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Abstract—Machine learning techniques are increasingly used
for high-stakes decision-making, such as college admissions,
loan attribution or recidivism prediction. Thus, it is crucial to
ensure that the models learnt can be audited or understood
by human users, do not create or reproduce discrimination
or bias, and do not leak sensitive information regarding their
training data. Indeed, interpretability, fairness and privacy are
key requirements for the development of responsible machine
learning, and all three have been studied extensively during the
last decade. However, they were mainly considered in isolation,
while in practice they interplay with each other, either positively
or negatively. In this Systematization of Knowledge (SoK) paper,
we survey the literature on the interactions between these three
desiderata. More precisely, for each pairwise interaction, we
summarize the identified synergies and tensions. These findings
highlight several fundamental theoretical and empirical conflicts,
while also demonstrating that jointly considering these different
requirements is challenging when one aims at preserving a high
level of utility. To solve this issue, we also discuss possible
conciliation mechanisms, showing that a careful design can enable
to successfully handle these different concerns in practice.

Index Terms—Fairness, Privacy, Explainability, Interpretabil-
ity, Machine learning.

I. INTRODUCTION

Machine learning (ML) models have many useful and

promising applications. For instance, they can help to analyze

medical data, which is becoming increasingly complex due to

the improvements in medical tools. However, their growing

use for high-stakes decision-making systems - such as college

admissions, recidivism prediction or credit scoring - raises

significant ethical, philosophical and societal challenges. This

has led to the regulation of their use through several legal

texts, such as the European Union General Data Protection

Regulation1 [1] or the forthcoming AI Act2.

1https://gdpr-info.eu/
2https://artificialintelligenceact.eu/

In particular, three important ethical issues have emerged,

each corresponding to a key concern that should be addressed

to both comply with these new legal frameworks and lay the

foundations towards a responsible ML. First, ML algorithms

require large amounts of data, which often contains personal

information. Thus, it is of paramount importance to ensure that

the privacy of the involved individuals is not harmed while

also being able to extract useful generic patterns from this

data. Second, it was shown that data-driven decision-making

processes can create or reproduce biases that systematically

disadvantage specific individuals or groups [2]. Quantifying

but also reducing/eliminating these biases to promote fairness

is hence an important challenge. Third, while common ML

models, such as deep neural networks, can reach high predic-

tive performance, their underlying logic and representation are

often too complex, preventing users from fully understanding

their decisions. This raises significant concerns, regarding their

auditability, certifiability and trust, thus calling for the require-

ment of interpretability with respect to their predictions.

These three topics, namely privacy, fairness and explainabil-

ity, have been extensively studied during the last decade [3]–

[5] with an emphasis on how they each trade-off with util-

ity. However, they are often considered in isolation, while

in practice it is necessary to enforce them simultaneously.

Characterizing their mutual interplays is hence an important

research avenue, which has attracted some attention in the

last years. Indeed, these concerns often conflict [6], and trade-

offs between them, as well as with utility, generally have

to be set. Throughout this SoK paper, we conduct an in-

depth survey of the literature on the different compatibilities,

synergies and tensions that have been identified between them.

More precisely, we focus on the supervised learning setup, and

consider mainly classification tasks.



Positioning with respect to other surveys: Other recent

works survey the literature on the interactions between several

of our three identified desiderata. Among others, [6] reviews

at a high level the main tensions that occur between the human

values of privacy, transparency and fairness when they have

to be embodied in a machine learning model. We extend this

work by additionally considering compatibilities and syner-

gies. Furthermore, we focus on the interplays between the

three aspects to allow a more thorough technical discussion.

Furthermore, [7], investigates solely the interplays between

fairness and (differential) privacy by conducting an in-depth

analysis on how one influences the other. We extend this

study in Section IV. Finally, a recent thesis [8] focuses on

the interactions between transparency and fairness. It provides

a deepening of (part of) our dedicated Section III.

The outline of the paper is as follows. First in Section II,

we review the background regarding the three considered

aspects of responsible ML, namely fairness, interpretability

and privacy before surveying their interplays. More precisely,

Section III considers both fairness and interpretability, Sec-

tion IV studies the interactions between fairness and privacy,

and Section V summarizes the connections between inter-

pretability and privacy. We then conclude with the identified

key challenges in Section VI. Finally, Appendix A provides a

graphical summary of all the analyzed interplays.

II. BACKGROUND

In this section, we introduce the three identified pillars of

responsible machine learning. For each of them, we briefly

review their key ideas, with an emphasize on the particular

aspects that will ease the understanding of subsequent sections.

A. Fairness

Different approaches to fairness have been proposed in the

literature, which can be grouped into three main categories [9].

The rationale of statistical fairness, also coined group fairness,

is to ensure that a given statistical measure has similar values

between several subgroups, defined by the value(s) of some

sensitive feature(s). For example, the statistical parity fairness

metric aims at equalizing the positive prediction rate across the

different groups, while the equal opportunity metric considers

the groups’ true positive rates and finally the equalized odds

metric handles both their true positive and true negative

rates. The underlying principle is that such sensitive features

(e.g., race, gender, . . . ) should not influence the predictions.

Individual fairness approaches build on the idea that similar

individuals should be treated similarly [10]. For instance, this

can be formulated as a Lipschitz condition over the clas-

sification function, in which bounding the distance between

two examples also bound the distance between their outputs

from the model. Causal fairness techniques analyze the causal

relationships between sensitive features, non-sensitive ones

and the target decision, leveraging causal graphs [11].

Depending on which step of the (supervised) ML pipeline

they intervene on, fairness-enhancing methods can be divided

into three main categories [12]–[14]. Pre-processing methods

aim at removing undesired correlations from the training data

before applying standard learning techniques on the sanitized

data while post-processing techniques modify the outputs of a

trained model to achieve fairness. Finally, in-processing (also

called algorithmic modification) techniques directly adapt the

learning procedure to produce inherently fair models.

B. Explainability/Interpretability

There are two main approaches towards facilitating the

understanding of ML models. On the one hand, post-hoc

explanations [5] can be crafted to explain the behaviour of a

black-box model. Depending on their form, different types of

such explanations can be defined, among which example-based

explanations consist in datapoints, belonging to the same space

as the model’s training set examples. For instance, they can be

highly influential training examples [15], nearest neighbours or

prototypes. Counterfactual explanations also fall into this cate-

gory, as they are datapoints close to the explained instance but

exhibiting a different prediction from the considered model.

Feature-based explanations take the form of a vector in the

feature space, in which each coordinate is the degree to which

the associated feature influences a model’s prediction. For

example, in computer vision, saliency maps [16] highlight the

regions of an input image that most contributed to the model’s

decision. Feature-based explanations can be computed using

several mechanisms. For instance, gradient-based methods

compute the gradients of a model (e.g., a deep neural network)

with respect to the input features, either for a given class or for

intermediate component(s) of the network, which enables to

determine which features contribute the most to a particular

prediction. In constrast, perturbation-based methods modify

the input provided to the black-box and observe the resulting

changes in the model’s outputs.

On the other hand, one can learn models that are inherently

interpretable by humans. For instance, decision trees or rule

lists of reasonable size are commonly considered as inter-

pretable [17]. While the meaning of a reasonable size is ill-

defined and context-specific, it indicates that model simplicity

is a crucial property to consider while building these models.

C. Privacy

The development of privacy-preserving mechanisms for ML

has been widely motivated by the flourishing literature on

inference attacks against models in recent years. In the generic

setting, such attacks leverage the outputs of a computation to

retrieve information regarding its inputs [18]. More specifically

in ML, the computation being performed is usually a learning

algorithm whose output is a trained model. Two distinct

adversarial settings are generally considered in the literature.

In the black-box setting, the adversary does not know the

model’s parameters and can only query it through an API.

In contrast, in the white-box setting, the adversary has full

knowledge of the model parameters. Of course between these

two extreme scenarios, diverse gray-box settings are possible.

Different types of inference attacks have been proposed

against ML models [3], [19], among which:



• Membership inference attacks try to infer whether given

examples were used to train a model or not [20].

