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Abstract 

In the current study, the ability of two data-driven machine learning tools, the extreme 

learning machine (ELM) and the adaptive neuro-fuzzy inference system (ANFIS), to predict 

the polymerization rate and melt flow index of linear low-density polyethylene produced in a 

gas phase process was investigated. The level of interaction between the input variables 

(ethylene, 1-butene, isopentane pressures, and reaction temperature) on the outputs (melt flow 

index and activity) was also examined. It was found that both outputs are impacted by the 

presence of isopentane as an induced condensing agent. Various statistical indicators, 

including the coefficient of correlation (R
2
) and root mean square error (RMSE), were used to 

quantitatively evaluate both developed models. The ANFIS model outperformed the 

developed ELM model in terms of predicting the MFI and the catalyst activity. A sensitivity 

analysis of the ANFIS and ELM models showed that all the input variables under 

investigation had a sizable impact on the responses and none of them could have been 

discarded. The present study showed that machine learning tools could be employed to 

adequately develop empirical models to predict polymerization kinetics as well as the final 

polymer properties. 

keyword: modeling, statistics, machine learning, surface plots, LLDPE, induced condensing 

agents. 

1 INTRODUCTION 

The variety of polyolefin grades currently in the market is the consequence of advancement 

in both the development of good catalytic systems such as Ziegler-Natta (ZN) and 

metallocenes as well as the utilization of new reactor configurations and operating conditions 

[1]
. In terms of annual tonnage, polyethylene is the most widely produced synthetic polymer 

worldwide, with a global market value of approximately 110 billion dollars at the time this 

article was written.  Furthermore, it is expected that this figure will increase to over 146 

billion dollars by 2030 
[2]

. Our ability to fine-tune the macromolecular architecture of these 

extremely basic polymers, which only include carbon and hydrogen, is what has led to this 

accomplishment.  Precise control of properties comes from developments in both 
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polymerization catalysts (except for low density polyethylene, LDPE which is made by a free 

radical process), and in the design and operation of polymerization reactors 
[3]

. 

Commercially, the most popular method for producing linear low density polyethylene 

(LLDPE) is gas phase ethylene polymerization using supported catalysts in fluidized bed 

reactors (FBR). The highly porous particles used in this method typically have a diameter of a 

few tens of microns, and the active catalytic sites are accessible on the surface of the pores 
[3]

. 

Following the introduction of the catalyst into the reactor, ethylene, comonomer and other 

compounds diffuse through the pores to the active sites where the polymer is formed. The 

first layer of polymer immediately covers the active sites, and once this layer is formed, the 

gas phase components must first dissolve in the polymer, through which they are transported 

to the active sites where polymerization takes place.  After a period of time, on the order of 

seconds to tens of seconds, enough polymer accumulates in the particles that the resulting 

hydraulic pressure causes the initial support material to fragment, but the accumulated 

polymer (hopefully) maintains the physical integrity of the original particle 
[3]

. This 

fragmentation step is quite important as it contributes to determining the particle morphology, 

and thus the relevant length scales for the diffusion of gas phase components through the 

amorphous phase of the resulting semi-crystalline polymer 
[4]

.  

In order to be commercially successful, it is necessary to operate at very high catalyst 

activities. Since this type of polymerization is highly exothermic, one of the main challenges 

here is the evacuation of the enthalpy of polymerization. By introducing inert alkanes of 

carbon atoms ranging from 3 to 6 to the gas phase feed stream at the bottom of the reactor, 

the heat removal capacity of FBR can be significantly increased. These substances are 

typically referred to as induced condensing agents (ICAs), and the reactor is said to be 

operating in condensed mode if the recycle stream containing these inert alkanes is cooled to 

a temperature below its dew point 
[5; 6]

. When multiple components are present in the gas 

phase, the resulting gas-polymer equilibrium can be quite complex, with the concentration of 

different species at the active sites being a function not just of the partial pressure of said 

species, but also of the concentration of other species in the amorphous phase of the polymer. 

The enhancement of ethylene concentration in the amorphous phase of the polymer (and its 

diffusivity in this phase) by heavier species (e.g. comonomer or ICA) is referred to as the 

cosolubility effect, and the reduction of the solubility and diffusivity of these heavier species 

by ethylene (and other light components) is referred to as the antisolvent effect 
[6; 7]

. The 

cosolubility impact not only accelerates polymerization but also affects reactor behavior 
[8]

, 
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rate of crystallization 
[9]

, the morphology of particles, molecular weight distribution, and 

crystallinity 
[7; 10]

. It has recently been demonstrated that the presence of these ICAs could 

also impact how the reactivity ratios are estimated for copolymerization systems 
[11]

. 

Due to the complexity of the underlying physical processes, it is very difficult to develop 

models that can describe their influence on the observed kinetics 
[12]

.  For instance 

fragmentation can influence mass transfer resistance, but ICA that enhance diffusivities 
[13; 14]

 

can also plasticize the polymer as the particles fragment and grow, and thus influence the 

morphology as well and this is without worrying about whether or not we can predict the heat 

removal rates from the particle during the polymerization 
[15]

. For more on this, the interested 

readers are referred to references 
[4; 16]

. This tells us that it can be challenging to pinpoint all 

the potentially significant interactive effects that operating variables may have, particularly 

on the pertinent responses involve during polymerization reaction. In the absence of reliable 

mechanistic models of the process it is advantageous to explore and develop alternative 

strategies for comprehending these interactions. 

