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Abstract

Machine learning techniques are increasingly used for high-stakes decision-making, such
as college admissions, loan attribution or recidivism prediction. Thus, it is crucial to en-
sure that the models learnt can be audited or understood by human users, do not create
or reproduce discrimination or bias, and do not leak sensitive information regarding their
training data. Indeed, interpretability, fairness and privacy are key requirements for the
development of responsible machine learning, and all three have been studied extensively
during the last decade. However, they were mainly considered in isolation, while in prac-
tice they interplay with each other, either positively or negatively. In this survey paper, we
review the literature on the interactions between these three desiderata. More precisely,
for each pairwise interaction, we summarize the identified synergies and tensions. These
findings highlight several fundamental theoretical and empirical conflicts, while also demon-
strating that jointly considering these different requirements is challenging when one aims
at preserving a high level of utility. To solve this issue, we also discuss possible conciliation
mechanisms, showing that a careful design can enable to successfully handle these different
concerns in practice.

1. Introduction

Machine learning (ML) models have many useful and promising applications. For instance,
they can help to analyze medical data, which is becoming increasingly complex due to
the improvements in medical tools. However, their growing use for high-stakes decision-
making systems - such as college admissions, recidivism prediction or credit scoring - raises
significant ethical, philosophical and societal challenges. This has led to the regulation of
their use through several legal texts, such as the European Union General Data Protection
Regulation1 (Voigt & Von dem Bussche, 2017) or the forthcoming AI Act2.

1. https://gdpr-info.eu/
2. https://artificialintelligenceact.eu/
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In particular, three important ethical issues have emerged, each corresponding to a
key concern that should be addressed to both comply with these new legal frameworks
and lay the foundations towards a responsible ML. First, ML algorithms require large
amounts of data, which often contains personal information. Thus, it is of paramount
importance to ensure that the privacy of the involved individuals is not harmed while also
being able to extract useful generic patterns from this data. Second, it was shown that
data-driven decision-making processes can create or reproduce biases that systematically
disadvantage specific individuals or groups (Mehrabi et al., 2022). Quantifying but also
reducing/eliminating these biases to promote fairness is hence an important challenge.
Third, while common ML models, such as deep neural networks, can reach high predictive
performance, their underlying logic and representation are often too complex, preventing
users from fully understanding their decisions. This raises significant concerns, regarding
their auditability, certifiability and trust, thus calling for the requirement of interpretability
with respect to their predictions.

These three topics, namely privacy, fairness and explainability, have been extensively
studied during the last decade (Cristofaro, 2020; Barocas et al., 2019; Guidotti et al., 2018)
with an emphasis on how they each trade-off with utility. However, they are often considered
in isolation, while in practice it is necessary to enforce them simultaneously. Characterizing
their mutual interplays is hence an important research avenue, which has attracted some
attention in the last years. Indeed, these concerns often conflict (Datta et al., 2023), and
trade-offs between them, as well as with utility, generally have to be set. Throughout this
survey paper, we conduct an in-depth review of the literature on the different compatibilities,
synergies and tensions that have been identified between them. More precisely, we focus on
the supervised learning setup, and consider mainly classification tasks.

Positioning with respect to other surveys Other recent works survey the literature
on the interactions between several of our three identified desiderata. Among others, Datta
et al. (2023) review at a high level the main tensions that occur between the human values
of privacy, transparency and fairness when they have to be embodied in a machine learning
model. We extend this work by additionally considering compatibilities and synergies.
Furthermore, while they also discuss tensions within each pillar and with the context of
deployment, we rather focus on the interplays between the three aspects to allow a more
thorough technical discussion. Furthermore, Fioretto et al. (2022) investigate solely the
interplays between fairness and (differential) privacy by conducting an in-depth analysis
on how one influences the other. We extend this study in Section 4. Finally, a recent
thesis (Schöffer, 2023) focuses on the interactions between transparency and fairness. It
provides a deepening of (part of) our dedicated Section 3.

The outline of the paper is as follows. First in Section 2, we review the background
regarding the three considered aspects of responsible ML, namely fairness, interpretability
and privacy before surveying their interplays. More precisely, Section 3 considers both
fairness and interpretability, Section 4 studies the interactions between fairness and privacy,
and Section 5 summarizes the connections between interpretability and privacy. We then
conclude with the identified key challenges in Section 6. Finally, Appendix A provides a
graphical summary of all the analyzed interplays.
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2. Background

In this section, we introduce the three identified pillars of responsible machine learning. For
each of them, we briefly review their key ideas, with an emphasize on the particular aspects
that will ease the understanding of subsequent sections.

2.1 Fairness

Different approaches to fairness have been proposed in the literature, which can be grouped
into three main categories (Verma & Rubin, 2018). The rationale of statistical fairness,
also coined group fairness, is to ensure that a given statistical measure has similar values
between several subgroups, defined by the value(s) of some sensitive feature(s). For example,
the statistical parity fairness metric aims at equalizing the positive prediction rate across
the different groups, while the equal opportunity metric considers the groups’ true positive
rates and finally the equalized odds metric handles both their true positive and true negative
rates. The underlying principle is that such sensitive features (e.g., race, gender, . . . )
should not influence the predictions. Individual fairness approaches build on the idea that
similar individuals should be treated similarly (Dwork et al., 2012). For instance, this can
be formulated as a Lipschitz condition over the classification function, in which bounding
the distance between two examples also bound the distance between their outputs from
the model. Causal fairness techniques analyze the causal relationships between sensitive
features, non-sensitive ones and the target decision, leveraging causal graphs (Kilbertus
et al., 2017).

Depending on which step of the (supervised) ML pipeline they intervene on, fairness-
enhancing methods can be divided into three main categories (Bellamy et al., 2019; Friedler
et al., 2019; Caton & Haas, 2023). Pre-processing methods aim at removing undesired
correlations from the training data before applying standard learning techniques on the
sanitized data while post-processing techniques modify the outputs of a trained model to
achieve fairness. Finally, in-processing (also called algorithmic modification) techniques
directly adapt the learning procedure to produce inherently fair models.

2.2 Explainability/Interpretability

There are two main approaches towards facilitating the understanding of ML models (Burkart
& Huber, 2021). On the one hand, post-hoc explanations (Guidotti et al., 2018) can be
crafted to explain the behaviour of a black-box model. Depending on their form, different
types of such explanations can be defined, among which example-based explanations con-
sist in datapoints, belonging to the same space as the model’s training set examples. For
instance, they can be highly influential training examples (Koh & Liang, 2017), nearest
neighbours or prototypes. Counterfactual explanations also fall into this category, as they
are datapoints close to the explained instance but exhibiting a different prediction from
the considered model. Feature-based explanations take the form of a vector in the feature
space, in which each coordinate is the degree to which the associated feature influences
a model’s prediction. For example, in computer vision, saliency maps (Selvaraju et al.,
2017) highlight the regions of an input image that most contributed to the model’s deci-
sion. Feature-based explanations can be computed using several mechanisms. For instance,
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gradient-based methods compute the gradients of a model (e.g., a deep neural network) with
respect to the input features, either for a given class or for intermediate component(s) of
the network, which enables to determine which features contribute the most to a particu-
lar prediction. In constrast, perturbation-based methods modify the input provided to the
black-box and observe the resulting changes in the model’s outputs.

On the other hand, one can learn models that are inherently interpretable by humans.
For instance, decision trees or rule lists of reasonable size are commonly considered as
interpretable (Lipton, 2018). While the meaning of a reasonable size is ill-defined and
context-specific, it indicates that model simplicity is a crucial property to consider while
building these models.

2.3 Privacy

The development of privacy-preserving mechanisms for ML has been widely motivated by
the flourishing literature on inference attacks against models in recent years. In the generic
setting, such attacks leverage the outputs of a computation to retrieve information regarding
its inputs (Dwork et al., 2017). More specifically in ML, the computation being performed
is usually a learning algorithm whose output is a trained model. Two distinct adversarial
settings are generally considered in the literature. In the black-box setting, the adversary
does not know the model’s parameters and can only query it through an API. In contrast,
in the white-box setting, the adversary has full knowledge of the model parameters. Of
course between these two extreme scenarios, diverse gray-box settings are possible.

Different types of inference attacks have been proposed against ML models (Cristofaro,
2020; Rigaki & Garćıa, 2024), among which:

• Membership inference attacks try to infer whether given examples were used to train
a model or not (Shokri et al., 2017).

• Reconstruction attacks aim at reconstructing part of a model’s training data (Dwork
et al., 2017).

• Model extraction attacks aim at stealing a black-box model’s internal functionalities
or parameters (Tramèr et al., 2016).

