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A bilevel optimal control method and application to the
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Olivier Cots∗ Rémy Dutto†∗‡§ Sophie Jan‡ Serge Laporte‡

December 21, 2023

Abstract

In this article we present a new numerical method based on a bilevel decomposition of
optimal control problems. A strong connection between the proposed method and the classical
indirect multiple shooting method is shown in the regular case, thanks to a link between the
Bellman’s value function and the costate from Pontryagin Maximum Principle. The value
functions are needed in our bilevel decomposition but they are generally difficult to compute.
We approximate them by neural networks that have a high potential of generalization and that
provide an efficient computation of the gradient of the cost function. We apply the proposed
method to an industrial problem, consisting in the determination of torque split and gear shift
of a hybrid electric vehicle, the objective being the minimization of the fuel consumption on a
given representative cycle. Numerical methods and results are discussed, as well as the possible
improvements of the proposed approach.

Keywords. Optimal Control, Bilevel Optimization, Hybrid Electric Vehicle, Indirect Shooting,
Value Function, Neural Network.

1 Introduction
Hybrid Electric Vehicles (HEVs) or Plug-in Hybrid Electric Vehicles (PHEVs) are seen as a solution
for fuel saving and/or reduction of polluting emissions. These kinds of vehicles use two sources of
energy, respectively fuel and electricity, and at least two motors, respectively Internal Combustion
Engine (ICE) and Electric Motor (EM). A control law provides the strategy for gear shift and torque
split between these two motors in order to minimize the fuel consumption with respect to the needed
torque and wheel speed demand on a given cycle. The cycle, that is the vehicle speed and acceleration
on a given path, is assumed to be known. In this article we consider for the numerical experiments
the Worldwide harmonized Light vehicles Test Cycle (WLTC) which is commonly used by industry
for evaluation of fuel consumption and pollutant emission. In the case of embedded solution, the
prediction of speed on connected vehicle is also a problem that is currently being studied [9, 43], but
we shall not address it here.

The torque split and gear shift problem has been widely studied in the literature [16, 26, 41] and
a lot of approaches have been proposed. For example, based-rules laws have been developed like
thermostat strategy [22], state machine controller [30], or fuzzy logic solution [20]. Methods based
on instantaneous optimization are also proposed, like the Equivalent Consumption Management
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Strategy (ECMS) introduced by [29] which considers that the cost is the sum of the ICE fuel
consumption and an equivalent factor times the battery state of charge deviation. This method
can be seen as an application of the Pontryagin Maximum Principle (PMP) with some restrictive
assumptions [35, 42]. Finally, other methods derived from the ECMS have been developed, which
differ by the parameterization of the equivalent factor and its possible online adaptation [21, 27, 28,
36, 42, 43].

Optimal control theory provides a natural frame for the development of methods for control
laws determination in this context. Indeed, the problem studied here can be seen as a classical non-
autonomous optimal control problem with a Lagrange cost. This kind of problem is composed of a set
of controlled ordinary differential equations, command bounds and initial and final state constraints.
A first class of numerical methods is based on the Pontryagin Maximum Principle [24] which provides
necessary optimality conditions for optimal control problems and leads to a Boundary Value Problem
(BVP). For instance, the indirect shooting method [37] consists in solving the BVP introducing the
so-called shooting function and then solving the associated set of nonlinear equations by a Newton-
like algorithm. This method has been used on a similar application, see [17, 23]. Another class of
methods consists in discretizing the control and the state on a given grid of times. This leads to a
large nonlinear constrained optimization problem (Mixed-Integer NonLinear Programming (MINLP)
in our application) in finite dimension that can be solved by nonlinear programming algorithms. This
method is called a direct method and has been used for instance in [39].

Direct and indirect methods are considered as local methods. Other methods that provide
global minima exist, based on the Hamilton Jacobi Bellman (HJB) equation, such as dynamic
programming [3, 34, 40] or reinforcement learning [19, 38]. However, the dynamic programming
method is known to be time consuming and subject to the curse of dimensionality. For its part,
the deep reinforcement learning uses a neural network as controller, that may not be trustable for
some critical applications. Compared to HJB based and direct methods, indirect methods promise
to be accurate and fast enough to provide online optimal control solutions. Unfortunately, they are
known to be sensitive to the initial guess, due to the underlying Newton solver.

The torque split and gear shift problem studied here is characterized by a long cycle duration
(1800s for the WLTC) compared to the maximum 100ms sampling period required for an accurate
representation of the model dynamic. This leads to a long integration time and therefore a high sen-
sitivity of the indirect shooting function, the latter being exacerbated by the possible high frequency
of the command changes induced by the high torque request irregularity on this cycle. Motivated by
the industrial application, the main objective of this paper is to present a new numerical method,
more accurate than ECMS, more robust than simple shooting and fast enough to be embedded.
This method can be sub-optimal but the computed solution needs to be close to the optimal one
in terms of fuel consumption. The proposed method satisfies these requirements; it is based on a
bilevel decomposition of the optimal control problem, and leads to a hierarchical resolution which
is strongly linked to the indirect multiple shooting method as it will be shown. This decomposition
uses the Bellman’s value functions, which are generally difficult to compute, and for that reason they
will be approximated. Neural networks have been chosen for their simplicity and their generalization
capability. Moreover, the efficient computation of their gradients allows not only to use first order
optimization methods but also to get good initial guesses for the shooting method.

The paper is organized as follows. The optimal control problem and the classical indirect methods
are recalled in Section 2. In Section 3, the bilevel formulation is presented, the link with indirect
multiple shooting is given and a novel approach is proposed. Finally, in Section 4, the application
to the torque split and gear shift problem is described, as well as the numerical methods and the
results. Section 5 concludes the article.
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2 Optimal control framework
The main objective of this section is to present classical indirect methods used to solve optimal
control problems. For that purpose, the general formulation of Optimal Control Problem (OCP) is
introduced in Section 2.1. Then, necessary optimality conditions provided by the Pontryagin Maxi-
mum Principle are given in Section 2.2 and some classical assumptions are considered in Section 2.3.
Finally, indirect simple and multiple shooting methods are presented in Sections 2.4 and 2.5.

