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Abstract—The automatic detection and characterization of
ships in optical remote sensing images is a key challenge for
maritime surveillance applications. This paper presents an
automated system specically designed for ship detection in
medium-resolution Sentinel-2 images. The proposed approach
relies on a deep learning model trained on a dataset comprising
over 6000 annotated Sentinel-2 images. It achieves a detection
rate of 93%, with an average of 2.1 to 3.9 false alarms per
Sentinel-2 image. Besides the detection task, it also addresses the
estimation of ship lengths as well as ship headings. It yields a
mean error of 15.36m ± 19.57m for ship lengths, and estimates
ship headings with an accuracy of 93%. This contribution
signicantly enhances the performance of ship detection and
characterization systems in optical remote sensing imagery.

Index Terms: Deep Neural Network, Sentinel-2 Images, Ship
Detection, Ship Characterization

I. INTRODUCTION

Spaceborne remote sensing imagery conveys invaluable in-

formation for the monitoring of maritime activities, especially

the maritime trafc. This is of critical importance for both

surveillance and defense issues [1]. We may cite among

others the monitoring of maritime borders, the identication

of illegal maritime behaviours, the ght against illegal shing

and smuggling activities, search and rescue operations...

We can distinguish two main categories of satellite imagery

for maritime surveillance topics: Synthetic Aperture Radar

(SAR) imagery [2] and optical imagery [3]. Currently, SAR

imagery is more widespread due to its applicability both

day and night and in all weather conditions (e.g., cloudy

conditions). Ship detection in SAR images [4] relies on

relatively simple low-level image processing schemes for

ships which possess a metallic structure highly responsive to

radar signals. This may lead to detection ambiguities along the

seashore, where other metallic structures (buoys, pontoons,

etc.) cause high-amplitude patterns in SAR images [5], as

well as in the case of sea clutter [6]. Additionally, inatable

and wooden boats like Zodiacs and plastic boats can hardly

be identied in SAR images. By contrast, optical imagery

offers a practical alternative for ship detection, increasing not

only detection capabilities in complex environments but also

providing the ability to detect all types of ships.

In recent years, ship detection from optical imagery has seen

increased research effort, with a focus on deep learning meth-

ods [7]. Most studies focus on ship detection from very-high-

resolution (VHR) (0.3 m resolution) [8] and high-resolution

(HR) (0.4 − 2 m resolution) [9] imagery. However, these

satellites images are typically accessible exclusively through

tasking modes, resulting in high acquisition costs and a limited

interest for continuous monitoring and surveillance tasks. By

contrast, medium-resolution (MR) optical imagery (typically,

a 10 m resolution), as deployed on Sentinel-2, delivers freely

available remote sensing images for numerous locations on

Earth with a revisit time ranging between 5 and 10 days. This

seems particularly adapted to maritime surveillance tasks. Yet,

only few studies [7] have addressed the automated detection

and characterization of ships in MR optical satellite imagery.

Here, we address these challenging issues and present

a deep learning approach. We rst collect a representative

groundtruthed dataset comprising more than 12000 ship ex-

amplars from 6000 Sentinel-2 images. Our multi-task deep

learning scheme relies on a Faster R-CNN. Our numerical

experiments explore data splitting strategies during the training

phase to account for class imbalance. We also asses the impact

of the neural backbone of the Faster R-CNN architecture.

Overall, we report state-of-the-art performance with a detec-

tion rate above 93% including for small ships with a ship

length below 20 m. These results support the relevance MR

optical imagery for maritime monitoring besides HR optical

and SAR imagery.

This paper is organized as follows. In Section II, we provide

an overview of related work and analyze their drawbacks. The

details of the proposed approach are presented in Section III.

Section IV substantiates the relevance of our proposed meth-

ods through experiments. Discussion is covered in Section V,

and the conclusion is presented in Section VI.

II. RELATED WORK AND MOTIVATION

Recent review papers [7], [10] provide surveys on ship

detection and characterization in optical satellite images.

They compile over a hundred research articles dating back

to 1978, providing a comprehensive overview of the subject.

The majority of these studies have investigated ship detection

using High-Resolution (HR) and Very High-Resolution

(VHR) images, employing deep learning approaches such as

Faster R-CNN [11], YOLO [12] and U-net [13]. However, our

specic challenge is different from working with high or very

high-resolution (<5m) images. In these cases, identifying

ships among other objects is relatively straightforward due to
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their visually distinct features. As a result, the challenge of

ship detection in high-resolution images primarily revolves

around maximizing the detection rate and closely aligns

with the established problem of object detection in computer

vision, involving issues such as adjacent and small object

detection [11].

In medium-resolution imagery (10m in our case), as illus-

trated in Figure 1, ships, especially smaller ones of 50-meter-

long or below, the visual detection and characterization may

be complex: for instance, a large ship can resemble parts of a

platform; a small island may have a topology similar to a ship;

a very small ship might appear almost identical to a bright spot

on rough waters, or even be mistaken for a small cloud. As a

result, a key challenge is to maximize the detection rate while

minimizing false alarms. This may question how above cited

studies for HR images apply to MR optical imagery.

Fig. 1: Illustration of complex ship images, presenting chal-

lenges in visual detection and characterization.

Only a limited number of studies have specically explored

ship detection in MR imagery. Most of these works tend to

concentrate on specic aspects. For example, [14] delves into

ship detection and characterization in favorable conditions.