• Model inversion attacks focus on retrieving a model’s inputs by only observing the
associated outputs (Fredrikson et al., 2015). Hence, such attacks often target the data
provided at inference time (and not solely the training data).

To counter these risks, several syntactic models of anonymity were proposed. More
precisely, these approaches consist in grouping examples within blocks so that the profile
of a user is indistinguishable among those belonging to the same block (Clifton & Tassa,
2013). For instance, k-anonymity (Sweeney, 2002; Samarati, 2001), requires that each block
contains at least k examples. Several extensions of k-anonymity were proposed, among
which t-closeness (Li et al., 2007) additionally ensures that the distribution of the values
within each block is sufficiently close to that of the entire dataset.

Nonetheless they are not well-adapted to ML and do not provide formal privacy guar-
antees. Thus, differential privacy (DP) has been adopted as the leading approach, in parts
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because it can be used to precisely bound the amount of information the output of a com-
putation leaks regarding its inputs (Dwork et al., 2006). Due to the strong theoretical
guarantees it provides, to the interesting properties it exhibits, and to the availability of
several mechanisms to enforce it, it has now been widely adopted. Examples of recent ap-
plications of DP include the 2020 release of the U.S. Census Bureau3 (Abowd, 2018), but
also its use by companies such as Google (Aktay et al., 2020), Facebook (Herdagdelen et al.,
2020) and Apple (Team, 2017).

Referring to (ǫ,δ)-DP, two parameters help control the level of enforced privacy. In-
tuitively, ǫ bounds the contribution of each individual example to the output of the com-
putation, while δ corresponds to the probability of privacy failure, with tighter values of
these parameters indicating a stronger privacy protection. Pure DP refers to scenarios in
which δ = 0 while approximate DP covers cases in which δ > 0. DP exhibits several im-
portant properties, among which the immunity to post-processing, which states that the
output of a differentially-private algorithm remains differentially-private whatever (data-
independent) computations are further performed on it. Several mechanisms were proposed
to enforce DP (Dwork & Roth, 2014). For instance, the Laplace (respectively, Gaussian)
mechanism (Dwork et al., 2006) adds random noise drawn from a Laplace (respectively,
Gaussian) distribution to the computed value, with the noise magnitude being scaled to
the function’s sensitivity (i.e., the maximum impact a single individual can have on the
computation’s output). The functional mechanism (Zhang et al., 2012) approximates the
function using its polynomial Taylor expansion and perturbs the coefficients of the result-
ing polynomial form with noise. Unlike the aforementioned noise addition techniques, the
exponential mechanism (McSherry & Talwar, 2007) consists in drawing an output from a
probability distribution, in which the probability of a candidate depends on its utility. Sev-
eral frameworks for differentially-private ML exist (Ji et al., 2014; Gong et al., 2020). For
instance, DP-SGD (Abadi et al., 2016) was proposed to train deep learning models under DP.
The authors have modified the traditional Stochastic Gradient Descent (SGD) by clipping
the norm of the computed individual gradients (to bound each example’s contribution to
the computation) before perturbating them with Gaussian noise. Another approach based
on ensemble methods, called PATE, considers a particular setup, with a private training set
and a public unlabeled one (Papernot et al., 2017, 2018). First, the (private) training set is
partitioned into a number of non-overlapping subsets used to train a set of teacher models.
Afterwards, the predictions of the teachers (i.e., vote histograms) are made differentially-
private by adding Laplace noise. The public data is then labeled using these noisy pre-
dictions, and used to train a differentially-private student model. We refer the interested
readers to the recent survey of Ponomareva et al. (2023), which reviews existing techniques
to make supervised learning algorithms differentially-private.

3. Fairness and Interpretability

In this section, we first review the tensions between fairness and interpretability before
exploring some synergies.

3. https://www.census.gov/programs-surveys/decennial-census/decade/2020/
planning-management/process/disclosure-avoidance/differential-privacy.html
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3.1 Tensions

First, we elaborate on the theoretical and empirical tensions between fairness and simplicity,
which is often considered as a proxy for interpretability. Afterwards, we discuss the main
challenges that need to be tackled when jointly pursuing the interpretability and fairness
desiderata. Finally, we list different ways in which post-hoc explanations can be unfair.

3.1.1 Tensions between Fairness and Simplicity

Simplicity and fairness intrinsically conflict A framework to theoretically study the
implications of enforcing interpretability is proposed by Agarwal (2021a), adapted from
that of Kleinberg and Mullainathan (2019). It considers simplicity as a proxy for inter-
pretability. More precisely, a ML model is represented as a set of cells partitioning the
input space and simplifying a model consists in merging some of its cells (hence diminishing
their number and the model’s complexity). The authors prove that, for every non-trivial
group-agnostic simplification, there exists a more complex classifier that simultaneously
strictly improves both accuracy and (statistical) fairness. This classifier can be efficiently
constructed by carefully selecting some examples from chosen subgroups and splitting their
associated cells. Overall, this result suggests that interpretability/simplicity comes at some
cost in terms of accuracy/fairness. Similar results were originally shown by Kleinberg and
Mullainathan (2019), further illustrating how simplicity can be inconsistent with statistical
fairness notions. As stated by Dziugaite et al. (2020), while model interpretability is an ab-
stract notion, enforcing it can only reduce the set of admissible ML models. Consequently,
ensuring interpretability can only decrease the (training) accuracy. A similar reasoning can
also be done with respect to fairness. More precisely, by limiting the space of admissible
classifiers, the enforcement of fairness reduces the number of possible trade-offs, which can
be an obstacle to achieve both fair and accurate learning.

Empirical trade-offs are complex An empirical study of the trade-offs between inter-
pretability and fairness was conducted by Jabbari et al. (2020). In this study, the number of
features available to a classifier is used as a measure of its complexity and acts as a proxy for
interpretability. By changing this number, the authors report the variations obtained with
respect to statistical fairness notions (namely, statistical parity and equal opportunity).
Experiments on synthetic and real-world datasets show several trends, that mainly depend
on the correlation between sensitive attributes, non-sensitive ones as well as class labels.
As expected, when the sensitive attribute is correlated (even moderately) with the class
label, using it explicitly greatly increases the model’s unfairness. The results obtained rely
strongly on the chosen notion of interpretability and as such cannot be considered generic.
In addition, they demonstrate that the trade-off between fairness and interpretability is, in
practice, complex and data-dependent.

3.1.2 Combining Fairness and Interpretability is Challenging

Learning optimal interpretable models under fairness constraints is computa-
tionally challenging Due to their combinatorial nature, learning optimal interpretable
machine learning models under constraints (e.g., fairness constraints) has been identified as
one of the main technical challenges towards interpretable machine learning (Rudin et al.,
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2022). While approaches producing optimal interpretable and fair ML models exist in the
literature (e.g., an Integer Programming formulation for learning optimal fair decision trees),
they are often computationally expensive and difficultly scale. Yet, recent work shows that
the conflict between accuracy and fairness can be leveraged to perform an effective pruning
(using Integer Linear Programming) when learning optimal fair rule lists (Aı̈vodji et al.,
2022).

Explanations may not preserve fairness properties of a model It was observed
by Dai et al. (2021) that popular explainability frameworks may not reliably reflect the
fairness properties of the explained models. For example, on the one hand it is possible
to compute post-hoc explanations that appear to be fair to explain an unfair black-box
model (Aı̈vodji et al., 2019). On the other hand, the explanations of a fair model’s decisions
may (wrongly) rely on sensitive features and exhibit discrimination (Manerba & Guidotti,
2022). In addition, the choice of the explanation method as well as the type of explanation it
produces both impact the users’ perceived fairness (Dodge et al., 2019). The fairness of post-
hoc explanations generated from a fair model’s decisions was also investigated by Dai et al.
(2021). More precisely, based on group fairness notions, the fairness of an explanation can
be formulated similarly to that of a classifier (an explanation being seen as a local surrogate
model). Afterwards, fairness is computed on a neighbourhood of the explained example.
For such artificial points, no label is known, which means that only the statistical parity
metric can be used. These researchers show that the fairness property of the explained
model may not be reflected in the generated explanations and propose a framework for
producing fairness-preserving explanations.

Fairness-enhancing methods may require non-interpretable transformations, hence
harming interpretability In a study on interpretable, fair and accurate ML for crimi-
nal recidivism prediction, Wang et al. (2020) observe that fairness-enhancing methods often
require non-interpretable transformations, which are not compatible with interpretability
desiderata. Indeed, pre-processing methods usually perform complex transformations of the
input features, which harm their original semantic (Kamiran & Calders, 2012; Zemel et al.,
2013). The resulting representation hence can not be used to produce an understandable
model. Furthermore, the corrections performed to a model’s outputs by post-processing
techniques (Pleiss et al., 2017) can also lead to non-interpretable processes.