2.1 Optimal control problem
We consider the following Optimal Control Problem in a general Lagrange form:

(OCP)


min
x,u

∫ tf

t0

f0(t, x(t), u(t)) dt, (1)

s.t. ẋ(t) = f(t, x(t), u(t)), t ∈ [t0, tf ] a.e., (2)
u(t) ∈ U(t), t ∈ [t0, tf ], (3)
c(x(t0), x(tf )) = 0, (4)

where the Lagrange cost f0 : R × Rn × Rm → R and the state dynamics f : R × Rn × Rm → Rn

are two functions of class C1. The initial and final times t0 < tf are fixed. The control domain
U(t) ⊂ Rm is a non-empty set for every t ∈ [t0, tf ] with additional standard regularity assumptions
(cf. [11, Chapter 4.2, Remark 5] for more information), and the mixed initial and final constraints
c : Rn × Rn → Rp is a function of class C1, with p ≤ 2n. Moreover, c is a submersion on c−1({0}),
i.e. c′(a, b) is surjective for all pair (a, b) such that c(a, b) = 0. Solving (OCP) consists in finding
a pair (x, u) ∈ D = AC([t0, tf ],Rn) × L∞([t0, tf ],Rm) of an absolutely continuous state x and an
essentially bounded control u which minimizes the cost (1) and satisfies the constraints (2), (3)
and (4).

Definition 1. An admissible point of (OCP) is a pair (x, u) ∈ D which satisfies (2)-(4). A solution
of (OCP) is an admissible point which minimizes the cost (1) among all other admissible points.

We denote by A ⊂ D the set of admissible points and S ⊂ A the set of solutions of (OCP).
Moreover, considering two times t1, t2 such that t0 ≤ t1 < t2 ≤ tf , and a state x1 ∈ Rn, we define:

• for any control law u, the mapping t 7→ x(t, t1, x1, u) as the solution of the Cauchy problem

ẋ(t) = f(t, x(t), u(t)), x(t1) = x1,

• the set of admissible controls

Ut2,t1,x1
= {u ∈ L∞([t1, t2],Rm) | ∀t ∈ [t1, t2] : u(t) ∈ U(t) and x(t, t1, x1, u) is well defined} ,

• the extremity mapping Et2,t1,x1 : Ut2,t1,x1 → Rn, u 7→ Et2,t1,x1(u) = x(t2, t1, x1, u),

• the accessibility set at t2 from x1 at t1 by A(t2, t1, x1) = Et2,t1,x1
(Ut2,t1,x1

).

Remark 1. In this paper, a simple and general framework compliant with the Pontryagin Maximum
Principle and the industrial application is considered. More precisely, we deal with optimal control
problems in a Lagrange form with fixed final time. However, thanks to [11], our results can be
extended to Mayer, Lagrange and Bolza formulations, with fixed or free final time. Moreover, the
regularity assumptions on the functions f0 and f can be weakened [11, 12].
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2.2 Pontryagin Maximum Principle
According to the Pontryagin Maximum Principle [11, 24], if (x, u) is a solution of (OCP), then there
exist a costate trajectory p ∈ AC([t0, tf ],Rn), a scalar p0 ∈ {−1, 0} and Lagrange multipliers λ ∈ Rp

such that (p, p0) is non trivial, the pair (x, p) follows the Hamiltonian dynamics: for almost every
t ∈ [t0, tf ]

ẋ(t) = ∇ph (t, x(t), p(t), u(t)) ,

ṗ(t) = −∇xh (t, x(t), p(t), u(t)) ,
(5)

and the control u satisfies the maximization condition: for almost every t ∈ [t0, tf ]

h (t, x(t), p(t), u(t)) = max
w∈U(t)

h (t, x(t), p(t), w) , (6)

where h(t, x, p, u) = p0 f0(t, x, u) +
(
p
∣∣ f(t, x, u)) is the pseudo-Hamiltonian and

(
a
∣∣ b) is the usual

scalar product on Rn. Moreover, the costate p fulfills the transversality condition:(
−p(t0)
p(tf )

)
− c′(x(t0), x(tf ))

⊤λ = 0. (7)

Remark 2. The transversality condition can be written in another form. Indeed, Equation (7)
implies that the pair (−p(t0), p(tf )) belongs to Im c′(x(t0), x(tf ))

⊤ = (Ker c′(x(t0), x(tf )))
⊥. Since c

is a submersion on c−1({0}), then c′(x(t0), x(tf )) : Rn × Rn → Rp is a surjective linear map which
means that Im c′(x(t0), x(tf )) = Rp. We can hence construct a 2n× (2n− p) matrix Bc(x(t0), x(tf ))
whose columns form a basis of Ker c′(x(t0), x(tf )). Then the transversality condition is equivalent
to

Bc

(
x(t0), x(tf )

)⊤ (
−p(t0)
p(tf )

)
= 0.

The advantage of this formulation is that λ disappears.

Definition 2. An extremal is a pair z := (x, p) ∈ AC([t0, tf ],Rn)×AC([t0, tf ],Rn) associated with
a control u ∈ L∞([t0, tf ],Rm) that satisfy (5)-(6). A BC-extremal is an extremal that satisfies the
boundary conditions (4) and the transversality conditions (7). An extremal is normal if p0 = −1
and abnormal if p0 = 0.

2.3 General assumptions
Motivated by the application, throughout the article, we consider that all the extremals we encounter
are normal (p0 = −1). Moreover, we are only interested in optimal control problems that can be
solved by the so-called indirect simple shooting method. Hence, for any optimal control problem,
denoting z = (x, p), we consider that the maximized Hamiltonian,

H(t, z) = max
u∈U(t)

h (t, z, u) , (8)

is well defined and smooth (at least of class C1) in the neighborhood of any given extremal. Under
these assumptions, we can define the following Hamiltonian vector field:

#»

H(t, z) = (∇pH(t, z),−∇xH(t, z)) ,

and we get the following proposition.

Proposition 1 ([1], Proposition 12.1). A pair z = (x, p) is an extremal of (OCP) if and only if

ż(t) =
#»

H
(
t, z(t)

)
.
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Remark 3. As in Remark 1, we do not consider the most general framework, but only a simple
set-up in which the optimal control problem is well posed and indirect methods can be used. These
assumptions are used to simplify the notations and to prove that the diagram on the Figure 1 is
commutative. However, the proposed method detailed in Section 3.3 can be applied even if these
assumptions are relaxed.

