
HAL Id: hal-04359836
https://hal.science/hal-04359836v2

Preprint submitted on 6 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and Dimensioning of Natural Gas Pipelines with
Hydrogen Injection

Natalia Jorquera-Bravo, Sourour Elloumi, Agnès Plateau

To cite this version:
Natalia Jorquera-Bravo, Sourour Elloumi, Agnès Plateau. Design and Dimensioning of Natural Gas
Pipelines with Hydrogen Injection. 2024. �hal-04359836v2�

https://hal.science/hal-04359836v2
https://hal.archives-ouvertes.fr


Design and Dimensioning of Natural Gas Pipelines with
Hydrogen Injection

Natalia Jorquera-Bravo
UMA, ENSTA Paris, Institut

Polytechnique de Paris
Palaiseau, France

CEDRIC, Conservatoire National des
Arts et Métiers, Paris, France
natalia.jorquera@ensta-paris.fr

Sourour Elloumi
UMA, ENSTA Paris, Institut

Polytechnique de Paris
Palaiseau, France

CEDRIC, Conservatoire National des
Arts et Métiers, Paris, France
sourour.elloumi@ensta-paris.fr

Agnès Plateau
CEDRIC, Conservatoire National des

Arts et Métiers, Paris, France
agnes.plateau_alfandari@cnam.fr

ABSTRACT
The global focus on reducing air pollution and dependence on
fossil fuels has led to efforts to shift to renewable energy sources.
Hydrogen is a promising alternative due to its high energy capacity
and ability to regulate electricity production through electrolysis.
In this context, the problem of designing and sizing natural gas
pipelines with hydrogen injection is presented. The objective is to
establish the network topology and diameter dimensions of each
pipeline section for hydrogen distribution, in order to cover the
demand at a minimum cost.

To address the proposed problem, we consider the dimensioning
as the selection of a diameter from a set of available measures, i.e.,
a discrete diameter approach, and we compare it with a continuous
diameter approach from the literature, including a mixed integer
nonlinear programming (MINLP) formulation of degree six. In our
discrete diameter approach, we propose a non-convex quadratic
(MIQLP) model, and we derive a mixed-integer quadratic convex
relaxation (MIQCP). Finally, we adapt a Delta Change heuristic to
this context.

We implement several solution methods for a real case study
in France. These include solving the dimensioning problem on a
fixed Minimum Spanning Tree topology, considering both continu-
ous and discrete diameters, employing the Delta Change heuristic
for both cases, continuous and discrete, and solving the MIQCP
relaxation problem. The strengths and weaknesses of each of these
proposals are demonstrated through the study.
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1 INTRODUCTION
One of the biggest problems facing humanity in the last century
is air pollution, which is responsible for numerous respiratory
diseases, as well as for global warming and the climate crisis we
are experiencing. Humanity’s reliance on fossil fuels is considered
a major source of carbon emissions, which is widely blamed for
air pollution [23]. In an attempt to curb the damage caused to the
environment and to improve the quality of life of those living in
industrialized and developing countries, numerous public policies
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have been put forward all over the planet to favor other forms of
energy, therefore, the power system of all countries in the world will
inevitably develop towards a high proportion of renewable energy
power systems [21], and hydrogen has emerged as a sustainable
alternative.

As an energy source, hydrogen stands out for having the highest
specific energy content, producing 2.75 times more energy than
hydrocarbon fuels, and also, it’s the most abundant element in the
universe [8]. One of its strengths is its production, since this gas
can be produced by electrolysis of water using renewable energies.
The hydrogen produced in this way is called Green Hydrogen, and
it has recently captured the attention of many researchers [10].

As an energy carrier, hydrogen stands out for its storage capacity
and its relationship with electricity, being able to store excess re-
newable energy production, thus helping to mitigate the difference
between renewable energy production and demand [14].

Thus, in 2019 the international energy agency presented in its
report "The future of hydrogen" [1] the opportunities that hydro-
gen provides, both environmental and monetary, as well as the
challenges faced by those who wish to exploit it, highlighting un-
certainty in government policies and regulations, production stan-
dards, acceptance of the product in the markets and, the lack of
technology and infrastructure.

We address the problem of the design and dimensioning of natu-
ral gas pipelines with hydrogen injection. This article is organized
as follows, first, in Section 1, we present a literature review, show-
ing how this problem has been addressed over the years. Then,
the statement of the problem is presented. Finally, we analyze a
mathematical formulation proposed in the literature. In Section 2
we make the realistic assumption that diameters of the pipelines
must be chosen within a set of possible values, and we present
mathematical formulations to address this problem. In Section 3,
we present numerical experiments over a test example randomly
generated instance, and over a real case study in France.