3.1.3 Other Unfair Effects of Explainability Methods

Post-hoc explanations affect individuals’ privacy in a disparate manner As dis-
cussed later in Section 4.1, minority groups often suffer from increased privacy risks. Inter-
pretability can also exhibit this trend, as noted by Shokri et al. (2020, 2021). For instance,
when investigating whether membership information can be inferred from post-hoc explana-
tions, it has been observed that outliers as well as “hard to generalize” examples belonging
to minority groups are at a higher risk of being disclosed than majority groups. This is
partly due to the fact that they are more susceptible of being part of the generated ex-
planations. In such case, interpretability tools can penalize minorities by leaking more
information about disadvantaged groups.
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Post-hoc explanation frameworks can introduce unfairness through disparity in
explanation quality Group-based disparities in explanation quality have been recently
investigated by Dai et al. (2022). More precisely, the authors first identify key charac-
teristics that define the quality of an explanation (e.g., fidelity, stability, consistency and
sparsity). Then, they conduct a large experimental study demonstrating that there is often
a disparity in the quality of the explanations produced affecting minority groups. Such
quantitative disparity is identified to depend on the type of model being explained and on
the particular post-hoc explanation framework considered. Using several real-world applica-
tions (e.g., finance, healthcare, college admissions and the US justice system) and post-hoc
explanation frameworks, Balagopalan et al. (2022) have also demonstrated that the fidelity
of the produced explanations varies significantly across the different identified subgroups
of the population. Finally, they suggest that robustness techniques can help reduce the
observed disparity - but emphasize that communicating details regarding such disparity to
end-users is critical.

Counterfactual explanation frameworks can harm subgroups of the population
by consistently providing higher-cost recourse In the context of counterfactual ex-
planations, the cost of recourse is defined as the amount of effort a user has to do to
implement the provided recourse and change the model’s decisions. In this context, it was
shown that counterfactual explanation frameworks may provide lower-cost recourse for some
subgroups of the population while harming some others (Ustun et al., 2019; Sharma et al.,
2020). For instance, some minority groups may have to make more effort to implement
the provided recourse after a loan refusal. To face this issue, recourse fairness was stud-
ied (Gupta et al., 2019; Karimi et al., 2023) and frameworks equalizing the cost of recourse
across subgroups were proposed.

Post-hoc explanations can be manipulated Explainability tools are designed to fa-
cilitate model audit and enhance the users’ understanding. However, because the process of
explanation generation can sometimes be opaque, post-hoc explanations could potentially
be manipulated by black-box model holder to hide unfair decision-making processes by pro-
viding manipulated fair explanations. Indeed, it was shown that black-box explanations can
be misleading, for instance by achieving high fidelity with respect to the explained model
while using entirely different features, leveraging correlations in the feature space (Lakkaraju
& Bastani, 2020). In addition, it has been demonstrated that this can be exploited and ex-
tended to an existing framework (Lakkaraju et al., 2019) to generate explanations favoring
some given features while avoiding others. Finally, the authors have conducted a user study
and find out that misleading explanations can increase the user trust in black-box models
wrongly.

Other works have also shown how malicious entities can manipulate explainability tech-
niques to hide the true reasoning of the underlying model. For example, it is possible to
directly craft manipulated explanations, such as local surrogate models (Aı̈vodji et al., 2019,
2021) that appear fair but actually explain the output of a globally unfair black-box, with
such practice being coined as “fairwashing”. Explanation frameworks can also be potentially
manipulated, for instance by detecting artificial examples generated by perturbation-based
methods and giving them a chosen output value (Slack et al., 2020). This can be leveraged
to hide a black-box model’s unfairness by crafting and providing fair explanations to an
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auditor (Slack et al., 2021). Furthermore, Heo et al. (2019) and Dimanov et al. (2020) have
shown that it is possible to fine-tune a pre-trained model to manipulate the output of fea-
ture importance explanation methods while having little impact on the model’s accuracy.
Considering sequence classification and sequence-to-sequence tasks (i.e., in which the input
to the model is a sequence of words), Pruthi et al. (2020) propose a method to train a model
with significantly reduced attention mass over some chosen words (e.g., gender-related pre-
fixes) while still using them for prediction. A user study shows that the proposed method
is able to mislead users into thinking that the underlying model is fair, while it is actually
biased against gender.

It was also shown to be possible to learn a model so that the counterfactual explanations
generated by some off-the-shelf algorithm look recourse fair across subgroups of the popu-
lation (i.e., the cost of the recourse associated to the counterfactual explanations does not
vary too much between individuals from the different subgroups), while also being able to
generate lower-cost recourse explanations for some privileged subgroup(s) by simply adding
a small adversarial perturbation (Slack et al., 2021, 2021). In Zhang et al.’s (2020) work,
an adversary is able to generate adversarial examples with chosen prediction by a black-box
model that also fool popular explainability tools. This illustrates the fact that post-hoc
explainability techniques are not a reliable way to detect adversarial inputs manipulation.
Finally, Laberge et al. (2023) consider the setup of a fairness audit in which the data is
private and owned solely by the malicious model holder, which provides subsamples to the
external auditor. They show that the former can manipulate the auditor’s explainability
methods to hide unfair decision-making (such as the influence of a sensitive attribute) by
providing adversarially-selected data samples. In addition, such practices are particularly
difficult to detect in a remote setting, in which the explanation is provided by a third-party
API (Merrer & Trédan, 2019).

Finally, although many tensions between explainability/interpretability and fairness ex-
ist, one can still identify some synergies, as discussed hereafter.

3.2 Synergies

Interpretability and explainability ease model audit As mentioned by Rudin (2019),
it is easier to detect and debate possible biases or unfairness issues with an interpretable
model than with a black-box one. This inherent benefit of interpretable models applies both
to fairness and accuracy, as it makes it possible to detect and correct possible inaccuracies
with respect to the training data - which is more difficult with black-box models. Following
the same line of research, Doshi-Velez and Kim (2017) state that interpretability can be
used to qualitatively ascertain whether other desiderata - such as fairness - are met. Post-
hoc explainability methods can also facilitate fairness audit by gaining insight regarding the
causes of a model’s unfairness. For instance, Begley et al. (2020) propose to rely on fairness
explanations based on Shapley values to be able to attribute a model’s overall unfairness
to individual input features.

Fairness can act as a regularizer It was observed in the literature that enforcing
fairness constraints can have a regularizing effect, thus also reducing overfitting (Kilbertus
et al., 2018). More precisely by preventing over-complex models, this can lead to sparser
and more interpretable models.
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4. Fairness and Privacy

In this section, we first highlight the identified theoretical and empirical tensions between
fairness and privacy. We then review some synergies illustrating how the two requirements
can be conciliated. Note that part of this intersection is covered in much more details
by a recent survey (Fioretto et al., 2022) studying the interactions between fairness and
differential privacy (DP), in both decision making and machine learning tasks.

4.1 Tensions

As discussed in Section 2.1, it is desirable and often legally required to ensure that sensitive
attributes do not directly or indirectly influence the predictions of a ML model. How-
ever, while many popular fairness-enhancing approaches require the availability of such
sensitive attributes, their collection and use may be prohibited by privacy regulations or
anti-discrimination laws. Some approaches propose to use an encrypted version of the sen-
sitive attributes so that the users do not have to explicitly reveal this information. For
instance, Kilbertus et al. (2018) leverage cryptographic approaches such as Secure Multi-
Party Computation (SMPC) to build a fair model. Nevertheless, processing encrypted
information ensures that the computation does not leak anything more than its outputs,
but does not protect them from inference attacks. This illustrates a first, straightforward
intrinsic conflict between fairness and privacy. Furthermore, when applied jointly, both
notions often conflict, as discussed in more details in the following paragraphs.

Group fairness and differential privacy are theoretically incompatible It is prov-
ably impossible to build ML models strictly respecting a given group fairness constraint
while respecting DP. More precisely, Cummings et al. (2019) have shown that (ǫ, 0)-DP
and fairness (more precisely equal opportunity) cannot be simultaneously satisfied without
reaching trivial accuracy. The authors have noted that this holds for pure (ǫ, 0)-DP, but
is also applicable for (ǫ,δ)-DP (as δ is usually required to be cryptographically small). An
impossibility theorem is also stated by Agarwal (2021b), considering popular group fairness
definitions: if a learning algorithm L is (ǫ, 0)-differentially private and is guaranteed to out-
put an approximately fair classifier, then L is constrained to output a constant classifier.
The idea of the proof is essentially the same as that of Cummings et al. (2019). (i) Con-
sider a learning algorithm L that is (ǫ, 0)-DP. For any two datasets D and D′, and for any
classifier h, if L outputs h for D with probability strictly greater than zero, then it must
output h for D′ with strictly positive probability too. This can be proved because, for any
two datasets D and D′, it is possible to build a serie of datasets neighboring two-by-two,
from D to D′ (and the property must be verified for all pairs of neighbouring datasets
by definition of pure DP). (ii) Recall that L can only output classifiers respecting a given
(exact or approximate) fairness requirement: if a classifier h does not meeet the fairness
requirement on the training set D, then P (L(D) = h) = 0. The conjunction of (i) and (ii)
implies that L can only release constant classifiers (and hence pure DP and group fairness
cannot be satisfied jointly).

