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Erratum and some Remarks on "Nonparametric posterior learning for emission tomography"

In this text we provide two remarks to the article "Nonparametric posterior learning for emission tomographies", F. Goncharov, et. al. (2021): correction of one mistake and an additional theorem on existence of conjectured estimator. First, a mistake was made when inferring fully nonparametric posterior distribution on point processes in the original work. Here we obtain the correct expression and notice that it leads to an unwanted bias in assigned intensities for sampled Poisson processes. The bias seems less harmful in finite-dimensions, but in fully-nonparametric regime it makes the model inadequate for the task. In view of this, the mistake being made in the original work can be seen as reasonable correction of bad prior elicitation. This result serves also a reminder for being careful when eliciting nonparametric priors for sampling algorithms such as Nonparametric Posterior Learning (NPL), Weighted Bayesian Bootstrap (WBB), Weighted Likelihood boostrap (WLB). Secondly, we provide explicit construction of the conjectured estimator under assumption of correct model specification which finally grounds original theoretical studies of the model of NPL for emission tomographies.

Nonparametric Posterior Correction

In [START_REF] Goncharov | Nonparametric posterior learning for emission tomography[END_REF] in formula (4.12) a nonparametric prior π M was proposed as the Mixture of Gamma Processes (MGP):

sampling from π M : Λ M ∼ P M , Λ|Λ M ∼ G(θ t Λ M , (θ t ) -1 • 1), π M = MGP((t, θ t ), P M , θ t Λ M , (θ t ) -1 • 1), (1) 
where P M is the prior for shape parameter Λ M for the weighted Gamma process G(a, b) as defined in [START_REF] James | Bayesian calculus for gamma processes with applications to semiparametric intensity models[END_REF] (mean measure is αβ, variance αβ 2 for β being the constant function). Then, in (4.13) it was stated incorrectly that given sinogram Y t posterior for π M is given by the formula:

π M (•|Y t ) = MGP((t, θ t ), P M ( Λ t M |t, Y t ), Y t + θ t Λ t M , (θ t + t) -1 ), (2) 
where P M (•|t, Y t ) is the classical Bayesian posterior derived from the joint distribution:

Λ M ∼ P M , Y t ∼ PP(t • Λ M ), (3) 
for PP(Λ) being the Poisson point process with intensity measure Λ. Some context may be beneficial on the mistake being made before we proceed to the correction.

The most nontrivial part of the claim in (2) is that posterior distribution for mixing measure P M (can be seen as a hyperprior) coincides with the classical bayesian update in (3) as if the intermediate layer with Gamma process G does not play any role on propagation of uncertainty. The result of this type is true for Mixtures of Dirichlet Processes (MDP) [START_REF] Charles E Antoniak | Mixtures of dirichlet processes with applications to bayesian nonparametric problems[END_REF] if observed data are iid and there are no ties. This property was used for NPL in [START_REF] Lyddon | Nonparametric learning from bayesian models with randomized objective functions[END_REF], section 2.4, to construct flexible and feasible nonparametric priors whose MDP posteriors are further embedded in sampling schemes from parametric posteriors of interest. We note also that weighted Gamma Processes priors were studied in [START_REF] Ishwaran | Computational methods for multiplicative intensity models using weighted gamma processes: proportional hazards, marked point processes, and panel count data[END_REF] (and in references therein) with proposal of accurate sampling algorithms. However, our case is different as it concerns Mixture of Gamma processes where not a single Gamma process is used in the prior but a whole distribution -mixing measure P M .

Notations and preliminaries

In this work we follow notations on Poisson, Gamma and Negative Binomial processes from [START_REF] Zhou | Negative binomial process count and mixture modeling[END_REF] and refer the reader there for basic results on point processes. In this work we use only classical results on the aforementioned processes. Notations for parameters of the above processes are adapted for the emission tomography model developed in [START_REF] Goncharov | Nonparametric posterior learning for emission tomography[END_REF].

Poisson process.

Poisson process Y ∼ PP(Λ 0 ) on the product space Z + × Z with base measure Λ 0 over (measurable space) Z is a completely random counting measure such that Y (A) ∼ Pois(Λ 0 (A)) for any Borel set A. Here we assume that measure Λ 0 is always finite and continuous (with respect to some canonical measure on Z; in emission tomographies this can be the measure invariant under action of group of rigid motions of oriented lines in R 3 ). A standard way to generate Y is, first, to sample N ∼ Poiss(G 0 (Z)) (total counts) and then spatially distribute them over Z by sampling independently z k ∼ G 0 /G 0 (Z) for k ∈ {1, . . . , N }. To conclude, sample Y = (N ; z 1 , . . . z N ) admits the following representation:

Y = N i=1 δ z k . ( 4 
)
Gamma process. Gamma process G ∼ G(G 0 , c) on the product space R + × Z, where R + = {x : x ≥ 0}, with base G 0 , is also a completely random measure such that G(A) ∼ Γ(G 0 (A), c) (ξ ∼ Γ(a, b), Eξ = ab, Var ξ = ab 2 ). We assume that G 0 is always finite and continuous as it was defined above. One way to sample G is to, first, draw γ ∼ Γ(G 0 (Z), c) (total mass), then draw P = ∞ k=1 w k δ z k (locations and weights) from the Dirichlet process DP (γ 0 , G 0 /γ 0 ) (e.g., via Polỳa urn scheme) to finally get

G = γ ∞ k=1 w k δ z k .
(5)

Note that G in (5) is a completely random measure, that is G(A 1 ), . . . , G(A N ) are mutually independent for any finite collection of disjoint Borel sets A 1 , . . . , A N . If base G 0 itself is somewhat regular on Z (a reasonable practical assumption in emission tomography), prior G(G 0 , c) completely uncorrelates spatial dependencies(!) and can make the overall model less regular. At the same time it can be used inside hierarchical prior on Λ for the Poisson process to robustify the model against bad misspecifcation of admissible Λ's.

Negative Binomial process. Consider the following generative model:

Λ ∼ G(G 0 , p 1-p ), Y ∼ PP(Λ), p ∈ (0, 1). ( 6 
)
The marginal distribution of Y is called Negative Binomial process and denoted by NBP(G 0 , p), for which Y (A) ∼ NB(G 0 (A), p) for each Borel set A in Z. A draw from NBP consists of finite number of distinct atoms {z k } N k=1 and multiplicity of each atom follows a logarithmic distribution, expressed as:

Y = N k=1 n k δ z k , N ∼ Pois(-G 0 (Z) log(1 -p)), (7) 
(n k , z k ) ∼ Log(n k ; p) ⊗ G 0 /G 0 (Z), k ∈ {1, . . . , N }. (8)

Main results

We begin with two nonparametric approaches for posterior inference in emission tomography: first one is classical Bayesian update and the other has an additional latent layer which controls level of our belief in the prior. The latter can be thought as an attempt to robustify model elicitation.

Let1 Λ be the parameter of interest (finite continuous measure on Z), where the observed data is realization Y ∼ PP(Λ). In what follows we assume that Y contains no ties in localizations of atoms. Set of all measures on Z for Λ is too large, so after the elicitation stage one selects Λ = ϕ α , where {ϕ α } is a family of admissible measures (model), α is the tuning parameter that belongs to some set A. For technical simplicity we assume that on Z there exists dominating measure µ for all ϕ α , α ∈ A simultaneously, so the Radon-Nikodym derivative dϕ α /dµ is well defined for any α. Finally, prior information is available in form of (proper) probability distribution π(α). The above model will be common for Bayesian inference in Subsections 1.2.1, 1.2.2, however in the latter case we will add an additional latent layer to make model more robust against a mistake when choosing family {ϕ α } α∈A . Central object of our study is p(α|Y ) as it is necessary for sampling from p(Λ|Y ).

Bayesian inference

From the generative model described above and representation formula (4) for Poisson process we have the following expression for the posterior:

π(dα|Y ) = Poiss(N |ϕ α (Z)) N i=1 f α (z i )π(dα) A Poiss(N |ϕ α (Z)) N i=1 f α (z i )π(dα) , Y = (N ; z 1 , . . . , z N ), (9) 
where

f α (z) = 1 ϕ α (Z) dϕ α dµ (z), z ∈ Z. ( 10 
)
Recall that f α describes spatial probability density for localization of atoms in Y .

Bayesian inference with "robustfiying layer"

Assuming that relationship Λ = ϕ α may be violated in practice, we extend the generative model as follows:

α ∼ π(α), Λ ∼ G(θϕ α , θ -1 ), Y ∼ PP(Λ). ( 11 
)
where θ > 0 controls the degree of misspecification (θ = +∞ corresponds to exact link Λ = ϕ α , whereas θ → +0 leads to very vague (noninformative) improper prior in space of measures on Z). The reason behind such parametrization is that

E(Λ|α) = ϕ α , (12) 
so the nonparametric layer G is centered on Λ = ϕ α while still allowing arbitrary deviations from it. Moreover, choice of Gamma Process layer is motivated by its feasibility as a conjugate prior in Poisson-Gamma bayesian inference. Using (7), ( 8), for generative model in (11) we immediately obtain

π(dα|Y ) = Poiss(N |θ log( 1+θ θ )ϕ α (Z)) N i=1 f α (z i )π(dα) A Poiss(N |θ log( 1+θ θ )ϕ α (Z)) N i=1 f α (z i )π(dα)
, Y = (N ; z 1 , . . . , z N ).