1.1 State of the Art
In recent years, interest in hydrogen has grown considerably, mainly
due to its potential as a non-CO2 emitting energy source and its
great versatility in terms of production, storage and transporta-
tion [3], however, its development has been held back by the lack
of infrastructure for its production and distribution. Thus, many
authors have proposed to address the optimal design of these facili-
ties [4].
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On one hand, some researchers have opted for the design of
a complete supply chain, considering different parts of this sys-
tem. Wickham, Hawkes and Jalil-Vega [20] consider the production,
transmission, distribution, reconversion and refueling in a mathe-
matical model for the design of a complete hydrogen supply chain,
as well as Tlili et al. [18], they present a study of the supply chain
in the north of France, considering the production, the storage,
and delivery methods for refueling hydrogen stations for fuel cell
electric vehicles. Johnson and Ogden [13] propose a model for hy-
drogen production and transmission, where they seek to identify
the optimal structure design to produce hydrogen and connect
these production facilities to distribution centers, optimizing inter-
connected regional pipeline networks to link multiple production
facilities and demand points. On the other hand, some authors have
focused on specific components of the hydrogen supply chain, such
as transmission and distribution, centering their studies on the op-
timal design of pipeline networks. Thus, one of the challenges that
arises in this framework, is the fluid mechanics, being equation (1)
one of the most important for piping design, which describes the
flow within a pipe as a function of the pressure drop from one end
to the other [12].

𝑄 = 𝐶𝐷2.5

√︄
𝑝21 − 𝑝

2
2

𝜆𝑍𝑚𝑇𝑚𝐿𝛿
(1)

Where 𝑄 is the flow in a pipe [𝑚3/ℎ], 𝐶 is the proportionality
constant [𝑚109/(𝑏𝑎𝑟𝐾1/2)], 𝐷 is the inner diameter [𝑚𝑚], 𝑝1 is the
inlet pressure [𝑏𝑎𝑟 ], and 𝑝2 is the outlet pressure, 𝛿 is the relative
density compared to air, 𝑇𝑚 is the gas temperature [𝐾], 𝑍𝑚 is the
dimensionless compressibility factor, 𝜆 the dimensionless coeffi-
cient of friction, and 𝐿 is the pipe length [𝑘𝑚], and the subindex𝑚
indicates that the average value of that parameter is considered.

The works that consider fluid mechanics in pipeline design can
be classified into three main groups according to their approach
to pipe diameter, (i) continuous diameter, where the diameter is
considered as a continuous variable, (ii) split-pipe diameter, where
a pipe is made up of several segments of different diameters joined
together, and (iii) discrete diameter, where the diameter is selected
from a set of commercially available sizes. Among the authors who
use the continuous diameter approach are André et al. [2] who
present a MINLP to design and dimension the pipelines, and also,
they propose a Delta change heuristic, based on the reformulation
of the model on a fixed topology of the network in the form of a
tree. While Da Silva et al. [9] approach the sizing problem over a
fixed topology from a multi-objective and multi-period perspective,
including the location of compressor stations. In the group of those
who consider the split-pipe diameter, Wu et al. [22] develop a global
optimization algorithm for a MINLP problem based on the relaxed
primal-dual decomposition method. Within the last group, where
discrete diameters are considered, Wang et al. [19] propose an MILP
to reformulate existing gas pipelines, considering the mixture of
gas with hydrogen. In this work, the main decision is whether or
not to keep a pipeline, and the dimension needed in each reformed
pipeline, which is selected from a set of available measures.

It should also be noted that there are some studies related to the
design of pipelines networks for other fluid distribution under the
discrete diameter approach that can be extrapolated to the study

of hydrogen. In literature related to water distribution Bragalli
et al. [7] propose a non convex continous NLP relaxation and a
MINLP search for a problem of dimensioning over a fixed topology.
Similarly, Shiono and Suzuki [17] propose a continuous relaxation
for a sizing problem on a fixed topology. Among those who study
natural gas pipeline networks, [11] presents a genetic algorithm to
determine the optimum pipe size for networks, considering a fixed
topology, and [6] presents a convex relaxation for gas expansion
planning.

1.2 Statement of the Problem
The design and dimensioning problem of a hydrogen injection
pipeline network consists of finding both a network topology, and
the diameter dimensions of each pipe section for the distribution
of hydrogen, together with the pressure at each node, and the
flows at each pipeline. Formally, given a connected digraph 𝐺 =

(𝑁,𝐴), where 𝑁 is the set of all hydrogen supply and consumption
nodes, we define a network topology as the connected subgraph
𝐺 ′ = (𝑁,𝐴′) induced by a set of connected arcs 𝐴′ ⊆ 𝐴 and the
set of nodes 𝑁 . Each node 𝑖 ∈ 𝑁 has a hydrogen demand 𝑑𝑖 to
satisfy, or a quantity 𝑠𝑖 of hydrogen it can supply, assuming that∑
𝑖∈𝑁 𝑠𝑖 =

∑
𝑖∈𝑁 𝑑𝑖 . The main objective is to minimize the costs of

construction of the hydrogen distribution network, in such a way
that the proposed pipeline network can meet customer demand,
considering the fluid mechanics equation (1).