Enforcing fairness increases privacy vulnerabilities Disparities with respect to the
vulnerability to Membership Inference Attacks (MIAs) between various subgroups of the
population are observed by Kulynych et al. (2022). The theoretical analysis suggests that
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vulnerability to MIA is caused by distributional overfitting, which quantifies the distance
between the distributions of outputs of the model on the training set and outside. Disparate
vulnerability to MIAs arises if and only if distributional overfitting differs across subgroups.
In practice, as aforementioned in Section 3.1.3, subgroups that are inherently more difficult
to fit and/or that are less represented in the data are indeed more vulnerable to MIAs.
Additionally, overfitting can increase these vulnerabilities, but also their disparities. For
instance, it was empirically shown that enforcing fairness constraints may help under cer-
tain conditions, but can also exacerbate the observed disparities or even create new ones
in real-world applications. Finally, the authors have recalled that DP upper-bounds the
vulnerability of all individuals or subgroups, hence also upper-bound their disparity. How-
ever, it does not remove it completely and in addition to get an interesting mitigation, the
privacy budget must often be really tight, hence resulting in utility drops.

In a position paper, Ekstrand et al. (2018) emphasize the importance for a privacy-
preserving mechanism to protect individuals with equivalent effectiveness. However, while
DP provides the same (worst-case) theoretical protection for all dataset examples, the actual
privacy vulnerability is often not uniformly distributed. The privacy implications of fairness
are empirically studied by Chang and Shokri (2021), quantifying the data privacy risk
as the success of a black-box MIA. The authors have empirically shown that enforcing
fairness constraints disproportionately raises the privacy risk of the unprivileged subgroups:
“fairness comes at the cost of privacy, and the privacy cost is not equal across subgroups”.
This is explained by the fact that the fairness requirements they have used requires the
model to equally fit the unprivileged subgroups. When such subgroups are smaller, each
example has a stronger impact over the resulting model and, in the worst case, is memorized.
In addition, the more unfair the unconstrained model is, the higher the privacy vulnerability
disparity will be, as there is more unfairness to be compensated.

Finally, information regarding a model’s fairness can be exploited to reconstruct the
sensitive attributes of its training examples (Hu & Lan, 2020; Ferry et al., 2023). These
works rely on declarative programming approaches to encode the fairness desiderata and
perform (or improve) the reconstruction. Their empirical results demonstrate that the
information brought by fairness regarding sensitive attributes can effectively by exploited
by an adversary to harm the privacy of individuals involved in the model’s training data.

Differential privacy disproportionately affects utility The effects of enforcing dif-
ferential privacy on a model’s accuracy on different subgroups of the population are studied
by Bagdasaryan et al. (2019), using the accuracy parity fairness notion, which equalizes
the model’s accuracy across the subgroups. Considering several image classification and
natural language tasks, they use the popular DP-SGD (Abadi et al., 2016) framework for
differentially-private deep learning in both centralized and federated settings. This large
empirical study shows that gradient clipping and random noise addition, the key mecha-
nisms of DP-SGD, disproportionately affect underrepresented subgroups. Indeed, enforcing
DP leads to higher accuracy drops for minorities and discriminated groups, such as darker-
skinned people in the context of facial recognition, but also at the intersections of different
subgroups. This leads to a “poor gets poorer effect”, in which the classes with low accuracy
in the non-DP setting suffer the largest accuracy drops when applying DP. In a follow-up
work, Uniyal et al. (2021) empirically observe that the differentially-private PATE (Paper-
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not et al., 2017, 2018) framework (introduced in Section 2.3) also has disparate impact on
the resulting model’s utility. However, they report that PATE has smaller disparate impact
compared to DP-SGD to reach similar privacy levels, and note that a sweet spot for the
number of teachers exists, which minimizes the induced disparities. Farrand et al. (2020)
observe that the accuracy disparity caused by DP still occurs even when the data is slightly
imbalanced, and for loose privacy guarantees. Indeed, two main factors were identified
in the literature to explain this effect: properties of the training data, and characteristics
of the DP mechanism, which are summarized and analyzed with more details in a recent
survey (Fioretto et al., 2022).

It was also observed in healthcare applications (x-ray images classification and mor-
tality prediction in time series) that small groups and samples at the tail of the data
distribution suffer from a larger accuracy drop compared to majority groups and typical
examples (Suriyakumar et al., 2021). Furthermore, the characteristics of DP learning mech-
anisms themselves are also directly related to the magnitude of the observed disparate im-
pact. This encompasses the gradient clipping and noise addition mechanisms of DP-SGD (as
aforementioned), as well as the size of the teacher ensemble and the confidence of the voting
teachers in PATE (Tran et al., 2021a). Different technical solutions to mitigate the disparate
impact of DP on a model’s utility were proposed. Indeed, it was shown that it is possible
to modify DP-SGD to use different clipping bounds for the different identified subgroups (Xu
et al., 2021). Other work (Zhang et al., 2023) performs early stopping based on a public
validation set. When using PATE in low voting confidence regimes, small perturbations may
significantly affect the result of the voting result. To mitigate this phenomenon, Tran et al.
(2021a) propose to use soft labels and report confidence scores associated with each target
label, rather than reporting solely the label with the largest confidence. While being heuris-
tic as it does not guarantee any form of fairness, these approaches have been empirically
shown to reduce the disparate impact caused by traditional DP mechanisms.

The disparate impact of DP mechanisms was also observed for decision tasks. Pujol
et al. (2020) have studied the setup in which agencies release differentially-private versions
of their databases, that are then used for several allocation problems. The authors con-
sider three real-life allocation problems using the differentially-private Census data: namely
printing of election materials in minority languages, allocation of funds to school districts
to assist disadvantaged children and apportionment of legislative representatives. They
demonstrated that the noise added by DP mechanisms leads to errors in the computed allo-
cations compared to the true allocations (i.e., the allocations that would be decided without
DP). The key point of their work is that this error affects the entities being allocated some
resources in a disparate manner. For instance, it is empirically shown that small school
districts often benefit an overestimated allocation. On the other side, larger district may
get a smaller allocation, which harms their enrolled children. This effect was also observed
in the literature with two main causes being identified (Fioretto et al., 2022). In a nutshell,
the shape of the decision problem can disproportionately exacerbate the noise added by the
DP data release if it involves non-linearities in its computation, such as thresholds for funds
allocation. Additionally, post-processing steps can induce intrinsic biases. For instance,
ensuring simple non-negativity constraints within the computed values can imply a positive
bias. It was also shown that DP mechanisms adding data-dependent noise are responsible
for a more important disparity, due to the fact that, contrary to standard DP mechanisms
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(such as the Laplace mechanism), the effect of DP differs between entities. Finally, other
aspects of privacy can also impact fairness. For instance, recent work by Koch and Soll
(2023) show that models designed to take into account potential future unlearning requests,
which are request in which a user asks for the contribution of his data to be removed from
the model, disproportionately affects the utility for minority groups.

Differential privacy disproportionately affects the quality of post-hoc explana-
tions Datta et al. (2016) propose the notion of differentially-private post-hoc explanations,
among which some aim at identifying proxy features that cause a group disparity (i.e., a
difference in the average prediction between several subgroups). Then, it is shown that, for
minority groups, the amount of noise required to make the explanations differentially-private
results in a significant loss in its utility, hence making more difficult the discovery of dis-
criminatory proxy features. While proposing a framework to generate differentially-private
post-hoc explanations, Patel et al. (2022) have observed that sparse data regions, which
often correspond to underrepresented subgroups are associated to poorer performances, ei-
ther in terms of required privacy budget or explanation quality. In both cases, privacy
disproportionately affects minority groups, which is consistent with previously mentioned
works.

Overall, DP and statistical fairness are both theoretically incompatible and strongly
conflict in practice. On the one side, to ensure fairness minority groups, the corresponding
examples shall yield a higher importance in the learning process, which exposes their in-
formation more than for examples of the majority group. On the other side, to ensure DP,
one must reduce more the influence of underrepresented subgroups, as learning an equiva-
lent amount of information for them would result in an increased per-example privacy risk.
Nevertheless, in the next subsection, we show that the two notions can be jointly applied
under certain circumstances, and thus that there are some synergies between privacy and
fairness.