• Reconstruction attacks aim at reconstructing part of a

model’s training data [18].

• Model extraction attacks aim at stealing a black-box

model’s internal functionalities or parameters [21].

• Model inversion attacks focus on retrieving a model’s

inputs by only observing the associated outputs [22].

Hence, such attacks often target the data provided at

inference time (and not solely the training data).

To counter these risks, several syntactic models of

anonymity were proposed. More precisely, these approaches

consist in grouping examples within blocks so that the pro-

file of a user is indistinguishable among those belonging to

the same block [23]. For instance, k-anonymity [24], [25],

requires that each block contains at least k examples. Several

extensions of k-anonymity were proposed, among which t-

closeness [26] additionally ensures that the distribution of the

values within each block is sufficiently close to that of the

entire dataset.

Nonetheless they are not well-adapted to ML and do not

provide formal privacy guarantees. Thus, differential privacy

(DP) has been adopted as the leading approach, in parts

because it can be used to precisely bound the amount of

information the output of a computation leaks regarding its

inputs [27]. Referring to (ǫ,δ)-DP, two parameters help con-

trol the level of enforced privacy. Intuitively, ǫ bounds the

contribution of each individual example to the output of the

computation, while δ corresponds to the probability of privacy

failure, with tighter values of these parameters indicating a

stronger privacy protection. Pure DP refers to scenarios in

which δ = 0 while approximate DP covers cases in which

δ > 0. DP exhibits several important properties, among which

the immunity to post-processing, which states that the output

of a differentially-private algorithm remains differentially-

private whatever (data-independent) computations are further

performed on it. Several mechanisms were proposed to enforce

DP [28]. For instance, the Laplace (respectively, Gaussian)

mechanism [27] adds random noise drawn from a Laplace

(respectively, Gaussian) distribution to the computed value,

with the noise magnitude being scaled to the function’s

sensitivity (i.e., the maximum impact a single individual can

have on the computation’s output). The functional mecha-

nism [29] approximates the function using its polynomial

Taylor expansion and perturbs the coefficients of the resulting

polynomial form with noise. Unlike the aforementioned noise

addition techniques, the exponential mechanism [30] consists

in drawing an output from a probability distribution, in which

the probability of a candidate depends on its utility. Several

frameworks for differentially-private ML exist [31], [32]. For

instance, DP-SGD [33] was proposed to train deep learning

models under DP. The authors have modified the traditional

Stochastic Gradient Descent (SGD) by clipping the norm of

the computed individual gradients (to bound each example’s

contribution to the computation) before perturbating them

with Gaussian noise. Another approach based on ensemble

methods, called PATE, considers a particular setup, with a

private training set and a public unlabeled one [34], [35].

First, the (private) training set is partitioned into a number

of non-overlapping subsets used to train a set of teacher

models. Afterwards, the predictions of the teachers (i.e., vote

histograms) are made differentially-private by adding Laplace

noise. The public data is then labeled using these noisy

predictions, and used to train a differentially-private student

model.

III. FAIRNESS AND INTERPRETABILITY

In this section, we first review the tensions between fairness

and interpretability before exploring some synergies.

A. Tensions

First, we elaborate on the theoretical and empirical tensions

between fairness and simplicity, which is often considered

as a proxy for interpretability. Afterwards, we discuss the

main challenges that need to be tackled when jointly pursuing

the interpretability and fairness desiderata. Finally, we list

different ways in which post-hoc explanations can be unfair.

1) Tensions between Fairness and Simplicity:

Simplicity and fairness intrinsically conflict: A frame-

work to theoretically study the implications of enforcing

interpretability is proposed in [36], adapted from that of [37].

It considers simplicity as a proxy for interpretability. More

precisely, a ML model is represented as a set of cells parti-

tioning the input space and simplifying a model consists in

merging some of its cells (hence diminishing their number

and the model’s complexity). The authors prove that, for every

non-trivial group-agnostic simplification, there exists a more

complex classifier that simultaneously strictly improves both

accuracy and (statistical) fairness. This classifier can be effi-

ciently constructed by carefully selecting some examples from

chosen subgroups and splitting their associated cells. Overall,

this result suggests that interpretability/simplicity comes at

some cost in terms of accuracy/fairness. Similar results were

originally shown in [37], further demonstrating how simplicity

is fundamentally inconsistent with statistical fairness notions.

As stated in [38], while model interpretability is an abstract

notion, enforcing it can only reduce the set of admissible

ML models. Consequently, ensuring interpretability can only

decrease the (training) accuracy. A similar reasoning can also

be done with respect to fairness. More precisely, by limiting

the space of admissible classifiers, the enforcement of fairness

reduces the number of possible trade-offs, which can be an

obstacle to achieve both fair and accurate learning.

Empirical trade-offs are complex: An empirical study of

the trade-offs between interpretability and fairness was con-

ducted in [39]. In this study, the number of features available

to a classifier is used as a measure of its complexity and acts

as a proxy for interpretability. By changing this number, the

authors report the variations obtained with respect to statistical

fairness notions (namely, statistical parity and equal opportu-

nity). Experiments on synthetic and real-world datasets show



several trends, that mainly depend on the correlation between

sensitive attributes, non-sensitive ones as well as class labels.

As expected, when the sensitive attribute is correlated (even

moderately) with the class label, using it explicitly greatly

increases the model’s unfairness. The results obtained rely

strongly on the chosen notion of interpretability and as such

cannot be considered generic. In addition, they demonstrate

that the trade-off between fairness and interpretability is, in

practice, complex and data-dependent.

2) Combining Fairness and Interpretability is Challenging:

Learning optimal interpretable models under fairness

constraints is computationally challenging: Due to their

combinatorial nature, learning optimal interpretable machine

learning models under constraints (e.g., fairness constraints)

has been identified as one of the main technical challenges

towards interpretable machine learning [40]. While approaches

producing optimal interpretable and fair ML models exist in

the literature (e.g., an Integer Programming formulation for

learning optimal fair decision trees), they are often compu-

tationally expensive and difficultly scale. Yet, recent work

shows that the conflict between accuracy and fairness can be

leveraged to perform an effective pruning (using Integer Linear

Programming) when learning optimal fair rule lists [41].

Explanations may not preserve fairness properties of

a model: It was observed in [42] that popular explainability

frameworks may not reliably reflect the fairness properties of

the explained models. For example, on the one hand it is pos-

sible to compute post-hoc explanations that appear to be fair

to explain an unfair black-box model [43]. On the other hand,

the explanations of a fair model’s decisions may (wrongly)

rely on sensitive features and exhibit discrimination [44]. In

addition, the choice of the explanation method as well as

the type of explanation it produces both impact the users’

perceived fairness [45]. The fairness of post-hoc explanations

generated from a fair model’s decisions was also investigated

in [42]. More precisely, based on group fairness notions, the

fairness of an explanation can be formulated similarly to that

of a classifier (an explanation being seen as a local surrogate

model). Afterwards, fairness is computed on a neighbourhood

of the explained example. For such artificial points, no label

is known, which means that only the statistical parity metric

can be used. These researchers show that the fairness property

of the explained model may not be reflected in the generated

explanations and propose a framework for producing fairness-

preserving explanations.

Fairness-enhancing methods may require

non-interpretable transformations, hence harming

interpretability: In a study on interpretable, fair and accurate

ML for criminal recidivism prediction, [46] observe that

fairness-enhancing methods often require non-interpretable

transformations, which are not compatible with interpretability

desiderata. Indeed, pre-processing methods usually perform

complex transformations of the input features, which harm

their original semantic [47], [48]. The resulting representation

hence can not be used to produce an understandable

model. Furthermore, the corrections performed to a model’s

outputs by post-processing techniques [49] can also lead to

non-interpretable processes.

3) Other Unfair Effects of Explainability Methods:

Post-hoc explanations affect individuals’ privacy in

a disparate manner: As discussed later in Section IV-A,

minority groups often suffer from increased privacy risks.