2.4 Indirect simple shooting
Let us introduce the exponential map exp #»

F (t1, t0, x0) of a vector field
#»

F as the solution at time t1
of the Cauchy problem ẋ(t) =

#»

F (t, x(t)) , x(t0) = x0. Applying the Pontryagin Maximum Principle
to the Optimal Control Problem (OCP) leads to the following Two-Point Boundary Value Problem

(TPBVP)

{
exp #»

H(tf , t0, z0) = zf ,

g(z0, zf ) = 0,

where g : R2n × R2n → R2n gathers the initial and final state and costate constraints, given by
Equations (4) and (7), and can be written as follows

g(z0, zf ) =

(
c(x0, xf )
c⋆(z0, zf )

)
. (9)

According to Remark 2, the function c⋆ : R2n × R2n → R2n−p is defined by

c⋆(z0, zf ) = Bc(x0, xf )
⊤
(

−p0
pf

)
,

where z0 = (x0, p0) and zf = (xf , pf ). A well known method to solve the Two-Point Boundary
Value Problem (TPBVP) is the so-called indirect simple shooting method which consists in finding
a zero of the simple shooting function Ss : R2n → R2n defined by

Ss(z) = g
(
z, exp #»

H(tf , t0, z)
)
.

However, the simple shooting method suffers from numerical issues. Indeed, as shown in [5, 31, 32],
the Hamiltonian dynamics is ill-conditioned because the divergence of the Hamiltonian is constant.
This implies that Ss is highly sensitive with respect to the costate initialization, and even more when
the control problem shows a long horizon time and/or is highly nonlinear. The multiple shooting
method [4] has been developed to overcome these numerical difficulties.

2.5 Indirect multiple shooting
The main idea of the multiple shooting method is to integrate the Hamiltonian vector fields on N+1
smaller sub-intervals and to force the state and costate continuity at each interface. Considering
intermediate times t0 < t1 < ... < tN < tN+1 = tf which decompose [t0, tf ] into N + 1 sub-intervals
∆i = [ti, ti+1], the Two-Point Boundary Value Problem (TPBVP) is transformed into a Multi-Point
Boundary Value Problem

(MPBVP)

{
exp #»

H(ti+1, ti, zi) = zi+1, ∀i ∈ NN−1,

g(z0, exp #»
H(tN+1, tN , zN )) = 0,

with the notation Nk = J0, kK. The corresponding multiple shooting function Sm : (R2n)N+1 →
(R2n)N+1 is therefore

Sm(z0, . . . , zN ) =


exp #»

H (t1, t0, z0)− z1
...

exp #»
H (tN , tN−1, zN−1)− zN

g(z0, exp #»
H(tN+1, tN , zN ))

 .
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Thanks to the integration on smaller sub-intervals, the sensitivity with respect to the initial guess is
reduced [4, 37]. Nevertheless, even multiple shooting methods need a good initialization to converge
to an admissible solution of (OCP).

3 Bilevel optimal control method
The main contributions of this article are first the introduction of a new transcription path from (OCP)
to (MPBVP), and then the development and the application of a novel method to solve optimal
control problems. The new path is based on a classical bilevel formulation of (OCP) described in
Section 3.1. The link between the necessary optimality conditions of this bilevel decomposition and
the multiple shooting is presented in Section 3.2. Finally, this new point of view enables the devel-
opment of a novel approach described in Section 3.3, which promises to be fast enough for embedded
solutions.

3.1 Bilevel formulation
In order to describe (OCP) in another manner, given the time intervals introduced in section (2.5),
let us consider the following intermediate optimal control problems for all i ∈ NN

(OCPi,a,b)



Vi (a, b) = min
x,u

∫ ti+1

ti

f0 (t, x(t), u(t)) dt,

s.t. ẋ(t) = f (t, x(t), u(t)) , t ∈ ∆i a.e.,

u(t) ∈ U(t), t ∈ ∆i,

x(ti) = a, x(ti+1) = b.

The set of admissible initial and final states of (OCPi,·,·) is

Ωi =
{
(a, b)

∣∣ b ∈ int
(
A(ti+1, ti, a)

)}
, (10)

where int(A) stands for the interior of the set A. The function Vi : Ωi → R corresponds to the optimal
value functions of (OCPi,·,·). Denoting Di = AC(∆i,Rn) × L∞(∆i,Rm), the cost Ji : Di → R is
defined by

Ji(x, u) =

∫ ti+1

ti

f0(t, x(t), u(t)) dt. (11)

For all (a, b) ∈ Ωi, the set of admissible points is

Ai(a, b) =

(x, u) ∈ Di

∣∣∣∣∣∣∣
ẋ(t) = f(t, x(t), u(t)), t ∈ ∆i a.e.,
u(t) ∈ U(t), t ∈ ∆i,

x(ti) = a, x(ti+1) = b,


and the set of solutions is

Si(a, b) = argmin
(x,u)∈Ai(a,b)

Ji(x, u).

Given a vector X of admissible states at the intermediate times, we are lead to solve N+1 elementary
optimal control problems (OCPi,Xi,Xi+1

). The cost corresponding to this X is the sum of the optimal
values of each (OCPi,Xi,Xi+1) sub-problems. An equivalent manner to formulate (OCP) is then to
find X that minimizes this cost. More precisely, we now have to solve

(BOCP)


min
X

V (X) :=

N∑
i=0

Vi (Xi, Xi+1) ,

s.t. X ∈ X , c(X0, XN+1) = 0,
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where the admissible set is given by

X =
{
(X0, . . . , XN+1)

∣∣ ∀i ∈ NN , (Xi, Xi+1) ∈ Ωi

}
. (12)

Since for all i ∈ NN and for all (Xi, Xi+1) ∈ Ωi, all the solutions (xi, ui) lead to the same cost:

Vi(Xi, Xi+1) = Ji(xi, ui), ∀(xi, ui) ∈ Si(Xi, Xi+1),

Problem (BOCP) can be rewritten as follows:
min
X

max
x,u

N∑
i=0

Ji(xi, ui)

s.t. X ∈ X , c(X0, XN+1) = 0,
∀i ∈ NN , (xi, ui) ∈ Si(Xi, Xi+1)

(13)

or equivalently 
min
X

min
x,u

N∑
i=0

Ji(xi, ui)

s.t. X ∈ X , c(X0, XN+1) = 0,
∀i ∈ NN , (xi, ui) ∈ Si(Xi, Xi+1)

(14)

which are standard bilevel problems, in the pessimistic (13) and optimistic (14) forms. More pre-
cisely, these formulations can be seen as Single-Leader-Multi-Follower games [2] where the leader
(or upper level) wants to find the best intermediate state X and the N +1 followers (or lower level)
want to find a solution (xi, ui) of the associated optimal control problem (OCPi,Xi,Xi+1

).

3.2 Link with the multiple shooting
Now (OCP) has been reformulated as (BOCP), we show that the necessary optimality conditions
of (BOCP) lead to (MPBVP). For this purpose, we introduce the following assumption which will
stand from now.