To address this problem we rewrite equation (1), without loss of
generality, as:

(𝜋1 − 𝜋2)𝐷5 = 𝑘′𝑄2𝐿 (2)
where 𝜋1 and 𝜋2 represent the square of the pressure at the inlet
and outlet of a pipe, respectively, 𝐿 is the length of the pipeline,
and 𝑘′ = 𝜆𝑍𝑚𝑇𝑚𝛿

𝐶2 is assumed constant. The cost associated with
choosing a pipeline relates the diameter of the pipe to the invest-
ment costs by units of length. Its quadratic version is the most
accepted [15], precisely, (𝑎0 + 𝑎1𝐷 + 𝑎2𝐷2)𝐿 where 𝑎0, 𝑎1 and 𝑎2
are prefixed constants. In the following, we use this expression as
the optimization criterion.

1.3 MINLP Formulation Based on Continuous
Diameters

In the literature, there are several formulations for the design and di-
mensioning of pipelines problem. We present the following MINLP
model, within the continuous diameter approach, and inspired by
the model proposed by André et al. [2]. The network topology is
represented by the binary decision variable 𝑥𝑖 𝑗 for (𝑖, 𝑗) ∈ 𝐴, which
is 1 if and only if it is decided to install a pipeline between nodes 𝑖
and 𝑗 . Variable 𝐷𝑖 𝑗 is the diameter of the pipeline installed between
nodes 𝑖 and 𝑗 , this is a continuous variable with a value between
𝐷𝑚𝑖𝑛 and 𝐷𝑚𝑎𝑥 if a pipeline is installed between those nodes, and
0 otherwise. The square of the pressure at each node is represented
by variable 𝜋𝑖 , and lies between 𝜋𝑚𝑖𝑛 and 𝜋𝑚𝑎𝑥 . Finally, variable
𝑄𝑖 𝑗 represents the flow within a pipeline from node 𝑖 to 𝑗 .

In this model, Constraints (3b) represent the fluid mechanics
equation for the pressure drop in a pipeline. Equations (3c) represent
the flow conservation at each node, and the set of Constraints (3d)
establish the limits on the pipeline’s diameter. Finally, equations
(3e) set a limit in the required pressure of hydrogen at each node.



Design and Dimensioning of Natural Gas Pipelines with Hydrogen Injection , ,

(𝐶𝑃)



min
𝐷,𝜋,𝑥,𝑄

∑︁
(𝑖, 𝑗 ) ∈𝐴

𝐿𝑖 𝑗 (𝑎0𝑥𝑖 𝑗 + 𝑎1𝐷𝑖 𝑗 + 𝑎2𝐷2
𝑖 𝑗 ) (3a)

(𝜋𝑖 − 𝜋 𝑗 )𝐷5
𝑖 𝑗 = 𝑘

′𝑄2
𝑖 𝑗𝐿𝑖 𝑗 (𝑖, 𝑗) ∈ 𝐴 (3b)

𝑠𝑖 +
∑︁

𝑗 | ( 𝑗,𝑖 ) ∈𝐴
𝑄 𝑗𝑖 =

∑︁
𝑗 | (𝑖, 𝑗 ) ∈𝐴

𝑄𝑖 𝑗 + 𝑑𝑖 𝑖 ∈ 𝑁 (3c)

𝐷𝑚𝑖𝑛𝑥𝑖 𝑗 ≤ 𝐷𝑖 𝑗 ≤ 𝐷𝑚𝑎𝑥𝑥𝑖 𝑗 (𝑖, 𝑗) ∈ 𝐴 (3d)
𝜋𝑚𝑖𝑛 ≤ 𝜋𝑖 ≤ 𝜋𝑚𝑎𝑥 𝑖 ∈ 𝑁 (3e)
𝐷𝑖 𝑗 , 𝑄𝑖 𝑗 ≥ 0 (𝑖, 𝑗) ∈ 𝐴 (3f)
𝑥𝑖 𝑗 ∈ {0, 1} (𝑖, 𝑗) ∈ 𝐴 (3g)

Consequently, (𝐶𝑃) model is a mixed integer polynomial optimiza-
tion problem of degree six, with a non convex continuous relaxation.

1.4 Delta Change Heuristic (Δ𝐶)
A well-known algorithm in gas pipeline design is the Delta Change
heuristic, which was proposed by Rothfarb et al. [16] for the op-
timal design of offshore gas pipelines, and proved to be suitable
for (CP) by André et al. [2]. This heuristic splits the solution into
two subroutines, finding a network topology, and dimensioning the
pipelines.