 A statistical tool such as response surface methodology (RSM) is often employed to illustrate 

the relationship between the various operating parameters as well as the synergistic effect of 

different operating variables on the outputs due to its simplicity. For examining multivariate 

issues like polymerization and identifying the end products, as well as for figuring out 

relationships between the two, RSM is a very useful technique 
[17; 18]

. RSM has been 

successfully employed in polymerization processes 
[19-22]

. However, recent studies comparing 

the predictive capability of RSM and artificial neural networks (ANN) showed that ANN has 

better predictive and generalization capability than RSM 
[23]

.  ANN is a type of neural 

intelligence technique that is based on data-driven machining learning techniques capable of 

predicting the various responses for a particular chemical process. It has been successfully 

applied to investigate and improve ethylene polymerizations catalyzed by single site catalyst 

[24; 25]
, to predict the performance of ethylene polymerization over novel metallocene/post-

metallocene multisite catalyst 
[26]

, and also employed to predict polymerization kinetics and 

final polymer properties of polyethylene using ZN catalyst 
[23]

. It has also been reported to 

have successfully application in reactive extrusion technology to handle nonlinearity in the 

process 
[27]

.   However, conventional ANNs have several disadvantages due to their learning 

process limitations, including the existence of multiple local minima, slow learning rate, and 

large training datasets 
[28]

.  As a result, the use of other neural intelligence techniques such as 
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neuro-fuzzy inference systems and extreme learning machines has been gaining attention 

recently  
[28; 29]

. 

ELM uses a single hidden layer feedforward neural network (SLFN) as its training algorithm, 

which produces a performance that is promising and allows for faster convergence than 

traditional methods. ELM is a technique that was first presented for generalized SLFNs and 

has been applied to modeling and optimization in some engineering disciplines. The hidden 

layer parameters are modified at random while the response weights are determined by the 

generalized inverse function developed by Moore-Penrose. The ELM has a single layer of 

hidden nodes with arbitrarily assigned weights between inputs and hidden nodes. As a result, 

the parameters of the models can be calculated without the need for a learning process, and 

they remain constant throughout the training and prediction stages 
[30]

.  

ANFIS is a hybrid artificial intelligence that combines fuzzy logic and neural networks. It is 

also referred to as the neuro-fuzzy. It is a combined system that benefits from the learning 

abilities of both fuzzy systems and neural networks 
[31]

. As a result, the neural network has 

been made explicit, enabling fuzzy systems to acquire new skills. Additionally, a neuro-fuzzy 

system has the capacity to generate a solid set of fuzzy IF-THEN rules from a representative 

sample of the instances under study 
[32]

. ANFIS can deliver effective outcomes when the right 

number of rules are utilized, together with effective parameter training. ANFIS's adaptability, 

speed, and robustness have encouraged its use in a variety of academic fields, including 

engineering, medicine, and economics.  

While ELM and ANFIS have been widely employed in various chemical processes, there has 

been no report on the use of these data-driven machine learning techniques in gas phase 

ethylene polymerization to test their predictive capability in term of polymer kinetics and 

final polymer properties. Hence, in this present study, the predictive capability of ELM and 

ANFIS are presented in accurately prognosticating the activity and melt flow index (MFI) of 

polyethylene produced from gas phase ethylene polymerization in the presence of isopentane 

as ICA. The combined effect of the pertinent operating variables (ethylene, 1-butene, 

isopentane pressures, and reaction temperature) on the activity and MFI was also 

investigated. Different statistics were used to examine the effectiveness of the two machine 

learning techniques.  

2.0 EXPERIMENTAL SECTION 

2.1 Materials and methods 
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Argon, hydrogen, and ethylene, all of which had 99.5% purity were obtained from Air 

Liquide (Paris, France). Before usage, ethylene was purified in three separate columns: the 

first contained reduced BASF R3-16 catalyst (CuO on alumina), the second contained 

molecular sieves (13X, 3A, Sigma-Aldrich), and the third contained Selexsorb COS (Alcoa). 

Air Liquide supplied 1-butene with a minimum purity of 99%. Sigma-Aldrich ICN 

(Germany) supplied iso-pentane with a minimum purity of 99%, and it was further purified 

by distillation over CaH2. Triethylaluminium which served as cocatalyst was obtained from 

Witco (Germany). A commercial TiCl4 supported on MgCl2 Zeigler-Natta catalyst was used 

for all polymerization operations. The catalyst particles were dispersed in a seedbed of 99% 

minimum purity NaCl, which was purchased from Carl Roth (Germany). To completely 

remove any traces of water, the salt was dried under vacuum for 5 h at 400 °C before usage. 