Interpretability can also exhibit this trend, as noted by [50],

[51]. For instance, when investigating whether membership

information can be inferred from post-hoc explanations, it has

been observed that outliers as well as “hard to generalize”

examples belonging to minority groups are at a higher risk

of being disclosed than majority groups. This is partly due

to the fact that they are more susceptible of being part of

the generated explanations. In such case, interpretability tools

can penalize minorities by leaking more information about

disadvantaged groups.

Post-hoc explanation frameworks can introduce un-

fairness through disparity in explanation quality: Group-

based disparities in explanation quality have been recently

investigated in [52]. More precisely, the authors first identify

key characteristics that define the quality of an explanation

(e.g., fidelity, stability, consistency and sparsity). Then, they

conduct a large experimental study demonstrating that there is

often a disparity in the quality of the explanations produced

affecting minority groups. Such quantitative disparity is iden-

tified to depend on the type of model being explained and

on the particular post-hoc explanation framework considered.

Using several real-world applications (e.g., finance, healthcare,

college admissions and the US justice system) and post-hoc

explanation frameworks, [53] have also demonstrated that the

fidelity of the produced explanations varies significantly across

the different identified subgroups of the population. Finally,

they suggest that robustness techniques can help reduce the

observed disparity - but emphasize that communicating details

regarding such disparity to end-users is critical.

Counterfactual explanation frameworks can harm sub-

groups of the population by consistently providing higher-

cost recourse: In the context of counterfactual explanations,

the cost of recourse is defined as the amount of effort a user

has to do to implement the provided recourse and change

the model’s decisions. In this context, it was shown that

counterfactual explanation frameworks may provide lower-cost

recourse for some subgroups of the population while harming

some others [54], [55]. For instance, some minority groups

may have to make more effort to implement the provided

recourse after a loan refusal. To face this issue, recourse

fairness was studied [56], [57] and frameworks equalizing the

cost of recourse across subgroups were proposed.

Post-hoc explanations can be manipulated: Explainabil-

ity tools are designed to facilitate model audit and enhance the

users’ understanding. However, because the process of expla-

nation generation can sometimes be opaque, post-hoc expla-

nations could potentially be manipulated by black-box model

holder to hide unfair decision-making processes by providing

manipulated fair explanations. Indeed, it was shown that black-



box explanations can be misleading, for instance by achieving

high fidelity with respect to the explained model while using

entirely different features, leveraging correlations in the feature

space [58]. In addition, it has been demonstrated that this

can be exploited and extended to an existing framework [59]

to generate explanations favoring some given features while

avoiding others. Finally, the authors have conducted a user

study and find out that misleading explanations can increase

the user trust in black-box models wrongly.

Other works have also shown how malicious entities can

manipulate explainability techniques to hide the true reason-

ing of the underlying model. For example, it is possible to

directly craft manipulated explanations, such as local surrogate

models [43], [60] that appear fair but actually explain the

output of a globally unfair black-box, with such practice being

coined as “fairwashing”. Explanation frameworks can also be

potentially manipulated, for instance by detecting artificial

examples generated by perturbation-based methods and giving

them a chosen output value [61]. This can be leveraged to

hide a black-box model’s unfairness by crafting and providing

fair explanations to an auditor [62]. Furthermore, [63], [64]

have shown that it is possible to fine-tune a pre-trained model

to manipulate the output of feature importance explanation

methods while having little impact on the model’s accuracy.

Considering sequence classification and sequence-to-sequence

tasks (i.e., in which the input to the model is a sequence of

words), [65] propose a method to train a model with signifi-

cantly reduced attention mass over some chosen words (e.g.,

gender-related prefixes) while still using them for prediction. A

user study shows that the proposed method is able to mislead

users into thinking that the underlying model is fair, while it

is actually biased against gender.

It was also shown to be possible to learn a model so that

the counterfactual explanations generated by some off-the-

shelf algorithm look recourse fair across subgroups of the

population (i.e., the cost of the recourse associated to the

counterfactual explanations does not vary too much between

individuals from the different subgroups), while also being

able to generate lower-cost recourse explanations for some

privileged subgroup(s) by simply adding a small adversarial

perturbation [62], [66]. In [67], an adversary is able to

generate adversarial examples with chosen prediction by a

black-box model that also fool popular explainability tools.

This illustrates the fact that post-hoc explainability techniques

are not a reliable way to detect adversarial inputs manipu-

lation. Finally, [68] consider the setup of a fairness audit in

which the data is private and owned solely by the malicious

model holder, which provides subsamples to the external

auditor. They show that the former can manipulate the au-

ditor’s explainability methods to hide unfair decision-making

(such as the influence of a sensitive attribute) by providing

adversarially-selected data samples. In addition, such practices

are particularly difficult to detect in a remote setting, in which

the explanation is provided by a third-party API [69].

Finally, although many tensions between explainabil-

ity/interpretability and fairness exist, one can still identify

some synergies, as discussed hereafter.

B. Synergies

Interpretability and explainability ease model audit: As

mentioned in [70], it is easier to detect and debate possible

biases or unfairness issues with an interpretable model than

with a black-box one. This inherent benefit of interpretable

models applies both to fairness and accuracy, as it makes

it possible to detect and correct possible inaccuracies with

respect to the training data - which is more difficult with

black-box models. Following the same line of research, [71]

state that interpretability can be used to qualitatively ascertain

whether other desiderata - such as fairness - are met. Post-

hoc explainability methods can also facilitate fairness audit by

gaining insight regarding the causes of a model’s unfairness.

For instance, [72] propose to rely on fairness explanations

based on Shapley values to be able to attribute a model’s

overall unfairness to individual input features.

Fairness can act as a regularizer: It was observed in

the literature that enforcing fairness constraints can have a

regularizing effect, thus also reducing overfitting [73]. More

precisely by preventing over-complex models, this can lead to

sparser and more interpretable models.

IV. FAIRNESS AND PRIVACY

In this section, we first highlight the identified theoretical

and empirical tensions between fairness and privacy. We then

review some synergies illustrating how the two requirements

can be conciliated. Note that part of this intersection is covered

in much more details by a recent survey [7] studying the

interactions between fairness and differential privacy (DP), in

both decision making and machine learning tasks.

A. Tensions

As discussed in Section II-A, it is desirable and often legally

required to ensure that sensitive attributes do not directly or

indirectly influence the predictions of a ML model. However,

while many popular fairness-enhancing approaches require the

availability of such sensitive attributes, their collection and use

may be prohibited by privacy regulations or anti-discrimination

laws. Some approaches propose to use an encrypted version

of the sensitive attributes so that the users do not have to

explicitly reveal this information. For instance, [73] leverage

cryptographic approaches such as Secure Multi-Party Compu-

tation (SMPC) to build a fair model. Nevertheless, processing

encrypted information ensures that the computation does not

leak anything more than its outputs, but does not protect them

from inference attacks. This illustrates a first, straightforward

intrinsic conflict between fairness and privacy. Furthermore,

when applied jointly, both notions often conflict, as discussed

in more details in the following paragraphs.

Group fairness and differential privacy are theoretically

incompatible: It is provably impossible to build ML models

strictly respecting a given group fairness constraint while

respecting DP. More precisely, [74] have shown that (ǫ, 0)-
DP and fairness (more precisely equal opportunity) cannot



be simultaneously satisfied without reaching trivial accuracy.

The authors have noted that this holds for pure (ǫ, 0)-DP, but

is also applicable for (ǫ,δ)-DP (as δ is usually required to

be cryptographically small). An impossibility theorem is also

stated in [75], considering popular group fairness definitions:

if a learning algorithm L is (ǫ, 0)-differentially private and is

guaranteed to output an approximately fair classifier, then L

is constrained to output a constant classifier. The idea of their

proof is essentially the same as [74]. (i) Consider a learning

algorithm L that is (ǫ, 0)-DP. For any two datasets D and D
′,

and for any classifier h, if L outputs h for D with probability

strictly greater than zero, then it must output h for D′ with

strictly positive probability too. This can be proved because,

for any two datasets D and D′, it is possible to build a serie

of datasets neighboring two-by-two, from D to D′ (and the

property must be verified for all pairs of neighbouring datasets

by definition of pure DP). (ii) Recall that L can only output

classifiers respecting a given (exact or approximate) fairness

requirement: if a classifier h does not meeet the fairness

requirement on the training set D, then P (L(D) = h) = 0.