Assumption 1. The function V is differentiable at X solution of (BOCP).

Remark 4. Despite value functions are not necessarily differentiable in a general case, this assump-
tion, which could appear quite strong, is numerically verified in our application. Moreover, it allows
to remain in a simple framework.

Thanks to the Karush-Kuhn-Tucker (KKT) necessary optimality conditions, if X is solution
of (BOCP), then there exists λ ∈ Rp such that

(NCBOCP)

{
∇XL(X,λ) = 0,

X ∈ X , c(X0, XN+1) = 0,

where the Lagrangian L : (Rn)N+1 × Rp → R associated to (BOCP) is defined by

L(X,λ) = V (X)−
(
λ
∣∣ c(X0, XN+1)

)
.

Using the expression of L and V , (NCBOCP) becomes

(
∇aV0(X0, X1)

∇bVN (XN , XN+1)

)
− c′(X0, XN+1)

⊤λ = 0,

∇bVi−1(Xi−1, Xi) +∇aVi(Xi, Xi+1) = 0, ∀i ∈ {1, . . . , N},
c(X0, XN+1) = 0, X ∈ X .

In order to make the costate appears in the above optimality conditions, we introduce the following
theorem, the proof of which is given in appendix.
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Theorem 1. Given (a, b) ∈ Ω :=
{
(a, b)

∣∣ b ∈ intA(tf , t0, a)
}
, we consider a particular case (OCP∗)

of (OCP) in which c (x(t0), x(tf )) = (x(t0)− a, x(tf )− b) (initial and final conditions imposed):

(OCP∗)



V∗(a, b) = min
x,u

∫ tf

t0

f0 (t, x(t), u(t)) dt,

s.t. ẋ(t) = f (t, x(t), u(t)) t ∈ [t0, tf ] a.e.,

u(t) ∈ U(t), t ∈ [t0, tf ],

x(t0) = a, x(tf ) = b.

The value function V∗(a, b) of (OCP∗) is assumed to be differentiable at (a, b). Then, if (x, u) is a
solution of (OCP∗) with (x, p) the associated normal BC-extremal, we have:

∇V∗ (x(t0), x(tf )) = (−p(t0), p(tf )) .

Proof. See Appendix.

Let now X be a solution of (BOCP). For each i ∈ NN , assuming Si(Xi, Xi+1) non-empty, the
optimal value Vi(Xi, Xi+1) of (OCPi,Xi,Xi+1

) comes with a solution (xi, ui) and its associated normal
BC-extremal (xi, pi). Since (OCPi,Xi,Xi+1

) has the same form as (OCP∗), we can apply Theorem 1
and we get

∇aVi

(
xi(ti), xi(ti+1)

)
= −pi(ti), ∇bVi

(
xi(ti), xi(ti+1)

)
= pi(ti+1).

Therefore (NCBOCP) can be rewritten:

∀i ∈ NN , ∃ zi = (xi, pi) a BC-extremal associated to a solution (xi, ui) of
(
OCPi,Xi,Xi+1

)
,(

−p0(t0)
pN (tN+1)

)
− c′(X0, XN+1)

⊤λ = 0,

∀i ∈ {1, ..., N}, pi−1(ti)− pi(ti) = 0,

c(X0, XN+1) = 0, X ∈ X ,

and replacing (xi, ui) solution of (OCPi,Xi,Xi+1
) by the associated necessary optimality conditions,

we get

(NCBOCP) =⇒



∀i ∈ NN , exp #»
H

(
ti+1, ti, zi(ti)

)
= zi(ti+1),

∀i ∈ NN , xi(ti)−Xi = 0,

∀i ∈ NN , xi(ti+1)−Xi+1 = 0,(
−p0(t0)
pN (tN+1)

)
− c′(X0, XN+1)

⊤λ = 0,

∀i ∈ {1, ..., N}, pi−1(ti)− pi(ti) = 0,

c(X0, XN+1) = 0, X ∈ X ,


⇐⇒ (MPBVP).

The above leads us to the following proposition.

Proposition 2. Under our general assumptions, we have (NCBOCP) =⇒ (MPBVP).

As already seen in Sections 2.4 and 2.5, the initial problem (OCP) is linked to (MPBVP) through
(TPBVP). A new path is now highlighted by Proposition 2 via (BOCP) and (NCBOCP). In order to
explicit the various connections between all the above formulations, we define the following operators:

(OCP) Dualization−−−−−−−−−→ (TPBVP),
(TPBVP) Splitting−−−−−−−−−→ (MPBVP),

(OCP) Decomposition−−−−−−−−−→ (BOCP),
(BOCP) Dualization−−−−−−−−−→ (NCBOCP).

8



More precisely,

• The Dualization operator consists in applying necessary optimality conditions: PMP for (OCP)
and KKT conditions for (BOCP).

• The Splitting operator transforms (TPBVP) into (MPBVP) via the standard point of view
described in Section 2.5.

• The Decomposition operator transforms (OCP) into (BOCP) and is described in Section 3.1.

The connections defined above are summarized in Figure 1 which is a commutative diagram. It
can be interpreted in terms of permutation of Dualization and Splitting/Decomposition operators.

OCP

BOCP

TPBVP MPBVP

NCBOCP

Dualization

Dualization

Splitting

Decomposition

Figure 1: Commutative diagram between (OCP) and (MPBVP). The solid arrows correspond to
the Dualization operator and the dashed arrows correspond to the Decomposition or the Splitting
one. Finally, the double arrow is the classical implication operator.

3.3 A novel approach based on value functions approximations
As indicated on Figure 1, a new path is proposed to transform the Optimal Control Problem (OCP)
into the Multi-Point Boundary Value Problem (MPBVP) using the bilevel decomposition. This path
leads to a novel approach and a new method presented in this Section.

3.3.1 Main idea

Let us suppose that the value functions Vi are known for all i ∈ NN . The resolution of the optimal
control problem (OCP) can be decomposed into two main steps:

• the first one is to solve the low-dimensional optimization problem (BOCP) using classical
methods to get the optimal intermediate states X∗,

• the second one is to solve the N + 1 independent optimal control problems (OCPi,X∗
i ,X

∗
i+1

)
for all i ∈ NN . Each of these problems is defined on a smaller time interval and could be
solved by the indirect simple shooting method described in Section 2.4. Nevertheless, thanks
to Theorem 1, for all i ∈ NN , the pair

(
X∗

i ,−∇aVi(X
∗
i , X

∗
i+1)

)
is a zero of the associated

simple shooting function, and so it is no more necessary to use the shooting method. Finally,
we have only to integrate N + 1 Hamiltonian vector fields.