To find a network topology, this heuristic relies on Theorem 1
from [5], which states that the optimal network of this problem
has a tree structure. Therefore, we initialize the algorithm with
the minimum spanning tree, and then we move to other spanning
trees, looking for a better solution. To select the next tree the delta
change heuristic explores a randomly selected subset of nodes
𝑆 ⊂ 𝑁 , where for each node 𝑖 ∈ 𝑆 it explores a subset of the closest
nodes 𝑉 ⊂ 𝑁 not connected to 𝑖 . Then, for each 𝑗 ∈ 𝑉 , it creates
a cycle by connecting it to 𝑖 , and removes a different arc from the
created cycle, thus finding a new tree.

Now, it remains to solve the dimensioning problem. To this, let
𝑇 ⊂ 𝐴 be a subset of arcs such that 𝐺 ′ = (𝑁,𝑇 ) is a tree. We can
deduce 𝑄𝑇 by solving the linear system given by Equations (3c),
which, if it has a solution, is unique. Consequently, we can write
model (CP) over this tree, obtaining model (𝐶𝑃𝑇 ).

Algorithm 1 shows the pseudocode for the delta change heuristic
(Δ𝐶).

(𝐶𝑃𝑇 )



min
𝐷,𝜋

∑︁
(𝑖, 𝑗 ) ∈𝑇

𝐿𝑖 𝑗 (𝑎0 + 𝑎1𝐷𝑖 𝑗 + 𝑎2𝐷2
𝑖 𝑗 ) (4a)

(𝜋𝑖 − 𝜋 𝑗 )𝐷5
𝑖 𝑗 = 𝑘

′ (𝑄𝑇 )2𝑖 𝑗 𝐿𝑖 𝑗 (𝑖, 𝑗) ∈ 𝑇 (4b)
𝐷𝑚𝑖𝑛 ≤ 𝐷𝑖 𝑗 ≤ 𝐷𝑚𝑎𝑥 (𝑖, 𝑗) ∈ 𝑇 (4c)
𝜋𝑚𝑖𝑛 ≤ 𝜋𝑖 ≤ 𝜋𝑚𝑎𝑥 𝑖 ∈ 𝑁 (4d)
𝐷𝑖 𝑗 ≥ 0 (𝑖, 𝑗) ∈ 𝑇 (4e)

1.5 Contribution
Considering the context presented above, our proposal seeks to
complement existing studies, addressing the design and dimen-
sioning of natural gas pipelines with hydrogen injection problem,
considering discrete diameters. We show that, in this case, model
(CP) can be reformulated as a mixed integer quadratic problem,
considering fluid mechanics constraints in its formulation. We also

Algorithm 1 Delta Change (Δ𝐶)

Input: Instance, fixed formulation 𝐹𝐹
Output: 𝐷, 𝜋,𝑇 ,𝑄 (Feasible solution)

1: Initialize: 𝐺 ′ = (𝑁,𝑇 ) =𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑆𝑝𝑎𝑛𝑛𝑖𝑛𝑔𝑇𝑟𝑒𝑒 (𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒)
2: Compute 𝑄∗ (𝑇 )
3: Solve (𝐶𝑃𝑇 ) =⇒ 𝐷∗ (𝑇 ), 𝜋∗ (𝑇 ), Cost(T)
4: 𝐷 = 𝐷∗ (𝑇 ), 𝜋 = 𝜋∗ (𝑇 ), 𝑄 = 𝑄∗ (𝑇 )
5: Randomly select 𝑆 ⊂ 𝑁
6: for 𝑖 ∈ 𝑆 do
7: Select 𝑉 ⊂ 𝑁 such that: (𝑖, 𝑣) ∉ 𝑇, 𝑣 ∈ 𝑉
8: for 𝑣 ∈ 𝑉 do
9: 𝑇 ← 𝑇 ∪ (𝑖, 𝑣)
10: Determine the cycle 𝐶 ⊂ 𝑇
11: for 𝑎 ∈ 𝐶 such that 𝑎 ≠ (𝑖, 𝑣) do
12: 𝑇𝑎 = 𝑇 − 𝑎 =⇒ 𝑇𝑎 is now a tree
13: Compute 𝑄∗ (𝑇𝑎)
14: Solve (𝐶𝑃𝑇𝑎 )
15: if feasible & Cost(𝑇𝑎) <Cost(𝑇 ) then
16: deduce 𝐷∗ (𝑇𝑎), 𝜋∗ (𝑇𝑎)
17: 𝑇 = 𝑇𝑎, 𝐷 = 𝐷∗ (𝑇𝑎), 𝜋 = 𝜋∗ (𝑇𝑎), 𝑄 = 𝑄∗ (𝑇𝑎)
18: end if
19: end for
20: end for
21: end for
22: return 𝐷, 𝜋,𝑇 ,𝑄

propose a mixed-integer quadratic convex relaxation. Finally, nu-
merical results are presented to compare the performance of these
models applied to a test example instance and a case study in France
based on existing data from the literature.

