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Generation of value function data for bilevel optimal control
method

Olivier Cots∗ Rémy Dutto†∗‡§ Sophie Jan‡ Serge Laporte‡

December 21, 2023

Abstract

In this article, we present two numerical methods to create a database for the approximation
of the value function of a bilevel optimal control problem. The first method is based on the
computation of the value function via indirect simple shooting, which implies to find the roots
of a function. The second one consists in solving a Cauchy problem. These two techniques
are compared, in terms of prior information, computation cost and data distribution, on an
industrial application: the torque split and gear shift optimal control problem on hybrid electric
vehicles.

Keywords. Database generation, Bilevel optimal control, Pontryagin maximum principle, Indirect
method, Value function, Hybrid electric vehicle.

1 Introduction
The value function is a central object in optimal control theory, that describes how the optimal cost
depends on the initial conditions. This function was studied in the 1950’s by Richard Bellman and
leads to the Hamilton-Jacobi-Bellman (HJB) partial differential equations. These equations provide
necessary and sufficient conditions for an optimal control problem, as well as the optimal control in
a feedback form. They are the baseline of dynamic programming [3] and reinforcement learning [11],
which are two of the main optimal control methods used in industrial applications. However, these
methods are subject to the curse of dimensionality, which is a key numerical issue for embedded
solutions.

The Pontryagin Maximum Principle [8] also introduced in the 1950’s gives necessary optimality
conditions for optimal control problems, and leads to the indirect numerical methods, which promise
to be accurate and fast enough to be used for embedded solutions. For a description of classical
numerical methods for optimal control problems, see [5].

A new method based on a bilevel decomposition of the optimal control problem is presented in
[6], promises to reduce the number of computations and to be fast enough for embedded solution.
This method uses some value functions between fixed times, which can rarely be calculated explicitly,
and the strategy is to approximate them from a set of precomputed data. The main objective of this
paper is to propose and compare two methods to create the associated database. The first method is
based on the effective computation of the value function while the second one consists in integrating
the Hamiltonian flow.
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In this paper, we first introduce the bilevel optimal control method in Section 2. Then we
present two methods to create the value function database in Section 3. We compare in Section 4
the numerical results we have obtained when applying these two methods to an industrial application:
the torque split and gear shift optimal control of a hybrid electric vehicle. Finally Section 5 concludes
the article.

2 Motivation

2.1 Optimal control problem
We consider the following Optimal Control Problem in Bolza form:

(OCP)


min
x,u

∫ tf

t0

f0(t, x(t), u(t)) dt+ g (x(tf )), (1)

s.t. ẋ(t) = f(t, x(t), u(t)), t ∈ [t0, tf ] a.e., (2)
u(t) ∈ U, t ∈ [t0, tf ], (3)
x(t0) = x0, (4)

where the function f0 : R × Rn × Rm → R, the terminal cost g : Rn → R, and the state dynamic
function f : R × Rn × Rm → Rn are of class C 1. The initial and final times t0 < tf are fixed, as
well as the initial state x0 ∈ Rn. The control domain U ⊂ Rm is a nonempty set. Solving (OCP)
consists in finding an absolutely continuous state x ∈ AC([t0, tf ],Rn) and an essentially bounded
control u ∈ L∞([t0, tf ],Rm), which minimise the cost (1) and satisfiy the constraints (2), (3) and
(4).

Remark 1. For conciseness and clarity, we consider an optimal control in this simple Bolza form
but our approach and results can be easily extended to a more general Bolza problem with fixed final
state, or mixed limit conditions for instance.

2.2 Bilevel optimal control method
Considering intermediate times t0 < t1 < · · · < tN < tN+1 = tf , the optimal control problem (OCP)
can be decomposed into the following Bilevel Optimal Control Problem

(BOCP)


min
X

N∑
i=0

Vi (Xi, Xi+1) + g(XN+1),

s.t. X = (X0, . . . , XN+1) ∈ X , X0 = x0,

where for all i ∈ NN := {0, . . . , N}, the functions Vi are the intermediate value functions: for all
admissible1 pair (a, b), Vi(a, b) is the optimal cost of

(OCPi,a,b)



Vi (a, b) = min
x,u

∫ ti+1

ti

f0 (t, x(t), u(t)) dt,

s.t. ẋ(t) = f (t, x(t), u(t)) , t ∈ [ti, ti+1] a.e.,

u(t) ∈ U, t ∈ [ti, ti+1],

x(ti) = a, x(ti+1) = b.