As a conclusion, the numerical resolution of (OCP) is reduced to the resolution of a low-
dimensional optimization problem, and the integration of N + 1 Hamiltonian vector fields, which
are independent and can therefore be processed in parallel.
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3.3.2 Macro and Micro problems

The crucial assumption above is the a priori knowledge of the value functions Vi for all i ∈ NN .
Since it is rarely satisfied, we propose to replace the Vi by approximations Ci. Problem (BOCP) is
then transformed into

(Macro)


min
X

C(X) :=

N∑
i=0

Ci (Xi, Xi+1) ,

s.t. X ∈ X , c(X0, XN+1) = 0,

to get the intermediate state X̂, and then to solve the N + 1 following optimal control problems

(Micro)



Vi(X̂i, X̂i+1) = min
x,u

∫ ti+1

ti

f0 (t, x(t), u(t)) dt,

s.t. ẋ(t) = f (t, x(t), u(t)) , t ∈ ∆i a.e.,

u(t) ∈ U(t), t ∈ ∆i,

x(ti) = X̂i, x(ti+1) = X̂i+1.

The pair (
X̂i,−∇aCi(X̂i, X̂i+1)

)
(15)

is no more necessarily a zero of the simple shooting function associated to the corresponding (Micro)
problem, and therefore a classical Newton-like solver has to be used. However, the pair (15) provides
a natural initial guess. A similar approach has been developed in [15], where a rough approximation
of the value function, obtained by a Hamilton-Jacobi-Bellman method, is used to provide an initial
guess for the indirect shooting method.

Numerically, the (Macro) and (Micro) resolution can be faster and computationally more efficient
than the simple or multiple shooting methods. The counterpart of this benefit is a large computation
time induced by the construction of the value functions approximations.

A similar (Macro)–(Micro) approach has been developed in [25] for stochastic optimal control
problem with dynamic programming method on predefined traffic conditions.

3.3.3 Advantages

Most of the time computation for the resolution of the (Macro)–(Micro) problem is due to the (Micro)
part. In comparison with the simple shooting method, N + 1 optimal control problems have to be
solved but on N + 1 times shorter intervals. Thanks to parallel computing, the time computation
for (Micro) resolution is divided by a factor N + 1. Moreover, the proposed initialization (cf.
Equation (15)) reduces the number of iterations of the Newton-like solver (see Figure 6), which
further decreases the computation time.

As proved in Section 3.1, the (Macro)–(Micro) method is strongly linked to the multiple shooting
one. Both methods take advantage of shorter time intervals and therefore show a reduced sensitivity
to initial guess for the shooting function. They also can benefit from parallel computing but with
a major difference: (Micro) problems are independent from each other and so can be solved in
parallel whereas in multiple shooting method, although the Hamiltonian flows on each interval can
be parallelized, they are coupled through the matching conditions of the shooting function Sm. For
an embedded solution, where the goal is to get the current control in real time, the (Macro)–(Micro)
has a remarkable advantage: only the (Micro) problem on the first sub-interval has to be solved.
Thus, the number of computations for the (Macro)–(Micro) method is reduced by a factor N + 1
compared to indirect shooting.
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3.3.4 Error analysis

Due to the approximation of the value function, the (Macro)–(Micro) method is sub-optimal and
its cost V (X̂) is likely to be greater than the optimal one V (X∗). Given a prescribed error e
between V (X∗) and V (X̂), our purpose here is to provide a bound on the error between Ci and
Vi, for all i ∈ NN . We consider that for all i ∈ NN , there exists εi such that for all (a, b) ∈ Ωi,
|Vi(a, b)− Ci(a, b)| ≤ εi. Therefore, for all X ∈ X

|V (X)− C(X)| ≤
N∑
i=0

εi ≤ (N + 1) max
i∈NN

εi.

Denoting α := (N + 1)maxi∈NN
εi, we obtain equivalently

V (X)− α ≤ C(X) ≤ V (X) + α. (16)

Since X∗ is a global solution of (BOCP) and using (16) with X = X̂, we have V (X∗) − α ≤
V (X̂) − α ≤ C(X̂) ≤ V (X̂) + α, and therefore V (X∗) − V (X̂) ≤ 2α. Since X̂ is a global solution
of (Macro), using left part of (16) with X = X̂ and right part with X = X∗, we have V (X̂)− α ≤
C(X̂) ≤ C(X∗) ≤ V (X∗) + α, and therefore −2α ≤ V (X∗)− V (X̂). Finally we have proven that∣∣∣V (X̂)− V (X∗)

∣∣∣ ≤ 2α. (17)

The maximum gap e between V (X∗) and V (X̂) being given, (17) provides a bound on the models
error : maxi∈NN

εi ≤ e
2(N+1) . From a practical point of view, building Ci models of Vi such that for

all (a, b) ∈ Ωi

|Vi(a, b)− Ci(a, b)| ≤
e

2(N + 1)

will ensure that the cost difference between the (BOCP) solution and the (Macro)–(Micro) one is
less than e.

3.3.5 Extremal database construction

The (Macro)-(Micro) method requires the approximation of the value function. These approxima-
tions Ci are fitted among a given class of parameterized models on a database and the objective of
this section is to propose a numerical method to generate such a database.

Let i ∈ NN . Our approximation of the value function Vi relies on a database of optimal values:

Di ⊂
{
(a, b, c)

∣∣ (a, b) ∈ Ωi, Vi(a, b) = c
}

which needs to be created. For that purpose, the natural method consists in evaluating Vi on various
admissible pairs (a, b). We propose here an alternative method. Let us define

x̄i+1(x0, p0) = πx

(
exp #»

H

(
ti+1, ti, (x0, p0)

))
and Ψi =

{
(x0, p0) ∈ R2n

∣∣∣ (x0, x̄i+1(x0, p0)
)
∈ Ωi

}
,

and introduce the following hypothesis that ensures the existence and uniqueness of a (normal)
BC-extremal.

Hypothesis 1. For all i ∈ NN and for all x0 ∈ Rn, the function p0 7→ x̄i+1(x0, p0) is injective on
the set of all p0 such that (x0, p0) ∈ Ψi.