4.2 Synergies

Differential privacy and approximate fairness can be jointly enforced with some
trade-offs As discussed in Section 4.1, it is impossible for a learning algorithm to satisfy
DP while also producing a model strictly complying with fairness constraints. However, it
is possible for a DP learning algorithm to output a model approximately satisfying given
fairness criteria (Cummings et al., 2019). This leads to a trade-off between the DP guar-
antees and the observed model’s fairness. Hereafter, we first introduce different methods of
the literature jointly handling differential privacy and fairness.

The notion of Private and Approximately Fair Agnostic PAC (Probably Approximately
Correct) Learning was introduced by Cummings et al. (2019). It states that a learning al-
gorithm satisfies DP while returning an accurate and approximately fair classifier with high
probability. The authors implement this notion using the Exponential Mechanism, with
a utility function being the sum of a model’s error and unfairness. The sensitivity of the
utility function being data-dependent, the Laplace mechanism is used to upper-bound it in
a differentially-private manner. This approach achieves the desiderata of privacy, fairness
and accuracy, but the running time of the Exponential Mechanism scales linearly with the
hypothesis class size, which is exponential for common hypothesis classes. This motivates
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the need for an efficient algorithm conciliating these desiderata. To realize this, the authors
have built upon a polynomial-time algorithm from the literature, producing approximately
fair and accurate randomized classifiers with high probability. In a nutshell, this algorithm
formulates the fair learning problem as a two-player zero-sum game, between a Learner
minimizing error while satisfying fairness constraints and an Auditor updating Lagragian
multipliers to penalize the largest subgroup-wise fairness violations. This algorithm is mod-
ified to satisfy DP by using a differentially-private subroutine to privately compute the
players’ best responses in each round.

Two methods are proposed by Xu et al. (2019) to achieve jointly DP and fairness in
logistic regression. Decision boundary fairness is used as a notion of fairness that provably
minimizes statistical parity violation. A first approach coined PFLR considers the fairness
constraint as a penalty term to the objective function. DP is enforced using the functional
mechanism (Zhang et al., 2012). More precisely, the objective function is approximated
through its polynomial representation based on Taylor expansion before being perturbed by
injecting Laplace noise into its polynomial coefficients. Minimizing the perturbed objective
function leads to the computation of differentially-private model parameters. A second
approach, named PFLR* and based on the first one, takes advantage of the connection
between ways of achieving differential privacy and fairness. More precisely, the authors
noted that adding the fairness penalty is equivalent to shifting the value of some coefficients
of the polynomial form of the objective function. Thus, they do not incorporate the fairness
penalty term directly in the objective function and rather integrate it via mean-shifting the
Laplace noise added to a subset of the coefficients. As such shift is dataset-dependent, a
small part of the privacy budget is used to estimate it in a differentially-private manner. The
Theoretical analysis as well as empirical evaluation show that PFLR*, by separating privacy
budgets on objective function and fairness constraint, offers a more flexible framework to
find good trade-offs among privacy, fairness, and utility.

In a follow-up work, Ding et al. (2020) extended PFLR by proposing to have two distinct
privacy budgets in order to add Laplace noise with larger magnitude to the coefficients of
the terms involving the sensitive attributes than to the others within the objective func-
tion. They also propose a second approach using the relaxed functional mechanism to
enforce approximate DP (ǫ,δ)-DP to improve on utility. It utilizes the extended Gaussian
mechanism to perturb the objective, adding random Gaussian noise to the coefficients of
the polynomial form of the objective function. Empirical evaluation on real-world datasets
confirms that the use of (ǫ,δ)-DP leads to an improved utility in all scenarios compared to
pure DP. Furthermore, the use of two distinct privacy budgets can help enforcing stronger
privacy guarantees while also reducing the correlations with the sensitive attribute, thus
also improving fairness.

A differentially-private framework to train deep learning models that satisfy several pop-
ular group fairness notions was proposed by Tran et al. (2021b). This approach considers
the Lagrangian relaxation of the fairness-constrained learning problem, and leverages a La-
grangian dual approach to solve it: the fairness violation terms, weighted by Lagrangian
multipliers, are directly added to the objective function. Then, the training procedure con-
sists of iteratively repeating two successive steps: primal and dual. The primal update
step optimizes the model parameters to minimize the objective function, given the cur-
rent Lagrangian multipliers. Afterwards, the dual update step updates the value of the
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Lagrangian multiplier to approximate the stronger Lagrangian relaxation. To enforce dif-
ferential privacy for sensitive attribute information, differential privacy is achieved at both
steps, when computing the fairness violation terms or their gradients. In the primal update
step, clipped and noisy gradients are used. The model parameters optimization is done
on this noisy version of the objective function (in which only the fairness violation term,
accessing subgroup membership which we want to protect, is impacted by the DP mecha-
nism). A similar mechanism is done on the dual update step, in which constraint violations
are clipped and perturbed with carefully calibrated Gaussian noise. Extensive empirical
evaluation shows that the fairness violation decreases as the privacy budget increases: thus
enforcing DP leads to violating more fairness. This is explained by the fact that relaxing
the DP constraint allows either to perform more iterations (hence propagating more fair-
ness violation information) or to inject less noise for a fixed number of iterations (hence
propagating more accurate fairness violation information). Another surprising trend is that
the model accuracy slightly decreases as ǫ increases. This is due to the fact that enforcing
weaker DP allows the fairness constraints to have more impact on the objective function,
hence penalizing more the accuracy.

Two fair learning algorithms have been adapted by Jagielski et al. (2019) to satisfy both
fairness (here in terms of equalized odds) and DP (with respect to the sensitive attributes).
They first consider the post-processing method of Hardt et al. (2016). In a nutshell, given
a pre-trained and possibly unfair classifier, the approach first computes its per-group per-
ground truth prediction proportions. It then solves a Linear Program to compute per-group
per-class prediction probabilities defining a fair randomized classifier. To enforce ǫ-DP in
this setting, the authors simply add well-calibrated noise drawn from the Laplace distribu-
tion to the computed statistics before solving the LP with them. Theoretical analysis of how
the introduced noise propagates to the solution of the LP leads to bounds on accuracy and
fairness violation that are met with high probability. This quantifies a trade-off between ac-
curacy, fairness and privacy: weaker DP guarantees lead to tighter bounds on accuracy and
fairness, while stronger DP guarantees (satisfied by adding more noise) increase the bounds,
and the possible loss on accuracy and fairness. Experimental evaluation demonstrates that
this simple method is able to provide interesting trade-offs even with small datasets but
is expected to perform worst than the second approach on large ones. The later builds
upon an in-processing approach (Agarwal et al., 2018), which formulates the problem of
learning a fair and accurate classifier as finding the equilibrium of a two-player min-max
game. A Learner minimizes the objective function over the set of possible classifiers while
an Auditor maximizes it by choosing the value of the multipliers penalizing fairness vio-
lations. To enforce (approximate) (ǫ,δ)-DP, the authors add well-calibrated Laplace noise
while computing the gradients of the Auditor, and use the exponential mechanism for the
Learner’s model selection. Similar to the first case, a stronger privacy guarantee (smaller
ǫ and δ) leads to weaker accuracy and fairness guarantees. However, a new trade-off can
be controlled through the maximum norm of the multipliers: larger values lead to tighter
fairness bounds but looser error bounds, and vice-versa. For both approaches, introducing
noise to achieve DP leads to a reduction in the fairness guarantees (in a similar manner as
for accuracy).

Mozannar et al. (2020) consider the setup in which the sensitive attributes are released
using local DP (i.e. a variant of DP in which each user locally randomizes his data before
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releasing it), and propose a two-step approach. First, a classifier that is fair with respect
to the noisy sensitive attributes is built, using a state-of-the-art in-processing fair learning
algorithm (Agarwal et al., 2018). Second, a modified version of a post-processing fairness-
enhancing method (Hardt et al., 2016) is used to ensure with high probability that the
model is also fair with respect to the (unknown) original sensitive attributes. For strong
privacy regimes, this post-processing step is empirically shown to significantly decrease
fairness violation.

The fairness cost of differential privacy can be theoretically bounded Recent
work theoretically shows that the impact of DP on fairness is bounded and can be computed
to obtain non-trivial guarantees regarding the private model’s fairness (Mangold et al.,
2023). The underlying analysis relies on the fact that, just like a model’s accuracy, common
statistical fairness metrics are pointwise Lipschitz continuous with respect to the model
parameters. Then, proving that the private model is sufficiently close to the optimal non-
private one implies that their fairness are also close. Interestingly, the theoretical bound
tightens linearly with respect to the size of the training set: the “loss of fairness” due to
privacy vanishes when the number of training examples increases.