2.2 Procedure for Polymerization 

Following a method previously described 
[9]

, gas phase polymerization was carried out using 

a seedbed of 40 g of dried NaCl in a 2.5 L spherical stirred-bed gas phase reactor. Since the 

catalyst formulation was not examined in this study, all runs were conducted using 7 mg of 

Ziegler-Natta catalyst (combined with 10 g of NaCl in the glove box and placed into the 

cartridge) and 0.6 mL of a 1 M TEA solution in heptane. For a specific set of conditions, each 

polymerization lasted for 1 h. The reactor was cooled and depressurized once the reaction 

was finished. The product was removed, thoroughly washed with water, and vacuum-dried at 

a temperature of 70 °C. Table 1 lists all of the polymerization runs that were taken into 

consideration along with the experimental measurements. Considered polymerization 

temperatures range from 70 to 90 °C. The range of pressures taken into account for ethylene 

(C2) was 7, 8, and 9 bars, and for 1-butene (1-C4) and iso-pentane (iC5) it was 0, 1, and 2 

bars. The pressure of hydrogen was maintained at 1 bar. The pressure drop in the feed ballast 

was used to quantify the rates of polymerization, and the gravimetric yield measurement was 

used to estimate the value of the activity for a given set of conditions. 

2.3 Polymer characterization with extrusion plastometer 

The MFI of the polymer powders was assessed using the ASTM D1238 test with an extrusion 

MFI tester (Zwick Roell, Ulm, Germany). About 5 g of polymer sample was melted at 190 °C 

with a mass of 21.6 kg, and then extruded. To obtain the MFI value, the extrudate was further 

weighed (on a precision scale of 0.001 g) and standardized by melt flow time, in this case, 10 

min. 
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2.4 ELM and ANFIS predictive modeling of gas phase ethylene polymerization 

The predictive modeling capabilities of ELM and ANFIS were evaluated in the gas phase 

ethylene polymerization using a commercial ZN catalyst. Four input variables, (monomer, 

comonomer, ICA pressure, and reaction temperature) were employed to conduct the 

polymerization reaction. Different statistics were used to assess the performance of the two 

approaches. In addition, the relative importance of the analyzed input parameters on the 

outputs (activity and MFI) is presented. 

2.4.1 Experimental design 

The experimental design in this study was carried out using Design-Expert version 10.0. The 

program was used to generate the design matrix based on four process parameters (monomer, 

comonomer, and ICA pressures, and the polymerization temperature). About 28 experimental 

runs were generated with a Box-Behnken design (BBD) to evaluate the effects of the selected 

parameters ethylene pressure (7 – 9 bar), 1-butene pressure (0 – 2 bar), isopentane pressure (0 

– 2 bar) and temperature (70 - 90 
o
C) on the output (activity or MFI).  

The following equation was used to determine the number of experimental runs (n) necessary 

for the Box-Behnken experimental design: 

             1 

where    is the number of central points and k is the number of components 
[33]

.  

Table 1. BBD matrix of input factors and polymerization experimental values 

 

Input variables Responses 

Run 
PC2 

(bar) 
P1C4 (bar) PiC5 (bar) Temp (

o
C) 

MFI (g/10 

min) 

Activity 

(kg PE/g 

cat.h) 

1 8 0 1 70 1.2 1.6 

2 8 0 1 90 3.2 1.2 

3 8 1 1 80 3.6 4.2 

4 7 1 1 90 13.6 1.1 

5 8 1 1 80 3.9 4.3 

6 7 1 1 70 4.4 2.5 

7 9 1 1 90 7.2 2.9 

8 8 1 1 80 3.8 4.4 

9 8 1 0 90 9.5 2.5 

10 8 1 2 70 2.4 4.1 
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11 8 1 0 70 3.9 3.4 

12 8 0 0 80 2.4 1.3 

13 8 2 2 80 6.1 6.8 

14 7 2 1 80 11.1 3.4 

15 7 1 0 80 8.1 2.4 

16 9 0 1 80 1.3 1.5 

17 7 0 1 80 1.4 2.5 

18 7 1 2 80 3.5 3.6 

19 8 0 2 80 0.9 2.2 

20 8 1 1 80 3.7 4.1 

21 8 2 1 90 12.2 4.7 

22 9 1 0 80 2.2 3.9 

23 9 1 2 80 1.9 2.1 

24 8 1 2 90 4.2 3.4 

25 8 2 0 80 11 4.8 

26 9 2 1 80 3.9 6.3 

27 8 2 1 70 7.9 5.4 

28 9 1 1 70 3.1 3.4 

 

P— pressure, C2—ethylene, 1-C4—1-butene, iC5—iso-pentane, Temp—temperature, 

 

2.4.2 ELM-based predictive modeling  

The development of the ELM model in this present study was based on one single hidden 

layer as previously reported 
[28; 34]

. Data scaling is important in machine learning as it 

improves the accuracy of the predictions.  For this reason, the input and output data were 

scaled (rendered dimensionless) over the range 0 to +1. Furthermore, scaling the data inhibits 

the network from reaching its local optimum. A straightforward normalization procedure was 

used in this study to normalize the experimental input and output data 
[35]

.  

    
         

           
 2 

where      is the input/output parameter's lower bound before normalisation,      is the 

input/output parameter's upper limit before normalisation, and    is the normalised 

parameter. The data were also denormalized after the training phase.  