The conjunction of (i) and (ii) implies that L can only release

constant classifiers (and hence pure DP and group fairness

cannot be satisfied jointly).

Enforcing fairness increases privacy vulnerabilities:

Disparities with respect to the vulnerability to Membership

Inference Attacks (MIAs) between various subgroups of the

population are observed in [76]. The theoretical analysis

suggests that vulnerability to MIA is caused by distribu-

tional overfitting, which quantifies the distance between the

distributions of outputs of the model on the training set

and outside. Disparate vulnerability to MIAs arises if and

only if distributional overfitting differs across subgroups. In

practice, as aforementioned in Section III-A3, subgroups that

are inherently more difficult to fit and/or that are less rep-

resented in the data are indeed more vulnerable to MIAs.

Additionally, overfitting can increase these vulnerabilities, but

also their disparities. For instance, it was empirically shown

that enforcing fairness constraints may help under certain

conditions, but can also exacerbate the observed disparities or

even create new ones in real-world applications. Finally, the

authors have recalled that DP upper-bounds the vulnerability

of all individuals or subgroups, hence also upper-bound their

disparity. However, it does not remove it completely and in

addition to get an interesting mitigation, the privacy budget

must often be really tight, hence resulting in utility drops.

In a position paper, [77] emphasize the importance for

a privacy-preserving mechanism to protect individuals with

equivalent effectiveness. However, while DP provides the same

(worst-case) theoretical protection for all dataset examples, the

actual privacy vulnerability is often not uniformly distributed.

The privacy implications of fairness are empirically studied

in [78], quantifying the data privacy risk as the success

of a black-box MIA. The authors have empirically shown

that enforcing fairness constraints disproportionately raises the

privacy risk of the unprivileged subgroups: “fairness comes at

the cost of privacy, and the privacy cost is not equal across

subgroups”. This is explained by the fact that the fairness

requirements they have used requires the model to equally fit

the unprivileged subgroups. When such subgroups are smaller,

each example has a stronger impact over the resulting model

and, in the worst case, is memorized. In addition, the more

unfair the unconstrained model is, the higher the privacy

vulnerability disparity will be, as there is more unfairness to be

compensated. Finally, information regarding a model’s fairness

can be exploited to reconstruct the sensitive attributes of its

training examples [79], [80]. These works rely declarative

programming approaches to encode the fairness desiderata and

perform (or improve) the reconstruction.

Differential privacy disproportionately affects utility:

The effects of enforcing differential privacy on a model’s

accuracy on different subgroups of the population are studied

in [81], using the accuracy parity fairness notion, which equal-

izes the model’s accuracy across the subgroups. Considering

several image classification and natural language tasks, they

use the popular DP-SGD [33] framework for differentially-

private deep learning in both centralized and federated settings.

This large empirical study shows that gradient clipping and

random noise addition, the key mechanisms of DP-SGD,

disproportionately affect underrepresented subgroups. Indeed,

enforcing DP leads to higher accuracy drops for minorities

and discriminated groups, such as darker-skinned people in

the context of facial recognition, but also at the intersections

of different subgroups. This leads to a “poor gets poorer

effect”, in which the classes with low accuracy in the non-

DP setting suffer the largest accuracy drops when applying

DP. In a follow-up work, [82] empirically observe that the

differentially-private PATE [34], [35] framework (introduced

in Section II-C) also has disparate impact on the resulting

model’s utility. However, they report that PATE has smaller

disparate impact compared to DP-SGD to reach similar privacy

levels, and note that a sweet spot for the number of teachers

exists, which minimizes the induced disparities. The authors

of [83] observe that the accuracy disparity caused by DP

still occurs even when the data is slightly imbalanced, and

for loose privacy guarantees. Indeed, two main factors were

identified in the literature to explain this effect: properties of

the training data, and characteristics of the DP mechanism,

which are summarized and analyzed with more details in a

recent survey [7].

It was also observed in healthcare applications (x-ray images

classification and mortality prediction in time series) that small

groups and samples at the tail of the data distribution suffer

from a larger accuracy drop compared to majority groups

and typical examples [84]. Furthermore, the characteristics

of DP learning mechanisms themselves are also directly

related to the magnitude of the observed disparate impact.

This encompasses the gradient clipping and noise addition

mechanisms of DP-SGD (as aforementioned), as well as

the size of the teacher ensemble and the confidence of the

voting teachers in PATE [85]. Different technical solutions to

mitigate the disparate impact of DP on a model’s utility were

proposed. Indeed, it was shown that it is possible to modify



DP-SGD to use different clipping bounds for the different

identified subgroups [86]. Other work [87] performs early

stopping based on a public validation set. When using PATE

in low voting confidence regimes, small perturbations may

significantly affect the result of the voting result. To mitigate

this phenomenon, [85] propose to use soft labels and report

confidence scores associated with each target label, rather than

reporting solely the label with the largest confidence. While

being heuristic as it does not guarantee any form of fairness,

these approaches have been empirically shown to reduce the

disparate impact caused by traditional DP mechanisms.

The disparate impact of DP mechanisms was also observed

for decision tasks. [88] have studied the setup in which agen-

cies release differentially-private versions of their databases,

that are then used for several allocation problems. The au-

thors consider three real-life allocation problems using the

differentially-private Census data: namely printing of election

materials in minority languages, allocation of funds to school

districts to assist disadvantaged children and apportionment of

legislative representatives. They demonstrated that the noise

added by DP mechanisms leads to errors in the computed

allocations compared to the true allocations (i.e., the alloca-

tions that would be decided without DP). The key point of

their work is that this error affects the entities being allocated

some resources in a disparate manner. For instance, it is

empirically shown that small school districts often benefit an

overestimated allocation. On the other side, larger district may

get a smaller allocation, which harms their enrolled children.

This effect was also observed in the literature with two main

causes being identified [7]. In a nutshell, the shape of the

decision problem can disproportionately exacerbate the noise

added by the DP data release if it involves non-linearities

in its computation, such as thresholds for funds allocation.

Additionally, post-processing steps can induce intrinsic biases.

For instance, ensuring simple non-negativity constraints within

the computed values can imply a positive bias. It was also

shown that DP mechanisms adding data-dependent noise are

responsible for a more important disparity, due to the fact

that, contrary to standard DP mechanisms (such as the Laplace

mechanism), the effect of DP differs between entities. Finally,

other aspects of privacy can also impact fairness. For instance,

recent work [89] show that models designed to take into

account potential future unlearning requests, which are request

in which a user asks for the contribution of his data to be

removed from the model, disproportionately affects the utility

for minority groups.

Differential privacy disproportionately affects the qual-

ity of post-hoc explanations: Reference [90] propose the

notion of differentially-private post-hoc explanations, among

which some aim at identifying proxy features that cause a

group disparity (i.e., a difference in the average prediction

between several subgroups). Then, it is shown that, for mi-

nority groups, the amount of noise required to make the

explanations differentially-private results in a significant loss

in its utility, hence making more difficult the discovery of

discriminatory proxy features. While proposing a framework

to generate differentially-private post-hoc explanations, [91]

have observed that sparse data regions, which often corre-

spond to underrepresented subgroups are associated to poorer

performances, either in terms of required privacy budget or

explanation quality. In both cases, privacy disproportionately

affects minority groups, which is consistent with previously

mentioned works.

Overall, DP and statistical fairness are both theoretically

incompatible and strongly conflict in practice. On the one side,

to ensure fairness minority groups, the corresponding exam-

ples shall yield a higher importance in the learning process,

which exposes their information more than for examples of

the majority group. On the other side, to ensure DP, one must

reduce more the influence of underrepresented subgroups, as

learning an equivalent amount of information for them would

result in an increased per-example privacy risk. Nevertheless,

in the next subsection, we show that the two notions can be

jointly applied under certain circumstances, and thus that there

are some synergies between privacy and fairness.

