On-the-fly Grounding of variables in @-atoms avoids
the need to declare a fact in LARS rule file for each atom with
a dynamic argument and provides more efficient and flexible
incremental grounding. In the end, the resulting incremental
rule has an infinite duration like the base rule. The reason
why we assign it is that it does not need to expire. In other
words, the base rule is a static rule that does not depend on
the stream of input data and is not subject to any changes over
time. Therefore, it can remain valid indefinitely. This approach
simplifies the implementation of the LARS program and
improves its performance by avoiding unnecessary overheads
associated with rule expiration and re-evaluation.

B. Extended ATMS algorithms

The Assumption-based Truth Maintenance System (ATMS)
algorithm stands out as a type of incremental Truth Maintenance
System (TMS) algorithm and plays a crucial role in maintaining
consistency, tracking dependencies, and managing logical
inferences within the knowledge base.

Its core process involves several key algorithms, including
UPDATE (cf. Algorithm 3), a primary function that updates
the labels of nodes incrementally by appending justifications,
thereby ensuring the local correctness of these labels; WEAVE
(cf. Algorithm 6), which manages the weaving of justifications
and dependencies; PROPAGATE (cf. Algorithm 5), which
propagates changes and updates to affected elements; and NO-
GOOD (cf. Algorithm 4), which handles and detects conflicts or
contradictions. Together, these algorithms form the foundation
of ATMS and enable efficient reasoning and maintenance of
knowledge within a multi-context environment as in Table I.
Furthermore, the ATMS follows a systematic approach where
it continually propagates alterations until the labels reach a
state of global correctness and initializes the labeling process
by tagging assumptions with the corresponding environment
that encloses them. Consequently, all the remaining nodes are
generated devoid of any labels, i.e., they are created with empty
labels.

In ATMS, the UPDATE algorithm ensures that a node
contains a contradiction in order to guarantee nogoods detection
from the outset (cf. Algorithm 3). It starts by detecting
the nogoods operates (Lines 1-5) and eliminates from all
nogoods along with environments that are subsumed by
others within L. This step ensures that the set L is devoid
of redundant or unnecessary elements and simplifying the
remaining computation (Algorithm 3, Lines 6-8). For every
justification J in which n is mentioned as an antecedent, the
PROPAGATE Algorithm 5 is called to incrementally change the

Algorithm 3 UPDATE (L, n)

1: if n = ⊥ then
2: for each E in L do
3: NOGOOD(E) ▷ Removal of Nogoods and Subsumed Environments
4: end for
5: end if
6: Remove all environments from L that are a subset of any environment in the label

of n. ▷ Update n’s label, ensuring minimality
7: Remove all environments from the label of n that are a subset of any element of L.
8: Include all remaining environments of L in the label of n.
9: Ensure negation.

10: for each j ∈ J and antecedant(n) do ▷ The variable J is declared in a scope
external to the UPDATE method

11: PROPAGATE(J, n, L) ▷ Propagate the incremental change to n’s label
to its consequences

12: end for
13: Remove subsumed and inconsistent environments from L.
14: Remove from L all environments no longer in n’s label.

Algorithm 4 NOGOOD (E)

1: Mark E as noogood
2: for each node n do ▷ Iterate over all nodes in the dependency network.
3: for each environment E′ in node n’s label do
4: if E′ is a superset of E then
5: Remove environment E from node n’s label.
6: end if
7: end for
8: end for

label of n with respect to its consequences. Then, all subsumed
and inconsistent environments are removed from L (Lines
10-14).

The NOGOOD Algorithm 4 is invoked whenever a newly
created environment E is marked as nogood (Line 1). It
then traverses every node n within the dependency network
and eliminates all nogood environments from all labels as
shown in Lines 2-8. This ensures that any conflicting or
invalid environments are eliminated, promoting consistency
and accuracy in the reasoning process.