The set X is defined as follows: X ∈ X ⊂ (Rn)N+2 if for all i ∈ NN , the pair (Xi, Xi+1) is admissible
for (OCPi,Xi,Xi+1

). Noting that for all i ∈ NN , for all admissible (a, b) and for all (xi, ui) solution
1The pair (a, b) is admissible for (OCPi,a,b) if b is reachable at time ti+1 from a at ti.
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of (OCPi,a,b) we have Vi(a, b) =
∫ ti+1

ti
f0(t, xi(t), ui(t)) dt, (BOCP) is equivalent to

min
X

max
x,u

N∑
i=0

∫ ti+1

ti

f0(t, xi(t), ui(t)) dt+ g(XN+1)

s.t. X ∈ X , X0 = x0,
∀i ∈ NN , (xi, ui) solution of (OCPi,Xi,Xi+1

),

which is a bilevel optimal control problem [2].
In most applications, the intermediate value functions Vi cannot be computed easily. Thus we

propose to replace them by approximations denoted Ci. This leads to a hierarchical method in two
steps, called (Macro)-(Micro). The first step consists in solving the finite dimensional optimization
problem

(Macro)

 min
X

N∑
i=0

Ci(Xi, Xi+1) + g(XN+1),

s.t. X ∈ X , X0 = x0,

to get the intermediate state X̂ =
(
X̂0, . . . , X̂N+1

)
. The second step is to solve N+1 optimal control

problems of the following Lagrange form

(Micro)



min
x,u

∫ ti+1

ti

f0 (t, x(t), u(t)) dt,

s.t. ẋ(t) = f (t, x(t), u(t)) , t ∈ [ti, ti+1] a.e.,

u(t) ∈ U, t ∈ [ti, ti+1],

x(ti) = X̂i, x(ti+1) = X̂i+1,

to get the state and command trajectory on each sub-interval [ti, ti+1]. This method is sub-optimal,
due to the approximation error between Ci and Vi, but it promises to be faster and to require less
computations than classical methods, which is particularly interesting for embedded applications.

However, before applying the (Macro)-(Micro) method, we need to build the approximation
functions Ci. We postpone to Section 3 the creation of the optimal values database which will be
used for that purpose and which consists in the main contribution of this article. From now on, we
consider one (Micro) problem, for a given i ∈ NN fixed and we give in the next section some details
about the so-called simple indirect shooting method to solve it.

2.3 Indirect method
The considered (Micro) problem is solved using the indirect simple shooting method which is based
on the Pontryagin Maximum Principle (PMP) [8]. The core function of this principle is the pseudo-
Hamiltonian

h(t, x, p, u) = −f0(t, x, u) +
(
p
∣∣ f(t, x, u)) ,

where (·
∣∣ ·) stands for the usual scalar product in Rn. If we assume that the Hamiltonian

H(t, x, p) = max
u∈U

h(t, x, p, u)

is defined and smooth, the PMP leads to the resolution of the two points boundary value problem

(TPBVP)
{

(xi+1, pi+1) = exp #»
H

(
ti+1, ti, (xi, pi)

)
,

xi = X̂i, xi+1 = X̂i+1,
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where
#»

H is the Hamiltonian vector field defined by
#»

H (t, (x, p)) =
(
∇pH (t, (x, p)) , −∇xH (t, (x, p))

)
,

and exp #»
H(ti+1, ti, zi) is the exponential map of

#»

H: it corresponds to the solution at time ti+1 of the
Cauchy problem

∀t ∈ [ti, ti+1], ż(t) =
#»

H
(
t, z(t)

)
, z(ti) = zi.

Let us denote by x̄i+1(zi) the state at time ti+1 obtained by the integration of the Hamiltonian
flow from zi at time ti, defined by

x̄i+1(zi) = πx

(
exp #»

H

(
ti+1, ti, zi

))
(5)

where πx(x, p) = x is the projection on the state space.
In the following, we assume that for all initial and final admissible state (a, b), if (x, u) is a

solution of (OCPi,a,b), there exists p ∈ AC([ti, ti+1],Rn) such that the pair (x, p) is a solution of
(TPBVP). Such a pair that satisfies the Hamiltonian vector field is called an extremal. A solution
of (TPBVP) is an extremal that satisfies the boundary conditions, and it is called a BC-extremal.
This assumption is linked to the normality of the BC-extremals associated to the solution (cf. [1]
for more details). For the sake of simplicity, we denote by c̄i(zi) the cost of the state and command
trajectory, given by the integration of the Hamiltonian vector field on the time interval [ti, ti+1],
with the initial state and costate conditions zi = (xi, pi). We also consider the following hypothesis,
that will be numerically verified in our application.

Hypothesis 1. Let (xi, xi+1) be a given initial and final admissible state. Then, all the zeros of

pi 7→ x̄i+1(xi, pi)− xi+1

are associated to the same state and command trajectory (x, u), depending on the pair (xi, xi+1).

Remark 2. Under the previous assumptions and Hypothesis 1, for all initial and final admissible
state (a, b), there exists at most a unique solution of (OCPi,a,b).