For the development of an ELM model, the number of neurons in the hidden layer is crucial 

because too many or too few neurons can cause overfitting or underfitting of the data, which 

could prevent the network from successfully recognizing signals and identifying relationships 

between patterns in the data set. The neurons in the hidden layer were tuned using heuristic 
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analysis to obtain the best predicted results and the most efficient ELM model. The total 

number of neurons selected for optimization ranged from 2 to 20. Two subsets of the 

experimental data (training and testing) were randomly selected for ELM modeling. To train 

the ELM, a random selection of 70% of the data was used; a second random selection of 30% 

of the data was used to test the ELM after it had been trained using the weighted parameters 

obtained during the training phase. Table 2 displays the parameters used to develop the ELM 

model. MATLAB R2018a was used to develop the ELM model. 

A Moore-Penrose generalized inverse was used to calculate output weights. For generalized 

SLFNs, the output function of the ELM is described  as 
[35; 36]

: 

                                     

 

   

 
3 

where the hidden notes learning parameters are    and   . The output node and ith hidden 

note are linked by weight   . The output value of the ith hidden note for the input y is 

provided by            which is expressed as 

                       

 

   

              
4 

where i is the hidden node with input to j and                   
  is the weight vector 

connecting the input layer. The ith hidden node's bias is expressed as    and    

            
  is the vector   's inner product in   

. 

It is possible to find            for the radial basis function (RBF) hidden node with the 

activation function          (for instance, Gaussian) given in Eq. (5) by applying Eq. (4) 

[36]
 

                          
 

 

   

 

 

             

5 

 

  
 represents the set of all positive real numbers, while    and    stand in for the node's 

center and impact factor, respectively. The RBF network is a specific instance of SLFN that 

includes RBF nodes in its hidden layer. When S number of samples are trained, the ELM's 

hidden layer output matrix M is presented as : 
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6 

the target training data matrix (G) is given as 

   

  

 
  

 

 

 
7 

also the matrix of the output weight is given as 

   

  

 
  

 

 

 
8 

Using the Moore-Penrose inversing solution, Eq. (8) can be employed to compute the output 

given as 

     9 

Table 2. Modeling parameters for ELM and ANFIS 

Model Property Value/Comment 

ELM Minimised error function MSE 

  Learning Supervised 

  Number of training iterations 100 

  Number of best iterations 70 

  Transfer function Radia basis (radbas) 

  Number of tested neurons 2-20 

  Input/output 4
p
/2

q
 

 Output weight estimation 

method 

Moore-Penrose generalized inverse 

    

 ANFIS Fuzzy type Sugeno 

  Input/output 4
p
/1

q
 

  Output 1 

 Membership grade shape Generalized bell-shaped membership function 

 Input/ouput membership 

number 

3 
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 Nodes number 193 

 And method Product 

 Or method Probabilistic 

 Optimization type Hybrid 

 Aggregation Sum 

 Number of rules 81 

 Linear/nonlinear parameters 81/36 

p
 Ethylene pressure, 1-butene pressure, isopentane pressure and temperature; 

q
MFI or activity

  

2.4.3 ANFIS-based predictive modeling.  

Using the four input variables, the ANFIS model was implemented using the multiple-input-

single-output (MISO) fuzzy model to predict the activity and MFI. The ANFIS model's 

output was predicted using hybrid learning methods that integrated a defuzzifier algorithm. 

For each input variable, three generalized bell-shaped membership functions (gbellmf) of first 

order Sugeno fuzzy logic were used. Five layers including normalization, defuzzification, 

fuzzification, product, as well as the overall summation, were used to build the ANFIS 

framework 
[37]

. By assuming two input variables with fuzzy inference systems (r and s) and 

an output (o), rule 1 and rule 2 can be used to define the Takagi-Sugeno IF-THEN rules with 

regard to the input variables 
[37]

. For rules 1 and 2, the following expression is provided: 

Rule 1: IF r is R1 and s is S1; 

THEN                                                                   

Rule 2: IF r is R2 and s is R2; 

THEN                

If the system outputs are   ,    and the fuzzy sets are R1, R2, S1 and S2. The FIS's controllable 

variables are   ,   ,   ,   ,   ,   .    

(i) First layer 

Three input parameters are used by the adaptive nodes in this layer. The next function defines 

every node m.  
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where   
  (symbolizing MF) is the fuzzy set and r is the input parameter to node m. When the 

given input n fulfills A, the membership class An is what it suggests.    is the membership 

class that results when the given input m satisfies R. 

The definition of gbellmf is as follows: 

   
    

 

   
    

  
 
   

 
(11) 

where gbellmf premise parameters are   ,   ,   . The width of the curve is modified by a and 

b (both must ≥ 0), and c is the curve's midpoint. The values of the MFs range from 0 to 1. 

(ii) Second layer 

There are non-adaptive nodes in this region. In order to scrutinize all the weight ( ), the 

incoming signals are processed in this layer. Each output node illustrates the weight's 

firing power. 

 

(iii) Third layer  

This layer computes each level activation rule, and each node executes the necessary 

fuzzy rules. By dividing each rule's firing power by the total number of rules, this layer is 

evaluated. The node of this layer is not adaptable. 