The PROPAGATE Algorithm 5 consists of two main steps
: The first step (Line 1) involves computing the incremental
label update using the WEAVE Algorithm (cf. Algorithm 6). In
the second step (Line 2), the UPDATE Algorithm is invoked to
propagate the changes further (cf. Algorithm 3). The proposed
PROPAGATE Algorithm in [9] and [7] is inefficient because
it recomputes node labels repeatedly in step 2. We propose
a more efficient approach in which only incremental changes
to node labels are propagated. This improved algorithm is
provided in our extended ATMS in Algorithm 5.

The WEAVE algorithm, depicted in Algorithm 6, performs a
crucial step in the incremental label update process. It operates
on an antecedent node a, a set of current environments I ,
and a set of antecedent nodes X (Lines 1-4). It incrementally
computes a tentative label (denoted by L) by combining the
environments from I and the label of each antecedent node
h (Line 5). During the label construction, conflicts between
environments are checked to ensure consistency (Line 6). The
resulting label I ′ contains no known inconsistency. Finally, the
recursive call of the WEAVE Algorithm 6 (Line 10) allows
for further processing and refinement of the label, taking
into account additional antecedent nodes and their associated
environments.

Finally, ADDJUSTIFICATION algorithm (Algorithm 7) is a
crucial component that bridges the gap between ATMS and the
reasoner, with a particular emphasis on the on-the-fly grounding

Algorithm 5 PROPAGATE (J, n, l)
1: L← WEAVE(a, I, {X1, . . . , Xk}) ▷ Weave operation to determine new

labels
2: UPDATE(L, n) ▷ Add the new potential label environments L to node n

Algorithm 6 WEAVE (a, I , X)
1: Iterate over antecedent nodes h ̸= a
2: if X = ∅ then
3: return I
4: end if
5: Incrementally build the incremental label L
6: Check for conflicts between environments during the construction.
7: Let I′ =

⋃
ei∈I

⋃
fj∈h.label

{ei ∪ fj}

8: Ensure that I′ is minimal and contains no known inconsistencies.
9: Clean(I′) ▷ Eliminate duplicates, invalidations, and any environment that is

subsumed by any other environment from I′

10: return WEAV E(a, I′, X)

phase sketched in Algorithm 1. It takes as input incremental
rules, denoted as R, which are the output of Algortihm 1, and
executes a series of steps to facilitate the integration of the
rule within the ATMS framework. The key step occurs in Line
2, where the convertToJustification function is employed to
convert the incremental rule R into a justification, denoted by
J . This conversion enables the subsequent utilization of the
rule within the ATMS graph as shown in Figure 1. Finally, in
Line 3, the PROPAGATE Algorithm 5 is called.

Algorithm 7 ADDJUSTIFICATION (R)
R : = α← β1, ...βj , not βj+1, ..., not βn.
1: L := ∅
2: J := convertTojustification(R)
3: PROPAGATE(J, n, L)

Adding Negation. Based on a general labeling algorithm for
ATMS [9], we propose an extension to ensure that the ATMS
graph generation properly handles negated literals, allowing
for more accurate reasoning and conflict detection.Thus, some
modifications have been introduced compared to the original
version. Instead of searching within the antecedents of the
nogood node justifications, the algorithm now performs a search
for the assumption’s negation, as indicated in Algorithm 3.

Example 3: Figure 1 shows the ATMS graph resulting from
the motivating example described in Table I. The ATMS graph
represents the dependencies and justifications between the
assumptions made by these rules. In this example, the ATMS
graph includes nodes representing the possible assumptions, for
example: congestedRoadActivity(L), averageSpeed(L, V),
limitedAccessArea(L), and justifications : the rule r1 justifies
the assumption limitedParking(L) based on the assumptions
culturalEvent(L), parkingCapacity(L,C), C ≤ 20, and
area(L). The nodes marked in blue in the ATMS represent
different contexts that the ATMS manages and can use to
easily switch between contexts. This feature enables it to
handle multi-context scenarios as : Parking(L,C), leq(C, 10)
and Area(L). These context switches are not costly because
they simply require choosing a different second argument. In
addition, the LEA’s inference engine can now work in multiple
contexts at once. All black nodes represent justifications,

Fig. 1. ATMS graph modeling

validated nodes are in blue and the numbers enclosed in curly
braces {} represent the labels of these nodes. By analyzing
the ATMS graph, it becomes possible to track the logical
consequences of the assumptions and to determine the overall
truth values and conflicts within the rules system to detect and
handle contradictory rules : CongestionRoadActivity(L) and
FreeRoadActivity(L) as depicted in r3 and r4 (red node).