B. Synergies

Differential privacy and approximate fairness can be

jointly enforced with some trade-offs: As discussed in Sec-

tion IV-A, it is impossible for a learning algorithm to satisfy

DP while also producing a model strictly complying with

fairness constraints. However, it is possible for a DP learning

algorithm to output a model approximately satisfying given

fairness criteria [74]. This leads to a trade-off between the

DP guarantees and the observed model’s fairness. Hereafter,

we first introduce different methods of the literature jointly

handling differential privacy and fairness.

The notion of Private and Approximately Fair Agnostic PAC

(Probably Approximately Correct) Learning was introduced

in [74]. It states that a learning algorithm satisfies DP while

returning an accurate and approximately fair classifier with

high probability. The authors implement this notion using

the Exponential Mechanism, with a utility function being the

sum of a model’s error and unfairness. The sensitivity of the

utility function being data-dependent, the Laplace mechanism

is used to upper-bound it in a differentially-private manner.

This approach achieves the desiderata of privacy, fairness and

accuracy, but the running time of the Exponential Mechanism

scales linearly with the hypothesis class size, which is ex-

ponential for common hypothesis classes. This motivates the

need for an efficient algorithm conciliating these desiderata.

To realize this, the authors have built upon a polynomial-

time algorithm from the literature, producing approximately

fair and accurate randomized classifiers with high probability.

In a nutshell, this algorithm formulates the fair learning

problem as a two-player zero-sum game, between a Learner

minimizing error while satisfying fairness constraints and an

Auditor updating Lagragian multipliers to penalize the largest

subgroup-wise fairness violations. This algorithm is modified

to satisfy DP by using a differentially-private subroutine to

privately compute the players’ best responses in each round.



Two methods are proposed in [92] to achieve jointly DP and

fairness in logistic regression. Decision boundary fairness is

used as a notion of fairness that provably minimizes statistical

parity violation. A first approach coined PFLR considers the

fairness constraint as a penalty term to the objective function.

DP is enforced using the functional mechanism [29]. More

precisely, the objective function is approximated through its

polynomial representation based on Taylor expansion before

being perturbed by injecting Laplace noise into its polynomial

coefficients. Minimizing the perturbed objective function leads

to the computation of differentially-private model parameters.

A second approach, named PFLR* and based on the first one,

takes advantage of the connection between ways of achieving

differential privacy and fairness. More precisely, the authors

noted that adding the fairness penalty is equivalent to shifting

the value of some coefficients of the polynomial form of the

objective function. Thus, they do not incorporate the fairness

penalty term directly in the objective function and rather

integrate it via mean-shifting the Laplace noise added to a

subset of the coefficients. As such shift is dataset-dependent,

a small part of the privacy budget is used to estimate it in

a differentially-private manner. The Theoretical analysis as

well as empirical evaluation show that PFLR*, by separating

privacy budgets on objective function and fairness constraint,

offers a more flexible framework to find good trade-offs among

privacy, fairness, and utility.

In a follow-up work, [93] extended PFLR by proposing to

have two distinct privacy budgets in order to add Laplace

noise with larger magnitude to the coefficients of the terms

involving the sensitive attributes than to the others within the

objective function. They also propose a second approach using

the relaxed functional mechanism to enforce approximate

DP (ǫ,δ)-DP to improve on utility. It utilizes the extended

Gaussian mechanism to perturb the objective, adding random

Gaussian noise to the coefficients of the polynomial form

of the objective function. Empirical evaluation on real-world

datasets confirms that the use of (ǫ,δ)-DP leads to an improved

utility in all scenarios compared to pure DP. Furthermore, the

use of two distinct privacy budgets can help enforcing stronger

privacy guarantees while also reducing the correlations with

the sensitive attribute, thus also improving fairness.

A differentially-private framework to train deep learning

models that satisfy several popular group fairness notions was

proposed in [94]. This approach considers the Lagrangian

relaxation of the fairness-constrained learning problem, and

leverages a Lagrangian dual approach to solve it: the fair-

ness violation terms, weighted by Lagrangian multipliers, are

directly added to the objective function. Then, the training

procedure consists of iteratively repeating two successive

steps: primal and dual. The primal update step optimizes

the model parameters to minimize the objective function,

given the current Lagrangian multipliers. Afterwards, the dual

update step updates the value of the Lagrangian multiplier

to approximate the stronger Lagrangian relaxation. To en-

force differential privacy for sensitive attribute information,

differential privacy is achieved at both steps, when computing

the fairness violation terms or their gradients. In the primal

update step, clipped and noisy gradients are used. The model

parameters optimization is done on this noisy version of the

objective function (in which only the fairness violation term,

accessing subgroup membership which we want to protect,

is impacted by the DP mechanism). A similar mechanism

is done on the dual update step, in which constraint vio-

lations are clipped and perturbed with carefully calibrated

Gaussian noise. Extensive empirical evaluation shows that the

fairness violation decreases as the privacy budget increases:

thus enforcing DP leads to violating more fairness. This is

explained by the fact that relaxing the DP constraint allows

either to perform more iterations (hence propagating more

fairness violation information) or to inject less noise for a

fixed number of iterations (hence propagating more accurate

fairness violation information). Another surprising trend is that

the model accuracy slightly decreases as ǫ increases. This is

due to the fact that enforcing weaker DP allows the fairness

constraints to have more impact on the objective function,

hence penalizing more the accuracy.

Two fair learning algorithms have been adapted in [95] to

satisfy both fairness (here in terms of equalized odds) and DP

(with respect to the sensitive attributes). They first consider

the post-processing method of [96]. In a nutshell, given a

pre-trained and possibly unfair classifier, the approach first

computes its per-group per-ground truth prediction propor-

tions. It then solves a Linear Program to compute per-group

per-class prediction probabilities defining a fair randomized

classifier. To enforce ǫ-DP in this setting, the authors simply

add well-calibrated noise drawn from the Laplace distribution

to the computed statistics before solving the LP with them.

Theoretical analysis of how the introduced noise propagates

to the solution of the LP leads to bounds on accuracy and

fairness violation that are met with high probability. This

quantifies a trade-off between accuracy, fairness and privacy:

weaker DP guarantees lead to tighter bounds on accuracy and

fairness, while stronger DP guarantees (satisfied by adding

more noise) increase the bounds, and the possible loss on

accuracy and fairness. Experimental evaluation demonstrates

that this simple method is able to provide interesting trade-offs

even with small datasets but is expected to perform worst than

the second approach on large ones. The later builds upon an

in-processing approach [97], which formulates the problem of

learning a fair and accurate classifier as finding the equilibrium

of a two-player min-max game. A Learner minimizes the

objective function over the set of possible classifiers while an

Auditor maximizes it by choosing the value of the multipliers

penalizing fairness violations. To enforce (approximate) (ǫ,δ)-

DP, the authors add well-calibrated Laplace noise while com-

puting the gradients of the Auditor, and use the exponential

mechanism for the Learner’s model selection. Similar to the

first case, a stronger privacy guarantee (smaller ǫ and δ) leads

to weaker accuracy and fairness guarantees. However, a new

trade-off can be controlled through the maximum norm of

the multipliers: larger values lead to tighter fairness bounds

but looser error bounds, and vice-versa. For both approaches,



introducing noise to achieve DP leads to a reduction in the

fairness guarantees (in a similar manner as for accuracy).

[98] consider the setup in which the sensitive attributes are

released using local DP (i.e. a variant of DP in which each user

locally randomizes his data before releasing it), and propose

a two-step approach. First, a classifier that is fair with respect

to the noisy sensitive attributes is built, using a state-of-the-art

in-processing fair learning algorithm [97]. Second, a modified

version of a post-processing fairness-enhancing method [96] is

used to ensure with high probability that the model is also fair

with respect to the (unknown) original sensitive attributes. For

strong privacy regimes, this post-processing step is empirically

shown to significantly decrease fairness violation.