 

(iv) Fourth layer 

This layer computes the membership function's output using defuzzification. The nodes of 

this layer are flexible. 

where the subsequent parameter set is [  ,   ,   ].  

  
     

    (10) 

  
        

        
          (12) 

  
      

  

     
       (13) 

  
                        (14) 
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(v) Fifth layer 

This contains the sum of each node's defuzzification layer outputs. The output is represented 

by a single node, which means that the layer is not adaptable. 

                   

where        stands for the defuzzification layer's output at node m. The ANFIS parameters 

used in this investigation are listed in Table 2. There are four inputs and two outputs (MFI or 

activity) in the ANFIS generic block diagram as shown in Figure 1  which also has the tuned 

FIS's structure (rules).  The fuzzy logic toolbox was utilized to model the ANFIS in 

MATLAB 2018a. The parameters utilized to create the ANFIS model are summarized in 

Table 2. 

 

 

 

 

 

 

 

 

 

 

FIGURE 1. ANFIS model structure 

 

2.4.4 Input factor sensitivity analysis 

Sensitivity analysis shows which inputs or parameters have a significant effect that will 

determine output variability and hence determines which parameters are strongly correlated 

with the output.  In this work, for the ELM model, the level of significance of the input 

  
           

 

 
         

      
       

(15) 

Ethylene pressure 

1-butene pressure  

Isopentane pressure 

Temperature 

MFI  

Catalyst activity 
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variables for the polymerization activity and MFI, which is based on the distribution of 

weights, was determined using Eq. (16), which was developed by Garson 
[38]

: The estimated 

weights were used to determine the input variables relative importance. 

   

   
    

   

     
   

  
   

      
    

    
   

    
    

   

     
   

  
   

      
   

    
    

    
   

 

                                                                                     

                            

                                                                (16) 

where    and    represent, respectively, the input-hidden neurons. The input, hidden, and 

output layers are denoted by the superscripts i, h, and o, respectively, while the input, hidden, 

and output neurons are denoted by the subscripts  ,  , and  .    is the influence of the jth 

input parameter's relative importance on the output.    is the weight of the connection. 

The highest value of one input variable was determined while maintaining the nominal values 

(most represented) of the other input variables constant for the  sensitivity analysis of the 

ANFIS model 
[39; 40]

. This ensures an accurate assessment of how input factors impact the 

outputs (activity or MFI). Table 3 displays the inputs used to build the ANFIS model 

sensitivity analysis. 

Table  3. Sensitivity analysis parameter for the ANFIS model 

Variable Unit Nominal  Minimum Maximum 

PC2 bar 8 7 9 

P1-C4 bar 1 0 2 

PiC5 bar 1 0 2 

Temperature 
o
C 80 70 90 

 

2.4.5 Performance evaluation of ELM and ANFIS  

To assess the performance of the two developed ELM and ANFIS models, statistical analysis 

was performed. Table 4 displays these statistics, which were determined using Eqs. (17) - 

(22). 
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Table 4. Statistics-based metrics for model evaluation. 

S/N Name  Equations Number 

1 Coefficient of correlation  

      
          

   

       
    

   

 

17 

2 Coefficient of determination 
      

          
   

       
    

   

 
18 

3 Mean square error 

     
 

 
         

 

   

 

19 

5 Root mean square error 

      
 

 
         

 

   

  

20 

4 Mean absolute error 

    
 

 
         

 

   

  

21 

5 Marquart’s percentage standard 

deviation 
     

   

 
   

         

  

 

   

  

22 

 

where    is the measured value of output (activity or MFI),    is the predicted value by 

ELM and ANFIS models,   
 

 is the average value of   , h is the experimental number of 

points. 

3.0 RESULTS AND DISCUSSION 

3.1 Multivariate model analysis with ELM 

The complete training of the ELM model in this work was accomplished by choosing the 

ideal number of neurons, training, and testing the model. Radial basis transfer function 

(radbas) was used to obtain a reliable prediction of the ELM model. Additionally, based on 
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low MSE and high R values for the training and testing, and all datasets, the ideal number of 

neurons was attained. For both the MFI and the activity, the lowest MSE and highest R values 

for testing, training, and the entire dataset were found in neuron number 12 as illustrated in 

Figure 2. The scatter graphs in Figure 3 show how the experimental data and predictions from 

the training, testing, and whole datasets of the ELM relate. The experimental and 

prognosticated values demonstrate a high correlation, as indicated by the R value for the 

developed ELM model for predicting the activity and the MFI.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. The optimal number of hidden neurons for all of the responses investigated. 
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MFI 

Activit
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FIGURE 3. Correlation graphs comparing predicted versus measured values. 