2 MATHEMATICAL FORMULATIONS AND A
HEURISTIC CONSIDERING DISCRETE
DIAMETERS

A more realistic assumption to this problem is to discretize the pipe
diameter, in order to chose the diameter to build a pipeline from a
set of available values from the market. Based on this, in this section
we start by deriving a MIQP model for the discrete diameters case.

2.1 MIQP Formulation Based on Discrete
Diameters

Here, we propose to select the diameter of the pipelines from a set
of available diameter-values 𝐻 . Let 𝑑𝑚ℎ be the value of diameter
ℎ ∈ 𝐻 , and let 𝑣ℎ

𝑖 𝑗
be a binary variable indicating if diameter ℎ is

selected for the pipeline installed on arc (𝑖, 𝑗), where each diameter
is modeled as 𝐷𝑖 𝑗 =

∑
ℎ∈𝐻 𝑑𝑚ℎ𝑣

ℎ
𝑖 𝑗

for (𝑖, 𝑗) ∈ 𝐴. To simplify the
notation of the different models, let 𝐵 = {(𝑖, 𝑗, ℎ) : (𝑖, 𝑗) ∈ 𝐴, ℎ ∈
𝐻 }.



, ,

(𝐷𝑄𝑃 )



min
𝜋,𝑄,𝑥,𝑣

∑︁
(𝑖,𝑗 ) ∈𝐴

𝐿𝑖 𝑗 (𝑎0𝑥𝑖 𝑗 +
∑︁
ℎ∈𝐻
(𝑎1𝑑𝑚ℎ𝑣

ℎ
𝑖 𝑗 +𝑎2𝑑𝑚2

ℎ
𝑣ℎ
𝑖 𝑗
) ) (5a)

(𝜋𝑖 − 𝜋 𝑗 )
∑︁
ℎ∈𝐻

𝑑𝑚5
ℎ
𝑣ℎ𝑖 𝑗 = 𝑘 ′𝑄2

𝑖 𝑗𝐿𝑖 𝑗 (𝑖, 𝑗 ) ∈ 𝐴 (5b)

𝑠𝑖 +
∑︁

𝑗 | ( 𝑗,𝑖 ) ∈𝐴
𝑄 𝑗𝑖 =

∑︁
𝑗 | (𝑖,𝑗 ) ∈𝐴

𝑄𝑖 𝑗 + 𝑑𝑖 𝑖 ∈ 𝑁 (5c)

𝜋𝑚𝑖𝑛 ≤ 𝜋𝑖 ≤ 𝜋𝑚𝑎𝑥 𝑖 ∈ 𝑁 (5d)
𝑄𝑖 𝑗 ≤ 𝑀𝑥𝑖 𝑗 (𝑖, 𝑗 ) ∈ 𝐴 (5e)∑︁
ℎ∈𝐻

𝑣ℎ𝑖 𝑗 = 𝑥𝑖 𝑗 (𝑖, 𝑗 ) ∈ 𝐴 (5f)

𝑄𝑖 𝑗 ≥ 0 (𝑖, 𝑗 ) ∈ 𝐴 (5g)
𝑥𝑖 𝑗 ∈ {0, 1} (𝑖, 𝑗 ) ∈ 𝐴 (5h)

𝑣ℎ𝑖 𝑗 ∈ {0, 1} (𝑖, 𝑗, ℎ) ∈ 𝐵 (5i)

Since variables 𝑣ℎ
𝑖 𝑗
are binary and at most one diameter is selected

for a pipeline on (𝑖, 𝑗) ∈ 𝐴, it holds for any positive integer 𝑝 that

𝐷
𝑝

𝑖 𝑗
=

(∑︁
ℎ∈𝐻

𝑑𝑚ℎ𝑣
ℎ
𝑖 𝑗

)𝑝
=

∑︁
ℎ∈𝐻

𝑑𝑚
𝑝

ℎ

(
𝑣ℎ𝑖 𝑗

)𝑝
=

∑︁
ℎ∈𝐻

𝑑𝑚
𝑝

ℎ
𝑣ℎ𝑖 𝑗

therefore, any power of variable 𝐷𝑖 𝑗 can be reformulated by a
linear expression in 𝑣ℎ

𝑖 𝑗
. Thus, equation (5a) represents the cost

associated to the diameters and the length of each pipeline, which
becomes a linear equation when we move to the case of discrete
diameters. Constraints (5b) represent the drop pressure equation,
which can now be written as an equation of degree 2 due to the
discretization. Constraint (5e) is a valid inequality, which states that
a flow between two nodes can only exist if there is a pipe between
those two nodes, and equation (5f) indicates that if there is a pipe
between two nodes, we must choose a single pipe diameter.