The indirect simple shooting method aims to solve (TPBVP) by finding a zero of the shooting
function

Si,X̂i,X̂i+1
(pi) = x̄i+1(X̂i, pi)− X̂i+1. (6)

Thanks to Hypothesis 1, all the zeros of the shooting function lead to the same optimal cost, and
therefore only one of them need to be found. On the opposite, without this hypothesis, it would be
necessary to find all the zeros and to compare them in terms of cost to get the optimal one.

Equation (6) is solved using a classical Newton-like solver, and it is well known that finding a
good initial guess for the costate is a critical issue. However, given a solution X∗ of (BOCP), if
Vi is differentiable at (X∗

i , X
∗
i+1), it is established [4] that the vector −∇aVi(X

∗
i , X

∗
i+1) is a zero

of Si,X∗
i ,X

∗
i+1

. Unfortunately, Vi is not known, but since Ci is an approximation of Vi, the vec-
tor −∇aCi(X̂i, X̂i+1) could be a good initial guess for the associated (Micro) problem shooting
function [7].

Now we have described how to solve the (Micro) problem, we will focus on the creation of a
database for the definition of Ci approximation functions.

3 Data generation
In this section, we shall describe the creation of a database Di containing optimal values of Prob-
lems (OCPi,xi,xi+1

) for various pairs (xi, xi+1):

Di ⊂
{
(xi, xi+1, c)

∣∣∣ (xi, xi+1) admissible and Vi(xi, xi+1) = c
}
.

Two methods are presented to achieve this goal. They are compared in terms of prior information,
computation cost and data distribution.
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3.1 Method 1
The first method consists in computing the value function Vi. Let Xi be a discretization of admissible
initial and final states. For all (xi, xi+1) ∈ Xi, we solve the optimal control problem (OCPi,xi,xi+1

)
by an indirect simple shooting method and store the corresponding optimal value Vi(xi, xi+1) in Di.
Algorithm 1 provides an overview of these steps.

Algorithm 1 Method 1
Require: Xi

Ensure: Di

for all (xi, xi+1) ∈ Xi do
pi ← solve

(
Si,xi,xi+1

(pi) = 0
)

▷ Newton solver
c← c̄i(xi, pi) ▷ Optimal cost
Di.append(xi, xi+1, c) ▷ Storage

end for

Prior information First of all, the set Xi is created as follows: the initial state is first discretized,
then for each of these values, the set of associated reachable final states is determined and discretized.
This ensures that the space of initial and final state is fully explored and that all pairs (xi, xi+1) ∈ Xi

are admissible, which prevents the Newton solver to fail. The difficulty in this method is the
determination of the reachable final states.

Computation cost For each iteration of the Newton solver used to find a zero of the shooting
function, at least one integration of the Hamiltonian vector field is required.

Data distribution By construction, the distribution of the pairs (xi, xi+1) is fully controlled inside
the admissibility set. For example a uniform distribution may be chosen for an easy interpolation.

3.2 Method 2
The second method, described in Algorithm 2, is based on a discretization Zi of the initial state and
costate space. For all zi = (xi, pi) ∈ Zi, the exponential map zi+1 = (xi+1, pi+1) = exp #»

H

(
ti+1, ti, zi

)
is computed, and Hypothesis 1 ensures that Vi(xi, xi+1) = c̄i(xi, pi).

Algorithm 2 Method 2
Require: Zi

Ensure: Di

for all zi = (xi, pi) ∈ Zi do
xi+1 ← x̄i+1(zi) ▷ Final state
c← c̄i(zi) ▷ Optimal cost
Di.append(xi, xi+1, c) ▷ Storage

end for

Prior information Since there is no admissibility constraints on (xi, pi), the set Zi can be the
cartesian product between discretizations of initial state and costate. Nevertheless, the range of the
costate discretization must be well chosen in order to ensure a full exploration of the reachable states
xi+1 while limiting the number of useless integrations of the Hamiltonian vector field.

5



Computation cost In contrast to Method 1, no solver is involved here. Hence, only one integra-
tion of the Hamiltonian vector field is needed for each pair (xi, xi+1).

Data distribution In this method, the distribution of the reached final states xi+1 is no more
controlled. The main consequence is the risk of empty zones. Fortunately, we shall see in Section 4
that a sufficient density in the set Zi ensures a satisfactory distribution of reached states xi+1.

4 Results
The considered application is the following industrial problem (detailed in [6]): the optimal control of
the torque split and the gear shift of a Hybrid Electric Vehicle (HEV) on the Worldwide harmonized
Light vehicles Test Cycle (WLTC). The goal is to minimize the fuel consumption of the Internal
Combustion Engine (ICE) for fixed initial condition and fixed or free final state of charge of the
battery by acting on the gear and on the torque split between the ICE and the Electric Motor (EM)
(see [9, 10, 12] for more informations).