IV. RELATED WORK

Stream reasoning has been widely studied in the last few
years [10] and many advanced stream processing solutions were
developed in the context of Data Stream Management Systems
(DSMSs) and Complex Event Processors (CEPs). However, to
date, there are no standards that make the comparison between
these approaches. Proposals based on ASPs are of particular
interest, whereas those related to DSMSs and CEPs are beyond
the scope of this paper.

Several works have explored reasoning over streams using
the ASP solver Clingo, addressing the challenges of data
and program changes. Incremental grounding and solving
techniques have been introduced in incremental ASP. Ideas
from incremental ASP, reactive ASP, and time-decaying logic
programs have been continuously improved and are now
integrated into the current version 5 of Clingo. The multi-shot
solving capabilities of Clingo [11] [12] to evaluate changing
programs were presented earlier, providing additional control
for grounding and solving through external script-accessible
parameters. These mechanisms can be used, for example, to
simulate the progress of time and encode window operators.
However, while Clingo’s multi-shot features target incremental
and reactive control of the ASP-solving process, they do not
offer explicit streaming semantics or operators. The LARS
framework is the first formal semantics for stream reasoning
and extends ASP. It incorporates window operators to capture
data snapshots with time, tuple, or partition, and temporal
operators for evaluation at specific time points or intervals in
a stream. In contrast to ASP, with LARS , it is possible to
express time as time points or intervals within the rules. Ticker
and Laser have implemented fragments of LARS programs,

both based on plain LARS rules. Ticker focuses on negation
and offers two evaluation modes : a static ASP encoding that
uses Clingo for repeated solving, and an incremental ASP
encoding that performs model updates using truth maintenance
techniques. On the other hand, Laser focuses on positive and
stratified programs with sliding windows, extending the semi-
naive evaluation of Datalog. Both Ticker and Laser are capable
of updating previously computed models when data streams
change. However, they differ in that Ticker is based on LARS
and not ASP, and Laser only accepts the positive fragment of
LARS and stratified programs with sliding windows. Ticker
supports full negation with sliding time/tuple-based windows.

V. EXPERIMENTAL EVALUATION

In this section, we describe the experiments conducted to
demonstrate the effectiveness of the proposed approach using
On-the-fly Grounding and ATMS. The experiments aim to
answer the following four research questions:

– RQ1. Is there a reasoning engine among LEA, Ticker, and
Laser that performs significantly better, or do they perform
comparably?

– RQ2. Which reasoning engine offers the best results in
terms of quality?

– RQ3. What impacts the incremental evaluation of rules
or the grounding phase?

– RQ4. How do the different parameter settings influence
the performance of reasoning engines?

Datasets. In order to compare the performance of our
framework, we used two implemented scenarios in Ticker,
a Content Retrieval that can accommodate multiple models
and utilizes recursive computation instead of a linear sequence
of instructions. It is designed for a network where items can be
cached and requested at any node, and Caching Strategy where
the program enables the selection of one of four replacement
strategies (fifo, lfu, lru, or random) to manage the removal of
video chunks from a local cache. Due to space constraints, we
do not describe these scenario. More details can be found in
[3].We have modified the scenarios for our tests and added

contradictory rules and operations on the arguments to measure
the quality of each implementation.