[15] addresses the issue of scarce annotated ship data and

introduces a ’self-supervised learning’ approach. Additionally,

[16] introduces a method for identifying particular ship shapes

associated with migrant activity. Few articles adopt a compre-

hensive approach [17], which is our primary area of interest.

This scarcity of studies is, in part, attributable to the

absence of freely available ship datasets. In contrast to ship

detection at high resolution, which benets from an established

reference dataset [18], the only publicly available Sentinel-2

ship datasets are [19] and [15]. These datasets comprise 31

(2000 ship exemplars) and 16 (1053 ship exemplars) Sentinel-

2 images respectively, which may be limited to deploy state-

of-the-art learning-based frameworks.

Only [17] addresses the detection of ships in medium-

resolution satellite optical images within a relatively general

framework. In this article, the analyzed images are sourced

from both the Sentinel-2 mission satellites and the Planet

Labs Dove satellite constellation. The images are divided into

800 × 800 pixels patches, which are then used as input for

the Faster R-CNN [20] object detection model. The annotation

process relies on colocating the satellite images with AIS (Au-

tomatic Identication System) data [21]. AIS data comprise

ship identiers and locations to groundtruth bounding boxes

in the considered dataset. As most small ships are not equipped

with AIS systems, this study only addresses large ships (> 100

m). Overall, this study reports a 85% detection rate but does

not document the false alarm rate. These results do not appear

fully conclusive compared with the performance reported for

HR and SAR imagery.

The objective of our work is to create an automated system

for detecting and characterizing ships in Sentinel-2 images.

III. PROPOSED APPROACH

We present a multi-stage approach for ship detection and

characterization in Sentinel-2 images. In the initial stage,

we employ a sliding window technique to systematically

cover the image. Each window is of size 100 × 100 pixels,

representing 1 km × 1 km, and overlaps with neighboring

windows by 25%. This overlap ensures that if a ship extends

across two windows, a signicant portion of it remains

detectable in at least one of them. A window is considered

valid if it contains at least 5% of sea pixels, determined using

the land/sea mask. Subsequently, these valid windows are

categorized as either ”Ship” or ”No ship” using a Resnet-type

[22] classier. For the windows classied as ”Ship”, we

utilize a Faster R-CNN detector to obtain a bounding box

around the detected ships (only the coordinates of the ships

are necessary). This detector incorporates a dedicated branch

to estimate the ship’s heading. Figure 2 provides an overview

of our ship detection and heading estimation system.

When different adjacent patches detect parts of the same

ship, we apply the non-maximum suppression (NMS)

algorithm. However, in our approach, the suppression is not

based on network condence but rather on the size of the

bounding box. Our primary objective in this context is to

retain the largest bounding box to obtain the most precise

ship coordinates. Finally, once the coordinates are identied,

we create a 50 × 50 image centered on these coordinates to

estimate the ship length using a Resnet-type network (see

Figure 3).

The motivation behind proposing a two-stage strategy is

as follows. In current state-of-the-art schemes, candidate

proposals are typically classied based on their internal

features. Consequently, a region containing a very small

vessel may exhibit the same features as a region containing

a portion of rough sea. The context becomes crucial in this

scenario, and the initial classication step is necessary to

capture the context within sufciently large patches that

encompass the entire context while remaining small enough

to avoid missing very small vessels.

In our approach, each individual component undergoes

distinct training phases, following a traditional methodology

that includes training, validation, and testing. It is strongly

recommended to include a substantial number of complete

Sentinel-2 images during the model development phase. This

approach not only allows for the identication and resolution

of potential methodological limitations but also facilitates a

comprehensive examination of the test dataset’s distribution.

A. Classication phase

Developing a ”Ship” and ”No ship” category classier

involves two main phases. Firstly, we focus on generating
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Fig. 2: An Overview of Our Ship Detection and Heading Estimation System on Sentinel-2 Images. The Faster R-CNN model

comprises a backbone constructed from the Resnet18 classier trained on Sentinel-2 data. The layer names in black used to

build detection feature map are derived from keras applications [23].

Fig. 3: Ship Length Estimation Component.

datasets and verifying their distribution. Secondly, we work on

the model aspect, which includes selecting models and tuning

parameters.

1) Considered datasets: We generate our dataset by ex-

tracting patches with dimensions of 100 × 100 pixels from

Sentinel-2 images. Specically, we utilize only the Red, Green,

and Blue (RGB) bands (10 m resolution). This selection aims

to leverage the advantages of a pre-trained neural network

which is a powerful tool for increasing the accuracy and the

robustness of our classier [24]. These images are generated

using the vessel detection reports provided by CLS analysts.

These vessel detection reports are routinely generated by CLS

in the context of its commercial activities and contains for each

Sentinel-2 satellite image analysed the position of the detected

vessels along its characteristics such as length and heading

when these are measurable. Using the vessel detection reports

available, we process over 6000 Sentinel 2 images, extracting

approximately 12000 ship images and 20000 non-ship images.

To our knowledge, this represents the rst instance where

a signicantly large dataset has been employed for ship

detection in medium-resolution optical imagery. The ”No ship”

category receives particular attention, as it must encompass

all the scenarios encountered in optical images, including

sea, land, and clouds. Images consisting solely of land are

excluded, as their presence does not impact performance due

to the availability of a land mask that eliminates these false

alarms. Furthermore, it is essential to ensure that our dataset

adequately represented objects resembling ships, such as small

clouds, small islands, rough seas, and platforms. Manual

verication is performed extensively to conrm the presence

of all these ”sub-categories” within our dataset.