The fairness cost of differential privacy can be theo-

retically bounded: Recent work theoretically shows that the

impact of DP on fairness is bounded and can be computed

to obtain non-trivial guarantees regarding the private model’s

fairness [99]. The underlying analysis relies on the fact that,

just like a model’s accuracy, common statistical fairness met-

rics are pointwise Lipschitz continuous with respect to the

model parameters. Then, proving that the private model is

sufficiently close to the optimal non-private one implies that

their fairness are also close. Interestingly, the theoretical bound

tightens linearly with respect to the size of the training set: the

“loss of fairness” due to privacy vanishes when the number of

training examples increases.

Individual fairness and differential privacy are both ro-

bustness definitions: As introduced in Section II-A, individual

fairness can be formulated as a Lipschitz condition: just like

DP, it is a robustness definition [100]. More precisely, [10] has

observed that individual fairness constitutes a generalization

of differential privacy. The authors draw an analogy between

individuals in the setting of fairness and databases in the

setting of differential privacy. Indeed, as also noted by [48],

differential privacy requires that “algorithms behave similarly

on similar databases”, while individual fairness enforces that

classifiers yield similar outcomes for similar instances. This

allows the use, for fairness purposes, of mechanisms designed

for differential privacy. For instance, [10] propose an efficient

individually fair learning algorithm based on the Exponential

mechanism [30], resulting in provable loss bounds. In [95],

the proposed privacy-preserving approach (ensuring DP for

the sensitive attributes) can be seen as a relaxation of the

strict notion of individual fairness proposed in [100]. Indeed,

while the former enforces a ratio on the probabilities of

different outcomes when a single example’s sensitive attribute

is modified, the latter enforces that the sensitive attribute is

never used. Fairness through unawareness is then a strict,

simple but certifiable way to ensure sensitive attribute privacy.

Privacy and fairness can enhance each other in par-

ticular setups: The authors of [101] consider the particular

setting in which a pre-trained model generates qualification

scores for a set of applicants. These scores are then used to

determine a fixed number of candidates that will be selected

by the process (e.g., for a grant, a job. . . ). They show that the

Exponential mechanism can be used to perform the selection

given the qualification scores, in order to both enforce DP

for the selection process and improve fairness (here equal

opportunity). Under some conditions regarding the properties

of the subgroups, the proposed approach can make the se-

lection procedure perfectly fair. Other notions of privacy can

also have different interactions with fairness definitions. For

instance, [102] studies the context of itemset mining, in which

given a dataset, the objective is to mine frequent patterns.

Then, the author shows that anonymizing the data to achieve

t-closeness with carefully chosen parameters implies popular

group fairness notions. Finally, it is possible to perform sta-

tistically significant fairness audits using differentially private

sensitive attributes, taking into account the added noise [103].

Other work [104] also considers frequent patterns discov-

ery, and propose two-step algorithms to jointly address non-

discrimination (fairness) and privacy. More precisely, they

first apply a privacy-preserving mechanism, before using data

sanitization methods to enforce non-discrimination. Indeed,

considering either k-anonymity or DP, they theoretically prove

that the privacy guarantees are not affected by the later

fairness-enhancing stage. On the contrary, they observe that

applying privacy-preserving mechanisms on a sanitized data

could alter the resulting patterns’ fairness, either increasing or

decreasing discrimination depending on the considered sce-

nario (in line with the aforementioned tensions). Importantly,

they empirically note that the utility loss incurred by jointly

enforcing fairness and privacy is only marginally higher than

that of enforcing privacy only. This result highlights a synergy

between the two desiderata, in which the former privacy-

enhancing step sometimes also improves fairness, overall

leading to a smaller utility drop from the later discrimination

sanitizing step. This trend is valid for both k-anonymity and

DP, although the later leads to a higher utility cost.

V. INTERPRETABILITY AND PRIVACY

In this section, we first discuss some tensions between

interpretability and privacy. Although these notions inherently

conflict, we then highlight synergies between them, before

summarizing existing frameworks addressing them jointly.

A. Tensions

Interpretability/Explainability and Privacy conceptually

have antagonist goals: While interpretability and privacy

protection are both important requirements for responsible

machine learning, they intrinsically pursue contrasting ob-

jectives [6]. Indeed, on one hand, interpretability aims at

providing more information to enhance users’ understanding

of a model’s behavior. On the other hand, privacy requires

a tight control of the leaked information, often obfuscating

part of it to protect individuals’ data. Jointly addressing both

desiderata hence necessitates some form of arbitration [105].

Explainability tools can be used with the purpose

of designing attacks against machine learning models:

Tools from explainable AI can be leveraged by malicious

entities to perform more effective attacks against machine

learning based systems. For instance, [106] studied malware



detection models, that are usually trained on crowd-sourced

data to distinguish between malicious softwares (malwares)

and legitimate ones. The authors investigated backdoor poi-

soning attacks, in which an attacker injects carefully chosen

datapoints to the crowd-sourced training set, resulting in its

chosen malware being wrongly classified as legitimate by the

detection model. In this context, they leverage Shapley values

to identify highly effective features and their values, and effi-

ciently craft the poisoned examples. Explainable AI techniques

were also leveraged to fool ML-based authentication systems,

which take as input a user ID along with some fingerprinting

authenticating the user uniquely. An attacker can then use

perturbation-based feature explanation techniques on a local

surrogate model to efficiently craft a fingerprint authenticating

a desired user given its ID [107]. Again, the feature importance

explanations help guiding the malicious crafting process by

indicating which features most influence the decision. A

counterfactual explanation framework is modified in [108]

to generate adversarial examples. Counterfactual explanations

of a black-box model are also used to identify the features

that influence the model’s decision boundaries and generate

examples to conduct backdoor poisoning attacks.
Post-hoc explanations can be exploited to perform or

improve inference attacks: Inference attacks traditionally

query a model (e.g., via a prediction API) and use its outputs

to achieve their goal, for instance determining an individual’s

membership in the training data, reconstructing part of the

training dataset, extracting the model itself, or inferring an

individual’s missing attributes [3], [18]. Post-hoc explainabil-

ity techniques, by offering explanations as additional outputs,

expose a new attack surface. Several works showed that such

explanations, whatever form they take (e.g., example-based,

feature-based . . . ), can be leveraged to enhance the different

types of privacy attacks (introduced in Section II-C):

• Model extraction attacks. Gradient-based (a class of

feature-based) explanations of a black-box model can be

exploited by an adversary to reconstruct the underlying

model [109]. In the considered setup, the adversary owns

an auxiliary dataset and can query the black-box model to

obtain the model’s gradients as explanations for given input

points. The authors have designed a near-optimal algorithm,

which provably extracts the entire underlying model within

a bounded number of queries, in the particular case in which

it is a two-layer neural network with ReLU activations. For

the general case, they design an effective heuristic inspired

by previous works on standard reconstruction attacks against

prediction APIs. More precisely, the attacker trains a surro-

gate model mimicking the black-box behavior and optimizes

to match its gradients thanks to the provided explanations.

The results obtained demonstrates that model extraction

from gradient explanations requires orders of magnitude

less queries than from the sole predictions. Another ap-

proach [110] also consider gradient-based explanations, but

assume no auxiliary dataset. In such case, the data used

to query the black-box and train the surrogate model is

outputted by a generative model, which in turn tries to

generate examples so that the surrogate disagrees with the

black-box. The generative model is updated leveraging the

provided gradient explanations, which dramatically reduces

the required number of iterations (and queries to the black-

box). Furthermore, [111] show that providing counterfactual

(a class of example-based) explanations (CFs) can help to

realize model extraction attacks with better precision and

limited number of requests. More precisely, the adversary

queries the black-box model with a given attack set, and

trains a surrogate using the predictions of both the attack

set instances and the provided CFs. The authors empirically

show that the use of the provided CFs improves the attack

by both increasing the built surrogate’s fidelity with respect

to the black-box model, and dramatically decreasing the

required number of queries. A similar approach is proposed

in [108], leveraging knowledge distillation techniques to

train the surrogate model, which may mitigate the potential

performance harm of an architecture mismatch between the

actual black-box model and the reconstructed surrogate.