(13) By multiplication in the nominator and denominator of (10) by θ log( 1+θ θ ) one may notice that posterior in (13) also corresponds to the following generative model:

α ∼ π(α), Y ∼ PP(θ log( 1+θ θ )ϕ α ). (14) 
Function r(θ) = θ log( 1+θ θ ), θ > 0 monotonously decreases from +∞ at θ = 0 to 1 at θ = +∞. From this we conclude that our robustification attempt in (11) leads to biased model which tends to underestimate intensities Λ from observations Y (recall that Poisson nature of Y is out of the question). This bias is especially sensitive in emission tomography since parameters α, Λ admit clear physical interpretations.

Bias interpretation in emission tomography. Generative model in (11)

coincides with model in (1) up to reparametrization ϕ α → Λ M , α is an operational variable which we omit here (though it is also physically interpretable). Measure Λ M can be interpreted as intensity of photon flow along different registration channels, so Λ M (Z) has meaning of 'total energy' or 'full dose' delivered to the patient. Having observed Y , Y (Z) (total counts) is an estimator of this global energy. As Poisson nature of Y is not under question one could expect that Y (Z) ≈ Λ M (Z)|Y (this holds in first bayesian approach), however, from (14) it is clear that 'posterior total energy' will be systematically underestimated. Propagation of this correct but biased MGP-posterior π(Λ M |Y ) to the NPL sampling scheme in [START_REF] Goncharov | Nonparametric posterior learning for emission tomography[END_REF] would lead to systematic underestimation of the total dose which undesirable in the medical context.

So what happened?

In (11) one may notice that marginal distribution p(Y |α) is a Negative Binomial Process. According to (7), (8) Negative Binomial Process allows ties in observed atoms, therefore, even having observed no ties in Y the marginal model outputs more conservative (decreased) estimate for Λ than would do pure Poisson Process model. From the interpretation point of view situation is even worse as practically we know that multiplicities in data are impossible within our assumptions. This example may serve as a remainder for being careful when eliciting nonparametric priors as they may lead to (unobvious) inadequate marginals resulting, for example, in systematic biases as in our case. Note also that such bias is much less visible in finite-dimensions since there is no notion of multiplicities for binned observation of a point process. A good self-check when eliciting a prior would be to ask the following: would the prior make sense if we increase dimensions to infinity (consider the fully nonparametric version of the problem)? What are the marginals in this limiting procedure? Are they still adequate for the problem?

Main result for the original paper

In this section we provide explicit correction for [START_REF] Goncharov | Nonparametric posterior learning for emission tomography[END_REF] using its original notations.

From (13), instead of formula (2) (orig. eq. ( 4.13)) one should write

π M (•|Y t ) = MGP((t, θ t ), P M ( Λ t M |t, Y t ), Y t + θ t Λ t M , (θ t + t) -1 ), P M (Λ M |t, Y t ) = Poiss(N |θ t log( 1+θ t θ t )tΛ M (Z)) N i=1 f Λ M (z i )π(dΛ M ) A Poiss(N |θ t log( 1+θ t θ t )tΛ M (Z)) N i=1 f Λ M (z i )π(dΛ M ) , Y = (N ; z 1 , . . . , z N ), (15) 
where f Λ M is defined the same way as in (10).

Construction of the conjectured estimator

In this part we prove another version of Conjecture 6.11 [START_REF] Goncharov | Nonparametric posterior learning for emission tomography[END_REF] on existence of a strongly consistent estimator satisfying a number of geometric properties. This result grounds Theorem 6.10, so validity of the claim is no longer depends on existence of a specific estimator. We refer the reader to the original work for the context of the problem and proceed directly with the proof.

Correction 2.1 (Theorem 6.10). In [GBD23] condition (6.22) in Theorem 6.10 is as follows:

lim sup t→+∞ I 1 (Λ * ) √ t Y t i /t -Λ t sc,i Λ t sc,i a i < +∞ a.s. Y t , t ∈ (0, +∞), (16) 
It is slightly too strong, and the result of the theorem holds without any change in the proof if we require instead:

lim sup t→+∞ I 1 (Λ * ) √ t Y t i /t -Λ t sc,i Λ t sc,i a ij < +∞ a.s. Y t , t ∈ (0, +∞), ( 17 
) j ∈ {1, . . . , p}\{j : ∃i ∈ I 0 (Λ * ) s.t. a ij > 0}. ( 18 
)
Theorem 2.1. There exists an estimator λ t sc such that (i) Proof. We construct estimator λ t sc explicitly. First, we set λ t sc,j = 0 for all j s.t.