2) Verication of Distribution: The partitioning of train-

ing, validation, and test sets may appear straightforward in

the majority of machine learning problems. However, when

dealing with automation applied to a wide range of diverse

images under various scenarios, a careful partitioning becomes

crucial. Let us assume that our network is trained on images

featuring rough seas but is not tested on samples from this

specic scenario to assess its ”understanding”. This can lead to

vulnerabilities during the deployment phase: results on the test

set may appear very promising, but performance on real-world

images may be signicantly poorer. Indeed, our issue involves

binary classication. However, given the diversity of scenarios,

we consider working with subcategories. In our work, We

divide the ”Ship” category into 11 sub-categories: Ship 10,

Ship 20, Ship 30, Ship 40, Ship 50, Ship 100, Ship 150, Ship

200, Ship 300, Ship 400, and Ship 458. In this terminology,

”Ship x” signies a ship with a length less than ”x”. Figure
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4 illustrates the distribution of ”Ship” category in our dataset

based on their size.

Fig. 4: Distribution of ship sub-categories.

Fig. 5: Distribution of No ship sub-categories.

We also subdivide the ”No ship” category into 6 sub-

categories: Others compries patches devoid of vessels,

randomly sampled from 6000 Sentinel-2 images, Artifacts

contains patches with unwanted visual anomalies or distortions

that can occur during image acquisition or processing, Cloud

contains various cloud formations, Island includes patches

featuring islands and underwater reliefs, Land predominantly

consists of coastal areas, ports, and a few images with only

land terrain, lastly, Swell contains various forms of swell.

Figure 5 illustrates the distribution of ”No ship” category

based on this subdivision. Figure 6 shows some exemples of

each sub-category.

To reduce the random variability caused by the train/test

split, we further divide each of these subclasses into 5 clus-

ters using an automatic classication method, specically K-

means [25]. This clustering is based on the histogram values

of the image’s 3 color channels. Each of these clusters is

(a) Others (b) Artifcats (c) Cloud

(d) Island (e) Land (f) Swell

Fig. 6: Examples of No ship sub-categories images.

subsequently divided into training, evaluation, and test sets.

This approach ensures that the neural network is trained and

tested on a wider range of data, resulting in a model that is

not only more accurate but also more robust. Our approach is

summarized in Diagram 7.

We also extensively employ data augmentation techniques

to ensure a balanced representation of all our sub-cateogies.

For the ’Ship’ category, we apply vertical and horizontal

ips as well as rotations. Regarding the ’No ship’ category,

we employ the same augmentation techniques in addition to

elastic deformation to diversify the shapes of islands and

clouds. It’s worth noting that conducting a comprehensive

enumeration of all the natural sub-categories is of paramount

importance. The more comprehensive the enumeration, the

more effective the network will be in practical applications.

Carrying out this enumeration during the data generation phase

can save considerable time and effort, as it reduces the need

for frequent ne-tuning of the network.

3) Classication Network: We conduct extensive experi-

ments using various pretrained models on the Imagenet dataset

[26], including InceptionV3 [27], Resnet18, Resnet34, and

Resnet152 [22], while ne-tuning different parameters. Our

ndings consistently favore the Resnet architecture, which

demonstrates superior performance on our dataset.

In our training process, binary cross-entropy serves as our

loss function. We utilize the Adam Optimizer with a batch

size of 128 and a learning rate set at 10−4.

To further enhance our model’s ability to reduce false

alarms, we implemented an ensemble approach using two

classiers: ’Resnet152’ and ’Resnet34.’ These two models

exhibit comparable results and show signicant improvements

in false alarm reduction, albeit with a slight decrease in ship

detection performance.

B. Detection phase

The core of our system is the classication component,

which plays a pivotal role. The main goal of the detection

component is to assign bounding boxes to ships that
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Fig. 7: Our K-means method for forming the training, validation, and test sets.

our classier identies within patches labeled as ’Ship’.

Additionally, it may eliminate some false alarms if no ship is

detected in the patch by the detector. To build our detection

network, we employe the Faster R-CNN framework [20].

Despite its introduction in 2015, Faster R-CNN, along with

adapted versions, continues to demonstrate its state-of-the-art

performance on established reference datasets [28],[29].

However, it’s important to note that we do not explore other

detector types in this work, including YOLO and its variants

[30] and detection transformer (DETR) and its variants [31].

We utilize a modied version of Faster R-CNN for detec-

tion, based on the code referenced in [32], implemented on the

TensorFlow [33] framework. The primary motivation for these

modications is to enhance the detection of small vessels. The

Faster R-CNN architecture can be divided into three key com-

ponents: the Backbone network, the Region Proposal Network

(RPN), and the Detector network. Since we are dealing with

a single object type, we can use only the RPN along with

the backbone network to detect ships. However, by employing

the entire structure, we achieve signicantly improved results.

This improvement is attributed to the Detector network, which

incorporates Fully Connected layers, rening the outcomes of

the RPN, which relies solely on convolutional operations.

Our patches are sized at 100 × 100 pixels and contain

sometimes very small vessels, representing just 1 pixel of

the image, and sometimes large ships, occupying more than

40 pixels. To accommodate this size range, we congure the

Region Proposal Network (RPN) to propose different regions

of interest, even for the smallest objects. To achieve this, we

utilize anchor boxes of various sizes based on the statistics

of the ship length in our dataset, we choose 4 × 4, 7 × 7,

10 × 10, 14 × 14, 18 × 18, and 28 × 28 for square-shaped

anchor boxes. Additionally, we maintain the original aspect

ratios from the Faster R-CNN paper [20], which are 1, 0.5,

and 2. Furthermore, the input feature map for the RPN is set

to a size of 25 × 25 (with a stride length of 4) to preserve

crucial information from very small vessels, especially in

challenging scenarios. This conguration allows the RPN to

effectively handle objects of different sizes within our patches.