CFs provided by Machine-Learning-as-a-Service (MLaaS)

platforms are also exploited in [112], which propose an ef-

ficient querying strategy to steal the underlying classification

model. Their strategy is based on the following observation:

the generated CFs usually lie close to the decision boundary,

while the attack set examples do not necessarily. This leads

to a “decision boundary shift issue”, in which the surrogate

model’s decision boundary is shifted compared to that of

the actual black-box. To circumvent this issue, the authors

propose to generate counterfactuals for the CFs themselves,

and to use them all for training the surrogate.

• Membership inference attacks. Feature-based explanations

are leveraged in [51] to perform MIAs. More precisely,

they consider both backpropagation-based (i.e., gradient-

based) and perturbation-based explanations. On one hand,

they demonstrate that the former leak information regarding

membership, and can effectively be leveraged to perform

MIAs. In particular, the explanations’ variance is very infor-

mative, in the sense that explanations of training examples

usually exhibit a low variance, while for unseen examples,

this value can be considerably higher. This is due to the fact

that for training examples, the model is usually very confi-

dent, as it was optimized on them, and small perturbations

are likely to not change its predictions. On the contrary,

unseen samples can be closer to the decision boundary,

which results in some features having a great impact on

the model’s predictions (hence high gradients norms), and

the resulting explanation having high variance. On the other

hand, they further show using two popular perturbation-

based frameworks [113], [114] that the later is more resistant

to membership inference. This may be explained by the fact

that perturbation-based frameworks often generate perturbed

examples that lie out of the data distribution [115]. The

black-box model behavior on such examples is unspecified,

and so querying it with them does not provide insightful

information to perform inference attacks. This also suggests

that the resulting explanations may qualitatively by poorer:



“privacy comes at the cost of explanation quality”. Counter-

factual explanations are leveraged in [108] to conduct MIAs.

More precisely, the black-box model is queried with an

auxiliary dataset and then the model’s outputs and generated

counterfactual examples are used to train a shadow model.

Membership of a given example is then established by

comparing the difference in prediction probabilities between

the shadow model and the actual black-box to a threshold.

• Dataset reconstruction (and membership inference) at-

tacks. An example-based explainability framework based

on influence functions [15] and returning influential training

examples that most contribute to an example’s prediction is

considered in [51]. Because they explicitly reveal training

points, and a training point is likely to be used to explain

itself, such explanations are highly vulnerable to MIAs.

Indeed, this class of explanations allows for stronger attacks,

such that dataset reconstruction attacks. The authors propose

two algorithms that leverage the provided example-based

explanations to reconstruct (part of) the model’s training

set. The first algorithm is based on subspace reduction and

comes with a certifiable lower bound on the number of

points it discovers. Empirical evaluation shows that it can

be used to retrieve most of the training dataset for high

dimensional data. The second one is heuristic and offers

no theoretical guarantees, but works well in practice for

low dimensional data. It simply consists in using previously

revealed points to reveal new points. This naturally defines

an influence graph structure over the training set, in which

an edge between two training examples means that one

is provided as an explanation for the other. The proposed

algorithm can then be used to explore entire Strongly

Connected Components within this graph.

• Model inversion attacks. The authors of [116] propose

model inversion attacks that aim at reconstructing a black-

box model’s inputs given its outputs (here, its prediction

along with some feature-based explanation), hence harming

the privacy of test instances3 (i.e., active users of the model).

In the context of image-based tasks, they focus on differ-

ent types of saliency map explanations to reconstruct the

target model’s input images, namely gradient-based expla-

nations [117], influence-based explanations [118] (obtained

by multiplying each input feature by its associated gradient),

activation-based explanations [16] and layer-wise relevance

propagation [119] (i.e., attributing pixels’ importance by

backpropagating neurons’ relevance). The proposed attack

uses an attack model, trained on an independent auxiliary

dataset to predict images (given as input to the target model)

given predictions and explanations (outputted by the target

model). As expected, the frameworks directly using the

input within the explanation computation (i.e., influence-

based ones) leak more information regarding the model’s

3This differs from the previously mentioned reconstruction attacks. Indeed,
in reconstruction attacks, the objective of the adversary is to infer information
regarding the model’s training data. In the discussed model inversion attacks,
the objective is to gain information about the examples provided to the model
at inference time, by only observing the model’s outputs (cf., Section II-C).

inputs, hence allowing better attack results. Importantly,

the paper shows that even non-explainable models can be

attacked, leveraging attention transfer to build an explainable

surrogate whose explanations are used to conduct the attack.

With a same attack objective, [120] have shown that Shap-

ley value-based explanations provided by popular Machine

Learning as a Service (MLaaS) providers can be exploited

to reconstruct the private model inputs. They provide an

information-theoretical analysis of the relationship between

an example and its associated Shapley values, and demon-

strate that an adversary can always infer useful information

about the former using the later. This analysis also holds

for sampling-based Shapley-values, which are commonly

computed as an efficient approximation of the exact Shapley

values. They then studied two distinct adversarial settings,

and have shown that even an adversary with no background

knowledge can reconstruct most of the private model’s input

examples given only its outputs and explanations.

• (Sensitive) attribute inference attacks. Sensitive attribute

inference attacks can leverage feature-based model expla-

nations, computed either with backpropagation-based or

perturbation-based methods [121]. The authors consider the

two scenarios where the sensitive attribute is (or not) used

for training the model and for inference. In both studied sce-

narios, the adversary leverages an auxiliary dataset to train

an attack model to predict an example’s sensitive attribute

given only the outputs of the target model (prediction and

explanation). They empirically show that their attack is able

to leverage such explanations to perform attribute inference

attack. Furthermore, they suggest that model explanations

lead to higher attack success compared to model predictions,

hence constituting a stronger attack surface to exploit.

Interpretable models inherently leak information re-

garding their training data: The approach of [122] exploits

the structure of a trained decision tree to reconstruct a prob-

abilistic version of its training set. It is generalized in [123]

to handle more generic types of knowledge and reconstruct

probabilistic datasets from other types of interpretable models.

Both works use tools from the information theory to precisely

quantify the amount of knowledge interpretable models en-

code, through their structure, regarding their training data.
Providing useful yet privacy-protective explanations

remains an open challenge: As discussed in the next sub-

section, differentially-private explainability tools have been

proposed, but always imply some trade-off between the ex-

planation quality, the privacy guarantee and the model utility.

Furthermore, [109] recall that DP can help guard against at-

tacks from prediction APIs, but it is not clear if this is a viable

approach for preventing reconstruction from explanations. On

the same line, [51] state that “the effect of DP techniques

(notably the randomness they induce) on model transparency is

unknown.” Furthermore, the effect of DP on the explanations’

robustness and user trust are still to be investigated [111].

Overall, applying explainability techniques while preserving

formal privacy guarantees is challenging. In the next subsec-

tion, we nevertheless how this could be achieved, but this



implies some cost on either one aspect or the other.

B. Synergies

Interpretability eases model audit and can be leveraged

for privacy purposes: Interpretability can be used to confirm

other desiderata of ML systems, such as privacy [71]. It also

makes it easier to detect possible privacy issues when building

interpretable models [70]. Furthermore, this auditable nature is

particularly appreciated in the area of ML-based cybersecurity

systems [124]. Indeed, machine learning models have shown

great abilities to detect abnormal behaviors or intrusions.

However, their black-box nature and lack of certification can

be problematic as it possibly introduces weaknesses inside the

security system. By providing an understanding of the under-

lying mechanisms and reasoning of the model, interpretability

techniques can be helpful to detect overfitting, or in cases

in which the model captures noise or inaccurate values in the

data. This allows deploying more trustworthy models, but also

helps the administrators identify potential breaches.