Experimental Setup. Our focus in this study was to
investigate the potential algorithmic benefits of incremental
reasoning using our proposed solution and the incremental
reasoner mode of Ticker. Therefore, we did not compare our
approach with the push-based ASP reasoner, but we rather
focused solely on incremental evaluation. The LARS program
representation does not include a notion of clock time, so we
did not fix a clock time and test how many atoms can be
processed per time point. Instead, we processed each tick as
fast as possible, which allowed us to compare the maximal
performance of the incremental mode without introducing
additional overhead, such as input/output handling. On the
other hand, at the time of publishing Laser [4], the incremental
reasoning mode of Ticker was not available for evaluation.
Therefore, the authors only tested their approach using the
Clingo reasoning mode.

Evaluation. We performed two types of evaluation modes
for the scenarios and setup. The first mode involved fixing the
number of time points and gradually increasing the window
size n, while the second mode did the opposite. In each mode,
we measured three parameters: (i) the time required to initialize
the engine (init time), which included pre-grounding in the
incremental mode, (ii) the average time per increment (tick
time), and (iii) the total time of a single run (total time), which
resulted from init time and tick time for all atoms and time
points. It is important to note that adding or removing rules
may be involved in a tick increment (tick time). We evaluated
both reasoners. For Ticker, we evaluated the simulated datasets
once with JTMS (Ticker), the original version of Ticker, and
once with ATMS (LEA). The evaluations were conducted on a
laptop equipped with an Intel i7 CPU and 16 GB RAM, using
JVM version 1.8.0 112. Further details and the code written
in Scala, is available on GitHub at LEA.

Results. The results shown in Tables II, III, IV, V and VI
reveal insightful information about the performance of different
implementations and the influence of window size and time
points on execution times in both scenarios. When comparing
LEA, Ticker, and Laser implementations, the performance is
almost equivalent in terms of execution time, with slightly
lower scores for LEA (cf. RQ1). Indeed, by taking into
consideration the tuple parameter and fixing the time point tp
at 1000, we observe that LEA’s total time slightly exceeded
the one of Ticker and Laser in scenarios A (maximum
total time 1.857 seconds) and B (maximum total time 0.623
seconds)(cf. RQ4). Additionally, when fixing the window size
to n = 60, we observed the same results. This could be
explained by the high degree of interdependence among the
LARS rules, which generates more justifications in the ATMS
graph. Consequently, the PROPAGATE function becomes costly.
Although LEA consumes more execution time than Ticker and
Laser, it is the only solution that provides powerful expression
quality (cf. RQ2) by handling contradiction and performing
calculations on double arguments using the proposed LARS
extension and Algorithm 1 (see TableVI). Moreover, comparing

both scenarios, the nature of the rules themselves influences
incremental evaluation and grounding. Complex rules with
intricate dependencies and nested structures (Scenario B) can
result in longer evaluation time and more extensive grounding
operations (cf. RQ3).

TABLE II
RESULTS FOR SCENARIO A. VARIABLE WINDOW SIZE N. RESULTS FOR

FIXED TIMEPOINTS 1000 AND TUPLE INSTANCE IN SECONDS.

impl winsize n total time init time tick time

Ticker

20 0.468 0.02 0.008
40 0.494 0.01 0.009
80 0.51 0.018 0.009
120 0.744 0.017 0.014
160 0.832 0.026 0.015
200 0.744 0.018 0.014

Laser

20 0.568 0.03 0.018
40 0.594 0.02 0.019
80 0.61 0.028 0.019
120 0.844 0.027 0.024
160 0.932 0.036 0.025
200 0.844 0.028 0.024

LEA

20 0.807 0.032 0.072
40 0.985 0.015 0.022
80 0.565 0.009 0.027
120 0.334 0.01 0.035
160 0.397 0.012 0.041
200 1.857 0.011 0.02

TABLE III
RESULTS FOR SCENARIO A.VARIABLE TIME POINTS TP. RESULTS FOR

FIXED WINDOW SIZE N = 60 AND TUPLE INSTANCE IN SECONDS.

impl tp total time init time tick time

Ticker

100 0.096 0.015 0.008
200 0.202 0.008 0.009
300 0.226 0.015 0.007
400 0.405 0.017 0.009
500 0.462 0.021 0.008
600 0.561 0.009 0.009
700 0.775 0.013 0.01
800 0.781 0.009 0.009
900 1.086 0.026 0.011
1000 1.272 0.018 0.012