The feature map is constructed from the classication

network mentioned earlier. In fact, the classication net-

work demonstrates excellent results in distinguishing between

”Ship” and ”No ship” images. As a result, we believe that

the feature maps generated by this network encompass the

essential information required to serve as the backbone of

our detector. While the use of the initial 25 × 25 feature

map from the classication network aids in proposing smaller

regions that may contain small ships, it remains relatively

shallow for capturing information about larger vessels and

other objects within the image. To address this, we integrate

intermediate feature maps of sizes 13 × 13 and 7 × 7. By

employing upsampling techniques, we combine these feature

maps to create the feature map for region proposals, ensuring

a comprehensive representation of potential objects of interest

[34].

The region proposal network (RPN) architecture, after cre-

ating the feature maps, remains unchanged from the original

Faster R-CNN. It consists solely of a convolutional layer (512

channels) and two additional convolutional layers, one for

classication and the other for regression.

During the training of the RPN, an anchor is considered

positive only if its Intersection over Union (IOU) with a

ground truth box exceeds 0.7. Conversely, it is labeled as

negative if its IOU falls below 0.3. Anchors falling within

this range are not used for training purposes. To address the

class imbalance issue, we employ a weighted loss function,

which helps balance the small number of positive anchors per

image.

After proposing the regions of interest, we apply ROI

pooling to transform these regions into a xed size of 6× 6,

which is determined based on the lengths of the ships in our

datasets. Subsequently, these resized regions are forwarded to

the detector network. The structure of our modied Faster R-

CNN is illustrated within the green rectangle in Figure 2.

Only the RPN part and the Detector part are trained with a

learning rate of 10−4. The weights of the backbone layers

are frozen. We believe that since the classier performs

exceptionally well on a large dataset containing both ”Ship”

and ”No ship” images, the network only needs to learn how

to express the precise position of the ship, which is what the

RPN and Detector are designed to accomplish.

C. Characterization of ships

In this section, we introduce the deep learning component

for the estimation of the heading of the ship by adding an

additional branch to the Faster R-CNN architecture. Addition-

ally, we use a ResNet type model to estimate the size of the

ship.

1) Headings: While it was feasible to train a bounding box

with the ship’s orientation, as demonstrated in [35], we have
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access to a dataset containing 3000 ships annotated with their

heading. This information proves to be more valuable than a

simple rotated bounding box for our specic task.

Concerning the training process, we keep all the weights of

our previously discussed Faster R-CNN model frozen. Then,

we introduce an additional branch after the ROI pooling layer,

as illustrated within the sky blue rectangle in Figure 2, to han-

dle ship orientation estimation. In this branch, we utilize both

the cosine and sine of the ship’s angle as model outputs. This

approach is adopted to convey circular information effectively

to the network.

2) Length Estimation: Since regions of interest (ROIs) are

resized during the process, some size information is inevitably

lost. To address this issue, one approach is to recover size

information using ship orientation and the scaling factor.

However, given the current resolution, attempts to introduce an

additional branch for length estimation, similar to what we do

for ship heading, do not yield satisfactory results. Therefore,

we decided to employ a separate network for this purpose.

We utilize the Resnet50 network, with inputs sized at 50×50

pixels and centered on the ship. While smaller patches can be

considered (46 since the biggest ship we can meet is 458),

during the deployment of the entire ship detection system, the

inputs for the length estimation model are constructed around

the center of the ship’s bounding box predicted by our detector.

This bounding box may be slightly affected by ship wakes or

irregular ship shapes. Hence, we opt for this patch size, taking

into account potential small errors in the detection phase.

It is essential to note that for ensuring the robustness of

our approach, we systematically exclude all images featuring

partial cropping and inadequately labeled lengths. However,

we do not exclude images of ships partially obscured by

clouds if their lengths are still measurable; otherwise, they are

excluded. This renement leads to a dataset consisting of 7460

images, distributed randomly across training (80%), validation

(10%), and test (10%) sets.

IV. EXPERIMENTS AND RESULTS

In this section, we present the outcomes of our system,

along with experiments demonstrating the effectiveness of the

methods used in both the classication and detection phases.

We commence by introducing the experiments and results of

the classication phase, followed by those of the detection

phase. Subsequently, we delve into the characterization phase,

and nally, we present the results of our complete ship

detection system. To assess the performance of our system,

we utilize a distinct dataset comprising 60 Sentinel-2 images,

herein referred to as the Evaluation set. It is essential to note

that this dataset is distinct from the training, validation, and

test datasets used for training each component of the system

A. Description of the Evaluation Set

The evaluation set consists of 60 Sentinel-2 images captured

from approximately 20 different Earth locations, as indicated

by red stars in Figure 8, at various acquisition times. These

images encompass a wide range of scenarios, including coast-

lines, turbulent seas, artifacts, images with a high density of

ships, low-density ship images, and cloud-covered scenes. In

total, the 60 images collectively contain 878475 valid patches.

A patch is considered valid if it contains at least 5% of sea

pixels. In total, the 60 images collectively contain around 1147

ships. The image annotations are carried out by CLS analysts.

It’s important to note that very small ships may not have

been annotated due to the inherent difculty and resolution

limitations. Our evaluation set is available in [36].