Under the general assumptions (see Section 2.3) and Hypothesis 1, for all initial (x0, p0) and final
state and costate pair (xf , pf ) = exp #»

H

(
ti+1, ti, (x0, p0)

)
, we have

Vi(x0, xf ) = ci(x0, p0), (18)
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where ci(x0, p0) is the cost of the trajectory on the time interval ∆i starting from (x0, p0) at time
ti. More precisely, the computation of ci(x0, p0) consists simply in evaluating the integral Ji defined
by equation (11) along the pair of state and control trajectories, the control being given by the
maximization condition.

Remark 5. Hypothesis 1 is motivated by the application, Equation (18) allows to build the database
Di without solving optimal control problems, but simply by integrating the Hamiltonian flow.

Finally, considering an initial state and costate discretization Zi, we propose to create the
database Di by

Di =
{
(x0, xf , c)

∣∣ (x0, p0) ∈ Zi, (xf , pf ) = exp #»
H

(
ti+1, ti, (x0, p0)

)
, c = ci(x0, p0)

}
.

For further information, the pros and cons of this method compared to those of the natural one are
detailed in [14].

4 Case study
The main objective of this section is to compare our bilevel approach to the simple shooting method
and an empiric one on an industrial application. First, the application to be considered is presented
in Section 4.1, then the numerical methods are precised in Section 4.2 and some numerical results
are shown in Section 4.3. All the variables and parameters mentioned in Section 4.1 are described
in Table 3 in Appendix.

4.1 Hybrid electric vehicle torque split and gear shift problem
The selected vehicle is a light Hybrid Electric Vehicle (HEV) with a 400V asynchronous Electrical
Machine (EM), a 1.5L Internal Combustion Engine (ICE) and a battery of 1.5 kWh. The considered
optimal control problem is the torque split and gear shift determination, with a fixed initial and
final state of charge of the battery. The strategy for choosing the initial SOC0 and the final SOCf

states of charge of the battery is out of the topic of this paper. The architecture of our vehicle is
a parallel P3 with a double drive shaft, as presented on Figure 2. Other HEV’s architectures exist,
and are listed in [16]. This vehicle has a 4 gears transmission with a claw clutch. Note that in our
case, clutch and gear are combined in a unique control called Gear: value 0 corresponds to open
clutch and ICE off, while values 1 to 4 are associated to the corresponding gears.

Fuel

ICE Gearbox
and Clutch

EM

Battery

Transmission

TqICE

NICE

TqEM

NEM

TqW

NW

mFuel

SOC

Figure 2: Scheme of the selected HEV. The solid lines represent mechanical connections and the
dashed lines represent energy connections, using fuel for ICE and electricity for EM.
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4.1.1 General formulation

As stated before, the goal in the considered industrial application is to minimize the fuel consumption
of a HEV while taking into account some physical constraints from ICE, EM and battery. The
problem can be written as follows:

(P)



min
SOC,TqICE ,Gear

∫ tf

t0

fmF
(t, TqICE(t), Gear(t)) dt,

s.t. ˙SOC(t) = fSOC (t, SOC(t), TqICE(t), Gear(t)) , t ∈ [t0, tf ] a.e.,(
TqICE(t), Gear(t)

)
∈ U(t), t ∈ [t0, tf ],

SOC(t0) = SOC0, SOC(tf ) = SOCf .

This problem is solved on a predefined cycle, and we choose the WLTC, for which the slope is null
and the speed evolution is presented on Figure 3. Using the vehicle model (mass, wheel diameter,
aerodynamic coefficient...), the cycle information is decomposed into requested torque TqW and
wheel speed rotation NW . The two functions fmF

and fSOC result from the static model described
in the following section.
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Figure 3: Speed evolution for the Worldwide harmonized Light vehicles Test Cycle (WLTC). This
cycle is mainly used for emission and fuel consumption test.

4.1.2 System modelling

The state of charge and fuel dynamics are given by the models of vehicle equipment described below.
First, the speed and torque relations are given by the following transmission relations:[

NICE

NEM

]
=

[
P R(Gear)

Pe

]
NW , TqW = Pe (TqEM − TqEML

) + P (R(Gear) TqICE − TqICEL
) ,

where TqICEL
(respectively TqEML

) represents the ICE (respectively EM) torque losses, given by a
map depending on ICE torque TqICE and ICE rotation speed NICE (respectively TqEM and NEM ).
The function R : R → R is smooth and corresponds to the ratio of the gearbox. The parameter P
(respectively Pe) is the transmission ratio between the main axis and the ICE axis (respectively the
EM one).

Then, the state of charge dynamics is calculated by the equivalent RC circuit where the battery
terminal voltage is considered constant:

˙SOC =
I

Q
,
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with Q the battery charge and I the current, computable using a map depending on the state of
charge SOC and the power demand Pelec. This requested power is the sum of the average additional
power of other vehicle equipment and the requested power of the EM. The latter is known through
a map depending on the EM rotation speed NEM and torque TqEM .

Finally, the fuel consumption of the ICE ṁF is given through a map depending on ICE torque
TqICE , rotation speed NICE and temperature of the coolant T . In this study, we assume that the
ICE is already warm, and thus that the temperature is constant and equal to T = 90°C. The other
constraints of (P) come from physical limitations. The ICE and EM rotation speeds and torques have
min-max constraints and Gear ∈ J0, 4K. These constraints are seen as a control admissible domain(
TqICE , Gear

)
∈ U. The state of charge has usually box constraints SOC ∈ [SOCmin, SOCmax].

Taking into account state constraints with the Pontryagin Maximum Principle is complex [7] but
could be handled, by penalization for instance. However, this is not the purpose of this article.

This kind of HEV’s modelling can be found in the literature [18, 21, 29]. The dynamics of our
vehicle is given by an industrial code, developed in Matlab Simulink by Vitesco Technologies, and
we consider that all maps are smooth functions. The torque split and gear shift problem (P) has the
same formulation as the general optimal control problem (OCP) defined in Section 2.1. Therefore,
it can be numerically solved by the methods presented above.

4.2 Application of Macro and Micro method to the industrial problem
The methods to be tested require a time discretization and a numerical integration of the Hamiltonian
flow. In this industrial application, the selected cycle (WLTC) lasts 1800 seconds. We arbitrarily
choose to decompose this time interval ∆ = [t0, tf ] = [0, 1800] into N + 1 = 18 sub-intervals of 100
seconds:

∀i ∈ NN = {0, . . . , 17}, ∆i = [ti, ti+1] = [100 i, 100 (i+ 1)].