The privacy cost of fairness audits can be bounded Online platforms often use
machine learning techniques to perform recommendations or other predictions involving
individual’s data. Because their outcomes can possibly harm some users, it is necessary
to audit their fairness properties. However, this raises important privacy challenges, as
the data used to train the models (and its distribution) is often private, and revealing it to
(even trusted) third-parties increases the risk of disclosure. Recent work (Imana et al., 2023)
considers fairness audits of social media algorithms. They propose auditing techniques that
come with fairness guarantees and have bounded impact over the privacy risk, which shows
that the two concerns can be conciliated with bounded cost over one another.

Individual fairness and differential privacy are both robustness definitions As
introduced in Section 2.1, individual fairness can be formulated as a Lipschitz condition:
just like DP, it is a robustness definition (Ignatiev et al., 2020). More precisely, Dwork
et al. (2012) has observed that individual fairness constitutes a generalization of differen-
tial privacy. The authors draw an analogy between individuals in the setting of fairness
and databases in the setting of differential privacy. Indeed, as also noted by Zemel et al.
(2013), differential privacy requires that “algorithms behave similarly on similar databases”,
while individual fairness enforces that classifiers yield similar outcomes for similar instances.
This allows the use, for fairness purposes, of mechanisms designed for differential privacy.
For instance, Dwork et al. (2012) propose an efficient individually fair learning algorithm
based on the Exponential mechanism (McSherry & Talwar, 2007), resulting in provable loss
bounds. In Jagielski et al. (2019), the proposed privacy-preserving approach (ensuring DP
for the sensitive attributes) can be seen as a relaxation of the strict notion of individual
fairness proposed by Ignatiev et al. (2020). Indeed, while the former enforces a ratio on the
probabilities of different outcomes when a single example’s sensitive attribute is modified,
the latter enforces that the sensitive attribute is never used. Fairness through unawareness
is then a strict, simple but certifiable way to ensure sensitive attribute privacy.
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Privacy and fairness can enhance each other in particular setups Khalili et al.
(2021) consider the particular setting in which a pre-trained model generates qualification
scores for a set of applicants. These scores are then used to determine a fixed number of
candidates that will be selected by the process (e.g., for a grant, a job. . . ). They show that
the Exponential mechanism can be used to perform the selection given the qualification
scores, in order to both enforce DP for the selection process and improve fairness (here
equal opportunity). Under some conditions regarding the properties of the subgroups,
the proposed approach can make the selection procedure perfectly fair. Other notions of
privacy can also have different interactions with fairness definitions. For instance, Ruggieri
(2013) studies the context of itemset mining, in which given a dataset, the objective is to
mine frequent patterns. Then, the author shows that anonymizing the data to achieve t-
closeness with carefully chosen parameters implies popular group fairness notions. Finally,
it is possible to perform statistically significant fairness audits using differentially private
sensitive attributes, taking into account the added noise (Friedberg & Rogers, 2022).

Other work (Hajian et al., 2015) also considers frequent patterns discovery, and pro-
pose two-step algorithms to jointly address non-discrimination (fairness) and privacy. More
precisely, they first apply a privacy-preserving mechanism, before using data sanitization
methods to enforce non-discrimination. Indeed, considering either k-anonymity or DP,
they theoretically prove that the privacy guarantees are not affected by the later fairness-
enhancing stage. On the contrary, they observe that applying privacy-preserving mecha-
nisms on a sanitized data could alter the resulting patterns’ fairness, either increasing or
decreasing discrimination depending on the considered scenario (in line with the aforemen-
tioned tensions). Importantly, they empirically note that the utility loss incurred by jointly
enforcing fairness and privacy is only marginally higher than that of enforcing privacy only.
This result highlights a synergy between the two desiderata, in which the former privacy-
enhancing step sometimes also improves fairness, overall leading to a smaller utility drop
from the later discrimination sanitizing step. This trend is valid for both k-anonymity and
DP, although the later leads to a higher utility cost.

5. Interpretability and Privacy

In this section, we first discuss some tensions between interpretability and privacy. Al-
though these notions inherently conflict, we then highlight synergies between them, before
summarizing existing frameworks addressing them jointly.

5.1 Tensions

Interpretability/Explainability and Privacy conceptually have antagonist goals
While interpretability and privacy protection are both important requirements for respon-
sible machine learning, they intrinsically pursue contrasting objectives (Datta et al., 2023).
Indeed, on one hand, interpretability aims at providing more information to enhance users’
understanding of a model’s behavior. On the other hand, privacy requires a tight control
of the leaked information, often obfuscating part of it to protect individuals’ data. Jointly
addressing both desiderata hence necessitates some form of arbitration (Banisar, 2011).
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Explainability tools can be used with the purpose of designing attacks against
machine learning models Tools from explainable AI can be leveraged by malicious
entities to perform more effective attacks against machine learning based systems. For
instance, Severi et al. (2021) studied malware detection models, that are usually trained
on crowd-sourced data to distinguish between malicious softwares (malwares) and legit-
imate ones. The authors investigated backdoor poisoning attacks, in which an attacker
injects carefully chosen datapoints to the crowd-sourced training set, resulting in its chosen
malware being wrongly classified as legitimate by the detection model. In this context,
they leverage Shapley values to identify highly effective features and their values, and effi-
ciently craft the poisoned examples. Explainable AI techniques were also leveraged to fool
ML-based authentication systems, which take as input a user ID along with some finger-
printing authenticating the user uniquely. An attacker can then use perturbation-based
feature explanation techniques on a local surrogate model to efficiently craft a fingerprint
authenticating a desired user given its ID (Garcia et al., 2018). Again, the feature impor-
tance explanations help guiding the malicious crafting process by indicating which features
most influence the decision. A counterfactual explanation framework is modified by Kuppa
and Le-Khac (2021) to generate adversarial examples. Counterfactual explanations of a
black-box model are also used to identify the features that influence the model’s decision
boundaries and generate examples to conduct backdoor poisoning attacks.

Post-hoc explanations can be exploited to perform or improve inference at-
tacks Inference attacks traditionally query a model (e.g., via a prediction API) and use
its outputs to achieve their goal, for instance determining an individual’s membership in
the training data, reconstructing part of the training dataset, extracting the model itself,
or inferring an individual’s missing attributes (Dwork et al., 2017; Cristofaro, 2020). Post-
hoc explainability techniques, by offering explanations as additional outputs, expose a new
attack surface. Several works showed that such explanations, whatever form they take
(e.g., example-based, feature-based . . . ), can be leveraged to enhance the different types of
privacy attacks (introduced in Section 2.3):

• Model extraction attacks. Gradient-based (a class of feature-based) explanations
of a black-box model can be exploited by an adversary to reconstruct the underlying
model (Milli et al., 2019). In the considered setup, the adversary owns an auxiliary
dataset and can query the black-box model to obtain the model’s gradients as explana-
tions for given input points. The authors have designed a near-optimal algorithm, which
provably extracts the entire underlying model within a bounded number of queries, in
the particular case in which it is a two-layer neural network with ReLU activations. For
the general case, they design an effective heuristic inspired by previous works on stan-
dard reconstruction attacks against prediction APIs. More precisely, the attacker trains a
surrogate model mimicking the black-box behavior and optimizes to match its gradients
thanks to the provided explanations. The results obtained demonstrates that model ex-
traction from gradient explanations requires orders of magnitude less queries than from
the sole predictions. Another approach (Miura et al., 2021) also consider gradient-based
explanations, but assume no auxiliary dataset. In such case, the data used to query the
black-box and train the surrogate model is outputted by a generative model, which in turn
tries to generate examples so that the surrogate disagrees with the black-box. The gener-
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ative model is updated leveraging the provided gradient explanations, which dramatically
reduces the required number of iterations (and queries to the black-box). Furthermore,
Aı̈vodji et al. (2020) show that providing counterfactual (a class of example-based) ex-
planations (CFs) can help to realize model extraction attacks with better precision and
limited number of requests. More precisely, the adversary queries the black-box model
with a given attack set, and trains a surrogate using the predictions of both the at-
tack set instances and the provided CFs. The authors empirically show that the use of
the provided CFs improves the attack by both increasing the built surrogate’s fidelity
with respect to the black-box model, and dramatically decreasing the required number
of queries. A similar approach is proposed by Kuppa and Le-Khac (2021), leveraging
knowledge distillation techniques to train the surrogate model, which may mitigate the
potential performance harm of an architecture mismatch between the actual black-box
model and the reconstructed surrogate. CFs provided by Machine-Learning-as-a-Service
(MLaaS) platforms are also exploited by Wang et al. (2022), which propose an efficient
querying strategy to steal the underlying classification model. Their strategy is based on
the following observation: the generated CFs usually lie close to the decision boundary,
while the attack set examples do not necessarily. This leads to a “decision boundary
shift issue”, in which the surrogate model’s decision boundary is shifted compared to
that of the actual black-box. To circumvent this issue, the authors propose to generate
counterfactuals for the CFs themselves, and to use them all for training the surrogate.