Fig. 8: Location of the 60 Sentinel 2 Images Constituting the

Evaluation Set.

B. Classication Experimentations

1) Evaluating Distribution Verication Effectiveness: In

this experiment, we analyze and compare the results achieved

by employing various data splitting methods. We utilize the

pre-trained Resnet152 network on the Imagenet dataset, as it

exhibits the best performance. We examine three distinct data

splitting congurations:

• In the rst approach, we implement a random split, as

depicted in the rst phase of the diagram 7. This split is

referred to as the ”Random split.”

• In the second approach, we employ a split based on

subclasses, as shown in the second phase of the diagram

7. This split is referred to as the ”Subclass split.”

• In the third approach, we create a split based on clusters

within each subclass, represented in the third phase of

the diagram 7. This split is referred to as the ”Subclass

k-means split.”

We present the performance metrics for the test sets in

Table I, each comprising approximately 6500 images, with

2500 ship images and 4000 no-ship images. The metrics used

to assess our classiers include the False Positive Number

(FP) and Recall. We opted for FP instead of precision due to

the minimal occurrence of false positives. These metrics are

compared across different condence thresholds: 0.50, 0.75,

and 0.95.

Table I shows comparative results; however, we cannot draw

conclusions without testing the methods on a common dataset:

the evaluation set (constructed using 60 Sentinel-2 images, as

previously mentioned).

Table II displays the results of the three distinct models,

evaluated on the Evaluation set. The FP metric represents

the aggregate count of false positives observed across all

60 evaluation images, encompassing approximately 877470
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Split / Threshold
0.5 0.75 0.95

FP Rec.(%) FP Rec.(%) FP Rec.(%)

Random 45 98.1 34 97.7 15 96.0

Subclass 23 98.3 12 97.9 5 96.0

Subclass k-means 25 98.1 16 97.5 8 95.9

TABLE I: Evaluation of Data Splitting Methods on Their

Respective Test Sets Using Resnet152.

Split / Threshold
0.5 0.75 0.95

FP Rec.(%) FP Rec.(%) FP Rec.(%)

Random 2529 98.2 1818 97.6 1003 96.1

Subclass 1050 98.4 840 97.9 605 96.2

Subclass k-means 546 98.2 406 97.1 240 95.5

TABLE II: Evaluation of Data Splitting Methods on The

Evaluation Set Using Resnet152.

valid patches devoid of ships. Remarkably, the ’k-means split’

method outperforms both the ’random split’ and ’subclass

split’ approaches, resulting in the lowest occurrences of false

positives, averaging approximately 4 per Sentinel-2 image.

This outcome underscores the signicance of employing veri-

cation techniques and methodological renements to reduce

the random variability inherent in splitting datasets, partic-

ularly in complex scenarios with a wide range of image

characteristics.

2) Ensemble network classication: Throughout the re-

mainder of our results, we exclusively employ the dataset

split derived from the k-means method. To minimize the

False Positive Number, we conduct extensive experiments with

various models pretrained on Imagenet. Table III summarizes

the outcomes of these models in terms of False Positive

Number (FP) and Recall metrics.

Model / Threshold
0.5 0.75 0.95

FP Rec.(%) FP Rec.(%) FP Rec.(%)

InceptionV3 36 97.6 25 97.0 11 95.0

Resnet18 40 97.0 28 96.9 13 94.0

Resnet34 33 97.5 24 97.2 9 94.8

Resnet152 25 98.1 16 97.5 8 95.9

Ens. Resnet34/Resnet152 14 96.5 10 95.3 4 93.0

TABLE III: Evaluation of Various Pretrained Models’ Perfor-

mance on the Test Dataset.

Our aim is to create the optimal ensemble, prioritizing

FP reduction while tolerating a slight drop in Recall. To

achieve this, we employ ensemble models and manually se-

lected aggregation rules, guided by a criterion: False Positives

should not include any images clearly devoid of vessels.

Consequently, we choose Resnet152 and Resnet54 with an

aggregation rule stipulating that both models must output

a condence score exceeding 0.95 to classify an image as

containing a ship.

The Ensemble network yields a Recall of 93% with only

4 false positives on the test set. Figure 9 illustrates images

of these four false positives. It is not evident whether these

images contain a ship.

Fig. 9: The only four false positives produced by the

Resnet152 and Resnet34 ensemble.

C. Detection Experimentations

1) Evaluating our Modied Faster R-CNN: In this exper-

iment, we assess the effectiveness of our modied Faster

R-CNN in comparison to the original version. To ensure a

robust comparison, we adjust the classical Faster R-CNN with

a ResNet18 backbone pretrained on the ImageNet dataset,

solely due to differences in input size. The feature map

used for generating proposals is derived from the layer

”Stage 4 unit1 relu1”. To evaluate the performance of these

models, we employ Detection rate, False alarm rate , F1 score,

and Average Precision, noting that a detection is considered

correct only if it’s Intersection over Union (IOU) exceeds

0.5. Additionally, we conduct a performance comparison using

ResNet152 and ResNet34 backbones. Our adapted version

of the Faster R-CNN is denoted as MRS-Faster R-CNN,

underscoring its focus on medium-resolution ship detection.

Model / Metric D(%) FA(%) F1 score(%) AP(%)

Faster R-CNN / ResNet18 70 66 45.7 30.9

MRS-Faster R-CNN / ResNet18 80.4 18.8 75.4 77.1

MRS-Faster R-CNN / ResNet34 77.5 23.7 76.9 74.4

MRS-Faster R-CNN / ResNet152 78 27.8 75 73.1

TABLE IV: Performance Metrics for Different detection Mod-

els.