2.2 Relaxation into a MIQCP
Model (DQP) is quadratic but even its continuous relaxation is not
convex. Non-convexity comes from the quadratic equation (5b) and
from the integrality of variables 𝑣 . We below present a relaxation
of this problem, whose continuous relaxation is convex. First we
linearize the product of variables 𝜋 by variables 𝑣 , which represents
a reformulation of (DQP). To this, we introduce variables 𝛽 and
𝛾 , where 𝛽ℎ

𝑖 𝑗
= 𝜋𝑖 𝑣

ℎ
𝑖 𝑗

and 𝛾ℎ
𝑖 𝑗

= 𝜋 𝑗 𝑣
ℎ
𝑖 𝑗
. Then we replace the new

version of equation (5b) with a quadratic convex inequality.

(𝐷𝑄𝑃𝑅)



min
𝑄,𝑥,𝑣,𝜋,𝛽,𝛾

∑︁
(𝑖,𝑗 ) ∈𝐴

𝐿𝑖 𝑗 (𝑎0𝑥𝑖 𝑗 +
∑︁
ℎ∈𝐻
(𝑎1𝑑𝑚ℎ𝑣

ℎ
𝑖 𝑗+ 𝑎2𝑑𝑚

2
ℎ
𝑣ℎ
𝑖 𝑗
) ) (6a)

s.t.: (5c) − (5i)∑︁
ℎ∈𝐻

𝑑𝑚5
ℎ
(𝛽ℎ𝑖 𝑗 − 𝛾

ℎ
𝑖 𝑗 ) ≥ 𝑘 ′𝑄2

𝑖 𝑗𝐿𝑖 𝑗 (𝑖, 𝑗 ) ∈ 𝐴 (6b)

𝜋𝑚𝑖𝑛𝑣
ℎ
𝑖 𝑗 ≤ 𝛽ℎ𝑖 𝑗 ≤ 𝜋𝑚𝑎𝑥 𝑣

ℎ
𝑖 𝑗 (𝑖, 𝑗, ℎ) ∈ 𝐵 (6c)

𝛽ℎ𝑖 𝑗 ≥ 𝜋𝑖 − 𝜋𝑚𝑎𝑥 (1 − 𝑣ℎ𝑖 𝑗 ) (𝑖, 𝑗, ℎ) ∈ 𝐵 (6d)

𝛽ℎ𝑖 𝑗 ≤ 𝜋𝑖 − 𝜋𝑚𝑖𝑛 (1 − 𝑣ℎ𝑖 𝑗 ) (𝑖, 𝑗, ℎ) ∈ 𝐵 (6e)

𝜋𝑚𝑖𝑛𝑣
ℎ
𝑖 𝑗 ≤ 𝛾ℎ𝑖 𝑗 ≤ 𝜋𝑚𝑎𝑥 𝑣

ℎ
𝑖 𝑗 (𝑖, 𝑗, ℎ) ∈ 𝐵 (6f)

𝛾ℎ𝑖 𝑗 ≥ 𝜋 𝑗 − 𝜋𝑚𝑎𝑥 (1 − 𝑣ℎ𝑖 𝑗 ) (𝑖, 𝑗, ℎ) ∈ 𝐵 (6g)

𝛾ℎ𝑖 𝑗 ≤ 𝜋 𝑗 − 𝜋𝑚𝑖𝑛 (1 − 𝑣ℎ𝑖 𝑗 ) (𝑖, 𝑗, ℎ) ∈ 𝐵 (6h)

𝛽ℎ𝑖 𝑗 , 𝛾
ℎ
𝑖 𝑗 ≥ 0 (𝑖, 𝑗, ℎ) ∈ 𝐵 (6i)

2.3 Delta Change Heuristic for Discrete
Diameters Approach (𝐷Δ𝐶)

In the same way that we can adapt the (CP) model into a NLP
model over a fixed topology network, we can adapt (DQP) into a
MILP model over a fixed topology. First, we linearize the product
of variables 𝜋 by variables 𝑣 , as before. However, now we keep
the equality constraint which becomes linear in this case. Then,
considering a tree topology𝐺 ′ = (𝑁,𝑇 ) with𝑇 ⊂ 𝐴, (DQP) for tree
𝑇 is simplified into (𝐷𝑄𝑃𝑇 ), which seeks to determine the diameter
of the pipes and the pressure at the nodes, considering that the
flows between nodes are fixed by the tree topology of the network.

We are aware that restricting the network topology to trees may
be a drawback of this heuristic. Indeed, by using discrete diameters,
we lose the structural property of the continuous case, i.e., the
optimal solution of our problem (𝐷𝑄𝑃) may not be a tree. This fact
will be illustrated in the test example of Subsection 3.1.