Due to the complexity of the model, the maximized Hamiltonian (8) cannot be computed analyti-
cally. The admissible control domain U(t) is thus discretized and the maximizing control u∗(t, z) is
extracted from the resulting finite set Ũ(t), i.e.

u∗(t, z) ∈ argmax
u∈Ũ(t)

{h (t, z, u)} ,

where z = (x, p). This computation is vectorized to make it faster. The Hamiltonian vector field is
calculated as follows

#»

H(t, z) =


∂h

∂p

(
t, z, u∗(t, z)

)
−∂h

∂x

(
t, z, u∗(t, z)

)
 =

 f(t, x, u∗(t, z))

−∂h

∂x

(
t, z, u∗(t, z)

)


and the partial derivative of the pseudo-Hamiltonian with respect to x is approximated by finite
differences method. The Hamiltonian flow is integrated using an explicit Euler method from Matlab
Simulink. Based on these elements, we first construct the value function approximations Ci, which
we then use to solve (Macro)–(Micro).

4.2.1 Construction of value functions approximations

The value functions Vi are approximated by Ci following the process described in Section 3.3.5. We
first observe on Figure 4 that for a given x0 the function p0 7→ x̄1(t1, t0, (x0, p0)) is injective on the
set of all p0 such that (x0, p0) ∈ Ψ0. This injectivity property remains true for all the other time
intervals and initial states. Thus, in our application, Hypothesis 1 is considered numerically valid.

For all i ∈ NN , the database of optimal values Di associated to the time interval ∆i is created by
computing the exponential map of the Hamiltonian flow for each (x0, p0) on a fixed grid. This grid
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is created by a uniform discretization between SOCmin and SOCmax (respectively pmin and pmax)
for the state (respectively costate). The bounds pmin and pmax are chosen such that the interval of
final admissible states is fully explored for all initial states. Moreover, the number of points of each
discretization is chosen large enough to capture the variations of the value function. The Figure 5
shows the transformation of the initial state and costate domain by the exponential map on the first
time interval ∆0.

p0

x̄
1
(x

0
,p

0
)

Figure 4: Evolution of the function x̄1(x0, .).
The red interval on the y-axis corresponds to
the admissible state domain A(t1, t0, x0) and
the blue interval on the x-axis corresponds to
the section at x0 of the domain Ψ0.

x

p

expH⃗ (t1, t0, ·)

Figure 5: Transport of the initial state
and costate space by the exponential map
(x0, p0) 7→ expH⃗(t1, t0, (x0, p0)). The black
dots correspond to some points in our
database and red areas correspond to the
state and costate space, at time t0 for the
left plot and t1 for the right plot.

The cost transition functions Ci are modeled by simple smooth neural networks described in
Table 1. These networks are trained on Di using the Tensorflow package in Python.

Layer Activation Number of Number of
Name function units parameters

Input (x0, xf ) id 2 0
Hidden Layer 1 tanh 16 48
Hidden Layer 2 sigmoïd 8 136

Output (c) id 1 8
Total 192

Table 1: Description of neural networks used to model functions Ci. They are trained using Adam
optimizer with a learning rate of 0.01 on 4000 epochs and a 16 batch size. The database Di is
randomly split into train and test databases with a (80% / 20%) partition. The selected weights
minimize the loss on the test database.

4.2.2 Resolution of Macro and Micro problems

The resolution of (Macro) problem requires the determination of the intermediate admissible state
domain X based on the accessibility sets through Equations (12) and (10). Assuming that the
minimal and maximal gaps of xf − x0 between a given initial state x0 and all the final states
xf reachable from x0 are nearly independent from x0, the accessibility sets A(ti+1, ti, x0) can be
approximated for all i ∈ NN by [x0 − δ−i , x0 + δ+i ], where δ−i and δ+i are independent from x0. In
order to ensure that the approximation belongs to the actual bounds and so

[
x0 − δ−i , x0 + δ+i

]
⊂
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A(ti+1, ti, x0), we set

δ−i = min
x0∈D−

i

{
max

xf∈D+
i (x0)

{
x0 − xf

}}
, δ+i = min

x0∈D−
i

{
max

xf∈D+
i (x0)

{
xf − x0

}}
,

with D−
i = {x0 | (x0, ·, ·) ∈ Di} and D+

i (x0) = {xf | (x0, xf , ·) ∈ Di} the initial and final state data
in Di.

The (Macro) problem is numerically solved with the trust-ncg algorithm from the Scipy package.
The gradient of the cost transition functions Ci is provided to the solver, taking advantage of the
ability of TensorFlow package to compute it. The constraint X ∈ X is taken into account through
a penalization method. Due to the complexity of the industrial problem, the (Macro) optimization
problem is likely to be non-convex, and thus a parallel multistart strategy is adopted to increase the
robustness of our method.

The (Micro) problems are solved by indirect simple shooting using the trust region dogleg method
of the fsolve Matlab function to find for all i ∈ NN a zero of

Si(p) = πx

(
exp #»

H (ti+1, ti, (Xi, p))
)
−Xi+1.

Since the (Micro) problems are independent from each other, they are solved in parallel.

4.3 Numerical experiments
A first objective of the numerical experiments is to evaluate the benefits of the initialization sug-
gested by Equation (15). We observe on Figure 6 that the convergence of the (Micro) resolution is
significantly improved by this choice compared to a fixed arbitrary initialization.
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Figure 6: Evolution of the percentage of success of S0 = 0 resolution according to the number of
iterations of the solver. The blue line with squares represents this evolution for a fixed initialization
and the red line with disks for the initialization suggested by Equation (15). These data result from
300 shooting functions with random initial and final states. The resolution is considered successful
when the norm of the shooting function is smaller than a given threshold.

The second objective is to compare the bilevel method to two other methods. The first other
method is the simple shooting described in Section 2.4, used as reference. The second other method
(called empiric) aims to evaluate the relevance of the (Macro) problem. For this purpose, an empir-
ical rule is created to choose the vector X = (X0, . . . , XN+1) of intermediate states. More precisely,
∀i = 1, . . . , N , each intermediate state Xi is chosen using a linear interpolation at the intermediate
time ti between X0 = x0 at time t0 and XN+1 = xf at time tf . If the proposed vector is not

16



admissible, i.e. X ̸∈ X , X is projected on X . Then, (Micro) problems are solved with the same
simple shooting method as for the bilevel one. Figure 7 compares the state trajectories obtained
with the simple shooting, the empiric and the bilevel methods for 5 different initial and final states.
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Figure 7: State trajectories for various initial SOC0 and final SOCf states. The black line with
squares corresponds to the optimal state trajectory, calculated by simple shooting method. Red line
with disks corresponds to the bilevel method and blue line with triangles to the empiric one. The
red and blue markers are the intermediate points, respectively for bilevel and empiric methods