This problem can be formulated as (OCP) and we consider that we stand in the frame of the
assumptions stated in Section 2.3. The bilevel method can be applied in this context, and the time
interval (1800 seconds of the WLTC) is arbitrary decomposed into 17 time sub-intervals of 100s.

The goal of this section is to compare the two methods presented in Sections 3.1 and 3.2 on our
HEV application. For this purpose and to clarify the presentation of the results, we only focus on
the first sub-interval [0, 100] and we fix the initial state, denoted x0. So next, we apply the two
methods to create the database D0.

The evolution of the function p0 7→ x̄1(x0, p0) is shown in Figure 1. It can be noticed that for
all p0 ∈ [p−0 , p

+
0 ], the function (5) is injective. Moreover, for all p0 ≤ p−0 (respectively p0 ≥ p+0 ),

the extremal resulting from the integration of the Hamiltonian flow is associated to a unique (x, u).
Hence, the Hypothesis 1 can be considered numerically valid.

p−0 p+0

x−
1

x+
1

p0

x̄
1
(x

0
,p

0
)

Figure 1: Evolution of the function (5), with a fixed initial state x0. The red interval on the y-
axis corresponds to the admissible initial state set at time t1, and the blue interval on the x-axis
corresponds to the useful costate initialization set, mentioned in the Prior Information paragraph of
Method 2.

Remark 3. As discussed in Section 3, the final states must be chosen in [x−
1 , x

+
1 ] for Method 1. In

contrast, for Method 2 they naturally belong to this interval, but although the initial costate can be
taken in Rn, its useful range is limited to the interval [p−0 , p

+
0 ], cf. Figure 1.

In order to compare both methods in terms of number of Hamiltonian flow integrations, 475
points (xi, xi+1, c) have been generated for various initial and final admissible states with Method 1.
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Method 1 Method 2
Pros Controlled distribution Computation cost

Cons Prior knowledge of admissible domain Prior knowledge of initial costate range
Computation cost Non controlled distribution

Table 1: Pros and Cons of Method 1 and Method 2.

We observe that the Newton solver needs in average 11.2 iterations to find a zero, which means that
this method requires at least 11.2 times more integrations than Method 2.

The two methods are now compared in terms of distribution of the final states. First, 10 points
of D0 are generated by each method. As expected, we can observe in Figures 2a and 2b that the
final states are obviously uniformly distributed with Method 1, while there are not with Method 2.
Second, for the same computation cost as Method 1, 112 points of D0 are generated by Method 2.
The results are shown in Figure 2c. It can be observed that if the distribution remains non-uniform,
the coverage of the reachable interval [x−

1 , x
+
1 ] is much better than that obtained by Method 1.

x1

V
0
(x

0
,x

1
)

(a) Method 1, 10 points.

x1

V
0
(x

0
,x

1
)

(b) Method 2, 10 points.

x1

V
0
(x

0
,x

1
)

(c) Method 2, 112 points.

Figure 2: Value function data created by the two proposed methods.

5 Conclusion
The bilevel (Macro)-(Micro) method proposed in this paper requires the approximation of value
functions which can be performed using a database composed of points

(
a, b, Vi(a, b)

)
. We present

two numerical methods to create such a database. The first one, based on the computation of the
value functions Vi(a, b) for a set of given pairs (a, b), requires to find an initial costate p′ solution
of the shooting equation that appears in the indirect method. The second method consists in
integrating the Hamiltonian flow for a set of given pairs (a, p), where p is the initial costate, to get
a final state b′ and the corresponding cost c̄i(a, p), which under Hypothesis 1, is the optimal one:
Vi(a, b

′) = c̄i(a, p).
The pros and cons of both methods are gathered in Table 1. The uncontrolled distribution

obtained by Method 2 can be balanced by its favorable computation cost. Indeed, for the same
number of Hamiltonian flow integrations as in Method 1, it appears that the domain of reachable
final states is well covered. This makes this Method 2 really competitive.

Once the database is created, the associated value function approximation Ci has to be built.
A wide range of methods can be used such as neural networks models due to their generalization
capacities and their ability to provide the gradient of the approximation Ci through retropropagation
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technique. Indeed, the availability of this gradient should ease the resolution of the problem (Macro)
and provide a good initialization for the resolution of the problem (Micro) by indirect method.

Another perspective is to use the gradient of the value function to improve the fitting of the
approximations Ci. Indeed, it can be shown under some assumptions that the gradient of the value
function Vi(xi, xi+1) is the vector (−pi, pi+1). Therefore the computation of the Hamiltonian flow
(xi+1, pi+1) = exp #»

H

(
ti+1, ti, (xi, pi)

)
provides the optimal cost transition Vi(xi, xi+1) as well as its

associated gradient. An extended database containing this additional information on the gradient
could then be created and used for instance to train Physics-Informed Neural Networks (PINNs).
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