(𝐷𝑄𝑃𝑇 )



min
𝑣,𝜋,𝛽,𝛾

∑︁
(𝑖,𝑗 ) ∈𝐴

𝐿𝑖 𝑗 (𝑎0𝑥𝑖 𝑗 +
∑︁
ℎ∈𝐻
(𝑎1𝑑𝑚ℎ𝑣

ℎ
𝑖 𝑗+ 𝑎2𝑑𝑚

2
ℎ
𝑣ℎ
𝑖 𝑗
) ) (7a)

s.t.: (5d), (6c) − (6h)∑︁
ℎ∈𝐻

𝑑𝑚5
ℎ
(𝛽ℎ𝑖 𝑗 − 𝛾

ℎ
𝑖 𝑗 ) = 𝑘 ′ (𝑄𝑇 )2𝑖 𝑗𝐿𝑖 𝑗 (𝑖, 𝑗 ) ∈ 𝑇 (7b)∑︁

ℎ∈𝐻
𝑣ℎ𝑖 𝑗 = 1 (𝑖, 𝑗 ) ∈ 𝑇 (7c)

𝛽ℎ𝑖 𝑗 , 𝛾
ℎ
𝑖 𝑗 ≥ 0 (𝑖, 𝑗 ) ∈ 𝑇,ℎ ∈ 𝐻 (7d)

𝑣ℎ𝑖 𝑗 ∈ {0, 1} (𝑖, 𝑗 ) ∈ 𝑇,ℎ ∈ 𝐻 (7e)

We observe that problem (𝐷𝑄𝑃𝑇 ) is a mixed integer linear pro-
gramming (MILP) model, whereas (𝐶𝑃𝑇 ) is a non-linear program-
ming model.

3 NUMERICAL EXPERIMENTS
In this section we illustrate the solution methods presented in this
work, first in a test example, and we compare their solutions and
the performance of each method. Then, we apply them to a real
case study based in a future French national hydrogen network
obtained from [2].

We implemented all our models and resolution methods in Julia
1.8.1, using Ipopt 3.14.4 for NLP models and Gurobi 10.0 for MINLP
models.

3.1 Test Example
We generate a small instance to show the strengths and weakness
of each proposed method. This instance considers 9 consumption
nodes, and a single source node with a supply capacity equal to
the sum of the demand of the client nodes, likewise, the nodes
considered as clients, present a random demand between 15 and 50
units each, the coefficients for the cost functions are 𝑎0 = 2, 𝑎1 = 3
and 𝑎2 = 4, 𝜋𝑚𝑖𝑛 = 1.2 and 𝜋𝑚𝑎𝑥 = 1.8. The nodes were randomly
positioned in a squared plane of size 200 × 200, identified by their
coordinates (𝑥,𝑦), and the distance between them was calculated
as the Euclidean distance. For the discrete diameter approach we
consider two measures, {2.5, 10}, and for the continuous approach
we set 𝐷𝑚𝑖𝑛 = 2.5, and 𝐷𝑚𝑎𝑥 = 10.

For the continuous diameter approach we solved (𝐶𝑃
𝑇
), where𝑇

corresponds to the minimum spanning tree, and (Δ𝐶); and for the
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discrete diameters approach, we solved (𝐷𝑄𝑃
𝑇
), (𝐷Δ𝐶), (𝐷𝑄𝑃),

and (𝐷𝑄𝑃𝑅). For the delta change heuristics we decided to explore
the 50% of the nodes, and two neighbors of each explored node, i.e.,
|𝑆 | = 0.5 𝑁 and |𝑉 | = 2. Table 1 shows the optimal value and resolu-
tion time, obtained with each of these methods. For the continuous
diameter approach we can see how (Δ𝐶) improves the solution
with respect to the minimum spanning tree, however, this is not the
case for the discrete diameter approach. In Figure 1 we present the
network of the best solution obtained with each diameter approach,
in Figure 1a the network uses 6 different diameters for 9 arcs, with
small differences between them. Whereas, in Figure 1b we only use
one diameter, but the network obtained contains cycles, i.e., is not
a tree.