• Membership inference attacks. Feature-based explanations are leveraged by Shokri
et al. (2021) to perform MIAs. More precisely, they consider both backpropagation-based
(i.e., gradient-based) and perturbation-based explanations. On one hand, they demon-
strate that the former leak information regarding membership, and can effectively be
leveraged to perform MIAs. In particular, the explanations’ variance is very informative,
in the sense that explanations of training examples usually exhibit a low variance, while
for unseen examples, this value can be considerably higher. This is due to the fact that
for training examples, the model is usually very confident, as it was optimized on them,
and small perturbations are likely to not change its predictions. On the contrary, unseen
samples can be closer to the decision boundary, which results in some features having a
great impact on the model’s predictions (hence high gradients norms), and the resulting
explanation having high variance. On the other hand, they further show using two pop-
ular perturbation-based frameworks (Ribeiro et al., 2016; Smilkov et al., 2017) that the
later is more resistant to membership inference. This may be explained by the fact that
perturbation-based frameworks often generate perturbed examples that lie out of the data
distribution (Kumar et al., 2020). The black-box model behavior on such examples is un-
specified, and so querying it with them does not provide insightful information to perform
inference attacks. This also suggests that the resulting explanations may qualitatively
by poorer: “privacy comes at the cost of explanation quality”. Counterfactual explana-
tions are leveraged by Kuppa and Le-Khac (2021) to conduct MIAs. More precisely, the
black-box model is queried with an auxiliary dataset and then the model’s outputs and
generated counterfactual examples are used to train a shadow model. Membership of a
given example is then established by comparing the difference in prediction probabilities
between the shadow model and the actual black-box to a threshold.
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• Dataset reconstruction (and membership inference) attacks. An example-based
explainability framework based on influence functions (Koh & Liang, 2017) and returning
influential training examples that most contribute to an example’s prediction is considered
by Shokri et al. (2021). Because they explicitly reveal training points, and a training
point is likely to be used to explain itself, such explanations are highly vulnerable to
MIAs. Indeed, this class of explanations allows for stronger attacks, such that dataset
reconstruction attacks. The authors propose two algorithms that leverage the provided
example-based explanations to reconstruct (part of) the model’s training set. The first
algorithm is based on subspace reduction and comes with a certifiable lower bound on the
number of points it discovers. Empirical evaluation shows that it can be used to retrieve
most of the training dataset for high dimensional data. The second one is heuristic and
offers no theoretical guarantees, but works well in practice for low dimensional data. It
simply consists in using previously revealed points to reveal new points. This naturally
defines an influence graph structure over the training set, in which an edge between
two training examples means that one is provided as an explanation for the other. The
proposed algorithm can then be used to explore entire Strongly Connected Components
within this graph.

• Model inversion attacks. Zhao, Zhang, Xiao, and Lim (2021) propose model inversion
attacks that aim at reconstructing a black-box model’s inputs given its outputs (here, its
prediction along with some feature-based explanation), hence harming the privacy of test
instances4 (i.e., active users of the model). In the context of image-based tasks, they focus
on different types of saliency map explanations to reconstruct the target model’s input
images, namely gradient-based explanations (Simonyan et al., 2014), influence-based ex-
planations (Ramaswamy et al., 2020) (obtained by multiplying each input feature by its
associated gradient), activation-based explanations (Selvaraju et al., 2017) and layer-wise
relevance propagation (Bach et al., 2015) (i.e., attributing pixels’ importance by back-
propagating neurons’ relevance). The proposed attack uses an attack model, trained on
an independent auxiliary dataset to predict images (given as input to the target model)
given predictions and explanations (outputted by the target model). As expected, the
frameworks directly using the input within the explanation computation (i.e., influence-
based ones) leak more information regarding the model’s inputs, hence allowing better
attack results. Importantly, the paper shows that even non-explainable models can be
attacked, leveraging attention transfer to build an explainable surrogate whose explana-
tions are used to conduct the attack. With a same attack objective, Luo et al. (2022) have
shown that Shapley value-based explanations provided by popular Machine Learning as a
Service (MLaaS) providers can be exploited to reconstruct the private model inputs. They
provide an information-theoretical analysis of the relationship between an example and
its associated Shapley values, and demonstrate that an adversary can always infer useful
information about the former using the later. This analysis also holds for sampling-based
Shapley-values, which are commonly computed as an efficient approximation of the exact
Shapley values. They then studied two distinct adversarial settings, and have shown that

4. This differs from the previously mentioned reconstruction attacks. Indeed, in reconstruction attacks, the
objective of the adversary is to infer information regarding the model’s training data. In the discussed
model inversion attacks, the objective is to gain information about the examples provided to the model
at inference time, by only observing the model’s outputs (cf., Section 2.3).
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even an adversary with no background knowledge can reconstruct most of the private
model’s input examples given only its outputs and explanations.

• (Sensitive) attribute inference attacks. Sensitive attribute inference attacks can
leverage feature-based model explanations, computed either with backpropagation-based
or perturbation-based methods (Duddu & Boutet, 2022). The authors consider the two
scenarios where the sensitive attribute is (or not) used for training the model and for
inference. In both studied scenarios, the adversary leverages an auxiliary dataset to train
an attack model to predict an example’s sensitive attribute given only the outputs of the
target model (prediction and explanation). They empirically show that their attack is
able to leverage such explanations to perform attribute inference attack. Furthermore,
they suggest that model explanations lead to higher attack success compared to model
predictions, hence constituting a stronger attack surface to exploit.

Interpretable models inherently leak information regarding their training data
The approach of Gambs et al. (2012) exploits the structure of a trained decision tree to
reconstruct a probabilistic version of its training set. It is generalized by Ferry et al.
(2024) to handle more generic types of knowledge and reconstruct probabilistic datasets
from other types of interpretable models. Both works use tools from the information theory
to precisely quantify the amount of knowledge interpretable models encode, through their
structure, regarding their training data.

Providing useful yet privacy-protective explanations remains an open challenge
As discussed in the next subsection, differentially-private explainability tools have been
proposed, but always imply some trade-off between the explanation quality, the privacy
guarantee and the model utility. Furthermore, Milli et al. (2019) recall that DP can help
guard against attacks from prediction APIs, but it is not clear if this is a viable approach
for preventing reconstruction from explanations. On the same line, Shokri et al. (2021)
state that “the effect of DP techniques (notably the randomness they induce) on model
transparency is unknown.” Furthermore, the effect of DP on the explanations’ robustness
and user trust are still to be investigated (Aı̈vodji et al., 2020).

Overall, applying explainability techniques while preserving formal privacy guarantees
is challenging. In the next subsection, we nevertheless how this could be achieved, but this
implies some cost on either one aspect or the other.

5.2 Synergies

Interpretability eases model audit and can be leveraged for privacy purposes
Interpretability can be used to confirm other desiderata of ML systems, such as privacy (Doshi-
Velez & Kim, 2017). It also makes it easier to detect possible privacy issues when building
interpretable models (Rudin, 2019). Furthermore, this auditable nature is particularly ap-
preciated in the area of ML-based cybersecurity systems (Srivastava et al., 2022). Indeed,
machine learning models have shown great abilities to detect abnormal behaviors or intru-
sions. However, their black-box nature and lack of certification can be problematic as it
possibly introduces weaknesses inside the security system. By providing an understanding
of the underlying mechanisms and reasoning of the model, interpretability techniques can
be helpful to detect overfitting, or in cases in which the model captures noise or inaccurate
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values in the data. This allows deploying more trustworthy models, but also helps the
administrators identify potential breaches.

Interpretability can be conciliated with privacy with some trade-offs Friedman
and Schuster (2010) study data mining with DP guarantees, considering decision tree learn-
ing as an illustrative task. They demonstrate that the design of the privacy preserving
mechanism is crucial, and that there is a huge difference in terms of model utility and
required sample size between a naive implementation using a general purpose privacy pre-
serving data interface and a task-specific differentially-private learning algorithm. Their
empirical study demonstrates the ability of their proposed algorithm to learn differentially-
private decision trees with reasonable cost in terms of accuracy. Several other works also
tackled differentially private decision tree building, as summarized by Fletcher and Islam
(2019). Locally Linear Maps (LLMs) are studied by Harder et al. (2020) and consist in a
linear combination of logistic regressions for each possible class. Such interpretable mod-
els are suitable to provide local explanations (using the appropriate LLM) but also global
ones, as the coefficients of each class’s LLMs provide insights regarding which features re-
ally matter to it. The authors propose a procedure to learn LLMs under DP, leveraging
mechanisms from the DP-SGD framework (Abadi et al., 2016). They empirically observe a
trade-off between the privacy guarantee and the model’s accuracy and interpretability.