Our MRS-Faster R-CNN demonstrates promising perfor-

mance in comparison to a standard version of Faster R-CNN.

Even though Resnet152 and Resnet34 yield superior classi-

cation results (Table III), the feature maps constructed from

Resnet18 produce the best outcomes. We hypothesize that the

comparatively shallower architecture of Resnet18 allows the

intermediate feature maps which are of a relatively large size

to encompass a richer set of information. It’s worth noting that

utilizing a backbone constructed from Resnet152 or Resnet34

for detection will help minimize image processing time in our

system, albeit with a minor trade-off in performance.

Detection and False Alarm rates are inuenced by two key

factors. Firstly, our dataset comprises numerous small vessels

with wakes, leading to instances where wakes are considered

as part of the ship due to resolution limitations. However, our

detector consistently distinguishes between wakes and vessels

on larger ships, as depicted in Figure 10. Secondly, our model

encounters challenges in detecting closely positioned ships,

particularly small vessels, as illustrated in Figure 11. Rening

the Intersection over Union (IOU) condition to 0.25, Detection

rate reaches up to 95%, and False alarm rate decreases to 5%.

2) Direct application of the Faster R-CNN: In this exper-

iment, we directly apply our detector to the evaluation set,
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Fig. 10: Model detections exemples : Green bounding boxes

denote annotations, while yellow indicates model predictions.

Fig. 11: Model struggles with close ship differentiation, gen-

erating a single bounding box for closely positioned vessels.

excluding the use of the classication component, following

the approch of [17]. This direct application yields a Detection

Rate of 96% and an Average False Alarm number per image

of 50. The expected outcome aligns with the inherent design

of the Faster R-CNN, which lacks contextual information. To

ensure a fair experiment with direct applications, additional

enhancements are essential. Incorporating branches to encode

contextual information, as demonstrated in [37], represents

a potential avenue for improvement. Notably, such enhance-

ments were not explored in our work.

D. System Performance evaluation

We assess the performance of our ship detection system,

emphasizing the detection rate and false alarm count. Figure 12

presents the detection rates for various ship sizes, showcasing

an overall detection rate of 93.2%. The system records an

average of 2.1 to 3.9 false alarms per Sentinel-2 image. The

uncertainty in false alarm numbers stems from the presence

of 106 detections resembling small ships (< 20m) but not

annotated by CLS analysts due to resolution limitations. No-

tably, our system excels in detecting large vessels (> 100m),

achieving a detection rate exceeding 97%. Table V presents

detailed results for each image, wherein false alarms are pre-

dominantly attributed to harbor facilities, offshore platforms,

and swell (Figure 13). These results demonstrate signicant

promise for achieving complete automation in ship detection

on Sentinel-2 images and, more broadly, on optical medium-

resolution images.

E. Ship Characterization Results

1) Heading Results: Figure 14 displays the heading results

for 600 ship images. We assess accuracy in two ways. In the

Fig. 12: System Performance evaluation : Overall Detection

rate : 93.2%, Potential False Alarms (Range): 128-234, Aver-

age False Alarms for One Image (Range): 2.1-3.9.

Fig. 13: Examples of False Alarms.

left part of the gure, a predicted heading is considered accu-

rate if the absolute difference between the predicted heading

(hp) and the ground truth heading (hgt) is less than a specied

heading error (herror), with herror taking values of 15◦, 30◦,

and 45◦. In the right part of the gure, accuracy is determined

by verifying if the absolute difference between the predicted

heading and the actual heading modulo 180◦ is less than herror.

This relaxation of the rst condition helps accurately assess the

model’s capability, especially in situations where the direction

is unclear due to resolution limitations, as depicted in Figure

15. The accuracy for predicting headings within a range of

±30 degrees is 93%.

Fig. 14: Heading Prediction Results for 600 Ship

Images. Left: A correct prediction is indicated when

|hp − hgt| ≤ herror. Right: A correct prediction occurs when

|hp − hgt| mod 180 ≤ herror.

2) Length estimation Results: The results on length esti-

mation are based on 746 ship images with dimensions of

50 × 50. The mean length error is reported as 15.36m ±
19.57m, accompanied by an R-squared value of 92 (Figure

16). The relatively high standard deviation error is attributed
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Image Name Main Features Total Ships DR(%) FA Potential Ships, Not Clear

S2A MUL ORT 13 20220521T084745 20220521T084745 00064 Coast, Calm sea 15 86.6 1 0

S2A MUL ORT 13 20220521T084756 20220521T084756 00064 Coast, Calm sea 13 100 0 7

S2A MUL ORT 13 20220702T063238 20220702T063238 00091 Clouds 0 . 0 0

S2A MUL ORT 13 20220707T083745 20220707T083745 00021 Coast, Calm sea, Harbor 140 94.2 6 3

S2A MUL ORT 13 20220712T063233 20220712T063233 00091 Clouds 0 . 0 0

S2A MUL ORT 13 20220719T074600 20220719T074600 00049 Coast, Islands 18 100 0 13

S2A MUL ORT 13 20220719T074613 20220719T074613 00049 Coast, Islands, Clouds 26 100 4 20

S2A MUL ORT 13 20220719T074628 20220719T074628 00049 Coast, Islands, Clouds, Underwater re-

lief

15 93.3 4 3

S2A MUL ORT 13 20220719T074638 20220719T074638 00049 Coast, Islands, Clouds, Underwater re-

lief, Artifacts

8 100 4 3

S2A MUL ORT 13 20220801T063228 20220801T063228 00091 Small Clouds 0 . 0 0

S2A MUL ORT 13 20220801T063229 20220801T063229 00091 Small Clouds, Islands 0 . 0 0