3.2 Multivariate model analysis with ANFIS 

The neuro-fuzzy method for the input-output data-based estimation was trained using the 

BBD data presented in Table 1. To identify the Sugeno type FIS parameters, a hybrid 

technique that incorporates the least squares approach was used. For each input in this 

investigation, there were three membership functions. The output component of each rule 

uses a linear defuzzifier method, and the membership grades used were gbellmf. With no 

error tolerance, a total of 20 epoch iterations were used to train the experimental data for both 

the activity and MFI. For both outputs (MFI and activity), 81 fuzzy rules, 36 nonlinear 

parameters, and 193 nodes were utilized. The computed RMSE for the whole dataset was 

0.0492 and 0.0423 for the MFI and activity, respectively. The estimated RMSE for activity at 

the training (0.03536), checking (0.2646), and testing (0.3651) stages as well as the estimated 

RMSE for MFI during the training (0.0461), checking (0.1699) and testing (0.2887) stages 

illustrates how reliable the developed ANFIS model is. Figures 4 and 5 support this 

conclusion. This makes it clear that the developed ANFIS model was able to provide a 

sufficient prediction of the activity and MFI. The rule viewer for both outputs is shown in 

Figure 6 and displays the input values and the corresponding computed output. The rule 

viewer also depicts the trained FIS rules as well as the membership function curves. 

 

 

 

 

 

 

 

 

 

Activity 

Whole dataset 
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FIGURE 4. Run numbers versus experimental and predicted values for the activity ANFIS 

model.  

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. Run numbers versus experimental and predicted values for the activity ANFIS 

model.  

3.3 Input factors synergistic impact on the MFI  

The developed ANFIS models was used to obtain the three-dimensional (3D) surface plots 

owing to its readily available 3D surface plots toolkit to study the synergistic impact of the 

various input variables on the corresponding outputs. 

It can be seen from the response surface plots of the MFI shown in Figure 7 that as expected, 

each of the input variables appears to play a significant role in determining the value of the 

MFI, with the 1-C4 pressure having the largest effect over the studied range and the iC5 

pressure having the smallest. The shapes of the surfaces in the Figure 7 show this clearly. 

These observations have simple logical justifications. The MFI (i.e., a drop in the viscosity 

average molecular weight) increases with increasing 1-C4 pressure and temperature, as one 

would anticipate with a Ziegler-Natta catalyst. As greater ethylene concentrations often result 

in higher molecular weights with Ziegler-Natta catalysts, increasing the C2 pressure causes a 

Whole 

dataset 

MFI 
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fall in the MFI. Since higher ICA pressures result in more C2 solubility (and diffusivity) in 

the amorphous phase of the polymer covering the active sites (with respect to comonomer), 

decreasing iC5 also results in a larger molecular weight 
[7]

. 
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FIGURE 6. Rule view of the developed ANFIS model's input parameters and output (MFI 

and activity).  
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FIGURE 7. Three-dimensional surface plots of MFI as function of (a) C2 and 1-C4 (b) C2 

and iC5 (c) C2 and temperature (d) iC5 and 1-C4 (e) 1-C4 and temperature (f) iC5 and 

temperature  

 

3.4 Input factors synergistic impact on the activity. 

The interactive effect of the studied input variables on the activity is also illustrated in Figure 

8. There is a surge in the activity when iC5 is present in the presence of ethylene. This is 

because the amorphous phase of the polymer encasing the active sites exhibits greater C2 

solubility (and diffusivity) at higher iC5 pressures. The synergistic interaction between C2 

and 1-C4 is what should be expected as an increase in the comonomer content triggers the 

catalyst activity due to the comonomer effect.  The other interactive effect as seen from the 

3D surface plots shows that strong interaction exists between these variables on the activity.  

The 3D surface plots also demonstrate that the presence of at least one alkane is not 

innocuous. This has been demonstrated by earlier reports from our group, but it is also clear 

that isopentane interacts with the other process parameters in a significant way, having an 

impact on both the catalyst activity and the MFI of the resulting polymer. As a result, 

studying the impact of the choice of induced condensing agents in gas phase polymerization 

is not simple, and we cannot overlook these chemically inert materials while developing 

process models. 

The goal of the current research is not to provide an exhaustive explanation for these complex 

interactions, but rather to demonstrate the value of ANFIS and ELM as statistical tools in the 

field of polyolefin reaction engineering. 

 

 

 

 

 



 

Sensitivity: Private 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 
(b) 

(c) 
(d) 

(e) 
(f) 



 

Sensitivity: Private 

 

 

 

 

 

FIGURE 8. Three-dimensional surface plots of activity as a function of (a) C2 and 1-C4 (b) 

C2 and iC5 (c) C2 and temperature (d) iC5 and 1-C4 (e) 1-C4 and temperature (f) iC5 and 

temperature  

 

3.5 Performance evaluation of the developed models 

By employing the overall dataset between the experimental and predicted values from ANFIS 

and ELM, the models' relative performance for the gas ethylene polymerization process was 

evaluated using a range of statistics pointers illustrated in Table 4, and the results are 

displayed in Table 5. Nevertheless, the ANFIS model outperformed the ELM model in terms 

of R and R
2
 values. However, it was clear that there was a substantial correlation between the 

predicted and measured values for both models. The prediction error of a model in relation to 

the measured value is also assessed by RMSE, MSE, MAE, and MPSD. Comparing the 

ANFIS model to the ELM model, the ANFIS model showed significantly reduced error 

levels. The experimental results plotted versus those predicted using the R
2
 which is shown as 

Figure S1 of the supporting information lend weight to this finding. The results of the ANFIS 

model were closer to the trend line than the ELM model's anticipated values. The 

performance of the developed models might be better understood by plotting the observed 

and estimated values against the experimental run numbers (Figure 9). Comparing the ANFIS 

model's predictions to those of the ELM model, the ANFIS model's predictions are noticeably 

more in line with the experimental data. The superiority of the developed ANFIS model over 

the developed ELM model in this present work can be attributed to its capacity to combine 

the ideas of neural networks and fuzzy systems in a single framework. 