Table 2 compares the bilevel and the empiric solutions to the simple shooting one in terms of
difference of cost, and in terms of deviation of the state trajectories in L2 norm. It appears that the
fuel consumption obtained by the bilevel approach is much closer to the simple shooting one than
with the empiric method. Furthermore, the average bilevel error is more than 9 times smaller than
the empiric one in terms of fuel consumption.
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bilevel empiric bilevel empiric
SOC0 SOCf cost error cost error state deviation state deviation

(g / %) (g / %) || · ||L2 (· / %) || · ||L2 (· / %)

0.3 0.7 0.42 / 0.045 6.65/0.72 0.42 / 0.05 2.80 / 2.05
0.4 0.6 0.34 / 0.039 7.35/0.89 0.22 / 0.01 1.77 / 0.80
0.5 0.5 1.00 / 0.129 9.17/1.18 1.00 / 0.23 0.61 / 0.08
0.6 0.4 1.71 / 0.244 8.53/1.21 0.75 / 0.12 0.76 / 0.13
0.7 0.3 0.91 / 0.143 10.19/1.60 0.58 / 0.07 1.29 / 0.33

Average 0.88 / 0.120 8.37/1.12 0.59/ 0.1 1.45 / 0.68

Table 2: Comparison of the bilevel and empiric methods for the 5 experiments defined by the first
two columns. The bilevel and empiric cost error columns give the difference between their respective
costs and the simple shooting reference. Similarly, the last two columns compare the deviation of
the state trajectories in numerical L2 norm.

5 Conclusion
A novel resolution method for optimal control problems (OCP), called (Macro)–(Micro), has been
presented. This method, based on a bilevel formulation of (OCP), is strongly linked to the multi-
ple shooting method, thanks to a new path between (OCP) and the Multi-Point Boundary Value
Problem. This method has been applied to a complex industrial problem: the HEVs torque split
and gear shift determination. Its main characteristics are the following:

• small state dimension,

• strong dependency on the non-autonomous part,

• high frequency command compared to state (cf. Figure 8),

• long integration time compared to integration time step.
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Figure 8: Simple shooting solution (state (SOC) and command (Gear, TqICE)) with SOC0 =
SOCf = 0.5 on the WLTC.
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The (Macro)–(Micro) method has been applied to solve this industrial problem. An initialization
of the shooting function based on theoretical results has been used and an improvement with respect
to standard initialization has been exhibited in terms of convergence rate.

As discussed in Section 3.3.3, this method is particularly interesting in terms of time computation
and ability to be embedded, while keeping a satisfactory accuracy on fuel consumption compared to
the optimal solution.

Perspectives.
The industrial problem considered here has been deliberately simplified: ICE is supposed to be

warm. Actually, the fuel consumption is dependent on the ICE temperature and an additional state
variable, the coolant temperature T , should be considered. Problem (P) then becomes a hybrid
optimal control problem, with a transient regime (T ≤ 90°C) and a steady state (T = 90°C).

Our novel (Macro)–(Micro) method could be extended to consider any cycle (not only the
WLTC), using a unique neural network with time series as additional inputs. Such neural net-
works exist (1D convolutional networks for instance). The counterpart of this generalization is
obviously the need of a huge amount of data (value function samples on many sub-cycles) and a
long computation time required to training such networks.

Finally, it could be really interesting to create a benchmark to compare the bilevel method with
the classical ones (simple/multiple shooting, direct methods, dynamic programming...) on various
optimal control problems. A classification of these resolution methods with respect to the main
characteristics of the problems (horizon time, autonomous or not, command frequency...) could
then be carried out. A class of optimal control problems where the bilevel method provides an
advantage in terms of a compromise between computation time, accuracy and computing power
compared to other classical optimal control methods could thus be revealed.
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A Proof of Theorem 1
We want to prove that

∇aV∗
(
x(t0), x(tf )

)
= −p(t0), (19)

∇bV∗
(
x(t0), x(tf )

)
= p(tf ). (20)

Equation (19) is a classical result that can be found in [6, 8, 10, 13, 33]. We shall use this re-
sult to prove (20). For this purpose, we transform (OCP∗) into (ROCP∗) using the reverse time
transformation ϕ : [t0, tf ] → [t0, tf ] defined by ϕ(t) = tf + t0 − t:

(ROCP∗)



VR(b, a) = min
x̂,û

∫ tf

t0

f0(ϕ(t), x̂(t), û(t)) dt,

s.t. ˙̂x(t) = −f(ϕ(t), x̂(t), û(t)), t ∈ [t0, tf ] a.e.,

û(t) ∈ U(ϕ(t)), t ∈ [t0, tf ],

x̂(t0) = b, x̂(tf ) = a.

We have naturally the following relation between the value functions:

VR(b, a) = V∗(a, b). (21)

Using the classical transformation θR(x, p, u) = (x◦ϕ,−p◦ϕ, u◦ϕ) and denoting (x̂, p̂, û) = θR(x, p, u)
it can easily be shown that (OCP∗) is equivalent to (ROCP∗) in the sense that

(x, p) is a BC-extremal associated to (x, u) solution of (OCP∗)
⇐⇒ (x̂, p̂) is a BC-extremal associated to (x̂, û) solution of (ROCP∗).

Since (ROCP∗) has the same form as (OCP∗) and the value function VR is differentiable at (b, a),
we can apply (19) to (ROCP∗):

∇bVR(x̂(t0), x̂(tf )) = −p̂(t0) = −(−p ◦ ϕ)(t0) = p(tf ).

Finally, using (21), we get ∇bV∗(a, b) = ∇bVR(b, a) = p(tf ).

B Case study notations
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Name Description Unit
Cost

mF Fuel consumption g
State

SOC Battery state of charge
Controls

Gear Gearbox selector
TqICE ICE torque N.m

Variables
TqICEL

ICE torque losses N.m
TqEM EM torque N.m
TqEML

EM torque losses N.m
TqW Wheels requested torque N.m
NICE ICE rotation speed RPM
NEM EM rotation speed RPM
NW Wheels requested rotation speed RPM
I Electrical circuit current A
Pelec Power demand W

Constants
R(Gear) ICE gearbox ratio (constant for each Gear)
P Transmission ratio between main and ICE axes
Pe Transmission ratio between main and EM axes
Q Battery charge C
T Coolant temperature °C

Table 3: List of parameters involved in the static model of HEV’s torque split.
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