S2A MUL ORT 13 20220801T063235 20220801T063235 00091 Small Clouds, Islands 0 . 0 0

S2A MUL ORT 13 20220808T062238 20220808T062238 00048 Clouds 0 . 0 0

S2A MUL ORT 13 20220818T062238 20220818T062238 00048 Clouds 1 0 0 0

S2A MUL ORT 13 20220821T063236 20220821T063236 00091 Clouds 0 . 0 0

S2A MUL ORT 13 20220828T062238 20220828T062238 00048 Complete Cloud Cover 0 . 0 0

S2A MUL ORT 13 20220908T004106 20220908T004106 00059 Coast, Small Clouds, Underwater relief 14 85.7 0 2

S2A MUL ORT 13 20220908T004119 20220908T004119 00059 Coast, Small Clouds, Underwater relief 0 . 0 1

S2A MUL ORT 13 20220908T004130 20220908T004130 00059 Coast, Small Clouds, Underwater relief 16 81.3 5 0

S2A MUL ORT 13 20220910T063231 20220910T063231 00091 Calm Sea, Small Clouds 0 . 0 0

S2A MUL ORT 13 20220910T063234 20220910T063234 00091 Clouds 0 . 0 0

S2A MUL ORT 13 20220912T220946 20220912T220946 00129 Clouds, Swell 0 . 7 0

S2A MUL ORT 13 20220915T034601 20220915T034601 00018 Clouds, Platforms 14 100 2 5

S2A MUL ORT 13 20220915T034604 20220915T034604 00018 Clouds, Platforms 15 100 1 5

S2A MUL ORT 13 20220915T034630 20220915T034630 00018 Clouds 3 100 0 0

S2A MUL ORT 13 20220915T222001 20220915T222001 00029 Clouds 0 . 0 0

S2A MUL ORT 13 20220918T035449 20220918T035449 00061 Clouds 40 90 6 3

S2A MUL ORT 13 20220918T035521 20220918T035521 00061 Coast, Clouds 8 75 0 0

S2A MUL ORT 13 20220918T035607 20220918T035607 00061 Coast, Clouds, Islands 20 80 4 2

S2A MUL ORT 13 20220918T035616 20220918T035616 00061 Coast, Clouds 17 70 2 0

S2A MUL ORT 13 20220918T035622 20220918T035622 00061 Coast, Clouds, Islands 97 92.7 1 4

S2A MUL ORT 13 20220920T063234 20220920T063234 00091 Clouds 0 . 0 0

S2B MUL ORT 13 20220509T085722 20220509T085722 00107 Coast, Calm Sea 31 100 4 3

S2B MUL ORT 13 20220704T062230 20220704T062230 00048 Clouds 0 . 0 0

S2B MUL ORT 13 20220709T083234 20220709T083234 00121 Coast, Clouds, Underwater relief 69 92.7 6 1

S2B MUL ORT 13 20220709T083248 20220709T083248 00121 Coast, Calm Sea 13 100 1 1

S2B MUL ORT 13 20220710T145840 20220710T145840 00139 Coast, Clouds, Artifacts 8 100 2 2

S2B MUL ORT 13 20220717T063228 20220717T063228 00091 Clouds 0 . 0 0

S2B MUL ORT 13 20220718T155111 20220718T155111 00111 Coast, Clouds 0 . 2 0

S2B MUL ORT 13 20220719T083234 20220719T083234 00121 Coast, Calm Sea, Underwater relief 87 91.9 1 2

S2B MUL ORT 13 20220719T083238 20220719T083238 00121 Calm Sea, Underwater relief, Platforms 147 91.8 10 11

S2B MUL ORT 13 20220722T070213 20220722T070213 00020 Coast, Clouds, Swell 129 96.8 34 5

S2B MUL ORT 13 20220727T063228 20220727T063228 00091 Clouds 0 . 0 0

S2B MUL ORT 13 20220813T062230 20220813T062230 00048 Clouds 0 . 0 0

S2B MUL ORT 13 20220816T063227 20220816T063227 00091 Clouds 1 0 0 0

S2B MUL ORT 13 20220828T083001 20220828T083001 00121 Coast, Harbor, Calm Sea 107 97.1 9 3

S2B MUL ORT 13 20220828T083030 20220828T083030 00121 Coast, Clouds 31 74.1 3 0

S2B MUL ORT 13 20220909T005948 20220909T005948 00002 Small Clouds 0 . 0 0

S2B MUL ORT 13 20220909T005951 20220909T005951 00002 Small Clouds 1 100 1 0

S2B MUL ORT 13 20220909T005956 20220909T005956 00002 Clouds, Islands 7 57 2 0

S2B MUL ORT 13 20220909T005959 20220909T005959 00002 Calm Sea, Clouds 5 100 0 0

S2B MUL ORT 13 20220909T010014 20220909T010014 00002 Calm Sea, Clouds 5 80 0 0

S2B MUL ORT 13 20220909T010028 20220909T010028 00002 Coast, Calm Sea 1 100 0 2

S2B MUL ORT 13 20220912T062227 20220912T062227 00048 Clouds 0 . 0 0

S2B MUL ORT 13 20220916T040541 20220916T040541 00104 Coast, Clouds 4 50 2 1

S2B MUL ORT 13 20220916T040545 20220916T040545 00104 Clouds, Islands 0 . 0 2

S2B MUL ORT 13 20220916T040610 20220916T040610 00104 Coast, Clouds 11 90 2 1

S2B MUL ORT 13 20220916T040624 20220916T040624 00104 Clouds 3 100 1 0

S2B MUL ORT 13 20220916T040628 20220916T040628 00104 Clouds 1 100 1 1

S2B MUL ORT 13 20220916T040634 20220916T040634 00104 Clouds 6 100 0 0

TABLE V: Detection System’s performance on the Evaluation Set [36] with Detection Rate and False Alarm Count metrics.