Laser

100 0.115 0.018 0.01
200 0.242 0.01 0.011
300 0.271 0.018 0.008
400 0.486 0.02 0.011
500 0.554 0.025 0.01
600 0.673 0.011 0.011
700 0.93 0.016 0.012
800 0.937 0.011 0.011
900 1.303 0.031 0.013

LEA

100 0.247 0.013 0.015
200 0.564 0.016 0.018
300 1.004 0.014 0.02
400 1.765 0.016 0.026
500 2.088 0.01 0.022
600 2.685 0.013 0.024
700 3.51 0.011 0.024
800 4.196 0.011 0.025
900 5.269 0.02 0.028
1000 6.068 0.014 0.029

VI. CONCLUSION

We proposed in this paper LEA, a new stream reasoning
engine based on Ticker that overcomes its limitations. We have

https://github.com/wmebrek/Multi-Context-Incremental-Reasoning-over-Data-Streams

TABLE IV
RESULTS FOR B WITH FIXED TIMEPOINTS TP = 1000 AND TUPLE INSTANCE

IN SECONDS.

impl winsize n total time init time tick time

Ticker

20 0.359 0.25 0.01
40 0.359 0.259 0.01
80 0.37 0.262 0.01
120 0.354 0.246 0.01
160 0.367 0.251 0.011
200 0.364 0.266 0.008

Laser

20 0.431 0.3 0.012
40 0.431 0.311 0.012
80 0.444 0.314 0.012
120 0.425 0.295 0.012
160 0.44 0.301 0.013
200 0.437 0.319 0.01

LEA

20 0.541 0.198 0.025
40 0.559 0.172 0.03
80 0.611 0.196 0.032
120 0.615 0.181 0.033
160 0.623 0.196 0.031
200 0.54 0.196 0.026

TABLE V
RESULTS FOR SCENARIO B WITH FIXED WINDOW SIZE N = 60 IN SECONDS

impl tp total time init time tick time

Ticker

100 0.355 0.236 0.011
200 0.401 0.235 0.008
300 0.413 0.208 0.006
400 0.468 0.23 0.005
500 0.51 0.216 0.005
600 0.596 0.225 0.005
700 0.703 0.243 0.006
800 0.86 0.255 0.006
900 0.93 0.227 0.007
1000 1.09 0.211 0.008

Laser

100 0.426 0.283 0.013
200 0.481 0.282 0.01
300 0.496 0.25 0.007
400 0.562 0.276 0.006
500 0.612 0.259 0.006
600 0.715 0.27 0.006
700 0.844 0.292 0.007
800 1.026 0.282 0.006
900 1.116 0.272 0.008
1000 1.308 0.253 0.01

LEA

100 1.255 0.478 0.068
200 1.734 0.451 0.053
300 2.113 0.416 0.045
400 2.752 0.379 0.043
500 3.762 0.4 0.048
600 4.772 0.401 0.051
700 5.816 0.371 0.055
800 6.414 0.397 0.051
900 8.995 0.385 0.064
1000 9.794 0.366 0.063

extended the LARS formula to express rule contradiction within
a time window. We have also increased the expressiveness of
the rules by providing the ability to use double arguments and
string comparison. In addition, facts are processed on-the-fly
and do not need to be specified upstream for each rule. With
this extension, we have fulfilled requirements R1, R2 and R3.
Finally, to satisfy requirement R4, instead of using JTMS,
we propose a new implementation of ATMS. The conducted
evaluation highlights the strengths of LEA and emphasizes

TABLE VI
COMPARISON OF RESULT QUALITY WITH

DIFFERENT IMPLEMENTATIONS

Impl Scenario ⊥ Double Args Operation on Args

Ticker A × × ×
B × × ×

Laser A × × ×
B × × ×

LEA A ✓ ✓ ✓
B ✓ ✓ ✓

its potential for handling complex reasoning scenarios in real-
time data streams. As future work, we plan to optimize the
PROPAGATE function to enhance LEA’s capabilities. We will
also address the issue of constraints management in stream
reasoning engines and in particular in ATMS-stored constraints.