Table 1: Summary of results for test example

Method Time(s) Objective

(𝐶𝑃
𝑇
) 0.10 22268.3

(Δ𝐶) 26.41 21628.9

(𝐷𝑄𝑃
𝑇
) 0.01 100972.5

(𝐷Δ𝐶) 2.73 100972.5
(𝐷𝑄𝑃) 19.23 26254.5
(𝐷𝑄𝑃𝑅)∗ 2.39 25806.0

∗ Non feasible solution

(a) Network obtained with (Δ𝐶 ) (b) Network obtained with (𝐷𝑄𝑃 )

Figure 1: Network of the best solution obtained for the test
example according to each diameter approach

3.2 Case Study: Hydrogen Network in France
The future french national hydrogen network from André et al. [2]
will consider 79 nodes, corresponding to the 78 urban areas with
more than 100,000 inhabitants and a source near Paris. The source
node will have a supply capacity equal to 105348395𝑚3/𝑑𝑎𝑦, and
the client nodes will have a demand between 298271 and 33146708
𝑚3/𝑑𝑎𝑦, according to predictions for 2050, the coefficients for the
cost functions are 𝑎0 = 236663, 6385, 𝑎1 = 210, 4168253 and 𝑎2 =

0, 949507363, 𝜋𝑚𝑖𝑛 = 1225 [𝑏𝑎𝑟2] and 𝜋𝑚𝑎𝑥 = 5041 [𝑏𝑎𝑟2], and the
nodes are identified by their geographic coordinates. The pressure
loss constant is 𝑘′ = 165.778.

For this case study we implemented the same six solution ap-
proaches used for the test instance, (𝐶𝑃

𝑇
), where 𝑇 corresponds to

the minimum spanning tree, and (Δ𝐶) for the continuous diame-
ters approach; and for the discrete diameters approach, we solved
(𝐷𝑄𝑃

𝑇
), (𝐷Δ𝐶), (𝐷𝑄𝑃), and (𝐷𝑄𝑃𝑅). We set a time limit of 1 day.

For the continuous diameters approach we set 𝐷𝑚𝑖𝑛 = 10 and
a 𝐷𝑚𝑎𝑥 = 2000. While, for the discrete diameters approach we
consider 5 diameter-values: 100, 200, 400, 600 and 700.

Table 2 shows the results of the different implementations carried
out. In the continuous diameter approach, similarly to the results
obtained for the test example, the (Δ𝐶) heuristic slightly improves
the solution obtained over a minimum spanning tree. Furthermore,
bothmethods select a 78 different diameters, i.e., a different diameter
for each arc. In the discrete diameter approach, we can see that
(𝐷Δ𝐶) also improves slightly the solution obtained over aminimum
spanning tree, moreover, this solution is the most expensive one.

By analyzing these four heuristics we can see the cost, in terms
of time, of implementing the delta change heuristic, which solve a
NLP problem (MILP for discrete diameter approach), for each arc
of the cycle created for each neighbor of each explored node, i.e., if
it is decided to explore 10% of the nodes and two neighbors of each
explored node, at least 0.2 ∗ 𝑁 problems must be solved.

Table 2: Summary of results using different approaches. (TL=
Time limit of 1 day)

Method Time(s) Objective (106) Final GAP

(𝐶𝑃
𝑇
) 422 2079.05 -

(Δ𝐶) TL 2069.11 -

(𝐷𝑄𝑃
𝑇
) 124 2195.49 -

(𝐷Δ𝐶) 7076 2181.51 -
(𝐷𝑄𝑃) TL - -
(𝐷𝑄𝑃𝑅) TL 1894.45 0.12

It can also be seen that the cheapest network is obtained by
solving the DQPR problem. Furthermore, it presents savings of
13% compared to the most expensive one. In Figure 2 we illustrate
this solution, which reached the time limit with a final optimality
gap of 12%. In this case, even if this model is a relaxation, the
solution obtained satisfy the fluid mechanics equations, therefore,
is a feasible solution of (𝐷𝑄𝑃) and an upper bound to the optimal
solution of (𝐷𝑄𝑃).

We also remark that Ipopt, the solver used for NLP problems,
can only ensure local optimality of the solution, and that (𝐷𝑄𝑃) is
not able to find a feasible solution in the allotted time.

4 CONCLUSION AND PERSPECTIVES
This work addressed the problem of the design and dimensioning
of natural gas pipelines with hydrogen injection. We presented a
mixed integer polynomial programming model of degree six for this
problem under a continuous diameter approach, which includes
the fluid mechanics equation that describes the flow within a pipe.
We proposed a quadratic mixed integer programming model for the
discrete diameters approach, considering also the fluid mechanics



, ,

Figure 2: Hydrogen network for France obtained using
(DQPR) model

equation. We also derive a mixed-integer quadratic convex relax-
ation. Finally, we implement a Delta Change heuristic for both
cases.

To illustrate our proposals, we used a real case study in France,
considering estimated demands for 2050, where the best solution is
obtained using the MIQP convex relaxation, which, in this case, is
a feasible solution given that satisfies the fluid mechanics equation.
Furthermore, we showed the advantages of using a discrete diame-
ters approach, and how Delta change heuristic is not suitable for
our problem.

Following this work, a future direction is to evaluate the quality
of the convex relaxation, as well as its use in an exact resolution
approach to this problem. Moreover, a future work is to improve
the heuristic, considering another local search heuristic.
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