Table 5. ELM and ANFIS models performance assessment 

 

Activity MFI 

Parameter ELM ANFIS ELM ANFIS 

R 0.9535 0.9995 0.9690 0.9999 
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R
2
 0.9092 0.9992 0.9389 0.9998 

MSE 0.3764 0.0018 0.9081 0.0024 

RMSE 0.6135 0.0422 0.9529 0.0493 

MAE 0.4979 0.0143 0.7106 0.0171 

MPSD 46.7912 2.2153 41.5259 2.7471 
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FIGURE 9. Plots comparing experimental runs to predicted and observed values (a) MFI (b) 

activity 

 

3.6 Sensitivity analysis result 

Figure 11 shows the outcome of the sensitivity analysis performed on both models, which 

showed that all operating factors have an impact on MFI and catalyst activity. The figure 

showed that both models exhibit similar trends in terms of the relative impact of each 

operating parameter on MFI and catalyst activity despite their different absolute results. The 

most important operating variable in term of the MFI and the activity is 1-butene pressure, 

followed by ethylene pressure, then the temperature, and lastly isopentane. Since each 

operating variable influenced the MFI and catalyst activity yield, it was impossible to discard 

any of them. The result of the sensitivity analysis has shown that these input parameters are 

important to produce LLDPE in the range of the condition studied. The addition of 

isopentane to enhance the heat removal of gas phase polyethylene process cannot be 

overemphasized.   
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FIGURE 10. Level of influence of process input variables on various output variables (a) 

MFI (b) activity 

 

4 CONCLUSION 

This present study investigated the predictive capability of data-driven machine learning tools 

to wit adaptive neuro-fuzzy inference system (ANFIS) and extreme learning machine (ELM) 

to predict polymerization kinetics and final polymer properties of gas phase ethylene 

polymerization using ZN catalyst. The interactive effect of the input factors (ethylene, 1-

butene, isopentane pressures, and reaction temperature) on the MFI and catalysts activity was 

also studied. It was observed that the presence of iC5 as an induced condensing agent has an 

impact on both outputs. The developed models were statistically adjudged using various 

statistical indices such as coefficient of correlation (R
2
) and root mean square error (RMSE). 

For the MFI, the ANFIS model (R
2
 = 0.9998, RMSE = 0.0493) performed better than the 

developed ELM model (R
2
 = 0.9389, RMSE = 0.9529). In terms of prognosticating the 

catalyst activity, the ANFIS model (R
2
 = 0.9992, RMSE = 0.0422) fared better than the ELM 

model (R
2
 = 0.9092, RMSE = 0.6135). The ability of the developed ANFIS model to integrate 

the concepts of neural networks and fuzzy systems into a single framework explains why it 

outperformed the developed ELM model in this study. Nonetheless, both machine learning 

tools could predict the MFI and catalyst activity and hence, they are both precise and 

accurate. In terms of simplicity, the ANFIS model tends to be less complicated to develop in 

comparison to the ELM model. In addition, the 3D surface plots to study the synergistic 

impact of the different input factors are easily done with the ANFIS model. All the 

investigated input factors had a significant impact on the examined responses, according to 

the developed ANFIS and ELM models sensitivity analysis. None of the variables could have 

been ignored. The results of the current study show that machine learning technologies may 
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be effectively used to develop empirical models to predict both the kinetics of polymerization 

and the properties of the produced polymer. 

 

Acknowledgment  

NBI thanks the Petroleum Technology Development Fund (PTDF), Nigeria, for their 

financial support of the doctoral fellowship (Grant Number: 18GFC/PHD/064). 

REFERENCES 

[1] V. Kanellopoulos, C. Kiparissides, Multimodal Polymers with Supported Catalysts: 

Design and Production. 2019. 

[2] https://www.fortunebusinessinsights.com/industry-reports/polyethylene-pe-market-

101584 (accessed July 25. 

[3] A. Alizadeh, T. F. McKenna, Macromolecular Reaction Engineering. 2014, 8. 

[4] T. F. McKenna, M. A. Bashir, Multimodal Polymers with Supported Catalysts: Design 

and Production. 2019. 

[5] US 4543399. (1985), invs.: J. M. J. Jenkins, R. L.; Jones, T. M. 

[6] T. F. McKenna, Macromolecular Reaction Engineering. 2019, 13. 

[7] N. B. Ishola, F. N. Andrade, F. Machado, T. F. McKenna, Macromolecular Reaction 

Engineering. 2020, 14. 

[8] R. Alves, M. A. Bashir, T. F. McKenna, Industrial & Engineering Chemistry 

Research. 2017, 56. 