REFERENCES

[1] E. D. Valle, S. Ceri, F. van Harmelen, and D. Fensel, “It’s a
streaming world! reasoning upon rapidly changing information,” IEEE
Intell. Syst., vol. 24, no. 6, pp. 83–89, 2009. [Online]. Available:
https://doi.org/10.1109/MIS.2009.125

[2] H. Beck, M. Dao-Tran, and T. Eiter, “Lars: A logic-based framework
for analytic reasoning over streams,” Artificial Intelligence, vol. 261, pp.
16–70, 2018.

[3] H. Beck, T. Eiter, and C. Folie, “Ticker: A system for incremental asp-
based stream reasoning,” Theory and Practice of Logic Programming,
vol. 17, no. 5-6, pp. 744–763, 2017.

[4] H. R. Bazoobandi, H. Beck, and J. Urbani, “Expressive stream reasoning
with laser,” in The Semantic Web–ISWC 2017: 16th International
Semantic Web Conference, Vienna, Austria, October 21–25, 2017,
Proceedings, Part I. Springer, 2017, pp. 87–103.

[5] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
P. Wanko, “Theory solving made easy with clingo 5,” in Technical Com-
munications of the 32nd International Conference on Logic Programming
(ICLP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[6] H. Beck, “Reviewing justification-based truth maintenance systems from
a logic programming perspective.”

[7] J. Doyle, “A truth maintenance system,” Artificial intelligence, vol. 12,
no. 3, pp. 231–272, 1979.

[8] M. I. Ali, F. Gao, and A. Mileo, “Citybench: A configurable
benchmark to evaluate RSP engines using smart city datasets,” in
The Semantic Web - ISWC 2015 - 14th International Semantic Web
Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings,
Part II, ser. Lecture Notes in Computer Science, M. Arenas,
Ó. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas,
P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan, and S. Staab,
Eds., vol. 9367. Springer, 2015, pp. 374–389. [Online]. Available:
https://doi.org/10.1007/978-3-319-25010-6 25

[9] J. de Kleer, “A general labeling algorithm for assumption-based
truth maintenance,” in Proceedings of the 7th National Conference
on Artificial Intelligence, St. Paul, MN, USA, August 21-26, 1988,
H. E. Shrobe, T. M. Mitchell, and R. G. Smith, Eds. AAAI
Press / The MIT Press, 1988, pp. 188–192. [Online]. Available:
http://www.aaai.org/Library/AAAI/1988/aaai88-034.php

[10] D. Dell’Aglio, E. Della Valle, F. van Harmelen, and A. Bernstein, “Stream
reasoning: A survey and outlook,” Data Science, vol. 1, no. 1-2, pp.
59–83, 2017.

[11] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “Multi-
shot ASP solving with clingo,” Theory Pract. Log. Program.,
vol. 19, no. 1, pp. 27–82, 2019. [Online]. Available: https:
//doi.org/10.1017/S1471068418000054

[12] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu,
and T. Schaub, “Stream reasoning with answer set programming:
Preliminary report,” in Principles of Knowledge Representation and
Reasoning: Proceedings of the Thirteenth International Conference,
KR 2012, Rome, Italy, June 10-14, 2012, G. Brewka, T. Eiter,
and S. A. McIlraith, Eds. AAAI Press, 2012. [Online]. Available:
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4504

https://doi.org/10.1109/MIS.2009.125
https://doi.org/10.1007/978-3-319-25010-6_25
http://www.aaai.org/Library/AAAI/1988/aaai88-034.php
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4504

	Introduction
	Motivating Example
	Contributions and Novelty

	Extended-LARS
	Multi-contexts Incremental Reasoning for Plain LARS Program
	On-the-fly Grounding of plain LARS Program
	Extended ATMS algorithms

	Related Work
	Experimental Evaluation
	Conclusion
	References