Π U ⊕V λ t sc a.s. Y t ----→ Π U ⊕V λ * , (19) (ii 
a ij > 0, i ∈ I 0 (Y t ). ( 23 
)
That is we set pixel j to zero if it is detectable in channel i (a ij > 0) and there were no counts in it during (0, t). We will denote these pixels as follows:

J A 0 (Y t ) = {j : a ij > 0, i ∈ I 0 (Y t )}. ( 24 
)
We recall that (due to Y t ∼ Po(t • Aλ * ))

I 0 (Λ * ) ⊂ I 0 (Y t ). (25) 
Formula ( 22) follows directly from ( 23), (25). It is left to set left-over pixels of λ t sc and check (i), (ii). Let

λ t sc = arg min λ≥0 λ j =0, j∈J A 0 (Y t ) - d i=1 Y t i t log(Λ i ) + Λ i . (26) 
Optimization problem in (26) corresponds to ML estimation for Poisson loglikelihood in emission tomography with additional restriction from (23). It may happen that due to the restriction the objective is unfeasible -admissible λ require Λ i = 0 for some i with Y t i > 0. In this case we fix λ t sc,j = 0 for j ̸ ∈ J A 0 (Y t ). The following lemma states it can happen only for some finite time in almost any given trajectory Y t , t ∈ (0, +∞).

Lemma 2.1. Let Y t , t ∈ (0, +∞) be a trajectory of a Poisson process Po(t•Aλ * ). Then with probability one there exists t 0 < +∞ such that

I 0 (Y t ) = I 0 (Λ * ) for t > t 0 . (27) 
From ( 27) it follows that for t > t 0 the first-order optimality condition in (26) is given by

i∈I 1 (Λ * ) Y t i t -Λ t sc,i Λ t sc,i a ij = 0, ( 28 
) j ∈ {1, . . . , p}\{j : ∃i ∈ I 0 (Λ * ) s.t. a ij > 0}. ( 29 
)
To obtain the above formula we have used the fact that Y t i ≡ 0 for i ∈ I 0 (Λ * ) and also Λ i ≡ 0 for i ∈ I 0 (Λ * ) when λ j = 0, j ∈ J A 0 (Y t ), t > t 0 . Note that in (28) there is no extra term for positivity constraints that is needed for KKT optimality conditions. One way to prove this is to notice that Y t i > 0 for i ∈ I 1 (Λ * ),

Y t i = 0 for i ∈ I 0 (Λ * ) for t > t 0 . Due to restriction λ j = 0, j ∈ J A 0 (Y t ) = J A 0 (Λ * ) minimization in (26) with λ ∈ R p + can be reduced to a problem for λ ∈ R p-#J A 0 (Λ * ) + with observations Y t i , i ∈ I 1 (Λ * ). Since all Y t i > 0, i ∈ I 1 (Λ * ), Λ t sc is an interior point of the cone K = A(R p-#J A 0 (Λ * ) + ) in R d-#I 0 (Λ * ) +
. It is left to note that a ij , i ∈ I 1 (Λ * ), j ∈ {1, . . . , p}\{j : ∃i ∈ I 0 (Λ * ) s.t. a ij > 0} span the tangent space of K. This proves (28) which, in turn, automatically implies (17). Now we prove (i). For t > t 0 of Lemma 2.1 we can rewrite (26) as follows

λ t sc = arg min λ≥0 λ j =0, j∈J A 0 (Λ * ) - d i∈I 1 (Λ * ) Y t i t log(Λ i ) + Λ i . (30) 
From the law of Large Numbers it follows that Y t /t a.s.

--→ Λ * . Continuity of the minimizer in (30) implies that there is a limit λ ∞ sc ⪰ 0 with probability one. It is easy to check that Λ ∞ sc = Λ * , which automatically implies (i). Theorem is proved.

Proof of Lemma 2.1. Consider event A t = {I 0 (Λ * ) ⊂ I 0 (Y t ) strictly}, t ∈ (0, +∞).

(31

)
This means there exists i ∈ I 1 (Λ * ) such that Y t i = 0. Therefore,

P (A t ) ≤ i∈I 1 (Λ * ) e -tΛ * i . ( 32 
)
Let t n = n, n ∈ N 0 . Then it is easy to show that

+∞ n=0 P (A tn ) < +∞. (33) 
Lemma of Borel-Cantelli implies that P (lim sup n A tn ) = 0, that with probability 1 there is no more than finite number of A tn can be realized. Therefore, with probability one there exists t 0 < +∞ such that I 0 (Λ * ) = I 0 (Y t 0 ). Due to monotonicity of A t same will hold for any t > t 0 which completes the proof of (27).

Lemma is proved.

Here we essentially describe the nonparametric model of emission tomography from[START_REF] Goncharov | Nonparametric posterior learning for emission tomography[END_REF].