Fig. 15: Examples of Ambiguous Heading.

to instances where wake shapes or partial cloud coverage

make the length measurement task challenging (Figure 17). By

excluding these challenging instances, the dataset now consists

of 695 images, yielding a reduced mean length error of 11.29m

± 10.17m. Despite these challenges, our results demonstrate

commendable performance, particularly considering the reso-

lution limitations of Sentinel-2 data.

V. DISCUSSION

The detection of ships in medium resolution optical images

remains an underexplored eld, with only a few studies

adopting a comprehensive approach to this task. The scarcity

of research in this area is not indicative of its insignicance

but rather stems from the limited availability of data and

annotated resources. In an attempt to bridge this gap, we
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Fig. 16: Predicted vs. True ship lengths with an R-squared of

0.92.

(a) 145(142) (b) 177(173) (c) 68(180) (d) 218(103)

Fig. 17: Examples of Ship Length Prediction. The rst number

denotes the ground truth length, while the predicted length is

enclosed in parentheses

make available 60 annotated Sentinel-2 images (1147 ship

exemplars) which include length, and heading information

when theses are mesurable [36].

Our study demonstrates a signicant improvement in per-

formance compared to existing results: our detection rate is

93%, compared to 75% in [15]. Notably, our detection rate

on large vessels (> 100 m) is 97% compared to 85% in [17].

It is crucial to highlight that this improvement is primarily

associated with the substantial difference in the dataset sizes

rather than the methodology employed. Importantly, it should

be noted that reproducing our results does not necessitate an

equivalent volume of data. Our dataset contains a substantial

amount of redundant information, suggesting that achieving

comparable results may be feasible with a more carefully

selected dataset.

It’s crucial to highlight that our primary research objective

centers around establishing an effective ship detection system,

with ship heading and length estimation emerging as subse-

quent considerations. While there is room for improvement,

particularly in length estimation (our mean error: 15.36m ±
19.57m on 746 ship images), in [14], the reported mean error

is 15.48m ± 10.94m on 34 ships, only 3 of which contain

ship wakes. Our higher standard deviation error arises from

the presence of ships partially obscured under clouds and a

signicant number of images with ship wakes. Upon removing

these challenging images, the mean length error is reduced to

11.29m ± 10.17m.

The results for heading estimation have proven highly

satisfactory. We report a 93% accuracy in heading estimation,

where correct heading estimation is dened as ground truth

heading ±30 degrees. The remaining 7% discrepancy is at-

tributed to instances where the heading is visually unclear due

to resolution limitations. It is noteworthy that, to the best of

our knowledge, we did not nd any studies presenting results

in heading estimation specically on medium-resolution (MR)

optical imagery.

The demonstrated results hold promise for achieving com-

plete task automation. However, it is essential to note that full

conrmation of these ndings awaits deployment in production

settings (Figure 18), considering the diversity and occasional

complexity of scenes encountered. Our system exhibits a time

limitation, requiring approximately 10 minutes to process a

complete Sentinel-2 image on an 8-Core CPU. This processing

time is attributed to the multiple stages involved, which,

with the application of alternative ideas, could potentially

be consolidated into a single stage without compromising

performance.

One potential avenue for system enhancement involves

introducing a context branch to the Faster R-CNN architecture

[37]. This modication holds promise in addressing issues

such as false alarms triggered by large vessels, which may

generate noise in their surroundings, producing bright points

that our detector may misinterpret as small ships. To overcome

the time limitations inherent in our system, the utilization of a

one-stage detector, such as YOLO [38], could be considered.

Additionally, we acknowledge the challenge of accurately

detecting very close ships, reecting a broader issue in general

object detection [39]. Future research efforts may explore

innovative strategies to mitigate these challenges and further

rene the performance of ship detection in optical images.

VI. CONCLUSION

In this research, we introduced an automated system de-

signed to detect and characterize ships in Sentinel-2 images

through a multi-stage process. Our system comprises distinct

components focusing on classication, detection, and char-

acterization. Within the classication component, we high-

lighted the importance of validating distribution in complex

environments and diverse scenarios. State-of-the-art models,

specically Resnet152 and Resnet34, were employed to mini-

mize false positives. During the detection phase, modications

were made to the original Faster R-CNN to effectively handle

our specic dataset. In the characterization phase, a dedicated

branch was integrated into the Faster R-CNN to estimate

ship headings, and Resnet50 was separately used for length

estimation. The results of our system are promising, indicating

the potential for complete automation of ship detection and

characterization in Sentinel-2 images. Additionally, the pre-

sented approach is adaptable to other satellite constellations.

However, our system encounters challenges in differentiating

small ships from their wakes and struggles with detecting

closely positioned ships. Acknowledging these limitations,

further research could explore these specic points, ensuring

a continuous improvement in automated ship detection and

characterization methodologies.
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Fig. 18: Integration of the Ship Detection System in CLS Processing Pipeline - Initial System Trials.
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