[9] F. N. Andrade, R. Fulchiron, F. Collas, T. F. McKenna, Macromolecular Chemistry 

and Physics. 2019, 220. 

[10] M. Namkajorn, A. Alizadeh, D. Romano, S. Rastogi, T. F. McKenna, Macromolecular 

Chemistry and Physics. 2016, 217. 

[11] N. B. Ishola, T. F. McKenna, Macromolecular Reaction Engineering. 2022. 

[12] T. F. McKenna, J. B. Soares, Chemical Engineering Science. 2001, 56. 

[13] R. F. Alves, T. F. McKenna, Chemical Engineering Journal. 2020, 383. 

[14] A. Ben Mrad, S. Norsic, N. Sheibat-Othman, T. F. McKenna, Industrial & 

Engineering Chemistry Research. 2021, 60. 

[15] A. Di Martino, G. Weickert, F. Sidoroff, T. F. McKenna, Macromolecular Reaction 

Engineering. 2007, 1. 

[16] J. B. Soares, T. F. McKenna, Polyolefin reaction engineering, Wiley Online Library, 

2012. 

[17] R. G. Brereton, Chemometrics: data analysis for the laboratory and chemical plant, 

John Wiley & Sons, 2003. 

[18] R. H. Myers, D. C. Montgomery, C. M. Anderson-Cook, Response surface 

methodology: process and product optimization using designed experiments, John 

Wiley & Sons, 2016. 

[19] P. J. DesLauriers, J. S. Fodor, S. Mehdiabadi, V. Hegde, J. B. Soares, Macromolecular 

Reaction Engineering. 2020, 14. 

[20] P. J. DesLauriers, J. S. Fodor, J. B. Soares, S. Mehdiabadi, Macromolecular Reaction 

Engineering. 2018, 12. 

[21] C. Georgakis, S.-T. Chin, Z. Wang, P. Hayot, L. Chiang, J. Wassick, I. Castillo, 

Industrial & Engineering Chemistry Research. 2020, 59. 

http://www.fortunebusinessinsights.com/industry-reports/polyethylene-pe-market-101584
http://www.fortunebusinessinsights.com/industry-reports/polyethylene-pe-market-101584


 

Sensitivity: Private 

[22] H. Nassiri, H. Arabi, S. Hakim, S. Bolandi, Polymer bulletin. 2011, 67. 

[23] N. B. Ishola, T. F. McKenna, Macromolecular Theory and Simulations. 2021, 30. 

[24] T. Charoenpanich, S. Anantawaraskul, J. B. Soares, Macromolecular Reaction 

Engineering. 2016, 10. 

[25] T. Charoenpanich, S. Anantawaraskul, J. B. Soares, Macromolecular Theory and 

Simulations. 2020, 29. 

[26] S. Atashrouz, M. Rahmani, Z. Balzadeh, B. Nasernejad, SN Applied Sciences. 2020, 2. 

[27] K. De Smit, T. Wieme, Y. W. Marien, P. H. Van Steenberge, D. R. D'hooge, M. 

Edeleva, Reaction Chemistry & Engineering. 2022, 7. 

[28] A. S. Silitonga, A. H. Shamsuddin, T. M. I. Mahlia, J. Milano, F. Kusumo, J. 

Siswantoro, S. Dharma, A. H. Sebayang, H. H. Masjuki, H. C. Ong, Renewable 

Energy. 2020, 146. 

[29] B. O. Ighose, I. A. Adeleke, M. Damos, H. A. Junaid, K. E. Okpalaeke, E. Betiku, 

Energy conversion and Management. 2017, 132. 

[30] J. G. Ulloa, Applied biomedical engineering using artificial intelligence and cognitive 

models, Elsevier, 2021. 

[31] A. Yaghoobi, M. Bakhshi-Jooybari, A. Gorji, H. Baseri, The International Journal of 

Advanced Manufacturing Technology. 2016, 86. 

[32] L. Ezzatzadegan, N. A. Morad, R. Yusof, Jurnal Teknologi. 2016, 78. 

[33] P. Kundu, V. Paul, V. Kumar, I. M. Mishra, Chemical Engineering Research and 

Design. 2015, 104. 

[34] M. Mujtaba, H. Masjuki, M. Kalam, H. C. Ong, M. Gul, M. Farooq, M. E. M. 

Soudagar, W. Ahmed, M. Harith, M. Yusoff, Renewable Energy. 2020, 158. 

[35] P. K. Wong, K. I. Wong, C. M. Vong, C. S. Cheung, Renewable Energy. 2015, 74. 

[36] S. Wu, Y. Wang, S. Cheng, Neurocomputing. 2013, 102. 

[37] J.-S. Jang, IEEE transactions on systems, man, and cybernetics. 1993, 23. 

[38] G. D. Garson, AI expert. 1991, 6. 

[39] A. Bassam, O. May Tzuc, M. Escalante Soberanis, L. Ricalde, B. Cruz, Sustainability. 

2017, 9. 

[40] N. B. Ishola, A. A. Okeleye, A. S. Osunleke, E. Betiku, Neural Computing and 

Applications. 2019, 31. 

 