Interpretability can be conciliated with privacy with

some trade-offs: The authors of [125] study data mining

with DP guarantees, considering decision tree learning as

an illustrative task. They demonstrate that the design of the

privacy preserving mechanism is crucial, and that there is

a huge difference in terms of model utility and required

sample size between a naive implementation using a general

purpose privacy preserving data interface and a task-specific

differentially-private learning algorithm. Their empirical study

demonstrates the ability of their proposed algorithm to learn

differentially-private decision trees with reasonable cost in

terms of accuracy. Several other works also tackled differen-

tially private decision tree building, as summarized in [126].

Locally Linear Maps (LLMs) are studied in [127] and consist

in a linear combination of logistic regressions for each possible

class. Such interpretable models are suitable to provide local

explanations (using the appropriate LLM) but also global ones,

as the coefficients of each class’s LLMs provide insights re-

garding which features really matter to it. The authors propose

a procedure to learn LLMs under DP, leveraging mechanisms

from the DP-SGD framework [33]. They empirically observe

a trade-off between the privacy guarantee and the model’s

accuracy and interpretability.

Post-hoc Explainability can be conciliated with privacy

with some trade-offs: Quantitative Input Influence (QII) is

a framework leveraging Shapley values to provide feature-

based explanations quantifying the influence of input fea-

tures over the model’s predictions [90]. As such measures

may leak information regarding individual users, the authors

introduce a mechanism to generate differentially-private ex-

planations to the so-called transparency queries. Providing

pure DPy guarantees, it consists in adding Laplace noise to

the query answers, scaled to the query function sensitivity.

As the proposed measures generally have low sensitivity, the

amount of added noise remains reasonable which results in

relatively small average utility losses. Nonetheless, for some

types of explanations with exceptionally high sensitivity, the

amount of noise added may significantly harm their utility.

A method to generate differentially-private feature-based ex-

planations (i.e., local linear surrogates) of a black-box model

is introduced in [91]. In their framework, the explanations

are computed using a differentially-private gradient descent

leveraging the Gaussian mechanism. They further proposed

an adaptive mechanism, reducing the spending of the privacy

budget by leveraging the explanations to previous queries

when computing a new one. Using tabular, text and image data,

they empirically observe that the explanations’ quality degrade

while the privacy guarantees tighten. [128] investigated the

impact of a model’s differential privacy on the quality of

post-hoc explanations (saliency maps [16]) of this model and

on its utility, considering either local DP (classical learning

algorithm applied on DP data) or global DP (differentially-

private training algorithm). In both cases, the explanations are

also differentially-private due to the post-processing property

(cf. Section II-C). Handling either general or medical imaging

applications, they have learnt neural networks under different

DP budgets and evaluate the quality of post-hoc explanations

of their predictions using two metrics from the literature. In

a nutshell, these metrics aim at quantifying how much the

regions highlighted by explanation maps actually account for

the explained decisions. The experimental results show that

these metrics degrade while the privacy budget is tightened.

Furthermore, they suggest the existence of a three dimensional

trade-off space between privacy, explanation quality and model

accuracy. To face the explanation-guided backdoor poisoning

attack studied in [106] (and discussed in Section V-A), [129]

proposed to generate Locally Differentially Private explana-

tions. By randomly perturbating the top-k features in the

generated feature-based explanations, the mechanism is shown

to mitigate the success of the attack. An approach to generate

robust counterfactual explanations for differentially private

Support Vector Machines (SVMs) is designed in [130]. More

precisely, privacy is achieved by adding Laplace noise to

the SVMs’ weights, and classical counterfactual explanation

frameworks may generate counterfactuals that allow to cross

the classifier’s noisy boundaries, but not to actually change

the example’s class in real-life. To address this issue, they

instead generate robust counterfactual explanations by solving

an optimization problem with probabilistic constraints. In

practice, the generated counterfactuals require more and more

changes to the example as the privacy level tightens, in order

to ensure that its classification changes with respect to the

(unknown) non-private classifier. Again, this illustrates the

trade-off between explanations quality and privacy protection.

In the context of federated learning, [131] have also noticed

that DP can alter the meaningfulness of gradient-based expla-

nations. They propose an adaptive mechanism still providing

DP guarantees but injecting noise within the model’s param-

eters in a manner aimed at preserving the quality of gradient-

based explanations. Finally, recent work also studied DP for

counterfactual explanations [132]. The approach consists in

using an autoencoder trained in a differentially-private manner

to build noisy class prototypes, which can then be leveraged



to generate the counterfactuals.

VI. CONCLUSION

We have seen throughout this paper that while fairness,

interpretability and privacy are three important dimensions

of responsible ML, they often conflict in different ways,

both theoretically and empirically. Nonetheless, we have also

identified synergies, which suggests that a careful design can

sometimes lead to improving them jointly with a reduced

impact on utility. However, this considerably increases the

complexity of the learning process while requiring an in-depth

analysis of the used techniques. Furthermore, compromises

usually have to made. Overall, learning a model with non-

trivial utility and satisfying our three desiderata requires a

thorough theoretical formulation, being aware of the existing

tensions as well as of common techniques to mitigate them.

Both are summarized in Figures 1 and 2, in the Appendix A.

Finally, it is crucial to promote an interdisciplinary ap-

proach, for computer scientists to ensure that the metrics they

optimize for actually match legal and ethical requirements.

This is a particularly challenging aspect: ethical analysis are

often strongly context-dependent while genericity is a common

objective in computer science. In addition, not all legal and

ethical notions can easily be implemented and quantified using

mathematical formulas. It is hence necessary to verify the

alignment of the notions we use with the concepts we target,

for the development of ML systems that can be trusted and

that do not harm the society.
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APPENDIX A

SUMMARY FIGURES

In this appendix section, we provide a graphical summary of

the key interplays identified between fairness, interpretability

and privacy in machine learning. More precisely, we report

compatibilities and synergies in Figure 1, while we overview

tensions in Figure 2.



Fairness

Interpretability Privacy

Section III-B
• Interpretability and explainability ease model audit

• Fairness can act as a regularizer

Section V-B

• Interpretability eases model audit and can be leveraged

for privacy purposes

• Interpretability can be conciliated with privacy with some trade-offs

• Post-Hoc Explainability can be conciliated with privacy

with some trade-offs

Section IV-B

• Differential privacy and approximate fairness can be jointly enforced

with some trade-offs

• The fairness cost of differential privacy can be theoretically bounded

• Individual fairness and differential privacy are both robustness definitions

• Privacy and statistical fairness can enhance each other for particular setups

Fig. 1. Summary of the identified compatibilities and synergies between fairness, interpretability and privacy in machine learning.



Fairness

Interpretability Privacy

Section III-A
Tensions between Fairness and Simplicity - Section III-A1

• Simplicity and fairness intrinsically conflict

• Empirical trade-offs are complex

Combining Fairness and Interpretability is Challenging - Section III-A2

• Learning optimal interpretable models under fairness

constraints is computationally challenging

• Explanations may not preserve fairness properties of a model

• Fairness-enhancing methods may require non-interpretable

transformations, hence harming interpretability

Other Unfair Effects of Explainability Methods - Section III-A3

• Post-hoc explanations affect individuals’ privacy in a disparate manner

• Post-hoc explanation frameworks can introduce unfairness by providing

lower-quality explanations to minority groups

• Counterfactual explanation frameworks can harm subgroups of the

population by consistently providing higher-cost recourse

• Post-hoc explanations can be manipulated

Section V-A

• Interpretability/Explainability and Privacy conceptually have opposite goals

• Explainability tools can be used with the purpose of designing

attacks against machine learning models

• Post-Hoc explanations can be exploited to perform

or improve inference attacks

• Interpretable models inherently leak information

regarding their training data

• Providing useful yet privacy-protective explanations

remains an open challenge

Section IV-A

• Group fairness and differential privacy are theoretically incompatible

• Enforcing fairness increases privacy vulnerabilities

• Differential privacy disproportionately affects utility

• Differential privacy disproportionately affects the quality of post-hoc explanations

Fig. 2. Summary of the identified tensions between fairness, interpretability and privacy in machine learning.