Post-hoc Explainability can be conciliated with privacy with some trade-offs
Quantitative Input Influence (QII) is a framework leveraging Shapley values to provide
feature-based explanations quantifying the influence of input features over the model’s pre-
dictions (Datta et al., 2016). As such measures may leak information regarding individual
users, the authors introduce a mechanism to generate differentially-private explanations to
the so-called transparency queries. Providing pure DPy guarantees, it consists in adding
Laplace noise to the query answers, scaled to the query function sensitivity. As the pro-
posed measures generally have low sensitivity, the amount of added noise remains reasonable
which results in relatively small average utility losses. Nonetheless, for some types of ex-
planations with exceptionally high sensitivity, the amount of noise added may significantly
harm their utility. A method to generate differentially-private feature-based explanations
(i.e., local linear surrogates) of a black-box model is introduced by (Patel et al., 2022). In
their framework, the explanations are computed using a differentially-private gradient de-
scent leveraging the Gaussian mechanism. They further proposed an adaptive mechanism,
reducing the spending of the privacy budget by leveraging the explanations to previous
queries when computing a new one. Using tabular, text and image data, they empirically
observe that the explanations’ quality degrade while the privacy guarantees tighten. Naidu
et al. (2021) investigated the impact of a model’s differential privacy on the quality of post-
hoc explanations (saliency maps (Selvaraju et al., 2017)) of this model and on its utility,
considering either local DP (classical learning algorithm applied on DP data) or global
DP (differentially-private training algorithm). In both cases, the explanations are also
differentially-private due to the post-processing property (cf. Section 2.3). Handling either
general or medical imaging applications, they have learnt neural networks under different
DP budgets and evaluate the quality of post-hoc explanations of their predictions using two
metrics from the literature. In a nutshell, these metrics aim at quantifying how much the
regions highlighted by explanation maps actually account for the explained decisions. The
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experimental results show that these metrics degrade while the privacy budget is tightened.
Furthermore, they suggest the existence of a three dimensional trade-off space between pri-
vacy, explanation quality and model accuracy. To face the explanation-guided backdoor
poisoning attack studied by Severi et al. (2021) (and discussed in Section 5.1), Nguyen
et al. (2023) proposed to generate Locally Differentially Private explanations. By randomly
perturbating the top-k features in the generated feature-based explanations, the mechanism
is shown to mitigate the success of the attack. An approach to generate robust counter-
factual explanations for differentially private Support Vector Machines (SVMs) is designed
by Mochaourab et al. (2021). More precisely, privacy is achieved by adding Laplace noise to
the SVMs’ weights, and classical counterfactual explanation frameworks may generate coun-
terfactuals that allow to cross the classifier’s noisy boundaries, but not to actually change
the example’s class in real-life. To address this issue, they instead generate robust counter-
factual explanations by solving an optimization problem with probabilistic constraints. In
practice, the generated counterfactuals require more and more changes to the example as the
privacy level tightens, in order to ensure that its classification changes with respect to the
(unknown) non-private classifier. Again, this illustrates the trade-off between explanations
quality and privacy protection. In the context of federated learning, Li et al. (2023) have
also noticed that DP can alter the meaningfulness of gradient-based explanations. They
propose an adaptive mechanism still providing DP guarantees but injecting noise within
the model’s parameters in a manner aimed at preserving the quality of gradient-based ex-
planations. Finally, recent work also studied DP for counterfactual explanations (Yang
et al., 2022). The approach consists in using an autoencoder trained in a differentially-
private manner to build noisy class prototypes, which can then be leveraged to generate the
counterfactuals.

6. Conclusion

We have seen throughout this paper that while fairness, interpretability and privacy are
three important dimensions of responsible ML, they often conflict in different ways, both
theoretically and empirically. Nonetheless, we have also identified synergies, which suggests
that a careful design can sometimes lead to improving them jointly with a reduced im-
pact on utility. However, this considerably increases the complexity of the learning process
while requiring an in-depth analysis of the used techniques. Throughout this paper, we have
highlighted several interesting works taking advantage of these synergies to conciliate two of
our three pillars. These insightful examples include modifying the distribution of the noise
added by privacy-preserving techniques to improve fairness (Xu et al., 2019), leveraging
fairness constraints to enhance the learning of interpretable models through effective prun-
ing mechanisms (Aı̈vodji et al., 2022), or leveraging explainability tools to detect privacy
leakages (Srivastava et al., 2022).

Nevertheless, compromises usually have to made. Generally speaking, learning a model
with non-trivial utility and satisfying our three desiderata requires a thorough theoretical
formulation, being aware of the existing tensions as well as of common techniques to mitigate
them. Both are summarized in Figures 1 and 2, in the Appendix A. We believe that such
a summary of these interplays can be beneficial for stakeholders to be aware of the possible
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tensions they may have to face, and of the existing compatibilities and synergies they can
leverage to develop trustworthy yet accurate machine learning models. We also aim at
encouraging research regarding these interplays - and to summarize them in a systematic
manner so that they benefit the field.

Finally, it is crucial to promote an interdisciplinary approach, for computer scientists
to ensure that the metrics they optimize for actually match legal and ethical require-
ments. This is a particularly challenging aspect: ethical analysis are often strongly context-
dependent while genericity is a common objective in computer science. In addition, not all
legal and ethical notions can easily be implemented and quantified using mathematical for-
mulas. It is hence necessary to verify the alignment of the notions we use with the concepts
we target, for the development of ML systems that can be trusted and that do not harm
the society. There exist several works specifically considering these aspects, such as that
of Weinberg (2022) which reviews critics of popular fairness-enhancing approaches from an
interdisciplinary perspective.

Appendix A. Summary Figures

In this appendix section, we provide a graphical summary of the key interplays identified
between fairness, interpretability and privacy in machine learning. More precisely, we report
compatibilities and synergies in Figure 1, while we overview tensions in Figure 2.
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Fairness

Interpretability Privacy
Section 5.2

• Interpretability eases model audit and
can be leveraged for privacy purposes

• Interpretability can be conciliated
with privacy with some trade-offs

• Post-Hoc Explainability can be conciliated
with privacy with some trade-offs

Section 4.2

• Differential privacy and approximate fairness
can be jointly enforced with some trade-offs

• The fairness cost of differential privacy
can be theoretically bounded

• The privacy cost of fairness audits can be bounded

• Individual fairness and differential privacy
are both robustness definitions

• Privacy and statistical fairness can
enhance each other for particular setups

Section 3.2

• Interpretability and explainability ease model audit

• Fairness can act as a regularizer

Figure 1: Summary of the identified compatibilities and synergies between fairness, inter-
pretability and privacy in machine learning.
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Fairness

Interpretability PrivacySection 5.1

• Interpretability/Explainability and Privacy
conceptually have opposite goals

• Explainability tools can be used with the purpose of
designing attacks against machine learning models

• Post-Hoc explanations can be exploited
to perform or improve inference attacks

• Interpretable models inherently leak
information regarding their training data

• Providing useful yet privacy-protective
explanations remains an open challenge

Section 4.1

• Group fairness and differential privacy are theoretically incompatible

• Enforcing fairness increases privacy vulnerabilities

• Differential privacy disproportionately affects utility

• Differential privacy disproportionately affects the quality of post-hoc explanations

Section 3.1
Tensions between Fairness and Simplicity - Section 3.1.1

• Simplicity and fairness intrinsically conflict

• Empirical trade-offs are complex

Combining Fairness and Interpretability is Challenging - Section 3.1.2

• Learning optimal interpretable models under fairness
constraints is computationally challenging

• Explanations may not preserve fairness properties of a model

• Fairness-enhancing methods may require non-interpretable
transformations, hence harming interpretability

Other Unfair Effects of Explainability Methods - Section 3.1.3

• Post-hoc explanations affect individuals’ privacy in a disparate manner

• Post-hoc explanation frameworks can introduce unfairness by providing
lower-quality explanations to minority groups

• Counterfactual explanation frameworks can harm subgroups of the
population by consistently providing higher-cost recourse

• Post-hoc explanations can be manipulated

Figure 2: Summary of the identified tensions between fairness, interpretability and privacy
in machine learning.
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